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ABSTRACT
Galaxy Morphology Classification remains predominately a manual
task often subject to crowd sourcing for classification. Given the
vast amount of galaxy image data at our disposal and the anticipated
splurge of petabytes of galaxy data, this presents an even greater
need for the automatic classification of these galaxies.

Classification often relies upon a good set of features to discrim-
inate between various classes, furthermore this paper describes
an approach to feature extraction and selection of galaxy images
for the task of galaxy classification. We made use of popular fea-
ture extraction techniques as per literature and developed a hybrid
feature selection algorithm which makes use of univariate and tree-
based feature selection techniques in a recursive feature elimination
setting to select the best performing features.

Upon comparing the hybrid feature selection algorithm with
other preexisting techniques on a set of generic learning algorithms,
the algorithm outperformed its counterparts sporting the lowest
mean squared error.
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1 INTRODUCTION
Efforts are being made to enrich our understanding of the uni-
verse. These efforts often come in the form of Sky Surveys or Large
Telescopes. In understanding the space around us, not only does
it encourage the exploration of our universe but it also further
enriches our understanding of our earth and galaxy alike.

The ability to identify the various galaxies that make up our
universe is one such way to appreciate our understanding of the
universe. However, for the longest time, the task of Galaxy Iden-
tification has always been performed by human experts, as the
automation of this task has yet to outperform that of a human
expert.

Understanding our universe is one advantage of Galaxy Identifi-
cation, but the ability to identify these galaxies automatically can
help in making use of the splurge of galaxy data at our disposal and
in anticipation. The Square Kilometer Array1 is one such project
which promises petabytes upon petabytes of data.

Existing approaches for galaxy classification includes crowd-
sourcing galaxy data [6], the use of diagnostic diagrams [11] and

1http://skatelescope.org/

more recently the use of machine learning techniques. This pa-
per explores the latter, specifically feature extraction and selection,
techniques often associated with the approach.

As much as crowdsourcing as well as the use of diagnostic di-
agrams do produce competitive results,they both struggle to deal
with the volume, velocity and variety of present day galaxy data.
Hence the reason why machine learning techniques are favored in
tackling this task.

Machine learning techniques give computers the ability to learn
and perform a task without being explicitly programmed. This
can either be achieved either in a supervised fashion or unsuper-
vised fashion. However, irregardless of the approach, the concept
of features or factors play an important role in both learning and
performing a task, and even more importantly in our task, Galaxy
Classification.

Intuitively, the better your features are, the easier it is to discrim-
inate between the various categories of galaxies. Hence, this paper
will describe a host of appropriate feature extraction approaches
for galaxy classification on optical data as well as present a fea-
ture selection model for ranking and eventual selection of the best
performing features.

This project shies against choosing features subjectively as tradi-
tionally, particularly in galaxy classification, the choice of features
had been heavily derived from domain knowledge or an affinity
to a particular feature extraction framework. This paper aims to
address this matter in answering the following research question:
What features in optical galaxy data are appropriate for galaxy
classification?

This project is of a three part series, whereby moving forward,
the goal is to construct a cognitive vision system for galaxy classifi-
cation. A cognitive vision system can be defined as any system that
aims to gather expert knowledge and combine it with predictive
capabilities to model and explain future events. The construction of
a CVS often centers around developing and integrating or coupling
various components that solve a given problem.

As far as the structure of this paper is concerned, this paper
initially discusses relevant papers which pertain to the search for
discriminatory features for Galaxy Classification. Thereafter, there
will be a background section to equip the reader on some of the
concepts discussed further in the paper. The Model section, soon
after the background, will discuss and describe the feature extrac-
tion techniques explored as well as the details of the hybrid feature
selection algorithm. Following the model section is the experimen-
tal design section which is intended to describe how the hybrid
feature selection algorithm went under evaluation, the results of
this evaluation can be found in the results section and similarly in
the discussion of results. Finally the paper comes to a conclusion
in the conclusions and feature works sections.



2 RELATEDWORK
In relevant literature as far as the choice of features for galaxy
classification is concerned, emphasis is placed on using a preferred
set of features rather than the best set of features.

Authors champion their choice of features based on domain
knowledge of the problem or a set of features that they believe
generalize to the problem at hand. The selection of features is
subjective rather than objective.

WND-CHARM [8] or Weighted neighbor distances using a com-
pound hierarchy of algorithms representing morphology is one
such example whereby a set of features is believed to generalize to
the task at hand. Shamir et al. [9] make use of WND-CHARM for
the automated classification of galaxy images achieving an accuracy
of 9̃0%.

WND-CHARM extracts a feature vector of approximately 3000
features. This feature vector includes the raw image, transforms of
the raw image, transform upon transform of the raw image, as well
as a host of other features aimed to generalize the task of image
classification.

Shamir et al decided to extend his work in [9], by making use of
WND-CHARM to quantitatively analyze the morphology of merger
galaxies[10]. Unfortunately achieving an accuracy of 51% of the test
simulated galaxy merger images, 1̃.9% than random classification.
Sextractor is another example [2], like WND-CHARM, of a feature
extraction package created with the purpose of generalizing to
astronomical images.

Aptoula et al.[1] work on the segmentation and classification of
galaxies is an example of authors who use domain knowledge to
champion their choice of features. In [1], Aptoula et al. are inspired
by the astronomical view point that since spiral galaxies are domi-
nated with active star formations,spiral galaxies tend to be brighter
than elliptical galaxies which in turn are reputably dominated by
old and cold stars.

Aptoula et al. leverage this knowledge by producing a feature set
based on the top-hat operator, for the distinction of spiral galaxies
from elliptical galaxies. The resulting model had an accuracy of
of 79% whereby classification errors were mainly attributed to the
noise levels of the images and normalization issues.

Like Aptoula et al., Moore et al. [7] leveraged domain knowledge
by using the average size and average roughness of a galaxy to
differentiate between elliptical and late-type spiral galaxies. They
applied both features to a multilayer perceptron where they reached
an accuracy of 91.4%.

In the work of Goderya et al[5], they too make use of shape
descriptors such as elongation and convexity as features for galaxy
classification. Achieving an accuracy of 57% on a test set of 37
images. Literature suggests that the appropriate use of features can
lead to promising results, and that the extraction of features is still
a popular in galaxy classification.

There has been work published by Dieleman et al. [4], where
they presented a convolution neural network trained on galaxy
images from the Sloan Digital Sky Survey2. Convolution Neural
Networks perform their own internal feature extraction on raw
images, often alluding to a "black-box" effect. Dielemen et al’s
results in [4] achieved a near-perfect accuracy of 99%. Irregardless

2http://www.sdss.org/

of the result, due to this black-box effect in this particular model,
researchers are still left puzzled on what features are discriminatory
in galaxy classification.

Taking into consideration the state of existing literature, it is
evident that there is a limitless amount of features that one can
choose from for galaxy classification. However, it is possible to
perform feature selection, given a finite set of features, in order to
maximize the performance of the classifier, hence the premise of
this paper.

3 BACKGROUND
In order to perform the necessary feature extraction and selection
techniques, background knowledge of galaxies and their properties
should be understood. An understanding of the different types of
feature selection techniques at our disposal should also be estab-
lished as it will reinforce ones understanding of the feature selection
algorithm presented in this paper.

3.1 Hubble’s Tuning Fork
Edwin Hubble’s Classification scheme also known as Hubble’s Tun-
ing Fork[3] is the standard agreed upon by astronomers alike to
categorize galaxy types. In this scheme, galaxies are categorized
according to their morphology, namely into two main groups: el-
liptical galaxies and spiral galaxies.

Elliptical galaxies tend to be round and flat, varying according
to their roundness and flatness, whereas spiral contain a central
bulge in their centers. The bulge in spiral galaxies is surrounded by
stars in a separated fashion in which the stars separate themselves
into two or more spiraling arms.

Elliptical galaxies are further sub-categorized into four categories
namely E0, E3, E5 and E7. E0 being more spherical in shape, E3
less spherical than E0 but more ellipsoidal than E0 and the trend
applies with E5 and E7. Hence, chronologically E7 being the most
ellipsoidal and flatter galaxy in comparison to the other elliptical
galaxies. Hence, E0 being the most spherical galaxy of the elliptical
galaxies.

Spiral Galaxies, like elliptical galaxies, are further subdivided
into two categories, regular and barred spiral galaxies. Regular
Spiral Galaxies, have more natural spirals projecting outwards of
the central bulge, whilst barred galaxies have a protruding bar
within their central bulge with spirals are projecting outwards from
the protruding bar.

Both regular spiral galaxies and barred spiral galaxies are further
divided into three categories: Sa, Sb and Sc for regular spirals and
SBa, SBb and SBc for barred spirals. Each of which is a scale in
chronological order of the compactness of the spirals in relation to
the central bulge. Sa and SBa being the most compact whilst Sc and
SBc being the least compact.

Apart from elliptical and spiral galaxies, there are other types of
galaxies. These galaxies include irregular galaxies and lenticular
galaxies. Irregular Galaxies are galaxies that donâĂŹt contain any
general structure and Lenticular galaxies are essentially an inter-
mediary between spiral and elliptical galaxies. Figure 1 illustrates
the different types of galaxy morphologies.
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Figure 1: Hubble’s Tuning Fork

3.2 Galaxy Zoo Dataset
The Galaxy Zoo Project [6] is a project which aims to accelerate the
task of galaxy classification through the method of crowd-sourcing.
This crowd-sourcing is achieved by allowing volunteers to classify
galaxies online3. The images used in the Galaxy Zoo Project have
been retrieved from the Sloan Digital Sky Survey. The classification
of these galaxies are achieved through a series of questions and
selecting a corresponding image, instead of an explicit classification
of the galaxies relative to the Hubble Tuning Fork.

One of the questions asked in the classification scheme makes
reference to the image of interest and subsequently asks the user if
the galaxy is ’simply smooth and rounded with no sign of a disk’.
Depending on the response of the user, more questions will be
asked until the scheme has exhausted all the possibilities. These
possibilities can be represented as a decision tree as illustrated in
Figure 2.

Figure 2: Galaxy Zoo Decision Tree

The Galaxy Zoo Project was a success, as it resulted in the clas-
sification of 9̃00 000 galaxies within a timespan of several months.
Given its success, Galaxy Zoo had then generously made the data
freely available to the public in search for an automated galaxy
morphology classifier. This dataset forms the basis of the feature
extraction techniques discussed in this paper.
3www.galaxyzoo.org

The dataset contains raw images of various galaxies and a set
of 37 labels for each galaxy, each representing the probability of
a user agreeing to a particular property along the decision tree as
per the historical data.

Figure 3: Sample Galaxy Zoo Raw Image

3.3 Feature Selection
Unlike feature extraction, there are finitelymanymethods of feature
selection. Feature selection can be defined as the process of selecting
a set of relevant features for use in the construction of a model.
It is categorized into three types namely Filter Methods, Wrapper
Methods or Embedded Methods.

3.3.1 Filter Methods. With Filter Methods, the selection of fea-
tures is independent of a learning algorithm. Features are ranked
relative to the dependent variable through a series of statistical tests.
Through this ranking, users can select the best K features suitable
for their model. Examples include the Chi-Squared Statistical Test,
Linear Discriminant Analysis and Pearson’s Correlation.

3.3.2 Wrapper Methods. Wrapper Methods essentially treat fea-
ture selection as a search problem. A subset of features are fed
into a learning algorithm and done so continuously until the set
of features with the best performance on the algorithm is reached.
Examples include Forward Selection and Recursive Feature Elimi-
nation.

3.3.3 Embedded Methods. In the case of embedded methods,
feature selection is performed within a learning algorithm through
the process of regularization. Whereby features are penalized to
reduce over fitting. Examples of embedded methods include LASSO
Regression and Decision Trees.

3.4 Principle Component Analysis
The Principle Component Analysis (PCA) Statistical Procedure is
a technique we use to perform dimensionality reduction on our
data. PCA is a method that reduces the dimensionality of multi-
dimensional data in a manner that captures the essence of the
original data. It essentially achieves this reduction by repetitively
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projecting n-dimensional vectors onto an (n-1)-dimensional vec-
tor in a manner that maximizes variance. Figure 4 illustrates this
concept.

Figure 4: Principle Component Analysis

4 MODEL
The model consists of two components, the feature extraction
component and the feature selection component. We’ll proceed
to describe the features chosen for this particular study as well
as describe the underlying technicalities of the feature selection
algorithm.

4.1 Extracted Features
The features chosen for the model are a compilation of the nu-
merous features explored in literature for the problem of galaxy
classification on optical images, particularly the Galaxy Zoo Dataset.
These set of features amount to a total of 2928 features. This in-
cludes the set of features extracted by the WND-CHARM feature
extraction package as well as a handful of shape descriptors.

TheWND-CHARM package extracts a total of 2919 features. The
features include the raw image, transforms of the raw image, and
transforms of transforms of the raw image. Transforms include the
Fourier transform, Chebyshev transform and Wavelet transform
or possibly the combinations of these transforms. The extracted
features also include polynomial decompositions, high contrast
features, pixel statistics and texture features. The features extracted
by WND-CHARM make up the bulk of the entire feature set, as
it is was designed to tailor for general image classification tasks,
however it has been previously applied to galaxy classification [9].

A handful of shape descriptors were extracted from the galaxy
zoo images to stray away from the dependency of third party feature
extraction packages. These features were inspired by the works of
Goderya et al. [5]. A total of 9 features were extracted:

• Elongation
• Form Factor
• Convexity
• Bounding Rectangle to Fill Factor
• Galaxy Area
• Galaxy Bounding Rectangle Width
• Galaxy Bounding Rectangle Height
• Brightness

Elongation is defined as themeasure of flatness of the object,whereas
it is particularly useful in discriminating between the different
classes of elliptical galaxies, as well as discriminating between nor-
mal spirals and barred spirals.

The form factor is the ratio of the area of the galaxy and the
square of the perimeter of the galaxy. Goderya [5] suggest that
elliptical galaxies tend to have somewhat higher values in form
factor due to their luminosity being more symmetrical distributed
in the image. Whilst barred spiral galaxies tend to show smaller
values in form factor as their perimeter per unit are considerably
large.

Convexity is defined as the ratio of the perimeter of the galaxy
and two multiplied by the sum of the height and width of the mini-
mum bounding rectangle around the galaxy. For elliptical galaxies,
there is a decreasing trend from E0 to E7, while for simple galaxies
there is an increasing trend from Sa to Sc and finally for barred
spirals, there is a slight decreasing trend from SBa to SBc.

Whilst, bounding rectangle to fill factor (Bx) is defined as the ratio
of the area of the galaxy to the area of the bounding rectangle. Bx
measures howmuch space the galaxy occupies within the bounding
rectangle. Simple and barred spiral galaxies show strong decreasing
trends from Sa to Sc and SBa to SBc.

Figure 5: Contoured Galaxy Image in Grayscale Jet Col-
orMap

The features were extracted by cropping the galaxy image and ex-
tracting the contour of the galaxy of interest as illustrated in Figure
5. A gaussian blur was applied onto the image for a smoothening
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effect, as contouring was achieved using the opencv python pack-
age 4. Once the contouring was achieved, the remaining features
were subsequently derived.

4.2 Feature Selection Algorithm
The feature selection algorithm presented in this paper makes use
of the random forest feature selection technique, the pearsons cor-
relation feature selection technique as well as recursive feature
elimination. This forms essentially a hybrid feature selection tech-
nique which leverages on all three methods of feature selection.

Figure 6: Different measures of Pearson’s correlation

The Pearson’s Correlation Feature Selection Technique falls un-
der the category of Filter Methods. It is the measure of linear correla-
tion between two variables. Also called the correlation coefficient, it
ranges from -1 to 1.Whereby the extreme -1 represents a strong neg-
ative correlation between two variables and 1 represents a strong
positive correlation. A correlation coefficient of 0 represents no
correlation. As illustrated in Figure 6.

The correlation coefficient can be interpreted as the mean of the
line of regression between both variables. Pearson’s correlation
can be applied to continuous data and it doesn’t assume normality,
although it does assume a finite variance and covariance.

The random forest feature selection technique is an embedded
method of feature selection. A random forest is an ensemble learn-
ing algorithm for both classification and regression. It trains a
multitude of decision trees and uses these decision trees for pre-
diction, either averaging or getting the mode across all the trees.
Figure 7 is an illustration of a random forest.

Apart from its predictive abilities, it also possesses a feature
selection component, whereby it ranks the most important features
once training is complete. This ranking is often used as a metric to
assess how predictive a feature is.

Random forests use the technique of mean decrease impurity to
perform feature selection. It can be computed how much each fea-
ture reduces the weighted impurity in a tree, whereby the weighted
impurity can be thought of as a measure of how much a tree is

4https://pypi.python.org/pypi/opencv-python

Figure 7: Random Forest

over fitting the training data. Ranking this reduction in weighted
impurity across all features in a tree and averaging it across all
trees in a random forest is the basis of the random forest feature
selection technique.

Unlike Random Forests and Pearson’s Correlation, Recursive
Feature Elimination (RFE) is a wrapper method. Given a learning
algorithm with the ability to measure feature performance, the
RFE technique selects features by recursively considering smaller
and smaller sets of features. It continuously prunes the feature set
based on the performance of each feature on the learning algorithm
at each iteration. The features are repeatedly pruned until the de-
sired number of features is reached. Algorithm 1 illustrates this
technique.

Algorithm 1 Recursive Feature Elimination

1: procedure RFE(model ,minf eaturesize, step)
2: while size(model . f eatures) ,minf eaturesize do
3: model . f it()
4: data ←model .data
5: rankinд←model . f eatureImportance
6: indices ← дetSmallestN Indices(rankinд,n = step)
7: model .data ← data.removeColumns(indices)
8: returnmodel

In constructing the hybrid feature selection algorithm, all three
techniques were taken into consideration. The hybrid feature se-
lection algorithm is essentially a wrapper of the recursive feature
elimination technique. In our algorithm, recursive feature elimi-
nation is applied onto a random forest, whereby the features are
recursively pruned at each iteration based on the average weighted
impurity of the forest and the correlation coefficient of each feature
relative to the dependent variable. Algorithm 2 is an illustration of
the hybrid feature selection algorithm.

The algorithm is dependent on how the feature importance mea-
sures from both the correlation coefficient and the random forest
intertwine to create a new feature importance measure. A new fea-
ture importance measure is firstly achieved by applying the softmax
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Algorithm 2 Hybrid Feature Selection Algorithm

1: procedure HybridFS(r f Model ,minf eaturesize, step)
2: while size(r fmodel . f eatures) ,minf eaturesize do
3: r fmodel . f it()
4: r f Rankinд←model . f eatureImportance
5: pearsScore ← pearsonsr (r fmodel .data, r fmodel .label)
6: rankinд← computeRankinд(r f Rankinд,pearsScore)
7: indices ← дetSmallestN Indices(rankinд,n = step)
8: r fmodel .data ← data.removeColumns(indices)
9: return r fmodel

function onto the vector of correlation coefficients for the feature
set. The softmax function or normalized exponential function is a
normalization function, which takes in a K-dimensional vector of
arbitrary real values and "squashes" it to a K-dimensional vector of
real values in the range [0,1]. The function is defined by:

σ (z)j =
exp(zj )∑
k exp(zk )

, for k=1...N

Once the softmax function has been applied to the vector of
correlation coefficients, we’ll have a ranking of features in the
ranges of [0,1]. However, before applying the function onto the
vector, the absolute value of the vector should be computed as a
preprocessing step. The reason being that the correlation coefficient
ranges between [-1,1], with the extremes representing a strong
negative or positive correlation, furthermore we are only concerned
when there exists a strong correlation. Hence, the negation of the
correlation coefficient has no relevance.

Once the normalized correlation coefficient feature importance
vector (r) and the random forest importance vector (R) has been
computed, we apply the following formula to create a new hybrid
feature importance vector Ω. This new importance measure ω is
defined by:

ωj = αr j + βRj where α + β ≤ 1

α and β are constants as they both represent the weighting of
each feature selection technique. Applying softmax function on the
resultant importance vector will result in the hybrid feature impor-
tance vector Ω. The derivation of Ω is the underlying computation
behind the function computeRanking() in Algorithm 2.

5 EXPERIMENTAL DESIGN
In order to evaluate the performance of the hybrid feature selection
algorithm, a number of experiments had to be performed. The basis
of these experiments were to compare the hybrid feature selection
algorithm against other preexisting feature selection techniques on
a handful of popular learning algorithms. The random forest feature
selection technique, univariate feature selection and the recursive
feature elimination techniques were chosen as benchmarks for the
experiment as they each represent the various types of feature
selection techniques available. Hence, three learning algorithms

were chosen, namely the feed forward neural network, the support
vector machine and the random forest.

The comparison of the various feature selection techniques is
achieved by taking the entire galaxy zoo dataset feature set and
selecting the best ten for each respective feature selection technique
and using these features to train a learning algorithm for the task
of galaxy classification. The performance of the learning algorithm
on a derived set of features as per the feature selection technique is
considered as the evaluation metric of the chosen feature selection
technique.

5.1 Implementation of The Feature Selection
Techniques

Each feature selection technique have their different parameters
and properties, this was all taken into account in implementation.
Four feature selection techniques had been implemented:
• Random Forest Feature Selection
• Pearson’s Correlation Feature Selection
• Recursive Feature Elimination
• Hybrid Feature Selection

For the random forest feature selection technique, a total of ten trees
were trained. Each tree being trained until all the leaves of the true
reached purity or until all leaves contained at most 1 tree in their
sample, allowing each tree to grow to its maximum capacity. Once
the random forest had been trained, the feature importance vector
for each feature in the forest was retrieved and used as a ranking
to get the ten best features. This was implemented in python with
the scikit-learn package 5.

The scikit-learn package was also used in implementing the
pearson’s correlation feature selection technique as each features
correlation coefficient was computed against the dependent vari-
ables. Taking into consideration that the correlation coefficient
ranges from [-1,1], with the extremes representing correlation, the
absolute value was computed. This vector of correlation coefficients
were ranked and subsequently allowed the selection technique to
extract the ten best features.

Due to the nature of the galaxy zoo dataset and the feature
selection techniques, the 37 classes in the galaxy zoo dataset was
reduced to one representation. Essentially, the aim was to find
features that are indicative to all 37 classes instead of each individual
class. The 37 classes each represent a node in a decision tree and
finding features that are able to correctly identify the probability of
a human traversing a node in the galaxy zoo decision tree across
10 features is much more feasible and valuable as in comparison
to getting the 10 best features for each node whereby, if distinct,
can reach a total of 370 features for classification. The reduction
of the 37 classes into one representation was achieved through the
Principle Component Analysis (PCA) statistical procedure.

The implementation of the Recursive Feature Elimination (RFE)
algorithm differs from its counterparts in the sense that it can only
be applied on learning algorithms that measure feature importance,
unfortunately not all algorithms do the following, neural networks
being amongst that class of learning algorithms. Hence, the RFE
algorithm was only applied on the random forest.

5http://scikit-learn.org/

6



The RFE algorithm implemented in this experiment has a step
size of 250, eliminating the worst performing 250 features at each
iteration. The RFE + Random Forest implementation makes use of
the same random forest used in the Random Forest Feature Selection
Algorithm. These RFE techniques were also implemented in python
with the scikit-learn package.

The Hybrid Feature Selection algorithmwas developed as a wrap-
per of the scikit-learn RFE package. The selection algorithm made
use of the same random forest used in the random forest feature
selection technique, as well as the pearsons correlation selection
technique, both embedded into the RFE algorithm, whereby at each
iteration with a step size of 250, a hybrid feature importance vector
was returned. Both techniques were equally weighted.

All the feature selection algorithms were computed on the UCT
High Performance Cluster 6. Due to limited time and processing
power on the cluster, the selection algorithms were ran on 1000
instances across the 2928 features.

5.2 Implementation of The Learning
Algorithms

Three learning algorithms were implemented:
• Feedforward Neural Network
• Random Forest
• Support Vector Machine

All learning algorithms were trained on a total of 57971 images,
in the form of the ten best features from each feature selection
algorithm.

The chosen topology for the neural network was one with one
hidden layer consisting of 50 nodes, an input layer of 10 nodes for
the 10 best features and an output layer of 37 nodes representing
the 37 nodes in the galaxy zoo decision tree. Since the problem
required 37 continuous numbers as solutions, in other words, a
multilabel output regression problem, the hidden layer used the relu
function as its activation function with the output layer containing
no activation function. The performance of the neural network was
achieved by cross-validating the training data by 10-folds. Cross-
validation is a technique that is used for the assessment of how
the results of a model generalize to an independent data set, the
folds represent the number of splits the data must undergo for
evaluation. The neural network was implemented on the deep
learning framework, keras7.

The Random Forest chosen for evaluation had a total of 10 trees,
however each tree couldn’t grow to it’s full capacity and was re-
stricted to a max depth of 2. Naturally, the random forest cannot
train on multiple outputs or targets, hence the MultiOutputRegres-
sor class in scikit-learn helped in adapting the random forest to
solve the problem at hand. As in the case of the neural network for
evaluation, the Random Forest underwent 10-fold cross validation.

The Support Vector Machine (SVM) used in this experiment
was of the Regressor type rather than for classification. Consider-
ing the lengthy runtimes that Support Vector Regressor Machines
go through, the learning algorithm was bootstrap aggregated or
’bagged’. Bootstrap aggregating is a machine learning ensemble
meta-algorithm whereby an estimator, in our case the SVM, is
6http://hex.uct.ac.za/
7https://keras.io/

trained on k subsets of the original data, producing k estimators.
In prediction, the input is fed separately to all k estimators and a
vote is taken between the estimators on which is the appropriate
output. The k subsets are in often cases mutually inclusive.

The bagged SVM consisted of 5 estimators, each with a maxi-
mum sample size of 1/10 of the training data. Once the SVM had
been bagged, like the Random Forest, it was transformed into a
Multi Output Regressor. Evaluation was achieved via a 2-fold cross
validation of the training data.

6 RESULTS
After having applied the various feature selection techniques onto
the galaxy zoo dataset and training them on the various learning
algorithms, the mean squared error, trained on the chosen feature
selection techniques, were measured. Table 1 reports the various
scores achieved during evaluation.

FS Technique NN(10-fold CV) Random Forest(10-fold CV) SVM(2-fold CV)

Random Forest 0.222 0.0228 0.0459
Pearson’s Correlation 0.024 0.0238 0.040
RFE + Random Forest 0.050 0.0223 0.0458

Hybrid FS 0.038 0.0221 0.0459

Table 1: Feature Selection Technique Comparisons

Across all three learning algorithms, each feature selection tech-
nique produced relatively similar mean squared errors. The best per-
forming techniques for each respective learning algorithm changed
hands between Pearson’s Correlation FS and the Hybrid FS Al-
gorithm. Pearson’s correlation produced the best results for both
the 10-fold cross validated Neural Network and the 2-fold cross
validated Support Vector Regressor Machine, whilst HybridFS per-
formed best in the 10-fold Cross Validated Random Forest.

Interestingly enough, both the Hybrid Algorithm and the Ran-
dom Forest Learning Algorithm produced the lowest mean squared
error across the experiment with a mean squared error of 0.0221,
achieving the best performance between a feature selection tech-
nique and a learning algorithm.

Upon observing how each feature selection technique converges
to their minimum mean absolute error on a neural network, one
notices minimal difference in learning performance across all 30
epochs from pearsons feature selection algorithm. It appears that
the feature selection algorithm after the first few epochs already
circumvents around it’s local minimum. Upon numerous trials, the
feature selection technique still maintained this performance. This
performance is illustrated in Figure 8.

However, the remaining feature selection techniques were con-
ventional as they underwent a few epochs out of 30 to reach their
respective plateau’s, with the Hybrid Feature Selection taking the
longest and the Random Forest Feature Selection the shortest.

As far as the average runtime of each respective feature selec-
tion algorithm is concerned, there is great variance between each
technique. The algorithms with the largest runtime are the Hybrid
and the RFE+Random Forest algorithms both coming in at 141.86s
and 142.05s respectively. Pearson’s FS algorithm came in at the low
time of 2.81s. These algorithms were all computed on the same
node on the UCT High Performance cluster, each node possessing
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Figure 8: Performance Evaluation on Neural Network

Figure 9: Feature Selection Runtime Comparisons

approximately 128GB of RAM, 4 AMD Opteron 6274 CPU’s each
equipped with 16 cores. Figure 9 is a bar chart which illustrates the
time differences between each selection technique.

7 DISCUSSION OF RESULTS
The results produced in these experiments are testament to the
importance of the feature selection whether user defined or auto-
matically selected. This is shown by how the scores of the feature
selection techniques vary both within and between learning algo-
rithm.

However, these experiments also revealed the computational
complexity of these algorithms, indicating that the task of feature
selection can be computationally intensive. The need for compu-
tational power for both feature selection as well as the task of
learning, which is reputably a computationally expensive task, can
be discouraging, but promises results.

The pearsons correlation feature selection technique impressed
with its results across all learning algorithms. The technique outper-
formed other selection techniques on 2 out of 3 learning algorithms.
It achieved this performance in the shortest time as well, as it had
the shortest runtime out of all the techniques. However, its per-
formances on the feedforward neural network raised questions as
the technique converged to a local minimum in its first few epochs
and maintained this performance throughout the duration of the
experiment.

The pearsons feature selection neural network underwent 10-
fold cross validation suggesting that this behavior did not happen
by chance. It is possible that the neural network architecture gave
rise to this behavior. Had the network been deeper or wider, the
result could have been different.

The standout learning algorithm of the experiment was the Ran-
dom Forest as it produced the lowest mean square error, as well as
maintained promising results across all feature selection techniques.
The mean squared error produced by the Random Forest on all the
feature selection techniques were quite closely tied, sporting one
of the lowest variances, the lowest being the SVM. This variance
raised the question of whether or not the Random Forest is sen-
sitive to feature selection, and furthermore whether there exists
a set of learning algorithms that are resilient to feature selection
techniques.

Considering that 3 out of the 4 feature selection techniques
technically resembled that of the random variance, this could have
resulted in the low variance between values, but this does not apply
to the SVM, leaving this as an open issue. The Neural Network
on the other hand was sensitive to the various feature selection
technique sporting the highest variance.

The Hybrid Feature Selection presented in this paper also pro-
duced impressive results, achieving the lowest mean squared error
in collaboration with the random forest learning algorithm. It also
competed with other techniques on other learning algorithms.

Interestingly enough, both the Hybrid Feature Selection tech-
nique and the RFE + Random Forest have similar technical makeups,
the difference lies in the fact that the Hybrid selection algorithm
has not only a Random Forest embedded in the RFE but also Pear-
son’s correlation selection algorithm. The Hybrid Selection, in this
particular experiment, weights both techniques equally. Regard-
less of their similarity, they both produced significantly different
results for the Neural Network. In that particular instance, it is
safe to assume that the Pearsons Selection Algorithm could have
been the difference between the two seeing that it performed best
for that particular experiment. Hence, perhaps weighting the al-
gorithms differently could have changed the face of experiment.
Adding another feature selection technique in this hybrid feature
selection technique and weighting this appropriately could also
heed interesting results.

Given the nature of the galaxy zoo crowd-sourcing experiment,
the galaxy zoo dataset had multiple outputs as labels. In the ex-
periments, these labels were reduced to one dimensional with the
principle component analysis statistical procedure. Even though
the reduced labels were merely representations of the true data,
the selection algorithms appeared to able to see through this rep-
resentation and extract features that generalized to all labels. A
comparison can be explored to see which technique works well for
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feature selection on multioutput labelled data but this particular
approach appears feasible judging from the results.

In comparison to some of the results achieved with the galaxy
zoo dataset with similar extracted features [10][9][5], the results
achieved in this experiment outperform these results reported in lit-
erature. The reason possibly lies in the fact that in the experiments,
emphasis was placed on strict automated feature selection rather
than choosing features based on domain knowledge or an affinity
to a particular feature extraction framework. The advantage of the
approach described in this paper is that it is able to prune a large
volume and variety of features to a smaller set of features, in this
case 10, and produce promising results.

The results are still not at the standard set by [4] with their
convolution neural network which achieved a mean squared error
of 0.005. Regardless, the results achieved in these experiments do
reveal interesting insight on the capabilities of feature selection.

8 CONCLUSION
In this project, we extracted thousands of features from galaxy opti-
cal data, the bulk of the features originating from theWNDCHARM
feature extraction framework and the remainder being a host of
shape descriptive features. With these features, we developed a
hybrid feature selection algorithm, leveraging on the various types
of feature selection techniques, to automatically select ten of the
best performing features.

Upon comparing the hybrid feature selection technique pre-
sented in this paper with other preexisting feature selection tech-
niques, the former produced the lowest mean squared error after
having been trained on a Random Forest. The technique reveals
some interesting insight on embedding feature selection techniques
and simultaneously weighting their importance within a recursive
feature elimination setting.

The results produced in this paper are still a far-cry from the
benchmark for galaxy classification but they do suggest that auto-
mated feature selection is a feasible way to assess the appropriate-
ness of a feature for the task of galaxy classification. Considering
that there are possibly infinitely many feature extraction techniques
at ones disposal, whether it be domain driven or through a frame-
work, one could make use of all these techniques and undergo
evaluation to ascertain which features work best considering the
problem. Much can be said about the important role played by
feature selection algorithms and their contribution in the machine
learning pipeline.

9 FUTUREWORK
Future work will focus on further developing the hybrid feature
selection technique, particularly experimenting with the weighting
of each embedded algorithm and similarly adding more embedded
components. Plans to use the selection technique on other prob-
lem spaces apart from image classification will also be explored.
Similarly, work will also be done on using this feature selection
component to develop the cognitive vision system for galaxy clas-
sification.
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