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ABSTRACT

The task of phenomenon classification in astronomy pro-
vides a novel and challenging setting for the application of
state-of-the-art techniques addressing the problem of com-
bined algorithm selection and hyperparameter optimization
(CASH) of machine learning algorithms, which find local ap-
plications such as at the data-intensive Square Kilometre Ar-
ray (SKA). This work will use various algorithms for CASH
to explore the possibility and efficacy of hyperparameter op-
timization on improving performance of machine learning
techniques for astronomy. Then, with focus on the Galaxy
Zoo project, these algorithms will be used to conduct an in-
depth comparison of state-of-the-art in hyperparameter op-
timization (HPO) along with techniques that aim to improve
performance on large datasets and expensive function eval-
uations. Finally, the likelihood for an integration with a cog-
nitive vision system for astronomy will be examined by con-
ducting a brief exploration into different feature extraction
and selection methods.
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1 INTRODUCTION

Astronomy is a field that actively accumulates and processes vast
amounts of data with structure and information that may only be
extracted using computational means [18]. For instance, large sky
surveys such as the Sloan Digital Sky Survey (SDSS) [34] produce
datasets many terabytes in size with tens of millions of data points
[21] that require intense computer pre-processing and analysis [18].
Moreover, South Africa will soon be one of the leading contributors
to the field of radio astronomy with the construction of the Square
Kilometre Array (SKA)[8], which will produce data on the order of
exabytes of data in a single year of operation, at a rate of 2 terabytes
per second during operation [8]. Therefore, analysis of this data will
require the use of automated techniques such as machine learning
in order to reduce data into consumable and useful knowledge, and

to perform tasks such as astronomical phenomenon classification !
[8, 32]. Indeed, astronomy has seen focused applications of many
statistical machine learning approaches [18] such as decision trees,
k-means clustering, and simple multi-layer perceptrons for galaxy
morphology classification [18] and, most recently, deep-learning
approaches for image analysis on problems including galaxy lensing
identification to assist in dark matter sky surveys [13].

However, while there is a desire for the application of machine
learning techniques in astronomy, there is also a lack of expert
knowledge of machine learning within the astronomy community,
with experts in astronomy relying either on libraries of easy to use
tools or on experts in machine learning to develop and implement
machine learning solutions for their domain [18]. This is not ideal,
since a major component of machine learning modelling involves
selecting which machine learning model to use and identifying
which set of hyperparameters- those model parameters that are
tuned by an experimenter, rather than those model parameters
learnt/trained by the machine learning model- achieve the optimal
level of performance for a given model on a specified task or dataset
[22, 23]. These two tasks of optimizing model hyperparameters and
algorithm selection are optimization procedures [10], and while
they may be considered separately, the problem of combined al-
gorithm selection and hyper-parameter optimization (CASH) is of
interest for its ability to select models and optimize their hyperpa-
rameter configurations without the need for a machine learning
expert’s intervention [15, 31]. Consequently, solving this problem
manually is not something that is immediately accessible to those
who are not experts in any field of machine learning [22], and one
that is not amenable to an exhaustive search when expert domain
knowledge is not available since machine learning algorithms are
often computationally expensive to evaluate [26]. Hence, there is a
need for more streamlined tools and algorithms that can perform
hyperparameter optimization and algorithm selection for a given
task in fields such as astronomy. [22, 26].

In addition to the problem of CASH, the issue of performance
of these techniques on computationally expensive functions and
on large datasets is also a very active field of study [5, 7, 10, 11, 17,
29, 33]. Works such as dataset sub-sampling [1], evaluation time
and cost/error function modelling [17], using expert knowledge to
accelerate searches [10, 13], and neural networks to approximate

! Phenomenon classification involves classifying astronomical objects and events into
various classes. Examples include galaxy classification [21], X-ray source identification
and classification [24], and supernovae classification [18, 32].



distributions of the evaluation function [28] are some such ap-
proaches to this problem. Evidently, astronomy will benefit greatly
from using techniques that will both bolster the efficiency of ma-
chine learning models and automate the process of model selection
and hyperparameter optimization for astronomers entirely. This
work will aim to examine the viability of using CASH tools for
astronomy domain problems, and following this will examine the
performance gains that can be achieved from using various data-
efficient extensions to the CASH tools examined in this work.

This paper will be structured as follows: An initial set of pre-
liminaries defining the problem of CASH will be discussed, and
then the context in which CASH will be useful for astronomy will
be shown using prominent examples of machine learning in as-
tronomy. Then, in the following section, various approaches to
the separate problems of automatic algorithm selection and hyper-
parameter optimization will be explored for the Galaxy Zoo dataset,
with a discussion into the results. In all examinations of previous
work, strengths and weaknesses of said works will be examined.
Finally, the efficacy and potential of hyperparameter optimization
to contribute to a cognitive system for astronomy will be examined
by looking at integrating the technique with methods such as fea-
ture extraction and selection. In doing so, some of the questions
this paper hopes to answer are: Can state-of-the-art algorithms for
the problem of combined algorithm selection and hyperparameter
selection be used to choose and optimize among a set of machine
learning algorithms to perform galaxy morphological classification
from optical images? Out of these methods, is Bayesian Optimiza-
tion a more viable approach and what are the possible extensions of
Bayesian Optimization variants for dealing with large astronomical
datasets? Are these methods more efficient at constructing models
than machine learning experts and do they yield better quality
hyperparameter configurations?

2 BACKGROUND

In this section, a short overview of the required material on hyper-
parameter optimization and Bayesian optimization in general will
be given as primer for related works and experimental details.

2.1 Hyperparameter Optimization

The problem of hyperparameter optimization for some algorithm A
is stipulated in many works such as A. Klein et al. [17], B. Shahriari
et al. [26] and C. Thornton et al. [31], and the reader is directed
to those resources for a more in-depth introduction. In this work,
combined model selection and hyperparameter optimization is con-
sidered for the class of classification functions f that take some
input set X and maps it to some output set Y, f : X — Y. Hence, a
model within this context is one that takes as input a set of data
points D = {dj, da, ..., d, }- which is a set of ordered pairs (x;, y;)
fori = 1,...,n where each x; is an element of some input set X and
each y; is an element of some output set Y- and optimizes matching
a function to this dataset D by minimizing some specified metric
that determines a loss/error function for the classification function
f. As C. Thornton et al. [31] mention, the form of f under this
learning algorithm A may be understood to be what is known as
model parameters of the learning algorithm. For example, G. Luo et

al. [22] mention that a function f of, say, simple neural networks
has the following model parameters: The weight matrix W and any
regularization functions chosen for neuron outputs. For decision
trees, these model parameters would be the thresholds of each node
in the tree and the maximum depth of the tree if stipulated [22].

On top of these model parameters, i.e. those that are found by
the algorithm when fitting to data, algorithms may also have model
hyperparameters encompassed in a vector A from a hyperparame-
ter space A. These hyperparameters are those parameters that are
set by the modeller/researcher or one of the hyperparameter opti-
mizers, i.e. meta-processes (to be discussed); additionally, it is more
often than not that these hyperparameters remain static during
a single evaluation/training epoch of the algorithm A in question
[26]. In particular, the i-th hyperparameter in this hyperparameter
vector, A;, takes on values from a respective domain of values A;,
with the vector domain being a subset of the power set of these var-
ious domains of hyperparameters. Another useful definition from
C. Thornton et al. is that of a conditional hyperparameter: That is, a
hyperparameter A; is conditional on another such hyperparameter
A;j if A; is only active (that is, only affects the algorithm function
and performance) if A; takes on certain values in its domain (strict
subset), denoted by V;(j) € Aj. To denote the dependency of func-
tion and performance on the vector of hyperparameters A of the
algorithm A, the algorithm will be denoted A following notation
from [31] to capture this dependency. In the example of a neural
network, some of these hyperparameters may be the number of
neurons per layer, the number of layers, the dropout rate, or the
learning rate of the network [22, 31].

Finally then, a formula explaining succinctly the problem state-
ment of hyperparameter optimization is given by
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which can be understood as finding the set of hyperparameter

values such that the loss of the algorithm- evaluated on some cross-
validation method of partitioning the dataset- is minimized.

2.2 Model Selection and CASH

A similar definition holds true for the algorithm or model selection
step which is defined as in B. Shahriari [26] and C. Thornton et al
[31] as follows: Suppose one has a set of algorithms as described
above, call it A, and a set of data points as mentioned above, call it
D, then an algorithm A* € A is selected such that it has an opti-
mal generalization performance- that is, on some cross-validation

scheme, the performance on some partition Z)(i)r 4 is optimal after
(l) vali

training on a test set of data point, Dtest

similarly to equation (1),

- which may be written
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which may be understood as minimizing the loss function of this
algorithm over the data points partitioned into test and validation
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Figure 1: Iterative process of selecting model and model hy-
perparameter configurations using some hyperparameter
optimization tool to perform CASH

sets.

Finally then, the problem of CASH can be stipulated as finding
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where the j-th algorithm AY) has hyperparameter space AW,
The overall component described which addresses CASH can be
visualized in Figure 1 below. This figure illustrates the process of
training machine learning models and model configurations on
different k-fold cross validation training-validation dataset pairs in
an iterative style process until some stopping criterion is met. In
general, this stopping criterion is either the number of evaluations,
the runtime, the quality of solution found (given by some error
metric), or number of models trained.

2.3 Bayesian Optimization

Bayesian Optimization (BO), as with the previous algorithms men-
tioned above, aims to minimize an algorithm A loss function by
choosing an optimal set of hyperparameters A* € A. The differ-
ence between this paradigm for CASH is that this method aims to
“learn”or to reconstruct the function to be optimized by using a
probability distribution over the possible values for this function.
It then takes advantage of this probability distribution over hy-
perparameter configuration space to explore new hyperparameter
configurations to query on the function, which in this context is the
algorithm executed with the hyperparameters on the chosen data
with return signal in the form of some error or loss. The observed
set pairs of loss and hyperparameter configurations D = {(A,y)}
form the data/observations for the BO method to update its dis-
tribution or model of the function to evaluate. This is an iterative
process which is followed until some termination criterio is reached.
As stated by B. Sharhiari et al., Bayesian Optimization is best-suited
to applications where the function is computationally expensive to
evaluate and typically has no closed form. Moreover, since BO is able
to operate in data sparse application domains, non-differentiable, or
multi-modal (many global optima) and non-convex (many local op-
tima) functions may also be optimized by this approach. The details

of this will be discussed below in what will be a short introduction
to the theory behind Bayesian Optimization.

Definitions and notation that follow are as they have been used
in B. Sharhiari et al. [26] and J. Snoek et al. [27]. For starters, items
mentioned under the CASH problem description are renamed: the
hyperparameter configuration A is denoted as x, and the algo-
rithm using these hyperparameters is now denoted as an arbitrary
function f(x) (as a function that is evaluated using some hyperpa-
rameter configuration x, on some implicit data, producing some
error/loss to be minimized) with the hyperparameter optimization
problem becoming the problem of finding x* as follows

x* = argmin f(x) 4)
xeX
The problem of CASH can also restated in this notation as

fH(x*)= argmin fi(x;) (5)
xjeXi,fieF
where 7 being the set of all such possible functions under consid-
eration for model selection under the BO method.

In short, Bayesian Optimization models the function under eval-
uation in an iterative fashion in what is known as a Sequential
Model-Based Optimization (SMBO) process: Initially a model- in
this case a prior distribution- p(x) is specified over the hyperparam-
eters; for the example of a single hyperparameter (unidimensional
case) this prior distribution yields an average and variance for val-
ues of the hyperparameter. Then, in an iterative fashion, given data
points on the nth iteration, the model is updated in a Bayesian
fashion,
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with p(x|D) known as the posterior distribution, encapsulating
the probability of a hyperparameter configuration x given the nth
set of observations Dyp. A new query point, i.e. a new hyperpa-
rameter configuration, x’ is then chosen using an acquisition or
utility function a,, : X +— R which is a function that gauges the
‘usefulness’ of evaluating a certain hyperparameter configuration
(note that this may be dependent on the nth set of data points and
hence this appears in the formula). The next query point then de-
termined by maximizing this acquisition function with respect to
hyperparameter configurations. One can think of the acquisition
function as introducing the ability for exploration versus exploita-
tion: A greedy utility function can be chosen to select points with
the least variance as specified by the posterior distribution, or an
explorative utility function that takes the point with largest such
variance. Of course, there are more complex examples of utility
function that vary from one BO method to the next (such as Ex-
pected Improvement or Maximum Improvement [27]), and while
these functions may- and often are- very expensive to compute,
they are generally not as hard to compute as the function f one is
aiming to optimize in configuration space [27]. Once the new point
is chosen and evaluated using f, a new data point is created which
may then be used to update the posterior distribution as above to
enter the n + 1th iteration. This is repeated until some convergence
criterion is achieved. The process is illustrated as algorithm 1 below.

p(x|D) =



Algorithm 1 Bayesian optimization

1. forn=1,2,... do
2:  select new x,.; by optimizing acquisition function o

Xpi1 = arg max a(x; Dy,)
x

3 query objective function to obtain

4;  augment data Dy, = {Dy, (Xnt1,Unt1)}
5. update statistical model

6: end for

Figure 2: General algorithm for a Bayesian Optimization
strategy [26]

One way of realizing the search through a configuration space
in a Bayesian optimization space, is by using a Gaussian process.
A Gaussian process (GP) is a process where any subset of a set of
observations is assumed to follow some underlying Gaussian distri-
bution with mean y and variance o2, and is a way of generalizing
regression in the above algorithm, among others. More rigorously,
a GP is completely specified by a mean function pp : X — R and a
covariance function (known as a kernel) k : X XX + R, and where
data points are such that for an collection of data points X1:n2, the
function values f = fi., (with f; = f(x;)) are jointly Gaussian.
These two functions are are parameters to the GP and hence to
the BO using a GP. This is a justified addition of hyperparameters
however, since most problems requiring BO span tens or hundreds
of hyperparameters and hence are far less tractable than dealing
with a handful of hyperparameters.

Research in accelerating BO that uses expensive to evaluate GPs
is certainly an active area [11], with various approximate tech-
niques such as Sparse Spectrum Gaussian Processes (SSGP) and
Random Forests [26, 27] being examples of prominent alternatives.

In the illustrative example in Figure 1 below, the BO is shown
is shown for a Gaussian Process with an arbitrary kernel, mean
and utility function. Steps 5 and 6 are shown. In step 5 one can see
that the probability distribution is completely certain around data
points, becoming less so further away from data. The acquisition
function chosen here is a maximum around the yellow star, and
hence the function determines this as the next query point. The
following step shows the updated posterior distribution given the
data. The solid blue line represents the true function values.

A caveat to note for Gaussian processes is the following: Han-
dling of discrete and conditional hyperparameter choices can be
done if the GP is allowed to act on a continuous space, with the
evaluations/black-box function merely translating hyperparameters
into appropriate integer values using a floor or ceiling function.

3 REVIEW OF ALGORITHMS FOR CASH

There are various algorithms that attempt to tackle the problem of
combined algorithm selection and hyperparameter optimization.

ZNotation is as in B. Sharhiari et al. [26], with X1., = {1, ..., Xn } representing a set
of values
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Figure 3: Bayesian optimization with Gaussian Process and
Utility function at two steps, as in B. Sharhriari et al. [26]

These are: Grid searches; random searches; evolutionary algorithms;
Hypergradients; Hyperband (which builds on successive halving);
and Bayesian optimization (with different variants of this). Evolu-
tionary algorithms and Hypergradients are not considered in this
review of algorithms for CASH because evolutionary algorithm
approaches- as described in Z. Young et al. [35]- have large number
of additional hyperparameters to optimize, while Hypergradients
[12] require numerically differentiable hyperparameters and there-
fore cannot deal with categorical and conditional hyperparameters
in any form. Therefore, out of the algorithm mentioned above
Bayesian optimization, random searches, Hyperband, and exten-
sions to Bayesian optimization for large datasets will be considered
and discussed below as candidates for CASH in astronomy.

3.1 Manual, Grid, and Random Searches

Two simple approaches for CASH are those of a grid search or
exhaustive search (one that searches all possible hyperparameter
configurations) and a random search (random selection of possible
hyperparameter configurations), both of which are described the
work J. Bergstra et al.[2]. As J. Bergstra et al. point out, these meth-
ods are the most commonly used in practice for hyperparameter
tuning, along with guided manual searches using machine learning
expert knowledge, since they are easy to implement and generally
work well when guided with expert knowledge of hyperparameter
configuration spaces. While offering good performance on small
data sets, these methods suffer from various drawbacks for novice



machine learning tool users: Firstly, the random search method
described in J. Bergstra et al. [2] is shown by G. Luo [22] to not
outperform domain experts in selecting hyperparameters. Further-
more, the exhaustive nature of grid searches and manual searches
leave them as intractable methods for much larger problem do-
mains where an evaluation function must be evaluated on very
large datasets, where the evaluation function is itself very computa-
tionally expensive- taking days, weeks or even months to execute-
or where the dimensionality of the hyperparameter search space is
very high. The variant of random search introduced by J. Bergstra
et al. [3] was shown to outperform grid search in performance and
quality of final configurations and therefore remains a ubiquitous
method of performing HPO [6]. For this reason, it is often benefi-
cial to use a random search, rather than a grid search, as a baseline
when evaluating other algorithms for hyperparameter optimization.
While many extensions to random search exist, such as annealing
search [10, 11] and entropy search [14], the simplicity- and hence
extra speed- that one achieves on a random search makes random
search a better baseline method to use.

3.2 GP/TPE/SMAC-based BO

There are some considerable drawbacks of current SMBO tech-
niques grounded in Gaussian processes that prevent its use for
general CASH tasks: The first of these is that GPs only support
continuous numeric parameters; secondly, they only work on single
instances, making combined algorithm and hyperparameter selec-
tion intractable for such methods; and lastly, they lack mechanisms
for early-stopping, that is, terminating expensive and/or poor runs
early. To combat this, various approximate techniques are used for
SMBO such as TPE [4] and SMAC [16]. These methods both imple-
ment BO using tree-based methods rather than Gaussian processes,
where random forests coupled with parzen estimators are used in
the case of TPE, and regression trees are used in the case of SMAC
to model the evaluation function response surfaces. The benefits of
using tree-based methods is that conditional and categorical (dis-
crete) hyperparameter choices become more natural to express in
these algorithms. As a result, not only do these outperform random
searches, but they also outperform Gaussian processes in spaces
that contain many discrete or categorical choices, since Gaussian
processes tend to explore “continuous gaps”between the discrete
values of interest. These qualities place TPE and SMAC among the
favoured algorithms for CASH in astronomy, where machine learn-
ing model choices may be modelled as a discrete hyperparameter
choice. Despite this however, these two techniques still require
training on the full dataset, and do not provide a means to allow
early stopping of algorithm training and evaluation.

3.3 Hyperband and Successive Halving

L. Li et al. [20] and B. Zoph et al. [36] both implement basic rein-
forcement learning approaches to tackling algorithm selection and
hyperparameter optimization. L. Li et al. develop HyperBand, and
consider the problem akin to that of an n-armed bandit for each al-
gorithm choice available (n choices) and the reward signal being the
loss of the algorithm chosen for evaluation. The various populations
of configurations samples are then culled using a successive halving
algorithm, described in the paper, and the configurations adjusted

slightly based on a simple Bayesian inference of the nearby configu-
ration space. The advantages of this method of HPO is that it is very
effective at finding good configurations very quickly, outperform-
ing even tried and tested methods of GPs, TPE, and even SMAC on
some problems. Some disadvantages is that methods such as these
are still very data-hungry, and rely on maintaining a large pool of
candidate configurations that have been preselected in some way,
either randomly or with some specified prior distribution. How-
ever, while this may seem like a drawback, this does lend itself to a
simple parallelization task. Work by A. Klein et al. [17] also shows
that Hyperband is very effective when an additional dataset size
hyperparameter is introduced into each model. Its speed of finding
superior configurations and the possibility of introducing a form
of data sub-sampling into model evaluations makes Hyperband a
promising candidate for use in CASH for astronomy.

3.4 Extensions of Bayesian Optimization

One method of extending Bayesian optimization is to make it more
robust and efficient on large datasets. To achieve this, many previ-
ous authors [17, 30? ]Multi-Task Bayesian Optimization (MTBO)
by K. Swersky et al. [30] emerges as one technique that aims to
achieve this by introducing dataset size as an additional task to
optimize in their list of multi-objective optimization tasks, hence
treating it as a free parameter to tune, and by concurrently training
many different configurations and models in parallel and incorpo-
rating results into a multi-object expectation maximization step. In
a similar fashion, one can introduce dataset size as a free parameter
in the Hyperband algorithm above, as has been done by A. Klein
et al. [17] in their experiments. Both Hyperband and MTBO allow
parallel execution of similar models to be executed, while using
information to improve searches for single model configurations.
Both Hyperband and MTBO show promise in being robust methods
for CASH and efficient methods for astronomy.

Another robust technique to consider is FABOLAS (FAst Bayesian
Optimization for LArge DatasetS), hereto referred to as Fabolas,
by A. Klein et al [17] that treats dataset size as a free parameter
open to tuning and extrapolates function loss/error rates for future
function evaluations by modelling both dataset size and function
loss as latent variables using past data points and experiments in
order to further minimize the number of function evaluations per-
formed by their BO procedure. Overall, reducing the number of
function evaluations and introducing a tunable data set size param-
eter, makes Fabolas efficient on large data set sizes and expensive
algorithms/functions. As a result, this method is amicable to CASH
for astronomy, allowing one to use large data sets such as the Galaxy
Zoo and SDSS datasets, as well as computationally heavy/expensive
learning algorithms such as convolutional neural networks. Both
these techniques show results on benchmark datasets that achieves
similar or better performance than previous methods such as TPE,
SMAC, and Hyperband.

As a possible way of making BO more robust, Z. Wang et al. [33]
developed a method called Random Embedding Bayesian Optimiza-
tion (REMBO) that can operate on data with on the order of billions
of dimensions, that is, more formally, data sets X C RP where



the number D can be in the billions. The method achieves this by
finding a linear subspace of the original space RP over which the
function is invariant over a subset of the dimensions on all data
points in this subspace. Within the context of astronomy, however,
hyperparameter configuration spaces for machine learning models
used in the domain are not usually very high in dimension, and
so are not amicable to benefit from REMBO, which as the authors
comment works best in high dimensional spaces.

A neat summary of the various techniques for CASH is displayed
in Table 1 below. Some implementations and links to implementa-
tions of the tools referenced above are also included.

4 EXPERIMENTAL DESIGN

The experiments conducted in this work serve two purposes. To
first explore the efficacy and viability of hyperparameter optimiza-
tion approaches such as Bayesian optimization for the domain
area of astronomy and in particular for galaxy morphology clas-
sification, and to explore the effects of different hyperparameter
optimization algorithms, some with data-efficient extensions, on
performance and quality of machine learning configurations found
for the problem of galaxy morphology classification. Two experi-
ments to accomplish this are devised below, with further details on
hardware and software discussed afterwards.

4.1 Hyperparameter Optimization for
Astronomy

The first goal of this work is to determine the feasibility of hy-
perparameter optimization for astronomy. To determine this, hy-
perparameter optimization will be tested against human experts
for tuning hyperparameter configurations for machine learning
algorithms and/or outperform given methods for hyperparameter
optimization for astronomy domain problems. Considering the lat-
ter has not been done before, the former option is explored in these
experiments. Rather than collect data by using expert users to tune
algorithms, this task of testing against human expert performance
will be accomplished by using results on problems quoted SKYNET
[13]. SKYNET uses warm-starting with expert knowledge of con-
figurations, together with a Newton’s method to make adjustments
to hyperparameters such as the learning rate. In SKYNET, various
results of machine learning algorithms on both toy and real data
are employed for both classification and regression tasks. These
datasets consisted of

o The Sinc Function regression dataset given by y = sin(x)/x+

0.04x with Gaussian noise of mean 0 and deviation 0.05
added. From this, 200 points were taken for training and
100 for validation.

e The Radford Neal classification dataset is a toy dataset
developed to test the ability to handle simple non-linearity.

e The Dark Matter Sky Survey dataset from Kaggle 3.
Here, users needed to use a coupled galaxy and star pair
of images to denoise the galaxy image and to recover the 2
ellipticity parameters of the galaxy. Consequently, this is a
regression problem.

3 kaggle.com/c/mdm

o The Galaxy Zoo dataset from Kaggle 4. This dataset con-
sists of close to 100 000 optical images of galaxies. The goal
of this challenge is to replicate the 37 feature probabilities
that crowd-sourced users produced. This means that this
lends itself to a regression problem.

e A Supernovae classification dataset using data provided
by the SDSS via the Python AstroML package. This dataset
presented 1D time-series light-curves of various known
supernovae events. The task is to classify the supernovae
into one of three classes, type IA, IB or ITIA.

o The MNIST dataset. This is the standard machine learning
classification task using 60 000 training images and 10 000
validation images of handwritten digits ranging from 0 to
9.

Experiments were run to try and replicate and potentially im-
prove on the quoted RMSE and classification accuracy scores for
these problems that were solved by the SKYNET system and for the
top solution on the Galaxy Zoo leaderboard published by S. Diele-
man [9]. The hyperparameter optimization tools chosen for these
experiments were HyperOpt and Fabolas. HyperOpt was selected
for its ability to explicitly deal with categorical hyperparameters via
its TPE implementation, and for its ease of use with tools such as
scikit-learn in Python. On top of its ease of implementation, Hyper-
Opt was chosen to negate any additional effects that data-efficient
algorithms such as Fabolas would create, which are subsequently
explored in the Fabolas experiments. Fabolas was chosen for its
reported state-of-the-art performance on large dataset sizes. Hyper-
Opt was run for each of the problems listed above, while Fabolas
was only run for the MNIST, Dark Matter, and Galaxy Zoo datasets,
since performance gains were negligible with the smaller datasets.

The next set of experiments were focused on the Galaxy Zoo
dataset and aimed to examine performance of different hyperpa-
rameter optimizers by examining the rate of convergence of these
to high quality solutions. To perform this experiment, various soft-
ware implementations of algorithms discussed from literature were
used on the Galaxy Zoo dataset and a performance evaluation was
conducted. Furthermore, this was done using 4 different sets of fea-
tures extracted from galaxies: The WND-CHARM feature extraction
method [25], custom shape descriptors, and a VGG16 Convoutional
neural net coupled with tSNE feature extraction approach discussed
below. All quoted results stem from evaluations on unseen test data,
and all training is done using k-fold cross validation, where k is
equal to the number of hyperparameter choices. This is to pre-
vent over-fitting the training data and moreover to prevent fitting
to the validation data when experimenting with different model
hyperparameter configurations.

4.2 Performance on Large Datasets

In the second round of experiments, various HPO algorithm imple-
mentations listed in Table 1 are used to evaluate the time it takes
to find well-performing solutions on large datasets. For this, the
largest dataset available, the Galaxy Zoo, is used. Preprocessing
for features is done as described in the section below. To measure
the efficiency of the various HPO techniques, the best solution

4www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
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Table 1: A list of tools for implementing algorithms for CASH

Name Tool Link Description
SMAC [16] SMAC3 https://github.com/automl/SMAC3 A hyperparameter optimizer and model selector
implementing SMAC
Fabolas [17] RoBO https://github.com/automl/RoBO A Gaussian process based
implementation of Fabolas
Hyperband [20] RoBO https://github.com/zygmuntz/hyperband A hyperparameter optimizer and model selector

using Successive Halving and Armed Bandit selection

TPE and Random [4] HyperOpt

https://github.com/hyperopt/hyperopt

A Python framework for
bayesian optimization with TPE

MTBO [30] RoBO

https://github.com/automl/RoBO

(measured by RMSE) is captured as a function of runtime, up to a
maximum runtime of 12 hours.

4.3 Data Preprocessing

For all experiments conducted on the MNIST, sinc function, Dark
Matter, and supernovae datasets, no preprocessing was conducted
other than flattening any images into the corresponding row vector
(e.g. an image of dimension 28 X 28 becomes a row vector of length
784). For the Galaxy Zoo dataset, the following preprocessing tech-
niques were done: Images are cropped to size 214 in each of the
2 dimensions and after centering around the galaxy, after which
downsampling 3x and grayscaling is performed. Then, as described
in S. Dieleman et al. [9], affine transformation (rotations, scaling,
translation, and reflections) are applied at random to images to
generate more training examples and to make trained networks
more invariant to such transformations. This benefited their algo-
rithm and is hence also done here as a preprocessing step before
extracting features.

Finally, to extract feature vectors, rather than flattening out
the images into row vectors, the VGG16 network with ImageNet
weights was used, as described by A Krizhevsky et al. [19], was
used to extract image features by using the final convolutional
layer output as the feature vector. Following this, t-SNE (or other
dimensionality reduction techniques such as MDS, PCA, etc.) is used
to reduce the set of 150 features down to just 4. Hyperparameter
optimization of the VGG16, and of the t-SNE hyperparameters used
in this step is not explored and is left to future work.

4.4 Hardware and Software

Hardware used for experiments was both the CHPC Lengau cluster
(chpc.ac.za) and the UCT HPC Hex cluster (hex.uct.ac.za). Each
node on these clusters contains 4 Intel Xenon CPUs with 16 cores
each, with 2Gb of RAM per core. The UCT HPC also provides access
to NVIDIA Quadro GPUs. GPUs used were both the aforementioned
NVIDIA Quadro and NVIDIA GTX 670MX cards for training neu-
ral network models in Keras. Software used was Python 3.5, with
Scikit-learn and Keras (Tensorflow backend) packages (with their
dependencies) for implementing the machine learning component
of the project. Tools used in the conducted experiments were Hy-
perOpt, SMAC3, RoBO (which contains implementations of Fabolas,

Hyperband, and MTBO). These hyperparameter optimization pack-
ages, with references to descriptive papers and links to Github
pages, are displayed in Table 1.

4.5 Machine Learning Models, Execution
Details, and Evaluations

Machine learning models used for the experiments include the fol-
lowing: Neural Networks (with possible convolutions included),
Support Vector Machines (SVMs), Random Forests, Extra Trees,
Gradient Boosted Trees, Gaussian Mixture Models, K Nearest Neigh-
bours, and Lasso. Hyperparameters exposed to the various tools
listed above for configuration options are listed in the appendix
available on the ASTCVS website.

Experiments aimed at evaluating HPO for Astronomy were con-
ducted by allowing HyperOpt to optimize the set of algorithms
mentioned above in a CASH setting, for no longer than 12 hours on
each setting. This hard cut-off was chosen due to time-constraints,
and due to convergence of HyperOpt scores after 8-10 hours be-
coming apparent. Experiments aimed at measuring efficiency of
various hyperparameter optimization tools on large datasets were
conducted by allowing each hyperparameter tool to run for 12
hours on the Galaxy Zoo dataset features for the same reasons
mentioned above.

Machine learning methods used were evaluated on regression
problems using the Root Mean Squared Error (RMSE) and on the
accuracy score (together with confusion matrices) for classification
problems. These two metrics were chosen for two reasons. Firstly,
RMSE and accuracy scores are used for comparison purposes with
SKYNET for the sinc function, Dark Matter survey, Neal dataset,
MNIST, and supernovae. Secondly, the Dark Matter and Galaxy Zoo
Kaggle competitions used RMSE as an evaluation metric, so this
was selected for comparison to leaderboard scores.

5 RESULTS AND DISCUSSION

In this section, results for the sets of experiments described are
presented and discussed. First, the viability of HPO for astronomy
will be examined, followed by performance of HPO algorithms

A Python implementation of multi-task Bayesian optimization
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on large datasets, and then a brief exploration into other feature
extraction techniques will be conducted.

Results from the first set of experiments using HPO methods
against SKYNET are shown in Table 2. These results show the best
HyperOpt and Fabolas runs with both toy and real dataset prob-
lems. Fabolas found the best configurations (hyperparameters for
which may be found on the ASTCVS website) for the Galaxy Zoo
and Dark Matter surveys, and in all other cases except for the Neal
dataset, HyperOpt found hyperparameter configurations that per-
formed better than those found by SKYNET. With more trial runs of
HyperOpt, the discrepancy between the SKYNET and HPO results
for Neal is likely to become statistically insignificant. Confusion
matrices for the Neal and MNIST problems are shown in Figures 4
and 5 respectively. For the Neal dataset, the misclassification in Re-
gion 2 and 3 relates to the strong non-linearity and sharing of data
points between these two regions. For the MNIST confusion matrix,
deviations in digits 7 and 9 can be attributed to similar features
present in badly drawn examples. This may later be remedied by
adding convolutions to the networks to attempt to perform better
feature extraction.

These results are indicators that statistical and probabilistic ap-
proaches are more conducive for hyperparameter optimization than
human-expert led searches, even when supplemented by analyt-
ical methods as in the case of SKYNET. Even more interesting is
that these results were found even after limiting hyperparameter
searches to only neural networks, which vastly culls the diversity
in solutions that could be found if other models such as SVMs or
GMMs were added to the configuration space. This leaves room for
further experimentation and exploration.
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Figure 4: Confusion matrix for the Neal dataset. The mis-
classification in Region 2 and 3 relates to the strong non-
linearity and sharing of data points between these two re-
gions (see SKYNET [13] for an example plot)
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Figure 5: Confusion matrix for the MNIST problem. Here we
see that most digits are accurately classified, with misclas-
sification occurring in digits 2 and 8, and between 4 and 6,
where these two digits might easily be mistaken for one an-
other. Addition of convolutions to the network may improve
scores in the confusion matrix.

Table 2: RMSE and accuracy comparisons of HyperOpt vs. SkyNet
Problem RMSE
SKYNET HPO
Dark Matter 0,0171 0,01596
Galaxy Zoo 0,0786 0,0643
Toy 0,4562 0,3326
Accuracy %

Radford Neal 0,24 0,25
Supernovae 85,6 89,4
MNIST 97,2 98,8

In the second set of experiments, best configuration scores were
recorded as functions of runtime for the various HPO methods in
Table 1. In the figure below, the best configuration RMSE loss is
shown as a function of runtime using the VGG16/ImageNet features
on the Galaxy Zoo dataset. Random search is shown to converge
to similar quality solutions eventually after about 600 minutes, but
only after a long halt in improvements. This is a signature of the
randomness of the annealing procedure implemented by Hyper-
Opt’s random configuration suggestion algorithm from J. Bergstra
[4]. Among the random, TPE, and SMAC algorithms for BO, SMAC
finds the overall best quality solutions but only after a short time
exploring poor configuration settings, while both TPE and SMAC
outperform a pure random search. These results are attributed to
the Bayesian inference and of the exploration vs exploitation nature
of the EI step used by both algorithms to choose unseen configu-
ration spaces for the set of machine learning algorithms available.
Specifically, while TPE models this using random forests, SMAC
chooses regression forests. The difference being that TPE has a



greater deal of randomness and thus is less likely to become stuck
in local optima for as long periods of time as SMAC. Finally, and
very promisingly, methods such as MTBO and Fabolas show very
fast convergence to very low RMSE scoring models and model con-
figurations. The best models found were extra trees with an RMSE
score of 0.069. and a neural network with RMSE of 0.064. This also
outperforms the highest quality solution on the Kaggle Galaxy Zoo
challenge leaderboards, further indicating the efficacy of HPO for
CASH and for astronomy problem domains. The parameters for
the best known models can be found as an appendix on the website
of the ASTCVS project.

Results using Fabolas show that the entire dataset need not be
considered when selecting algorithms, choosing algorithm config-
urations, and training algorithms. Fabolas shows that the cost of
general and expensive black-box functions can indeed be modelled
over the entire dataset when considering only subsamples of the
data. The reason for such stark differences between the MTBO
and Fabolas runtime curves and those of traditional BO methods
is that Fabolas and MTBO do not need to evaluate a given model
configuration on the entire dataset in order to infer a suitable value
for the expected function loss. This modelling of function loss on
small subsamples of the full dataset means that Fabolas and MTBO
can both evaluate many more models and hyperparameter configu-
rations in a given amount of time than other methods of BO that do
not perform dataset subsampling and do not support early stopping.
While Hyperband can support dataset subsampling, the tools does
not allow for early stopping of function evaluations. The ability
for Fabolas and MTBO to perform a larger number of function
evaluations per unit time allows for these techniques to explore a
large region of the configuration space in a shorter amount of time
than other methods, and hence the large difference in the runtime
curves becomes less surprising as a result.

Finally, the effect of the different feature extraction techniques
(VGG16/ImageNet, WND-CHARM, and shape-descriptors) is shown
in Table 3 by comparing different best-found RMSE values using
the Fabolas and Hyperband methods. It is evident that RMSE values
of configurations found using these techniques do not perform as
well as using unsupervised feature extraction techniques such as
ImageNet, coupled with tSNE. This does not come as much of a
surprising result, since convolutions are still state-of-the-art in the
field of image classification [18]. However, this may change when
other datasets such as 1D time-series, and radio astronomy datasets
are explored in further works, where convolutional approaches
may begin to suffer and where other techniques for feature extrac-
tion such as time-series shapelets, and where LSTM networks may
improve. In addition to this, the hand-crafted features used in this
work relied strongly on various hyperparameters chosen by the
researcher, which may lend itself to hyperparameter optimization
approaches. This, however, is left to future work in exploring HPO
for selecting feature extraction methods and hyperparameters for
these methods, coupled with evaluations using machine learning
algorithms.

MTBO
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random

hyperband (infinite) '
fabolas

Test Error
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Figure 6: Best (minimum) RMSE as a function of runtime
for various HPO methods. Out of traditional BO methods,
SMAC performs best. Data efficient techniques such as Fabo-
las and MTBO find solutions at a faster rate than any other
HPO algorithm.

6 CONCLUSIONS AND FUTURE WORK

The feasibility of using hyperparameter optimization for the prob-
lem domain area of astronomy certainly exists. In this work, HPO
was shown to outperform existing methods of optimizing model
configurations such as SKYNET [13]. This opens up doors into
future work for finding and improving other existing models and
algorithm configurations for astronomy, which could potentially
reduce computational costs and decrease runtime on these prob-
lems where simpler and computationally cheaper configurations
of models are selected by HPO models to solve these problems.
Further, future work in developing machine learning models for
automated data processing in astronomy may also be accelerated if
adoption of these HPO tools becomes more wide-spread.

Along with this, various algorithms for HPO were evaluated on
the Galaxy Zoo dataset, showing the effectiveness of such algo-
rithms in outperforming state-of-the-art solutions such as those
published from top-performing Kaggle solutions [9], and on increas-
ing the efficiency of methods on large dataset sizes, by training
configurations on smaller sub-samples of the full dataset.

In the last set of experiments, data-efficient extensions to Bayesian
optimization were able to find better quality solutions in a shorter
amount of time (up to 10 times as fast) than traditional methods
of BO such as TPE and SMAC. Future studies for hyperparameter
configuration will make great headway in pursuing the avenue of
extending techniques such as Fabolas to deal with conditional and
categorical hyperparameter choices explicitly, through the use of
similar techniques as those in TPE and SMAC, rather than through
Gaussian processes. Potential also exists for further incorporation
of expert knowledge in “warm-starting “the hyperparameter learn-
ing procedure with expert guesses for configurations in a similar



fashion to works such as SKYNET. Additional studies include per-
forming HPO on feature extraction and selection techniques in
order to optimize the best features for a given dataset or problem
domain. By performing these extensions, one can hope to not only
optimize the procedure of optimizing choices of machine learn-
ing model along with model hyperparameters, but also to choose
appropriate preprocessing and feature extraction and selection tech-
niques to use for a given problem.

In summary, applying state-of-the-art hyperparameter optimiza-
tion methods to problems in an astronomy domain has shown that
these methods are a viable and efficient approach for selecting and
configuring machine learning solutions to a number of problems.
Moreover, techniques for reducing expensive algorithm training
overheads via early stopping and for dealing with large datasets via
dataset sub-sampling are an effective way to learn hyperparameters
and to train machine learning algorithms on large datasets such as
the Galaxy Zoo.
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