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1 PROJECT DESCRIPTION
Astronomy is a field that actively accumulates and processes vast
amounts of data with structure and information that may only be
extracted using computational means [9]. For instance, large sky
surveys such as the Sloan Digital Sky Survey (SDSS) [24] and the
LINEAR survey [21] produce datasets many terabytes in size with
tens of millions of data points [11] that require intense computer
pre-processing and analysis [9]. South Africa will soon be one of
the leading contributors to the field of radio astronomy with the
construction of the Square Kilometre Array (SKA)[5]. The telescope
will produce data on the order of exabytes in a single year of op-
eration, at a rate of 2 terabytes per second during operation [5].
Therefore, analysis of this data will require the use of automated
techniques such as machine learning in order to reduce data into
consumable and useful knowledge as well as to perform analyses
such as astronomical phenomenon classification1 [5, 23] in order
to assist human processing of the data.

To solve these important problems, astronomy has been the fo-
cus of many statistical machine learning approaches [9] and most
recently of deep-learning approaches [8]. It has also seen top-down
expert knowledge representations applied for efficient data set stor-
age and recollection [17]. It is therefore a prime candidate field
for the application of a cognitive vision system (CVS) 2, that can
harness expert knowledge representation, feature selection, and
machine learning techniques to perform classification tasks such
as galaxy classification in optical and radio astronomy settings.
Such a cognitive system, with learning and inference techniques in
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1Phenomenon classification involves classifying astronomical objects and events into
various classes. Examples include galaxy classification, asteroid and exoplanet detec-
tion, and supernovae classification.
2a cognitive, or intelligent, system is any system that aims to gather expert knowledge
and combine it with predictive capabilities to model and explain future events [18].
By incorporating expert knowledge, the cognitive system not only learns to predict
future events once an action has been selected, but it also learns to rationalize and
conceptualize about choices [20]

synergy with one another, will be applicable across a variety of dif-
ferent astronomy classification tasks with different datasets. Hence,
a CVS for astronomy will have plasticity across such classification
tasks.

The construction of a CVS often centers around developing and
integrating/coupling various components that solve a given prob-
lem. In the case of astronomy, this means that techniques such as
feature selection, various machine learning algorithms, and knowl-
edge representation and inference may be applied for automated
phenomenon identification and classification, with the goal of data
reduction and labeling to streamline astronomy observation work-
flows. In what will follow in this project proposal, an outline will be
discussed of how a three-stage system will be developed for galaxy
classification from optical data as a means for moving towards a
more general cognitive vision system for astronomy.

2 PROBLEM STATEMENT
This project will tackle astronomical phenomenon classification
by examining and developing specific components of a cognitive
vision system. These components entail a feature selection step for
the extraction of a feature representation from a dataset, a machine
learning approach harnessed by model selection and hyperparame-
ter optimization techniques, and inference capabilities embodied by
expert domain knowledge of astronomy for spatial and temporal
reasoning for identification of phenomenon in optical images. The
development and examination of these components will form part
of a three-stage pipeline. This pipeline/system will be adaptable to
dataset choice, and able to process large tracts of data from astro-
nomical sky surveys. In building such as system, the project will
construct a piece of work that moves towards the final objective of
a cognitive vision system for astronomy.

To accomplish this task of constructing this pipeline, the de-
veloped components will need to interface with each other. This
can be udnerstood by considering the following aspects: The first
aspect is the application of image processing techniques for the
general problem of feature extraction and detection. This may also
be supplemented with approaches from machine learning to get
the job done; The second aspect is applying various machine learn-
ing techniques to the problem of image classification- with the
added benefit of well-defined features from the prior step. In this
aspect, the problem of CASH will also become prevalent: That is,
the problem of simultaneous model selection and hyperparameter
optimization. This will be further discussed below; The third as-
pect is that of expert systems and knowledge representation. This



will hope to encapsulate expert domain knowledge in astronomy
using techniques such as Bayesian networks to reason and infer
both temporal and spatial information. This will then be used as a
top-down layer to the bottom-up machine learning approach.

For each of these components envisioned, the following may be
asked:

• Feature Selection and Extraction: What image process-
ing techniques are appropriate for galaxy morphology clas-
sification?

• Hyperparameter Learning and Model Selection: Can
state-of-the-art Bayesian Optimization (BO) for the prob-
lem of Combined Algorithm and Hyperparameter Selection
(CASH) be used to optimize classification accuracies of var-
ious machine learning approaches for galaxy morphology
classification? Can feasible extensions be made to increase
performance of BO on large astronomy data sets, while main-
taining model classification accuracy?

• Expert Knowledge Representation: Can expert domain
knowledge be used to construct a model that can reason and
infer information to guide machine learning classification of
galaxy morphology classification?

Following from these three questions, one can form an over-
all question regarding the integration of these components into
a well-defined system: How will these three components be inte-
grated/interfaced with one another to improve overall classification
accuracy on datasets, and to facilitate the end project goal of mov-
ing towards a cognitive vision system for astronomy? For example,
in what ways can feature selection and extraction be used to guide
machine learning classification and hyperparameter learning of
models, and how can expert knowledge reasoning be interfaced
with feature selection to choose adequate features given the context
from the reasoner?

The project will adopt an approach comprising of two phases.
The first phase seeking to answer the component-based research
questions, whilst the second phase, subsequent to the first, seeking
to answer the overall research question. Solving these sub-problems
will lead to the development of the components of an end-to-end
integrated system as discussed in previous sections, with the goal
of moving towards a more general cognitive vision system in future
work.

3 PROCEDURES AND METHODS
The development of this model will undergo two phases. The first
phase will deal with the development of the components that make
up the cognitive vision system and loosely integrating them tomake
a unit. Whilst, the second phase will be dedicated to leveraging each
component to form a robust system, and furthermore, evaluating
our solution. Leveraging will entail tuning parameters in each of
the respective components to produce favorable results.

The components are as follows:

• Feature Extraction and Selection
• Machine Learning with Hyperparameter Optimization

• Knowledge Reasoner

These will be discussed below in further detail. The project will
also need to constrain itself in scope, since the construction of a
full cognitive vision system is currently outside the scope given the
time frame of this project. To this effect, the problem will examine
a single dataset in the first phase of development. This dataset is
the optical image galaxy dataset available from the Galaxy Zoo
crowdsourcing initiative [11] and the SDSS, and has already been
curated and secured. Only in the second phase will the robustness
of the integrated and leveraged components be tested against other
datasets and measurement schemes (i.e. optical versus radio versus
X-ray data)

3.1 Feature Extraction and Selection
Feature extraction in image processing is a method of transforming
large redundant data into a reduced data representation. In our
model, we’ll perform the WND-CHARM [19] scheme for feature
extraction. Weighted neighbor distances using a compound hierar-
chy of algorithms representing morphology or WND-CHARM is a
multi-purpose classifier which can be applied to a variety of image
classification tasks without modifications or fine-tuning.

The features extracted from the WND-CHARM scheme will be
accompanied by features that describe the brightness, shape, aver-
age size and roughness of the galactic images. Hence, amounting
to the extraction of approximately 3010 features. The choice of the
described feature set is motivated by literature as this is merely a
combination of the different feature sets used in

Once extracted, the features will undergo evaluation, namely
feature selection, whereby the best features will be selected. Feature
selection will occur in two parts. The first part will focus on select-
ing features that are indicative to the relevant class independent
of a learning algorithm, whilst the second part will select features
tailored to the learning component of our cognitive vision system.

Filter methods such as the Chi Squared Test, Correlation Co-
efficient Scores and Information Gain will be applied in the first
part of the feature selection process. For the second part, wrapper
methods such as the recursive feature elimination algorithm will
be explored.

Dimensionality reduction techniques will be considered to re-
duce the number of features under consideration, reducing the time
and space required, possibly resulting in improved performance of
the model.

3.2 Combined Algorithm and Hyperparameter
Selection for Machine Learning

The machine learning component addresses the problem of com-
bined algorithm selection and hyperparameter optimization (CASH),
which aims to both select among a set of algorithms one most ap-
propriate for a given task and set its algorithm parameters to some
optimal configuration. Choosing between different machine learn-
ing algorithms, and adjusting the manually tunable parameters-
such as the number of neurons per layer and number of layers for
a neural network- is a cumbersome task [2, 22] and is amicable to
be automated through various optimization means.

The method that will be used for CASH and building the machine
learning component will be Bayesian Optimization as outlined by
Thornton et al [22]. This method is chosen for its efficiency on
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expensive to evaluate black-box functions such as deep neural
networks, and for the few hyperparameters that this method has
in its core implementation.

Various tools for this component of CASH are listed in Appendix
A under Table 2. The favoured tool emerges as Auto-WEKA for its
integration with the full WEKA classification suite in Java, for the
availability of comparison metrics such as in Bischl et al. [3], and
for its simple and refined documentation and interface.

3.3 Knowledge Representation and Reasoning
using Bayesian Networks

The knowledge representation and reasoning will be implemented
as a Bayesian Network (BN) using the Edward (ref this) Python
library built on top of TensorFlow. This will be done in two distinct
stages: implementation and integration. However, throughout this
process, the system will be evaluated in terms of the chosen metrics
(decide on good metrics to use and ref)

Initially, the systemwill be constructed so that it is able to process
the extracted features and visual concepts from an image in order
to correctly identify galaxies contained within an image.

In the second phase, the system will be integrated with the
image processor and hyperparameter modules in order to complete
the vision system. This will require ensuring that the system is
correctly receiving and handling the input received from the other
two modules in the vision system’s pipeline.

Implementing the inference engine requires specifying what
domain knowledge should be included in the representation, what
form the input concepts will take, and what form the output of the
Bayesian network will take.

3.4 Evaluations
Evaluating the potential for a cognitive vision system and hence the
evaluations of the 3 individual components developed will form a
large part of the project as there are a couple of criteria to consider
for each method, and for each phase:

3.4.1 Phase 1 Evaluations. In this phase, individual component
evaluations will be conducted. In this initial phase, only one dataset
will be used for evaluation: The Kaggle Galaxy Zoo dataset [11],
which is a crowd-sourced classification dataset from the SDSS. For
the component examining CASH and the construction of an ensem-
ble machine learning method, the task of evaluation will be tackled
by measuring the overall accuracy of final classifications on the full
Galaxy Zoo dataset. Performance metrics will also be important in
measuring the efficiency of the CASH step of the method, and to
this effect works such as those by Bischl et al. [3] will be used as
benchmark libraries to compare both performance and accuracy
of this component. Evaluation of the Bayesian Network will be
conducted by analyzing the performance of the network using the
metrics put forth in [14] as well as how accurately it is able to
identify galaxies from the Galaxy Zoo dataset. These evaluations
will then be recorded as a benchmark to compare against in Phase 2.
When components are integrated, i.e. leverage each others’ results,
the evaluations will be take form of comparing the new perfor-
mance of the integrated and coupled end-to-end system against the
results obtained from individual evaluations

3.4.2 Phase 2 Evaluations. The second phase of evaluation will
focus on assessing how the model fairs on astronomical datasets
other than the Kaggle Galaxy Zoo dataset. Cognitive Vision Systems
are scarce in the field of astronomy, hence the motivation to conduct
our evaluations from dataset to dataset. The ability of the model to
generalize will be tested through this means.

4 PROFESSIONAL, AND LEGAL ISSUES
Conducting interviews/meetings with astronomy domain experts
may require obtaining ethical clearance; however, the nature of
these informal interviews is such that there is no personal data
being gathered or at risk of being lost. Thus, there is no ethical
dilemma. Professional issues involve organizational aspects of or-
ganizing collaborations with both domain experts for information
gathering (mentioned above) for incorporating expert knowledge,
and potential post-phase 2 interfacing of the project with data
streams from the SKA [5]. Legal issues may arise with regards to
intellectual property of the final system deliverable considering
the complex net of stakeholders that are potentially involved such
as The Council for Scientific and Industrial Research (CSIR), the
University of Cape Town and the Department of Higher Education,
and the Square-Kilometre Array. In all these cases however, the
common component to deal with is the government; therefore, the
legal issues in interfacing between different stakeholders are miti-
gated by the fact that long-term interests in the project are aligned
with all parties.

Tools used for the system are open-source and published under
MIT Creative Common licenses, and any implemented methods
will be derived from knowledge in the public domain. The work
itself will be published under an MIT Creative Common license.

5 RELATEDWORK
General cognitive vision systems in astronomy are scarce and not
used for galaxy classification. Current state-of-the-art approaches at
the SKA [5] involve using the state-of-the-art SKYNET deep neural
network and gradient descent on the hyperparameter configuration
[8]. The deep learning algorithm is responsible for handling radio
wavelength data and processing it for object classification. While
it is a state-of-the-art approach used at the SKA, it lacks in the
following areas: It does not incorporate expert domain knowledge
about astronomical objects in order to perform inference tasks or
data-retrieval tasks, and it only uses one method, thus lacking the
same generality of a method incorporating algorithm selection that
selects algorithms suited for different problems.

Another tool that was used for the related problem of identi-
fying faint sky objects is the SKICAT tool [6] which processed 3
terabytes of raw data containing half a billion images of astronom-
ical objects from the catalog of the Second Palomer Observatory
Sky Survey. The tool used decision trees and O-B trees to perform
dataset reduction by classifying faint sky objects presented to it.
However, while being an example of end-to-end systems for auto-
mated data reduction and machine learning in astronomy, it does
not use expert astronomy knowledge to conduct spatial inference
and identification of other phenomena in images. Moreover, it does
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not address the more general problem of identifying candidate phe-
nomena based on feature selection as a prior step to classification.
As with SKYNET, it solely relies on a single algorithm scheme for
classification, this method is further limited to the dataset it was
used for and limits its generalization capabilities that would be
associated with a more general cognitive system.

5.1 Feature Extraction and Selection
Numerous feature extraction techniques have been applied on opti-
cal galactic images. Approaches range from applying morpholog-
ical operators for feature extraction [1] [16] to the use of shape
descriptors [7]. However, given the various approaches to feature
extraction, finding an appropriate feature set for galaxymorphology
classification comparable to that of a human expert is challenging.

5.2 Combined Algorithm and Hyperparameter
Selection

The problem of CASH has been addressed using many various
methods such as genetic algorithms in the EMiner tool by [15],
gradient-descent methods [3], and Bayesian Optimization. Current
state-of-the-art methods for CASH is dominantly Bayesian Opti-
mization (BO) [22], and is currently implemented using Tree-Parzen
Estimators or Sequential Model-Based Algorithm Configuration
techniques, as in the Auto-WEKA tool by Thornton et al. [22], in the
Predict-ML tool by Luo et al. [12] for biomedical applications, and
the HyperOpt tool by Bergstra et al. [2]. Bayesian Optimization is
the selected method for performing CASH for its few hyperparame-
ters and its robust probabilistic treatment of model hyperparameter
configuration exploration [22]. Possible extensions to this method
for very large datasets include works by Li et al. [10] for performing
learning curve extrapolation and Bischl et al. [3] for performing
dataset sub-sampling.

5.3 Knowledge Representation and Reasoning
In terms of expert knowledge inference and reasoning within phe-
nomenon classification and identification, a framework for using
Bayesian networks in semantic image analysis using both domain
knowledge and visual concepts was developed by Luo et al. [13].
However, the framework was not applied specifically to the prob-
lem of galaxy classification. Additionally, work has been done on
surveying the metrics for evaluating inferences made with bayesian
networks in [14] as well as an investigation into best practises when
using BNs in [4]. Furthermore, evaluation metrics and strategies
for BNs have also been presented in [4, 14].

6 ANTICIPATED OUTCOMES
The overall outcome of this project will be to have developed an
integrated end-to-end system that is able to infer or identify phe-
nomena in optical image data and classify them, using an ensemble
machine learning approach that is outfitted with hyperparameter
learning and model selection techniques, with adaptive feature
selection methods, and an inference engine based on expert knowl-
edge. Another outcome is to have benchmarked this system against
current state-of-the-art systems such as SkyNet at the SKA and
to initiate a process of applying it the system to radio astronomy

data coming from the SKA from telescopes such as Meerkat and
Meerlicht.

The feature extraction of the system will be able to successfully
identify features of datasets that yield the best performance for
classification algorithm metrics, and in the process reduce data
dimensionality.

The hyperparameter and model selection stage of the system
pipeline will be able to select among an ensemble of machine learn-
ing algorithms one that is appropriate for a given image dataset
and concurrently optimize hyperparameters for that dataset.

The knowledge modeller will be able to use the visual concepts
and features supplied by the image processor in order to correctly
identify all galaxieswithin an image. It should also be able to provide
supplementary information using the instilled domain knowledge
in order to support the identifications it has made.

Key success factors for the project will be determined by the
overall classification accuracy on the initial Galaxy Zoo dataset.
This will be conducted on individual components, with the overall
integration success measured by whether or not the integrated sys-
tem can outperform individual components. Comparisons against
current state-of-the-art methods using the Galaxy Zoo dataset will
also give indication as to the the overall success of the project. The
success of the CASH component will also be determined through
its performance in comparison to other methods on this dataset.
Should the project have time to explore other datasets for validation
and evaluation, the success of the system will be determined by its
ability to attain high accuracy with regard to benchmark methods
on said dataset without any auxiliary modification, i.e. the system
robustness to dataset will determine the success should further
datasets be pursued.

7 PROJECT PLAN
7.1 Milestones and Timeline
The project plan is set out in the Gantt chart3 allocation and Tasks
and Milestones table in Appendix A Figure 1 and Table 4 respec-
tively. The Drafting stages will contain iterations of 2 drafts of
the final paper report. The iteration cycle mentioned under the
Development section will be followed by each group member in de-
velopment of their component of the project, with each subsequent
iteration becoming shorter than its predecessor as the component
becomes more well-defined. These iterations also encompass the
evaluations which will be run on each of the methods, and any
interplay between the methods that will be developed as a group
towards a final end-to-end pipeline.

7.2 Work Allocation
For the first phase, each group member has been allocated to one
of the three primary components:

• Roy Henha Eyono Feature Extraction and Selection
• Victor Gueorguiev Machine Learning with CASH
• Julius Stopforth Knowledge Reasoner
Once completed, group members will work collectively to inte-

grate and leverage the components, hence accomplishing the second

3All durations listed in the chart are measured in days
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phase of work and moving towards a single integrated pipeline for
optical astronomy.

V. Gueorguiev will assume the role of project leader, maintaining
technical and professional cohesion within the group. J. Stopforth’s
role entails ensuring that deadlines are met, and performing ad-
ministrative duties such as recording meeting minutes. R. Henha
Eyono will assume the role of a facilitator, working between V. Gue-
orguiev and J. Stopforth, assisting both to achieve their respective
objectives.

7.3 Deliverables
The main deliverable will consist of the completed three compo-
nents of the envisioned cognitive vision system, each exposed to
each other via some API, such as a web service. This will be de-
livered via the final code submission and final project paper. An
exhaustive list of the other project deliverables can be found in
Table 5 in Appendix A. The major deliverables are listed in bold.

7.4 Risks, and Risk Management
See Table 6 in Appendix D for a list of possible risks to the project
and how those can be mitigated or otherwise managed. Overall,
the risks mentioned have either been mitigated or constitute an
unlikely scenario.

7.5 Resources Required
All members of the project will need access to the following re-
sources in order to complete the project:

• A computer, with high-performance CPU power and a GPU
for the machine learning component.

• The Galaxy Zoo dataset, available online
• The frameworks and tools listed in Appendix A (also men-
tioned in detail in Procedures and Methods) and their depen-
dencies

• A LATEX distribution for typesetting the final paper
• An appropriate development environment including compil-
ers/interpreters for the languages chosen for the components,
those being Python, Java, Matlab, and C++.
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A TABLES

Table 1: A list of possible tools and frameworks for working with Bayesian Networks

Name Link Description
Elbow https://github.com/davmre/elbow A framework built on Google’s TensorFlow.
Jayes http://www.eclipse.org/recommenders/jayes/ A Bayesian Network framework for Java

Edward http://edwardlib.org/ A Python library for Bayesian Neural Networks that is capable of
modeling, and inference. Uses TensorFlow libraries for neural networks.

Table 2: A list tools for implementing model selection and hyperparameter optimization

Name Link Description
Auto-WEKA [22] http://www.cs.ubc.ca/labs/beta/Projects/autoweka/ A hyperparameter optimizer and model selector

for the WEKA ML library for Java
PredicT-ML [12] Unavailable A biomedical application of a

SMBO CASH tool for machine learning automation
EMiner [15] Unavailable A hyperparameter optimizer and model selector

using evolutionary algorithms developed for Java
HyperOpt [2] https://github.com/hyperopt/hyperopt A Python framework for

hyperparameter optimization for Scikit-Learn

Table 3: A list of possible tools and frameworks for Feature Extraction and Selection

Name Link Description
WND-CHARM https://github.com/wnd-charm/wnd-charm A framework for the WND-CHARM algorithm.
Auto-WEKA [22] http://www.cs.ubc.ca/labs/beta/Projects/autoweka/ Model selector for the WEKA ML library for Java

Scikit-learn http://scikit-learn.org/ A Python library for ML.
OpenCV http://opencv.org/ A multipurpose computer vision library.
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B GANTT CHART AND MILESTONES

Figure 1: A Gantt Chart visualization of tasks and milestones
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C TASKS AND MILESTONES

Table 4: Detailed tasks and milestones with dates for the ASTCVS project pipeline

Task Name Start End
Project Proposal 2017/05/15 2017/06/23

First Draft + Feedback 2017/05/15 2017/05/24
Second Draft + Feedback 2017/05/25 2017/05/29

Final Draft 2017/05/30 2017/06/01
Revised Proposal 2017/06/14 2017/06/23

Project Presentation 2017/06/05 2017/06/13
Mock Presentation 2017/06/05 2017/06/09
Final Presentations 2017/06/12 2017/06/13
Development 2017/06/26 2017/08/30

Phase 1: Testbed and Components 2017/06/26 2017/07/25
Iteration 1 2017/06/26 2017/07/07
Iteration 2 2017/07/10 2017/07/18
Iteration 3 2017/07/19 2017/07/25

Phase 2: Strong Integration 2017/07/26 2017/08/30
Integrated Implementation 2017/07/26 2017/08/08

First Performance Test Writeup 2017/08/09 2017/08/16
Revision and Final 2017/08/17 2017/08/30

Software Feasibility 2017/07/03 2017/08/16
Mock Model Build 2017/07/03 2017/08/11

Presentation 2017/08/14 2017/08/16
Write-up Deliverables 2017/06/15 2017/10/24

Website Begin 2017/06/15 2017/06/28
Website Updates 2017/07/10 2017/10/06
Paper Scaffold 2017/07/24 2017/08/01

Background/Theory Sections 2017/08/01 2017/08/10
Implementation and Test Write-ups 2017/08/07 2017/08/24

Feedback and Revised Draft 2017/08/25 2017/09/14
Final Paper 2017/09/15 2017/09/22
Final Code 2017/09/15 2017/10/02

Poster Deliverable 2017/10/16 2017/10/20
Website Final 2017/10/09 2017/10/13

Reflection Paper 2017/10/16 2017/10/24
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Table 5: Deliverables for the ASTCVS project

Description Due
Project Proposal 2017/06/02
Revised Proposal 2017/06/30
Project Presentation 2017/06/14
Software Feasibility 2017/08/14-18

Write-up Deliverables

Web Presence 2017/06/30
Paper Scaffold 2017/08/01
Background/Theory Sections 2017/08/10
Implementation and Test Write-ups 2017/08/24
Final Report 2017/09/22
Final Code Submission 2017/10/02
Final Project Demo 2017/10/02-09
Poster Deliverable 2017/10/20
Website Final 2017/10/12
Reflection Paper 2017/10/24
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D RISKS, AND RISK MANAGEMENT

Table 6: A list of possible risks, their likelihood of occurring, their impact, and management/mitigation strategies

Risk Impact Likelihood Mitigation/Management
Unable to find a usable dataset
of labeled astronomical images

Disastrous Rare Already mitigated. Using the open source Galaxy Zoo
dataset.

Components are not able to in-
tegrate at all

Disastrous Unlikely Discussion and meeting amongst team members regard-
ing the inputs and outputs of each component in Phase
1.

Unable to expose components
via a web interface

Critical Unlikely Wrap component output/inputs into a format that does
permit exposure via web interface.

Unable to find a second dataset
to compare against

Moderate Rare Segmenting the Galaxy Zoo dataset and using one half
for evaluation of Phase 1 and the other half for evalua-
tion of Phase 2.

One or more components are
not ready to integrate

Moderate Unlikely Ensure that each project member has a clear explicit
idea of how their component will integrate with the
other two components and meet regularly to discuss
progress of component implementation.

The results of the evaluations
are inconclusive

Moderate Possible If time permits, choose different evaluation metrics and
re-evaluate. Components will be evaluated as different
iterations are completed to ensure that the evaluations
can pivot earlier if need be.

Implementation iteration takes
longer to complete that ex-
pected

Critical Likely Prevent entire project from falling behind by regularly
assessing where the implementation is every week in
comparison with deadlines and adjust deadlines if pos-
sible/necessary.

There is not enough time to
move the project into Phase 2

Trivial Possible Ensure that deadlines are followed as closely as possi-
ble so that time is available to move to Phase 2. The
split of project into 2 phases means there will still be a
demonstrable system.
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