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ABSTRACT 

Previsualization is a pre-production process in filmmaking that 

allows directors to plan shots without incurring unnecessary costs. 

The increasing power of consumer hardware as well as the 

increasing popularity of free 3D modelling and animation tools 

are making filmmaking more accessible. Current previsualization 

software is based on 3D modelling software and usually employs 

a traditional WIMP paradigm that restricts users to 2D input and 

output. 

We present a Virtual Reality (VR) based interface for the task of 

previsualization with the aim of accessibility and usability using 

commodity hardware. The system places users in a virtual scene 

and allows them to manipulate objects to create a timeline of key 

frames by capturing snapshots of the scene. The system uses a 

head-mounted display to place the user in a scene as the camera, 

allowing them to make fine adjustments using head movement. 

We conducted a small-scale qualitative evaluation and found that 

while there were multiple issues with our interface, it also shows 

promise in some aspects of previsualization. 

CCS Concepts 

• Human-centered computing ➝ Interaction paradigms ➝ 

Virtual reality 

Keywords 

Virtual reality; 3D user interfaces; Previsualization; Head-

mounted display 

1. INTRODUCTION 
Previsualization (previs) is process that takes place during the pre-

production phase in filmmaking. It is used by directors to 

visualize various aspects of scenes without the costs of fully 

producing them. This includes camera placement and movement, 

and the movement of objects during the course of a shot. More 

recently, 3D graphics software has been used to aid this process 

with low-fidelity 3D models. Many programs currently used for 

previs were originally designed for 3D modelling. These packages 

often require the skills of a trained animator, whose expertise 

could be better used in other processes. Traditional WIMP 

software used for previs also constrains the user to both 2D input 

devices (mouse) and a 2D interaction window (monitor). This can 

become problematic for performing tasks which are 3D in nature 

[10]. 

 

With the increasing power of consumer desktop hardware, as well 

as the rise in popularity of free 3D modelling and animation 

software, the tools and resources for filmmaking are becoming 

more accessible to amateur filmmakers and hobbyists. Nitsche 

[14] argues that the interactive aspects of games combined with 

storytelling make game engines suitable for previs, and that the 

ability of virtual reality to allow users to play a character in a film 

offers new possibilities for previs. In fact there are a number of 

game engines that support film production (or machinima). This 

means that digital filmmaking is becoming more accessible to 

people without formal training [14]. 

We propose a new 3D user interface for previs that aims to allow 

users with no training to create previsualizations intuitively and 

efficiently. The interface uses a virtual reality (VR) head-mounted 

display (HMD) to place the user in the scene. This allows the user 

to better understand the 3D spatial relationships between objects 

in the scene. The user interacts with the system using a 

combination of head movements and a gaming console controller. 

The controller provides a familiar and simple control scheme. Our 

system allows users to select objects using their gaze, and then 

perform 3D translations and rotations on them by changing 

modes. The user acts as the camera in order to capture key frames 

as snapshots of their current view. This allows the user to make 

fine adjustments to the camera shots using head tracking. 

There is currently little development of new ways of previs. Our 

system is novel in that users are given a unique perspective from 

within the scene using virtual reality. While the existing body of 

research on VR and 3D user interfaces does apply, other design 

choices still need to be explored. This applies especially to the 

choice of input device. Our system uses an Xbox360 controller as 

an input device, both because of its popularity, as well as its 

endorsement by Oculus. 

Our system focuses on low-fidelity previs, which involves low-

resolution models often without textures or rigging. Our system 

aims at producing a series of still renderings captured by the user. 

Permission to make digital or hard copies of all or part of this work for 
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not made or distributed for profit or commercial advantage and that 
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otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

Figure 1. Screenshot of current previs software: 

FrameForge [22]. 

 



This is in contrast to high-fidelity previs which normally allows 

users to plan camera and object movements and render them in 

real-time. High-fidelity previs also enables basic animation of 

objects to show gestures and simple body language. This allows 

more detailed plans to be made. 

We made use of an iterative development process which included 

feedback from pilot users as well as expert heuristic evaluation. 

Prototypes were used to quickly obtain feedback on design 

decisions. Finally, a small-scale qualitative evaluation was 

undertaken to determine the effectiveness of this interface in 

terms of usability. 

The remainder of this paper is structured as follows: Section 2 

discusses related work pertaining to both virtual reality and 3D 

interaction metaphors; Section 3 details the interface design; 

Section 4 covers the implementation and hardware used; Section 5 

describes the experimental methodology as well as the results of a 

qualitative evaluation; and lastly, Section 6 provides a conclusion 

as well as possibilities for future work. 

2. RELATED WORK 
While there is little previous work that specifically addresses 

previs, there is a large body of literature regarding VR and 3D 

user interfaces for 3D tasks similar to previs. 

2.1 Virtual Reality 
There are a number of examples where a VR-based system was 

found to improve users’ 3D spatial understanding and 3D scene 

creation. Both of these aspects are important for previs where 

users are required to: (a) manipulate objects to create a scene and, 

(b) capture renderings where the relative positions of objects are 

important for capturing the desired camera shot. 

Butterworth et al. [2] developed a 3D modeling tool using an 

HMD and found that placing users in the virtual scene made it 

easier to understand the spatial relationships between objects. 

Users were also able to make fine adjustments to their viewpoints 

in a natural way due to head tracking by the HMD. This is 

important for a VR previs application because the user’s 

viewpoint is used to display the current frame for capture. 

Enabling users to make fine adjustments intuitively is 

advantageous for this purpose.  

Wang and Lindeman [20] presented a level editing system for 

virtual environments that used a partially occlusive HMD. Users 

would look forward to see the environment inside the HMD, and 

look down to see a tablet which gave an overview of the 

environment as well as a means to interact with the system. The 

overview gave users another perspective of the environment and 

the 2D input on the tablet made tasks such as menu navigation and 

data entry easier. Level editing is similar to previs in that it also 

involves transforming objects to place them in the desired manner. 

This is important because of how VR enables users to be placed in 

the scene, as a better understanding the spatial relationships 

between objects is equally important for previs. The system 

presented in [20] also indicates the importance of providing an 

overview of the environment to users, enabling them to keep track 

of all the objects in the scene while focusing only on some of 

them. 

Two CAVE-based systems were developed by Hughes et al. [7] 

and Ponto et al. [16] for creating 3D scenes. Both of these systems 

allowed users to manipulate 3D objects in order to create a scene. 

Hughes et al. [7] found that users were able to recreate complex 

architectural models of entire buildings in under 15 minutes, but it 

was also found that users required previous knowledge of 3D 

modelling techniques to use the system effectively. Ponto et al. 

[16] found that users were able to create complex scenes in under 

10 minutes. Both of these systems have similar requirements to 

previs, where users are required to create 3D scenes by 

manipulating objects. One difference is that previs also involves 

camerawork which requires users to move around the scene, 

unlike in [7] and [16] where a static viewpoint is used. It must be 

noted that the short time taken to recreate scenes in [7] could be 

attributed to participants’ training in architecture. 

2.2 3D Interaction Metaphors 
User interaction with a 3D interface is classified using metaphors. 

These metaphors describe how a virtual environment (VE) will 

respond to user interaction by likening it to a real-world physical 

response. Jankowski [8] provides a taxonomy of general tasks 

performed in 3D virtual environments from which these 

metaphors can be derived. Bowman et al. [1] define three main 

interaction techniques: manipulation, selection, and travel (similar 

to navigation). 

2.2.1 Navigation 
Navigation involves the user changing viewpoint within a VE. 

This encompasses both general movement with no particular goal, 

and targeted movement with regard to some specific point of 

interest. Targeted movement may also involve a set of specific 

orientations and positions. Ware and Osborne [21] define three 

metaphors for 3D navigation, namely Eyeball-in-Hand, Scene-in-

Hand, and Flying Vehicle Control. The user’s hand movements 

directly transfer to viewpoint and scene movements, respectively, 

in the ‘in-hand’ metaphors, and the user’s interaction moves a 

virtual vehicle through the scene in the last metaphor. It was 

found that in the Eyeball-in-Hand metaphor, users consciously 

calculate their movements and that this can become disorienting. 

The Scene-in-Hand metaphor is useful for manipulating objects 

and changing the viewpoint. This is useful for previs because 

users will spend most of their time manipulating objects and 

changing the viewpoint. The Flying Vehicle Control metaphor is 

most effective at reducing simulator sickness, but prevents the use 

of head movement for navigation. This is because the user’s head 

movements translate to movements within the ‘vehicle’ and don’t 

affect its movement. 

2.2.2 Selection 
Selection is the process that occurs when a user designates which 

object in a VE will be selected for navigation or manipulation. In 

3D VEs a common metaphor for selection is pointing. Most 3D 

pointing techniques fall under two metaphors: ‘ray-based’ and 

‘virtual hand’ [17, 18]. The main distinguishing characteristic of 

virtual hand techniques is that they require depth information in 

order to check for the intersection between the hand and cursor. In 

contrast, Dang [4] describes a third ‘spotlight’ metaphor. This is 

similar to ray-based techniques but a conical projection volume is 

used to select objects instead of a ray. The conical shape increases 

the selection area as the distance from the user increases. This 

mitigates the loss of accuracy associated with objects which are 

further away [11]. Lubos et al. [11] proposes two guidelines for 

3D selection in HMD VR environments. Firstly, 3D selection 

tasks that require fine movement should be restricted to objects 

that are close to the eyes. In previs, selection tasks will have to be 

performed when an object is far away from the desired camera 

position and so this guideline must be considered. Secondly, an 

elliptical shaped projection should be used to increase the 

selection space and reduce errors along the view direction. A plot 



of the error points in [11] showed an elliptical shape, meaning that 

using an elliptical selection shape should reduce errors. The 

second guideline only refers to the case where spherical objects 

must be selected, and it is unclear whether this will apply to other 

objects used for previs. 

2.2.3 Manipulation 
Manipulation refers to the methods used when changing an 

object’s position, orientation, and scale. In 3D user interfaces 

manipulation techniques fall under three metaphors. Using a 

Manipulator – virtual handles are attached to an object and 

displayed to the user and these handles are used to manipulate the 

object; Automatic Viewing Control – the position of the virtual 

camera is used to augment manipulation; Constrained 

Manipulation – physical aspects of both the world and the objects 

are used to constrain and simplify manipulation [8]. Using a 

Manipulator in VR-based applications may increase the difficulty 

of manipulation because the virtual handles can be seen as smaller 

objects which also have to be selected. This would add to the 

number of tasks that must be performed in order to manipulate 

objects. Automatic Viewing Control has a new meaning for VR-

based previs due to the ability of VR to place the user in the scene 

as the camera. This means that the user’s movements as the 

camera could be used to augment manipulation. Constrained 

Manipulation is important for previs because objects should not 

be able to move in unexpected ways (e.g. through a wall or below 

the floor). It must be noted that special cases may occur where the 

environment used for previs does not obey natural laws (e.g. 

objects are able to float through things). 

A number of hybrid approaches to 3D manipulation have been 

proposed, where a combination of 3D and 2D input is used. Gallo 

et al. [5] develop an interface for manipulating medical scans 

where a Wiimote is used to capture 3D gestures and discrete 

button input. This interface exploits the advantages of 3D and 2D 

input using modes where each mode is used for a different type of 

manipulation. Users are able to perform the currently selected 

manipulation by waving the Wiimote in space and change between 

modes by pushing buttons on it. In our interface the joysticks on 

the controller are used to provide pseudo-3D input while buttons 

perform discrete actions including changing modes. Wang and 

Lindeman [20] describe a virtual level-editing interface using a 

non-occlusive HMD and a tablet. The HMD gives users a first-

person experience and captures head motion. The HMD also 

allows users to look down and interact with a tablet on their lap. 

The tablet provides an overview of the environment and allows 

2D touch input. Alternative approaches to displaying an overview 

for our system are required due to the occluding HMD used. This 

is less important for low-fidelity previs because all of the objects 

required for a particular key frame will already be in view for that 

frame. Mine at al. [12] create another hybrid interface that uses a 

handheld 3D-printed shell to house a smartphone and a 

microcontroller. The smartphone captures 2D touch input and the 

microcontroller is used to capture 3D gestures. This system shares 

similarities with both [5] and [20]. The input device allows for 

gesture based 3D input similar to the Wiimote as well as more 

complex 2D input via touch. These hybrid approaches leverage 

the strengths of both 3D and 2D input, which in this case are 3D 

manipulation and system control respectively. 

2.2.4 System control 
System control refers to interactions between the user and the 

system which are not represented in the VE, such as changing the 

mode of interaction. Actions such as menu navigation and 

numeric data entry are difficult to perform using 3D input 

methods due to the lack of 2D pointing precision compared to a 

traditional mouse. Data entry is also better suited to a device with 

discrete buttons for each possible type of input [12, 20]. This is 

important for previs because certain aspects such as timeline 

editing are done using discrete actions. It must also be noted that 

in VR applications head tracking can also be used for menu 

navigation where the user’s gaze selects menu options. For this to 

be possible the menu must be displayed as a part of the 

environment. 

3. INTERFACE 
The output of low-fidelity previs is a series of key frames, which 

is referred to as a ‘timeline’. These key frames show important 

camera shots over the course of a scene in a film, similar to 

storyboarding. The 3D nature of digital previs and the constraints 

of a game engine must be considered when designing a previs 

application in order to enable users to generate a timeline. Most 

importantly, the user must be able to edit a timeline. This involves 

the ability to create, view, overwrite, and delete key frames as 

well as a means to select them for these actions. Capturing a 

desired key frame involves two aspects: manipulating objects into 

the desired position and orientation, and moving the camera into 

the desired position. This means that the system must allow users 

to perform 3D translations and manipulations on objects, and 

move the camera while being able to see its viewpoint. 

These aspects of previs are all considered in our interface. Firstly, 

the user is able to view and edit the timeline by shifting back and 

forth to select key frames and perform actions on them. The 

timeline is always viewable because it is constantly referred to by 

users.  Secondly, the user is able to move around in the scene as a 

first-person camera. This allows the viewpoint to be changed so 

that the scene objects can be viewed in a different way, either for 

framing the objects as the camera or planning a camera’s 

movement. Thirdly, the user is able to select objects and 

manipulate them into various positions and orientations to plan an 

object’s movement during a shot. Object and camera movement 

are derived by interpolating between their positions on 

consecutive key frames. This core functionality was determined 

during a preliminary HCI task analysis to be fundamental to the 

low-fidelity previs process. 

Ideally this interface should be kept as simple as possible so that 

extensive training is not required. This would allow a director 

with minimal training to create a timeline and more accurately 

communicate the vision for a scene to others involved in the 

production process. 

Our system uses a modal interface with two modes. The 

functionality of the system is separated into: (a) navigation, 

timeline editing, object selection; (b) object manipulation via 3D 

translation and rotation. This maintains the simplicity of the 

controls, since the user is not able to look at the input device while 

using the system. This is similar to Gallo et al.’s [5] Wiimote 

interface where users changed between modes using buttons on 

the device. 

3.1 Navigation Mode 
This mode includes both the navigational and timeline aspects of 

previs. In this mode users are able to move around the scene using 

a combination of joystick movements and head tracking. This 

allows the user to move along all three axes. The axes are framed 

relative to the direction the user is facing in the scene so that the 

user can make fine adjustments to the direction of movement 

using head movement. The direction the user is facing is framed 

as the z-axis or the ‘forward’ direction, and the x-axis is framed 



perpendicularly to this. The y-axis is kept constant as directly up 

or down. This scheme allows for both coarse and fine adjustments 

to movement, which is important for navigation in a VE [19]. The 

user makes coarse adjustments by moving the avatar within the 

environment with joystick movements on the controller, while 

fine adjustments are made using head tracking.  

The Oculus best practices are followed with regards to movement. 

Movement speed is kept at a pace similar to walking and any 

acceleration effects on the user’s avatar are kept short. Forward 

movement is considered more natural than backwards or sideways 

movement and while this movement is possible in our system, 

forward movement is encouraged by allowing the user to change 

direction using head adjustments. In any case where the user’s 

avatar must be moved automatically (e.g. the user resets the 

position to where the selected key frame captured) the screen first 

fades to black before the movement is carried out. This was done 

in order to mitigate the effects of simulator sickness [15] and 

provide a more natural user experience. 

Timeline navigation and editing are also possible in navigation 

mode. Our system uses a heads-up display (HUD) to show users 

the timeline along the top edge of their view. While the Oculus 

best practices recommend that HUD elements rather be displayed 

in the environment as objects, this might cause issues with previs 

because the user often references the timeline. The user may 

become fatigued from keeping track of the timeline’s location in 

the environment. The timeline is represented as a strip of small 

images along the top of the display. Each image represents a key 

frame that the user has captured. The small size of the timeline 

images allows the user to see enough detail without occluding the 

objects in the scene. The currently selected gap or key frame is 

always kept centered in the display, allowing users to easily see 

their current selection. A red border around the key frame 

indicates that it is currently selected. 

Users are able to move back and forth along the timeline one key 

frame at a time, each object in the scene is automatically updated 

to its position and orientation when the selected key frame was 

captured.  Jumping to a specified key frame was not implemented 

as numeric entry would be difficult given the chosen input 

methods. Users are also able to select the spaces between key 

frames in order to insert a new key frame. When this occurs the 

scene objects keep their current positions and orientations until 

another key frame is selected. If a key frame is currently selected, 

it may be deleted or edited. The user is prompted before key 

frame deletion. As soon as an object is moved the system 

identifies the currently selected key frame as being ‘edited’. A 

slightly transparent ghost image of the object in its original 

position and orientation is shown to indicate that editing is active, 

this only applies to objects which have been moved from their 

original positions and/or orientations. Our system also allows the 

user to reset the viewpoint back to the configuration when the key 

frame was originally captured. This enables the user to make fine 

adjustments to the camera positioning of a key frame. When this 

occurs the display first fades to black in order to prevent 

disorientation. 

In order to manipulate an object, that object must first be selected. 

In our system this is done using a ray-based technique that allows 

the user to select an object by directing his or her gaze at the 

object in the environment. This technique is used because it has 

been shown that 3D selection tasks in sparse environments are 

easier to perform using ray-based techniques than virtual hand 

techniques [1, 6]. Visual feedback is provided by highlighting the 

currently targeted object in red, allowing users to quickly and 

accurately decide if the right object has been selected [17, 23]. 

 

 

Figure 2. Timeline screenshots showing both a 

keyframe and a gap selected. 

Figure 3. Screenshot showing the position of the timeline on 

the HUD. 

Figure 4. Screenshot showing a ‘ghost’ object, 

indicating that the current key frame is being edited. 

 

Figure 5. Screenshot showing an object (highlighted 

red) that is currently selected. 



A challenge associated with this method of 3D selection is that it 

becomes difficult to select smaller objects which are far away 

from the user [11]. In order to mitigate this problem a small reticle 

is drawn in the center of the user’s gaze to display the current 

target of the ray. 

3.2 Manipulation Mode 
In order to manipulate an object it must first be selected. The user 

may then choose to enter manipulation mode. The selection is 

then locked and the user may look away without deselecting the 

object. The object is highlighted in green and the mode icon in the 

HUD changes to manipulation mode. These multiple sources of 

feedback clearly indicate to the user that a new interaction mode 

is active. This mode consists of two sub-modes: translation and 

rotation. Translation and rotation were separated into sub-modes 

so that the movement controls could be reused. In order to make 

the interaction more predictable the mapping of axes to controls is 

kept the same between all modes and sub-modes. While in 

manipulation mode, users may change freely between the two 

sub-modes by pressing a button on the controller. 

Initially the system is in the translation sub-mode. This allows the 

user to move the selected scene object along all three axes. These 

axes are kept relative to the direction the user is facing, which 

should allow for more natural object translations. This allows 

users to predict the effect of object manipulations using their 

frame of reference in the environment. It also allows users to 

partially direct object movement by moving their head towards 

the desired position. For example, users are able to move an 

object upwards by looking up while moving an object forwards. 

In order to prevent users from moving an object out of the scene, 

translations are restricted. For example, objects cannot be moved 

below the floor of the environment. The rotation sub-mode is 

similar to the translation sub-mode, allowing users to rotate the 

object about the three axes using the same controls. One notable 

difference is that in this sub-mode the rotation axes are in the 

selected object’s local space. This was done to make rotations 

more predictable. It was found that rotations are disorienting if the 

axes are relative to the user’s gaze direction. 

While in manipulation mode, the system allows users to reset the 

selected object’s position and orientation back to the configuration 

of the original key frame independently. Once the user switches 

back into navigation mode the selected object’s new position and 

orientation are locked and the user is free to move around the 

environment again. Once the user switches back into navigation 

mode the selected object’s new position and orientation are locked 

and the user is free to move around the environment again. If the 

user switches back into manipulation mode the system is 

automatically switched to the previously selected sub-mode. 

4. IMPLEMENTATION 

4.1 Platform & Hardware 
The Unity3D game test engine was chosen as the development 

platform for the following reasons: (a) it has first-party support for 

the Oculus Rift VR HMD, (b) it is freely available to use, (c) it 

allows for rapid prototyping, and (d) it readily supports an 

Xbox360 game controller as an input device. Unity3D also allows 

for a modular codebase by separating different functionality into 

scripts, which are written in C#. In our system each feature is 

separated into its own script. The Unity3D engine is able to 

display directly to the HMD without first requiring an executable 

build file, which accelerates the development cycle. This also 

allows the system to be tested without the HMD when necessary. 

Oculus provides default avatar controllers for Unity3D, which 

incorporate the Oculus best practices, such as minimal 

acceleration and slow movement speed. Lastly, 3D models from 

popular 3D modelling software such as Blender can be easily 

imported into the Unity3D engine. 

The Oculus Rift Development Kit 2 (DK2) was used as a HMD 

for our system. At the time of writing, this is the most recent 

iteration of the popular VR headset and has a higher resolution 

display as well as a higher supported frame rate than previous 

models. These are both factors that can cause simulator sickness if 

too low. It is also best to support a readily-available commercial 

VR product as one of the aims of our system is a low barrier to 

entry. The Oculus Rift supports head tracking, which is required 

for selecting scene objects as well as user and object movement. 

An Xbox360 game controller was used as the input device. Due to 

its widespread adoption, it might already be familiar to potential 

users and they would require less training. This game controller is 

also widely available, which lowers the requirements for our 

system. In 2016, the commercial version of the Oculus Rift will 

be packaged with an Xbox game controller, which means that 

anyone who has purchased one will be able to use our system.  

Due to the HMD occluding views of the real world users will be 

unable to look at the input device and may be unable to determine 

what is required to perform a desired action. To overcome this, 

users are able to look down while wearing the HMD and a 

diagram of a controller with the relevant mode’s control mapping 

will be displayed. This provides scaffolding for novice users. 

4.2 Control Scheme 
The Xbox game controller was also chosen because it has a 

smaller number of controls, but nevertheless includes both 

discrete buttons and joysticks. We reserve the joysticks for axial 

movement in all modes of the system, where the left joystick 

controls both the X- and Z-axes and the right joystick controls the 

Y-axis. In navigation mode this controls user movement within 

the scene, with the right joystick allowing for ‘flying’ movement. 

This is required to make aerial camera shots possible. In 

manipulation mode, the joysticks either translate or rotate 

(depending on the selected sub-mode) the selected object using 

the same axial mapping. The joysticks allow finer control of 

movement as they vary magnitude depending on how far the 

joystick is displaced from its origin. They also allow movement in 

any direction, including diagonally. The buttons on the controller 

are used for discrete actions: changing of modes and timeline 

editing. 

The direction of the user’s gaze from the HMD’s head tracking is 

used to augment both user and object movement. This is done by 

determining the three axes of movement relative to the user’s gaze Figure 6. Screenshot showing an object (highlighted 

green) that has been successfully selected and 

manipulated. 

 



direction, where the Z-axis is matched to the user’s forward-

facing direction.  

4.3 Timeline Management 
There is a set of information that must be associated with each key 

frame on the timeline. For each scene object the position and 

orientation in each key frame is stored. The same applies to the 

user’s position and orientation. This information, along with a 

reference to the associated key frame, is stored in a set of lists 

where a separate list is used for each attribute. Key frame images 

are also stored locally on disk. Each key frame is numbered 

according to its position so that key frame information can be 

accessed directly using the key frame’s index. Users are able to 

select both key frames and the spaces between them on the 

timeline. The spaces allow key frames to be inserted between 

other key frames. In terms of indexing, the spaces are treated as 

‘half’ indices. For example, the space at position 4.5 is the space 

between key frames 4 and 5. 

Navigation along the timeline can be done in ‘half’ or ‘full’ 

movements. This means that to move back and forth between key 

frames one pair of buttons is used, but to select the spaces 

between key frames for insertion another pair is used. This not 

only supports ordinary timeline navigation for ‘playback’ 

purposes to view a consecutive series of key frames, but also 

enables the spaces between key frames to be selected when 

required. 

4.4 Object Selection 
In order to use head tracking for object selection, a ray is drawn 

from the point between the user’s ‘eyes’ in the direction of their 

gaze. A check is then performed to determine if this ray intersects 

any objects in the scene. This is performed once per frame render. 

This method is inefficient for large scenes containing many 

objects, but for previs purposes it is satisfactory as densely 

populated scenes are unlikely. If the collision check passes for a 

certain object it is given a red highlight to indicate this to the user.  

A problem arises when the ray collides with multiple objects 

along the gaze direction. The user may be unable to select an 

object that is partially occluded. In this case the object that was 

first hit by the ray is selected. This allows users to select any 

object that can be seen from their current position by directing 

their gaze into the viewable part/s of the object from outside the 

object. This allows the selection to be reset by looking away. This 

approach was taken as opposed to something similar to a ‘depth 

cursor' as defined in [6]. While a depth cursor allows for more 

control over selection when there are multiple candidates, an 

occluded object may be difficult to see when it is highlighted. 

Another problem with the depth cursor is that due to limitations of 

the Unity3D engine, the cursor itself could also become occluded 

by objects. 

A further problem occurs when an object far away from the user 

has to be repeatedly selected. This is because the target for 

selection becomes smaller due to perspective as the distance 

between the user and the object increases. To help mitigate this 

issue, a reticle is drawn in the center of the user’s gaze. This 

allows the user to determine the exact target of his/her gaze within 

the VE. 

5. EXPERIMENTS AND RESULTS 
During the development process, three expert HCI heuristic 

evaluations were performed. Each expert was asked to use the 

system and explore its functionality without any particular goal in 

mind. The experts identified issues according to Nielsen’s ten 

usability heuristics [13] and dictated them while using the system. 

Each issue was given a priority ranking of low, medium, or high. 

One of the issues flagged with a high priority involved the use of 

joysticks for any axial input. Initially in manipulation mode there 

were no sub-modes, instead users could perform translations using 

the joysticks and rotations using buttons. It was found that users 

had less control over fine rotations when using buttons as opposed 

to joysticks. Another issue that arose was regarding the selection 

of objects which were far away from the user. If the user wanted 

to make fine adjustments to an object that was far away the 

repeated selection task became tiring. This lead to the 

implementation of the reticle to assist in object selection. Another 

high priority issue was that of timeline control. Initially users 

were only able to overwrite a key frame by deleting it before 

inserting a new key frame. Users were also only able to capture 

key frames by inserting them after the selected key frame. It was 

found that more control was required to make timeline editing 

more efficient, and this lead to the ‘half’ index system being 

implemented. These evaluations formed part of a development 

iteration where the issues were resolved before the final 

qualitative evaluation. 

Due to the explorative nature of this project, as well as time 

constraints, a qualitative approach was taken to evaluate the 

interface’s effectiveness. This was focused on the effectiveness of 

the interface for the previs task. A total of three participants took 

part in the evaluation. No participants had any prior experience 

with 3D modelling, animation, or the Unity3D editor. Participants 

were asked to replicate an example timeline as quickly and 

accurately as possible using our system. While performing the 

task participants were encouraged to ‘think out loud’ while their 

voices were recorded using a smartphone. Once the participant 

had either finished the task or 40 minutes had elapsed they were 

then required to answer four open-ended questions, as well as a 

System Usability Scale (SUS) [9]. 

The recordings were transcribed and then analyzed together with 

the question responses to determine any possible themes. This was 

done by searching for meaningful words or phrases which were 

commonly used by participants when describing their experience 

of the system. All of the participants first spent time going 

through the control mappings that appear when the user looks 

down. While they did this they repeated the labels for each 

mapping out loud, and some tried each action to determine what it 

does. One participant commented: “It is difficult to remember all 

these things”, referring to the control scheme. The original 

rationale for displaying the control scheme when the user looks 

down was that the user might be inclined to look down at the 

physical controller in hand. However, the control scheme image 

could be constantly displayed in one corner of the HUD with the 

ability to be toggled on or off by the user. Displaying the labels 

for each action clearly while making the image smaller on the 

display could be challenging. 

The system’s reaction to the ‘reset position’ action was 

unexpected by one participant, who exclaimed and said “I thought 

I just deleted everything!”, when the camera began to fade to 

black. While fading the user’s vision to black is a common 

technique used to prevent simulator sickness, the participant’s 

reaction could be attributed to their inexperience with VR. Two of 

the participants initially expressed feelings of confusion with 

regards to their task of replicating a timeline. While the task was 

explained beforehand, participants were unsure if the characters in 

the scene needed to be moved before capturing the first key frame. 

Characters should be placed in an initial position that clearly 



shows that manipulation is required in order to replicate the first 

key frame. 

One of the aspects where participants expressed the most 

difficulty was camera/viewpoint movement. Two participants said 

they found it “difficult” to rotate the camera view by only using 

head movement. These participants said that they expected the 

right joystick to rotate or pan the camera. One participant said: “I 

kept moving the joystick in a circular motion expecting the 

camera to rotate and pan in that direction but it didn’t.” Another 

participant cited his experience from video games as the reason 

for this expectation. This relates to the Scene-in-Hand metaphor 

described by Ware and Osborne [21] where the user’s hand 

movements translate to scene movements. In the case of our 

system the user’s hand movements on the joysticks translate to 

scene movement in navigation mode. By using head movement as 

the only means to change the user’s forward direction the user’s 

control in terms of the Scene-in-Hand metaphor is reduced. This 

is because users are unable to change the forward direction using 

hand movements. 

Participants were also unsure whether to move the camera or the 

character when capturing close up shots of characters. This may 

be partially attributed to the previous issue as well as the lack of 

background objects in the sample timeline. Background objects 

can be used as a reference to aid in determining whether or not an 

object needs to be manipulated. 

All participants had trouble understanding the purpose of the 

‘ghost’ objects that appear when the currently selected key frame 

is edited. This concept had to be explained to each participant 

during the task. This may have been caused by an issue with the 

sample models used that were unable to display transparency. 

Instead, a white opaque version of the model was displayed as the 

ghost. This also caused issues when participants attempted to 

make small adjustments to objects because of the occlusion 

created by the ghost. 

Participants’ feelings towards object manipulation were mixed. 

Two participants answered that they found manipulating objects 

easy. One participant attributed this to previous experience using 

the Xbox360 controller. All participants answered that they found 

translations an easy aspect of the system. This supports previous 

research suggesting that placing the user in a scene using VR 

allows for a better understanding of 3D spatial relationships 

between objects [2, 20]. Participants also mentioned difficulty 

specifically with rotating objects: one participant described some 

rotations as being unexpected given the movements being made 

on the joysticks, another participant mentioned that the joystick 

was too sensitive when performing rotations. The unexpected 

rotations could be attributed to certain models having different 

origins around which rotations are calculated. This should be 

normalized when a model is imported into the scene. Another 

approach to mitigating this problem is constraining rotations 

similarly to how translations are constrained. This would prevent 

objects from being rotated through the floor of the scene. 

No participants reported any issues with object selection. This 

could be expected given that a ray-based technique was used in a 

sparsely populated scene [4]. One participant answered that 

“selecting characters was easy as there was a crosshair on the 

body of the characters”. This confirms the possibility that 

displaying a reticle to show the user’s gaze target may aid in 

object selection. 

While our sample size is not big enough to produce significant 

results from a quantitative evaluation tool, the SUS was 

administered as an extra measure of evaluation. The SUS uses a 

series of Likert scales that give scores from 0-4. These scores are 

then combined to produce a final SUS score from 0-100. This 

final score is not interpreted as a percentage, instead it represents 

a “composite measure of the overall usability of the system being 

studied” [9]. The three scores from our evaluation were 47.5, 

62.5, and 70. It has been shown that a score higher than 68 is 

considered above average, and conversely, below average if 

below 68 [9]. According to this, our system scored below average 

overall. However, it is difficult to interpret these scores without 

normalizing them. 

6. CONCLUSION 
This paper has presented a VR, HMD-based system for 

previsualization. The system uses commercial, readily available 

hardware to enable people to create previsualizations. Users are 

placed in a virtual scene to help them better understand the 3D 

spatial relationships between objects while navigating around the 

scene. Our system allows users to create a timeline of key frames 

by capturing renderings of their current perspective, effectively 

making the viewpoint and camera synonymous. Users are able to 

insert and delete key frames as well as edit key frames by 

manipulating objects in a separate mode. In a small-scale 

qualitative evaluation it was found that participants had multiple 

issues with our interface, mostly regarding the control scheme, 

camera control, and 3D rotation. Participants reported positively 

on the 3D translation and object selection aspects of our system. 

Overall it is clear that previs poses new challenges for a VR 

application and that the immersive nature of VR shows potential 

for a novel, narrative way of creating previsualizations by placing 

the user in the scene. Users are able to explore the scene from the 

perspectives of the characters in it. However, alternative 

interaction techniques must be considered in addressing the issues 

shown in our evaluation. 

One possible avenue for future work would be to explore 

alternative input devices. While the game controller has some 

advantages, users are required to memorize a control scheme 

which adds a learning element to the system. Previous work 

indicates that a hybrid approach using a combination of 2D touch 

input and 3D gesture-based input holds promise. It would also be 

useful to undertake a more extensive quantitative study in order to 

better ascertain the potential of this system. The features of our 

system could also be extended to explore high-fidelity previs. This 

includes planning and rendering camera and object movements, as 

well as the ability to do basic animations. 
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