

Computer Science Honours

Final Paper

2015

Title: A Virtual Reality Interface for Previsualization

Author: Joshua Ramsbottom

Project Abbreviation: PREVIS

Supervisor: A/Prof James Gain

Category Min Max Chosen

Requirement Analysis and Design 0 20 15

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 10

System Development and Implementation 0 15 15

Results, Findings and Conclusion 10 20 10

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Adherence to Project Proposal and Quality of

Deliverables

10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80 80

DEPARTMENT OF COMPUTER SCIENCE

A Virtual Reality Interface for Previsualization
Joshua Ramsbottom
University of Cape Town

joshuaramsbottom@gmail.com

ABSTRACT

Previsualization is a pre-production process in filmmaking that

allows directors to plan shots without incurring unnecessary costs.

The increasing power of consumer hardware as well as the

increasing popularity of free 3D modelling and animation tools

are making filmmaking more accessible. Current previsualization

software is based on 3D modelling software and usually employs

a traditional WIMP paradigm that restricts users to 2D input and

output.

We present a Virtual Reality (VR) based interface for the task of

previsualization with the aim of accessibility and usability using

commodity hardware. The system places users in a virtual scene

and allows them to manipulate objects to create a timeline of key

frames by capturing snapshots of the scene. The system uses a

head-mounted display to place the user in a scene as the camera,

allowing them to make fine adjustments using head movement.

We conducted a small-scale qualitative evaluation and found that

while there were multiple issues with our interface, it also shows

promise in some aspects of previsualization.

CCS Concepts

• Human-centered computing ➝ Interaction paradigms ➝

Virtual reality

Keywords

Virtual reality; 3D user interfaces; Previsualization; Head-

mounted display

1. INTRODUCTION
Previsualization (previs) is process that takes place during the pre-

production phase in filmmaking. It is used by directors to

visualize various aspects of scenes without the costs of fully

producing them. This includes camera placement and movement,

and the movement of objects during the course of a shot. More

recently, 3D graphics software has been used to aid this process

with low-fidelity 3D models. Many programs currently used for

previs were originally designed for 3D modelling. These packages

often require the skills of a trained animator, whose expertise

could be better used in other processes. Traditional WIMP

software used for previs also constrains the user to both 2D input

devices (mouse) and a 2D interaction window (monitor). This can

become problematic for performing tasks which are 3D in nature

[10].

With the increasing power of consumer desktop hardware, as well

as the rise in popularity of free 3D modelling and animation

software, the tools and resources for filmmaking are becoming

more accessible to amateur filmmakers and hobbyists. Nitsche

[14] argues that the interactive aspects of games combined with

storytelling make game engines suitable for previs, and that the

ability of virtual reality to allow users to play a character in a film

offers new possibilities for previs. In fact there are a number of

game engines that support film production (or machinima). This

means that digital filmmaking is becoming more accessible to

people without formal training [14].

We propose a new 3D user interface for previs that aims to allow

users with no training to create previsualizations intuitively and

efficiently. The interface uses a virtual reality (VR) head-mounted

display (HMD) to place the user in the scene. This allows the user

to better understand the 3D spatial relationships between objects

in the scene. The user interacts with the system using a

combination of head movements and a gaming console controller.

The controller provides a familiar and simple control scheme. Our

system allows users to select objects using their gaze, and then

perform 3D translations and rotations on them by changing

modes. The user acts as the camera in order to capture key frames

as snapshots of their current view. This allows the user to make

fine adjustments to the camera shots using head tracking.

There is currently little development of new ways of previs. Our

system is novel in that users are given a unique perspective from

within the scene using virtual reality. While the existing body of

research on VR and 3D user interfaces does apply, other design

choices still need to be explored. This applies especially to the

choice of input device. Our system uses an Xbox360 controller as

an input device, both because of its popularity, as well as its

endorsement by Oculus.

Our system focuses on low-fidelity previs, which involves low-

resolution models often without textures or rigging. Our system

aims at producing a series of still renderings captured by the user.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Figure 1. Screenshot of current previs software:

FrameForge [22].

This is in contrast to high-fidelity previs which normally allows

users to plan camera and object movements and render them in

real-time. High-fidelity previs also enables basic animation of

objects to show gestures and simple body language. This allows

more detailed plans to be made.

We made use of an iterative development process which included

feedback from pilot users as well as expert heuristic evaluation.

Prototypes were used to quickly obtain feedback on design

decisions. Finally, a small-scale qualitative evaluation was

undertaken to determine the effectiveness of this interface in

terms of usability.

The remainder of this paper is structured as follows: Section 2

discusses related work pertaining to both virtual reality and 3D

interaction metaphors; Section 3 details the interface design;

Section 4 covers the implementation and hardware used; Section 5

describes the experimental methodology as well as the results of a

qualitative evaluation; and lastly, Section 6 provides a conclusion

as well as possibilities for future work.

2. RELATED WORK
While there is little previous work that specifically addresses

previs, there is a large body of literature regarding VR and 3D

user interfaces for 3D tasks similar to previs.

2.1 Virtual Reality
There are a number of examples where a VR-based system was

found to improve users’ 3D spatial understanding and 3D scene

creation. Both of these aspects are important for previs where

users are required to: (a) manipulate objects to create a scene and,

(b) capture renderings where the relative positions of objects are

important for capturing the desired camera shot.

Butterworth et al. [2] developed a 3D modeling tool using an

HMD and found that placing users in the virtual scene made it

easier to understand the spatial relationships between objects.

Users were also able to make fine adjustments to their viewpoints

in a natural way due to head tracking by the HMD. This is

important for a VR previs application because the user’s

viewpoint is used to display the current frame for capture.

Enabling users to make fine adjustments intuitively is

advantageous for this purpose.

Wang and Lindeman [20] presented a level editing system for

virtual environments that used a partially occlusive HMD. Users

would look forward to see the environment inside the HMD, and

look down to see a tablet which gave an overview of the

environment as well as a means to interact with the system. The

overview gave users another perspective of the environment and

the 2D input on the tablet made tasks such as menu navigation and

data entry easier. Level editing is similar to previs in that it also

involves transforming objects to place them in the desired manner.

This is important because of how VR enables users to be placed in

the scene, as a better understanding the spatial relationships

between objects is equally important for previs. The system

presented in [20] also indicates the importance of providing an

overview of the environment to users, enabling them to keep track

of all the objects in the scene while focusing only on some of

them.

Two CAVE-based systems were developed by Hughes et al. [7]

and Ponto et al. [16] for creating 3D scenes. Both of these systems

allowed users to manipulate 3D objects in order to create a scene.

Hughes et al. [7] found that users were able to recreate complex

architectural models of entire buildings in under 15 minutes, but it

was also found that users required previous knowledge of 3D

modelling techniques to use the system effectively. Ponto et al.

[16] found that users were able to create complex scenes in under

10 minutes. Both of these systems have similar requirements to

previs, where users are required to create 3D scenes by

manipulating objects. One difference is that previs also involves

camerawork which requires users to move around the scene,

unlike in [7] and [16] where a static viewpoint is used. It must be

noted that the short time taken to recreate scenes in [7] could be

attributed to participants’ training in architecture.

2.2 3D Interaction Metaphors
User interaction with a 3D interface is classified using metaphors.

These metaphors describe how a virtual environment (VE) will

respond to user interaction by likening it to a real-world physical

response. Jankowski [8] provides a taxonomy of general tasks

performed in 3D virtual environments from which these

metaphors can be derived. Bowman et al. [1] define three main

interaction techniques: manipulation, selection, and travel (similar

to navigation).

2.2.1 Navigation
Navigation involves the user changing viewpoint within a VE.

This encompasses both general movement with no particular goal,

and targeted movement with regard to some specific point of

interest. Targeted movement may also involve a set of specific

orientations and positions. Ware and Osborne [21] define three

metaphors for 3D navigation, namely Eyeball-in-Hand, Scene-in-

Hand, and Flying Vehicle Control. The user’s hand movements

directly transfer to viewpoint and scene movements, respectively,

in the ‘in-hand’ metaphors, and the user’s interaction moves a

virtual vehicle through the scene in the last metaphor. It was

found that in the Eyeball-in-Hand metaphor, users consciously

calculate their movements and that this can become disorienting.

The Scene-in-Hand metaphor is useful for manipulating objects

and changing the viewpoint. This is useful for previs because

users will spend most of their time manipulating objects and

changing the viewpoint. The Flying Vehicle Control metaphor is

most effective at reducing simulator sickness, but prevents the use

of head movement for navigation. This is because the user’s head

movements translate to movements within the ‘vehicle’ and don’t

affect its movement.

2.2.2 Selection
Selection is the process that occurs when a user designates which

object in a VE will be selected for navigation or manipulation. In

3D VEs a common metaphor for selection is pointing. Most 3D

pointing techniques fall under two metaphors: ‘ray-based’ and

‘virtual hand’ [17, 18]. The main distinguishing characteristic of

virtual hand techniques is that they require depth information in

order to check for the intersection between the hand and cursor. In

contrast, Dang [4] describes a third ‘spotlight’ metaphor. This is

similar to ray-based techniques but a conical projection volume is

used to select objects instead of a ray. The conical shape increases

the selection area as the distance from the user increases. This

mitigates the loss of accuracy associated with objects which are

further away [11]. Lubos et al. [11] proposes two guidelines for

3D selection in HMD VR environments. Firstly, 3D selection

tasks that require fine movement should be restricted to objects

that are close to the eyes. In previs, selection tasks will have to be

performed when an object is far away from the desired camera

position and so this guideline must be considered. Secondly, an

elliptical shaped projection should be used to increase the

selection space and reduce errors along the view direction. A plot

of the error points in [11] showed an elliptical shape, meaning that

using an elliptical selection shape should reduce errors. The

second guideline only refers to the case where spherical objects

must be selected, and it is unclear whether this will apply to other

objects used for previs.

2.2.3 Manipulation
Manipulation refers to the methods used when changing an

object’s position, orientation, and scale. In 3D user interfaces

manipulation techniques fall under three metaphors. Using a

Manipulator – virtual handles are attached to an object and

displayed to the user and these handles are used to manipulate the

object; Automatic Viewing Control – the position of the virtual

camera is used to augment manipulation; Constrained

Manipulation – physical aspects of both the world and the objects

are used to constrain and simplify manipulation [8]. Using a

Manipulator in VR-based applications may increase the difficulty

of manipulation because the virtual handles can be seen as smaller

objects which also have to be selected. This would add to the

number of tasks that must be performed in order to manipulate

objects. Automatic Viewing Control has a new meaning for VR-

based previs due to the ability of VR to place the user in the scene

as the camera. This means that the user’s movements as the

camera could be used to augment manipulation. Constrained

Manipulation is important for previs because objects should not

be able to move in unexpected ways (e.g. through a wall or below

the floor). It must be noted that special cases may occur where the

environment used for previs does not obey natural laws (e.g.

objects are able to float through things).

A number of hybrid approaches to 3D manipulation have been

proposed, where a combination of 3D and 2D input is used. Gallo

et al. [5] develop an interface for manipulating medical scans

where a Wiimote is used to capture 3D gestures and discrete

button input. This interface exploits the advantages of 3D and 2D

input using modes where each mode is used for a different type of

manipulation. Users are able to perform the currently selected

manipulation by waving the Wiimote in space and change between

modes by pushing buttons on it. In our interface the joysticks on

the controller are used to provide pseudo-3D input while buttons

perform discrete actions including changing modes. Wang and

Lindeman [20] describe a virtual level-editing interface using a

non-occlusive HMD and a tablet. The HMD gives users a first-

person experience and captures head motion. The HMD also

allows users to look down and interact with a tablet on their lap.

The tablet provides an overview of the environment and allows

2D touch input. Alternative approaches to displaying an overview

for our system are required due to the occluding HMD used. This

is less important for low-fidelity previs because all of the objects

required for a particular key frame will already be in view for that

frame. Mine at al. [12] create another hybrid interface that uses a

handheld 3D-printed shell to house a smartphone and a

microcontroller. The smartphone captures 2D touch input and the

microcontroller is used to capture 3D gestures. This system shares

similarities with both [5] and [20]. The input device allows for

gesture based 3D input similar to the Wiimote as well as more

complex 2D input via touch. These hybrid approaches leverage

the strengths of both 3D and 2D input, which in this case are 3D

manipulation and system control respectively.

2.2.4 System control
System control refers to interactions between the user and the

system which are not represented in the VE, such as changing the

mode of interaction. Actions such as menu navigation and

numeric data entry are difficult to perform using 3D input

methods due to the lack of 2D pointing precision compared to a

traditional mouse. Data entry is also better suited to a device with

discrete buttons for each possible type of input [12, 20]. This is

important for previs because certain aspects such as timeline

editing are done using discrete actions. It must also be noted that

in VR applications head tracking can also be used for menu

navigation where the user’s gaze selects menu options. For this to

be possible the menu must be displayed as a part of the

environment.

3. INTERFACE
The output of low-fidelity previs is a series of key frames, which

is referred to as a ‘timeline’. These key frames show important

camera shots over the course of a scene in a film, similar to

storyboarding. The 3D nature of digital previs and the constraints

of a game engine must be considered when designing a previs

application in order to enable users to generate a timeline. Most

importantly, the user must be able to edit a timeline. This involves

the ability to create, view, overwrite, and delete key frames as

well as a means to select them for these actions. Capturing a

desired key frame involves two aspects: manipulating objects into

the desired position and orientation, and moving the camera into

the desired position. This means that the system must allow users

to perform 3D translations and manipulations on objects, and

move the camera while being able to see its viewpoint.

These aspects of previs are all considered in our interface. Firstly,

the user is able to view and edit the timeline by shifting back and

forth to select key frames and perform actions on them. The

timeline is always viewable because it is constantly referred to by

users. Secondly, the user is able to move around in the scene as a

first-person camera. This allows the viewpoint to be changed so

that the scene objects can be viewed in a different way, either for

framing the objects as the camera or planning a camera’s

movement. Thirdly, the user is able to select objects and

manipulate them into various positions and orientations to plan an

object’s movement during a shot. Object and camera movement

are derived by interpolating between their positions on

consecutive key frames. This core functionality was determined

during a preliminary HCI task analysis to be fundamental to the

low-fidelity previs process.

Ideally this interface should be kept as simple as possible so that

extensive training is not required. This would allow a director

with minimal training to create a timeline and more accurately

communicate the vision for a scene to others involved in the

production process.

Our system uses a modal interface with two modes. The

functionality of the system is separated into: (a) navigation,

timeline editing, object selection; (b) object manipulation via 3D

translation and rotation. This maintains the simplicity of the

controls, since the user is not able to look at the input device while

using the system. This is similar to Gallo et al.’s [5] Wiimote

interface where users changed between modes using buttons on

the device.

3.1 Navigation Mode
This mode includes both the navigational and timeline aspects of

previs. In this mode users are able to move around the scene using

a combination of joystick movements and head tracking. This

allows the user to move along all three axes. The axes are framed

relative to the direction the user is facing in the scene so that the

user can make fine adjustments to the direction of movement

using head movement. The direction the user is facing is framed

as the z-axis or the ‘forward’ direction, and the x-axis is framed

perpendicularly to this. The y-axis is kept constant as directly up

or down. This scheme allows for both coarse and fine adjustments

to movement, which is important for navigation in a VE [19]. The

user makes coarse adjustments by moving the avatar within the

environment with joystick movements on the controller, while

fine adjustments are made using head tracking.

The Oculus best practices are followed with regards to movement.

Movement speed is kept at a pace similar to walking and any

acceleration effects on the user’s avatar are kept short. Forward

movement is considered more natural than backwards or sideways

movement and while this movement is possible in our system,

forward movement is encouraged by allowing the user to change

direction using head adjustments. In any case where the user’s

avatar must be moved automatically (e.g. the user resets the

position to where the selected key frame captured) the screen first

fades to black before the movement is carried out. This was done

in order to mitigate the effects of simulator sickness [15] and

provide a more natural user experience.

Timeline navigation and editing are also possible in navigation

mode. Our system uses a heads-up display (HUD) to show users

the timeline along the top edge of their view. While the Oculus

best practices recommend that HUD elements rather be displayed

in the environment as objects, this might cause issues with previs

because the user often references the timeline. The user may

become fatigued from keeping track of the timeline’s location in

the environment. The timeline is represented as a strip of small

images along the top of the display. Each image represents a key

frame that the user has captured. The small size of the timeline

images allows the user to see enough detail without occluding the

objects in the scene. The currently selected gap or key frame is

always kept centered in the display, allowing users to easily see

their current selection. A red border around the key frame

indicates that it is currently selected.

Users are able to move back and forth along the timeline one key

frame at a time, each object in the scene is automatically updated

to its position and orientation when the selected key frame was

captured. Jumping to a specified key frame was not implemented

as numeric entry would be difficult given the chosen input

methods. Users are also able to select the spaces between key

frames in order to insert a new key frame. When this occurs the

scene objects keep their current positions and orientations until

another key frame is selected. If a key frame is currently selected,

it may be deleted or edited. The user is prompted before key

frame deletion. As soon as an object is moved the system

identifies the currently selected key frame as being ‘edited’. A

slightly transparent ghost image of the object in its original

position and orientation is shown to indicate that editing is active,

this only applies to objects which have been moved from their

original positions and/or orientations. Our system also allows the

user to reset the viewpoint back to the configuration when the key

frame was originally captured. This enables the user to make fine

adjustments to the camera positioning of a key frame. When this

occurs the display first fades to black in order to prevent

disorientation.

In order to manipulate an object, that object must first be selected.

In our system this is done using a ray-based technique that allows

the user to select an object by directing his or her gaze at the

object in the environment. This technique is used because it has

been shown that 3D selection tasks in sparse environments are

easier to perform using ray-based techniques than virtual hand

techniques [1, 6]. Visual feedback is provided by highlighting the

currently targeted object in red, allowing users to quickly and

accurately decide if the right object has been selected [17, 23].

Figure 2. Timeline screenshots showing both a

keyframe and a gap selected.

Figure 3. Screenshot showing the position of the timeline on

the HUD.

Figure 4. Screenshot showing a ‘ghost’ object,

indicating that the current key frame is being edited.

Figure 5. Screenshot showing an object (highlighted

red) that is currently selected.

A challenge associated with this method of 3D selection is that it

becomes difficult to select smaller objects which are far away

from the user [11]. In order to mitigate this problem a small reticle

is drawn in the center of the user’s gaze to display the current

target of the ray.

3.2 Manipulation Mode
In order to manipulate an object it must first be selected. The user

may then choose to enter manipulation mode. The selection is

then locked and the user may look away without deselecting the

object. The object is highlighted in green and the mode icon in the

HUD changes to manipulation mode. These multiple sources of

feedback clearly indicate to the user that a new interaction mode

is active. This mode consists of two sub-modes: translation and

rotation. Translation and rotation were separated into sub-modes

so that the movement controls could be reused. In order to make

the interaction more predictable the mapping of axes to controls is

kept the same between all modes and sub-modes. While in

manipulation mode, users may change freely between the two

sub-modes by pressing a button on the controller.

Initially the system is in the translation sub-mode. This allows the

user to move the selected scene object along all three axes. These

axes are kept relative to the direction the user is facing, which

should allow for more natural object translations. This allows

users to predict the effect of object manipulations using their

frame of reference in the environment. It also allows users to

partially direct object movement by moving their head towards

the desired position. For example, users are able to move an

object upwards by looking up while moving an object forwards.

In order to prevent users from moving an object out of the scene,

translations are restricted. For example, objects cannot be moved

below the floor of the environment. The rotation sub-mode is

similar to the translation sub-mode, allowing users to rotate the

object about the three axes using the same controls. One notable

difference is that in this sub-mode the rotation axes are in the

selected object’s local space. This was done to make rotations

more predictable. It was found that rotations are disorienting if the

axes are relative to the user’s gaze direction.

While in manipulation mode, the system allows users to reset the

selected object’s position and orientation back to the configuration

of the original key frame independently. Once the user switches

back into navigation mode the selected object’s new position and

orientation are locked and the user is free to move around the

environment again. Once the user switches back into navigation

mode the selected object’s new position and orientation are locked

and the user is free to move around the environment again. If the

user switches back into manipulation mode the system is

automatically switched to the previously selected sub-mode.

4. IMPLEMENTATION

4.1 Platform & Hardware
The Unity3D game test engine was chosen as the development

platform for the following reasons: (a) it has first-party support for

the Oculus Rift VR HMD, (b) it is freely available to use, (c) it

allows for rapid prototyping, and (d) it readily supports an

Xbox360 game controller as an input device. Unity3D also allows

for a modular codebase by separating different functionality into

scripts, which are written in C#. In our system each feature is

separated into its own script. The Unity3D engine is able to

display directly to the HMD without first requiring an executable

build file, which accelerates the development cycle. This also

allows the system to be tested without the HMD when necessary.

Oculus provides default avatar controllers for Unity3D, which

incorporate the Oculus best practices, such as minimal

acceleration and slow movement speed. Lastly, 3D models from

popular 3D modelling software such as Blender can be easily

imported into the Unity3D engine.

The Oculus Rift Development Kit 2 (DK2) was used as a HMD

for our system. At the time of writing, this is the most recent

iteration of the popular VR headset and has a higher resolution

display as well as a higher supported frame rate than previous

models. These are both factors that can cause simulator sickness if

too low. It is also best to support a readily-available commercial

VR product as one of the aims of our system is a low barrier to

entry. The Oculus Rift supports head tracking, which is required

for selecting scene objects as well as user and object movement.

An Xbox360 game controller was used as the input device. Due to

its widespread adoption, it might already be familiar to potential

users and they would require less training. This game controller is

also widely available, which lowers the requirements for our

system. In 2016, the commercial version of the Oculus Rift will

be packaged with an Xbox game controller, which means that

anyone who has purchased one will be able to use our system.

Due to the HMD occluding views of the real world users will be

unable to look at the input device and may be unable to determine

what is required to perform a desired action. To overcome this,

users are able to look down while wearing the HMD and a

diagram of a controller with the relevant mode’s control mapping

will be displayed. This provides scaffolding for novice users.

4.2 Control Scheme
The Xbox game controller was also chosen because it has a

smaller number of controls, but nevertheless includes both

discrete buttons and joysticks. We reserve the joysticks for axial

movement in all modes of the system, where the left joystick

controls both the X- and Z-axes and the right joystick controls the

Y-axis. In navigation mode this controls user movement within

the scene, with the right joystick allowing for ‘flying’ movement.

This is required to make aerial camera shots possible. In

manipulation mode, the joysticks either translate or rotate

(depending on the selected sub-mode) the selected object using

the same axial mapping. The joysticks allow finer control of

movement as they vary magnitude depending on how far the

joystick is displaced from its origin. They also allow movement in

any direction, including diagonally. The buttons on the controller

are used for discrete actions: changing of modes and timeline

editing.

The direction of the user’s gaze from the HMD’s head tracking is

used to augment both user and object movement. This is done by

determining the three axes of movement relative to the user’s gaze Figure 6. Screenshot showing an object (highlighted

green) that has been successfully selected and

manipulated.

direction, where the Z-axis is matched to the user’s forward-

facing direction.

4.3 Timeline Management
There is a set of information that must be associated with each key

frame on the timeline. For each scene object the position and

orientation in each key frame is stored. The same applies to the

user’s position and orientation. This information, along with a

reference to the associated key frame, is stored in a set of lists

where a separate list is used for each attribute. Key frame images

are also stored locally on disk. Each key frame is numbered

according to its position so that key frame information can be

accessed directly using the key frame’s index. Users are able to

select both key frames and the spaces between them on the

timeline. The spaces allow key frames to be inserted between

other key frames. In terms of indexing, the spaces are treated as

‘half’ indices. For example, the space at position 4.5 is the space

between key frames 4 and 5.

Navigation along the timeline can be done in ‘half’ or ‘full’

movements. This means that to move back and forth between key

frames one pair of buttons is used, but to select the spaces

between key frames for insertion another pair is used. This not

only supports ordinary timeline navigation for ‘playback’

purposes to view a consecutive series of key frames, but also

enables the spaces between key frames to be selected when

required.

4.4 Object Selection
In order to use head tracking for object selection, a ray is drawn

from the point between the user’s ‘eyes’ in the direction of their

gaze. A check is then performed to determine if this ray intersects

any objects in the scene. This is performed once per frame render.

This method is inefficient for large scenes containing many

objects, but for previs purposes it is satisfactory as densely

populated scenes are unlikely. If the collision check passes for a

certain object it is given a red highlight to indicate this to the user.

A problem arises when the ray collides with multiple objects

along the gaze direction. The user may be unable to select an

object that is partially occluded. In this case the object that was

first hit by the ray is selected. This allows users to select any

object that can be seen from their current position by directing

their gaze into the viewable part/s of the object from outside the

object. This allows the selection to be reset by looking away. This

approach was taken as opposed to something similar to a ‘depth

cursor' as defined in [6]. While a depth cursor allows for more

control over selection when there are multiple candidates, an

occluded object may be difficult to see when it is highlighted.

Another problem with the depth cursor is that due to limitations of

the Unity3D engine, the cursor itself could also become occluded

by objects.

A further problem occurs when an object far away from the user

has to be repeatedly selected. This is because the target for

selection becomes smaller due to perspective as the distance

between the user and the object increases. To help mitigate this

issue, a reticle is drawn in the center of the user’s gaze. This

allows the user to determine the exact target of his/her gaze within

the VE.

5. EXPERIMENTS AND RESULTS
During the development process, three expert HCI heuristic

evaluations were performed. Each expert was asked to use the

system and explore its functionality without any particular goal in

mind. The experts identified issues according to Nielsen’s ten

usability heuristics [13] and dictated them while using the system.

Each issue was given a priority ranking of low, medium, or high.

One of the issues flagged with a high priority involved the use of

joysticks for any axial input. Initially in manipulation mode there

were no sub-modes, instead users could perform translations using

the joysticks and rotations using buttons. It was found that users

had less control over fine rotations when using buttons as opposed

to joysticks. Another issue that arose was regarding the selection

of objects which were far away from the user. If the user wanted

to make fine adjustments to an object that was far away the

repeated selection task became tiring. This lead to the

implementation of the reticle to assist in object selection. Another

high priority issue was that of timeline control. Initially users

were only able to overwrite a key frame by deleting it before

inserting a new key frame. Users were also only able to capture

key frames by inserting them after the selected key frame. It was

found that more control was required to make timeline editing

more efficient, and this lead to the ‘half’ index system being

implemented. These evaluations formed part of a development

iteration where the issues were resolved before the final

qualitative evaluation.

Due to the explorative nature of this project, as well as time

constraints, a qualitative approach was taken to evaluate the

interface’s effectiveness. This was focused on the effectiveness of

the interface for the previs task. A total of three participants took

part in the evaluation. No participants had any prior experience

with 3D modelling, animation, or the Unity3D editor. Participants

were asked to replicate an example timeline as quickly and

accurately as possible using our system. While performing the

task participants were encouraged to ‘think out loud’ while their

voices were recorded using a smartphone. Once the participant

had either finished the task or 40 minutes had elapsed they were

then required to answer four open-ended questions, as well as a

System Usability Scale (SUS) [9].

The recordings were transcribed and then analyzed together with

the question responses to determine any possible themes. This was

done by searching for meaningful words or phrases which were

commonly used by participants when describing their experience

of the system. All of the participants first spent time going

through the control mappings that appear when the user looks

down. While they did this they repeated the labels for each

mapping out loud, and some tried each action to determine what it

does. One participant commented: “It is difficult to remember all

these things”, referring to the control scheme. The original

rationale for displaying the control scheme when the user looks

down was that the user might be inclined to look down at the

physical controller in hand. However, the control scheme image

could be constantly displayed in one corner of the HUD with the

ability to be toggled on or off by the user. Displaying the labels

for each action clearly while making the image smaller on the

display could be challenging.

The system’s reaction to the ‘reset position’ action was

unexpected by one participant, who exclaimed and said “I thought

I just deleted everything!”, when the camera began to fade to

black. While fading the user’s vision to black is a common

technique used to prevent simulator sickness, the participant’s

reaction could be attributed to their inexperience with VR. Two of

the participants initially expressed feelings of confusion with

regards to their task of replicating a timeline. While the task was

explained beforehand, participants were unsure if the characters in

the scene needed to be moved before capturing the first key frame.

Characters should be placed in an initial position that clearly

shows that manipulation is required in order to replicate the first

key frame.

One of the aspects where participants expressed the most

difficulty was camera/viewpoint movement. Two participants said

they found it “difficult” to rotate the camera view by only using

head movement. These participants said that they expected the

right joystick to rotate or pan the camera. One participant said: “I

kept moving the joystick in a circular motion expecting the

camera to rotate and pan in that direction but it didn’t.” Another

participant cited his experience from video games as the reason

for this expectation. This relates to the Scene-in-Hand metaphor

described by Ware and Osborne [21] where the user’s hand

movements translate to scene movements. In the case of our

system the user’s hand movements on the joysticks translate to

scene movement in navigation mode. By using head movement as

the only means to change the user’s forward direction the user’s

control in terms of the Scene-in-Hand metaphor is reduced. This

is because users are unable to change the forward direction using

hand movements.

Participants were also unsure whether to move the camera or the

character when capturing close up shots of characters. This may

be partially attributed to the previous issue as well as the lack of

background objects in the sample timeline. Background objects

can be used as a reference to aid in determining whether or not an

object needs to be manipulated.

All participants had trouble understanding the purpose of the

‘ghost’ objects that appear when the currently selected key frame

is edited. This concept had to be explained to each participant

during the task. This may have been caused by an issue with the

sample models used that were unable to display transparency.

Instead, a white opaque version of the model was displayed as the

ghost. This also caused issues when participants attempted to

make small adjustments to objects because of the occlusion

created by the ghost.

Participants’ feelings towards object manipulation were mixed.

Two participants answered that they found manipulating objects

easy. One participant attributed this to previous experience using

the Xbox360 controller. All participants answered that they found

translations an easy aspect of the system. This supports previous

research suggesting that placing the user in a scene using VR

allows for a better understanding of 3D spatial relationships

between objects [2, 20]. Participants also mentioned difficulty

specifically with rotating objects: one participant described some

rotations as being unexpected given the movements being made

on the joysticks, another participant mentioned that the joystick

was too sensitive when performing rotations. The unexpected

rotations could be attributed to certain models having different

origins around which rotations are calculated. This should be

normalized when a model is imported into the scene. Another

approach to mitigating this problem is constraining rotations

similarly to how translations are constrained. This would prevent

objects from being rotated through the floor of the scene.

No participants reported any issues with object selection. This

could be expected given that a ray-based technique was used in a

sparsely populated scene [4]. One participant answered that

“selecting characters was easy as there was a crosshair on the

body of the characters”. This confirms the possibility that

displaying a reticle to show the user’s gaze target may aid in

object selection.

While our sample size is not big enough to produce significant

results from a quantitative evaluation tool, the SUS was

administered as an extra measure of evaluation. The SUS uses a

series of Likert scales that give scores from 0-4. These scores are

then combined to produce a final SUS score from 0-100. This

final score is not interpreted as a percentage, instead it represents

a “composite measure of the overall usability of the system being

studied” [9]. The three scores from our evaluation were 47.5,

62.5, and 70. It has been shown that a score higher than 68 is

considered above average, and conversely, below average if

below 68 [9]. According to this, our system scored below average

overall. However, it is difficult to interpret these scores without

normalizing them.

6. CONCLUSION
This paper has presented a VR, HMD-based system for

previsualization. The system uses commercial, readily available

hardware to enable people to create previsualizations. Users are

placed in a virtual scene to help them better understand the 3D

spatial relationships between objects while navigating around the

scene. Our system allows users to create a timeline of key frames

by capturing renderings of their current perspective, effectively

making the viewpoint and camera synonymous. Users are able to

insert and delete key frames as well as edit key frames by

manipulating objects in a separate mode. In a small-scale

qualitative evaluation it was found that participants had multiple

issues with our interface, mostly regarding the control scheme,

camera control, and 3D rotation. Participants reported positively

on the 3D translation and object selection aspects of our system.

Overall it is clear that previs poses new challenges for a VR

application and that the immersive nature of VR shows potential

for a novel, narrative way of creating previsualizations by placing

the user in the scene. Users are able to explore the scene from the

perspectives of the characters in it. However, alternative

interaction techniques must be considered in addressing the issues

shown in our evaluation.

One possible avenue for future work would be to explore

alternative input devices. While the game controller has some

advantages, users are required to memorize a control scheme

which adds a learning element to the system. Previous work

indicates that a hybrid approach using a combination of 2D touch

input and 3D gesture-based input holds promise. It would also be

useful to undertake a more extensive quantitative study in order to

better ascertain the potential of this system. The features of our

system could also be extended to explore high-fidelity previs. This

includes planning and rendering camera and object movements, as

well as the ability to do basic animations.

7. ACKNOWLEDGMENTS
Our thanks to Bryan Davies, and Hendranus Vermeulen for their

expertise and analysis. Our thanks to our supervisor, James Gain,

without your guidance and motivation this project would not have

been possible. Finally, thanks to our participants for participating

in our evaluation.

8. REFERENCES
[1] Bowman, D.A. et al. 1999. Testbed Evaluation of Virtual

Environment Interaction Techniques. Proceedings of the

ACM Symposium on Virtual Reality Software and

Technology (London, UK, 1999), 26–33.

[2] Butterworth, J. et al. 1992. 3DM: A Three Dimensional

Modeler Using a Head-mounted Display. Proceedings of

the 1992 Symposium on Interactive 3D Graphics (San

Diego, CA, USA, 1992), 135–138.

[3] Chittaro, L. and Burigat, S. 2004. 3D Location-pointing As

a Navigation Aid in Virtual Environments. Proceedings of

the Working Conference on Advanced Visual Interfaces

(Gallipoli, Italy, 2004), 267–274.

[4] Dang, N.-T. 2007. A Survey and Classification of 3D

Pointing Techniques. 2007 IEEE International Conference

on Research, Innovation and Vision for the Future (Hanoi,

Vietnam, 2007), 71–80.

[5] Gallo, L. et al. 2008. Toward a Natural Interface to Virtual

Medical Imaging Environments. Proceedings of the

Working Conference on Advanced Visual Interfaces

(Napoli, Italy, 2008), 429–432.

[6] Grossman, T. and Balakrishnan, R. 2006. The Design and

Evaluation of Selection Techniques for 3D Volumetric

Displays. Proceedings of the 19th Annual ACM Symposium

on User Interface Software and Technology (Montreux,

Switzerland, 2006), 3–12.

[7] Hughes, C.E. et al. 2013. CaveCAD: Architectural design

in the CAVE. 2013 IEEE Symposium on 3D User

Interfaces (3DUI) (Orlando, FL, USA, 2013), 193–194.

[8] Jankowski, J. 2011. A Taskonomy of 3D Web Use.

Proceedings of the 16th International Conference on 3D

Web Technology (Paris, France, 2011), 93–100.

[9] Jordan, P.W. SUS: a 'quick and dirty' usability scale. in

Jordan, P.W. Thomas B. ed. Usability Evaluation In

Industry, CRC Press, 1996, 189-194.

[10] Laundry, B. et al. 2010. Interaction with 3D Models on

Large Displays Using 3D Input Techniques. Proceedings

of the 11th International Conference of the NZ Chapter of

the ACM Special Interest Group on Human-Computer

Interaction (Auckland, New Zealand, 2010), 49–56.

[11] Lubos, P. et al. 2014. Analysis of direct selection in head-

mounted display environments. 2014 IEEE Symposium on

3D User Interfaces (3DUI) (Minneapolis, MN, USA,

2014), 11–18.

[12] Mine, M. et al. 2014. Making VR Work: Building a Real-

world Immersive Modeling Application in the Virtual

World. Proceedings of the 2Nd ACM Symposium on

Spatial User Interaction (Honolulu, HI, USA, 2014), 80–

89.

[13] Nielsen, J. and Mack, R.L. Usability Inspection Methods.

John Wiley & Sons, New York, NY, USA, 1994.

[14] Nitsche, M. 2008. Experiments in the Use of Game

Technology for Pre-visualization. Proceedings of the 2008

Conference on Future Play: Research, Play, Share

(Toronto, Canada, 2008), 160–165.

[15] Oculus Best Practices. Retrieved November 8, 2015, from

Developer Center, Oculus VR, LLC:

https://developer.oculus.com/documentation/intro-

vr/latest/concepts/book-bp/.

[16] Ponto, K. et al. 2013. SculptUp: A rapid, immersive 3D

modeling environment. 2013 IEEE Symposium on 3D User

Interfaces (3DUI) (Orlando, FL, USA, 2013), 199–200.

[17] Stuerzlinger, W. and Teather, R.J. 2014. Considerations for

Targets in 3D Pointing Experiments. Proceedings of HCI

Korea (South Korea, 2014), 162–168.

[18] Teather, R.J. and Stuerzlinger, W. 2014. Visual Aids in 3D

Point Selection Experiments. Proceedings of the 2Nd ACM

Symposium on Spatial User Interaction (Honolulu, HI,

USA, 2014), 127–136.

[19] Tollmar, K. et al. 2004. Navigating in Virtual

Environments Using a Vision-based Interface. Proceedings

of the Third Nordic Conference on Human-computer

Interaction (Tampere, Finland, 2004), 113–120.

[20] Wang, J. and Lindeman, R. 2014. Coordinated 3D

Interaction in Tablet- and HMD-based Hybrid Virtual

Environments. Proceedings of the 2Nd ACM Symposium

on Spatial User Interaction (Honolulu, HI, USA, 2014),

70–79.

[21] Ware, C. and Osborne, S. 1990. Exploration and Virtual

Camera Control in Virtual Three Dimensional

Environments. Proceedings of the 1990 Symposium on

Interactive 3D Graphics (New York, NY, USA, 1990),

175–183.

[22] Wikiversity: The main page of FrameForge 3D Studio,

2015. Retrieved November 9, 2015, from Wikiversity,

Lesson Page: Introduction to FlameForge:

https://upload.wikimedia.org/wikiversity/en/thumb/b/b4/Fr

ameForge_SBTDS_Screen_Shot.png/360px-

FrameForge_SBTDS_Screen_Shot.png

[23] Zhang, Y. et al. 2005. The Use of Visual and Auditory

Feedback for Assembly Task Performance in a Virtual

Environment. Proceedings of the 21st Spring Conference

on Computer Graphics (Budmerice, Slovakia, 2005), 59–

66.

