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abstract. We introduce Propositional Typicality Logic (PTL), a logic
for reasoning about typicality. We do so by enriching classical proposi-
tional logic with a typicality operator of which the intuition is to capture
the most typical (or normal) situations in which a given formula holds.
The semantics is in terms of ranked models as studied in KLM-style
preferential reasoning. This allows us to show that KLM-style rational
consequence relations can be embedded in our logic. Moreover we show
that we can define consequence relations on the language of PTL itself,
thereby moving beyond the propositional setting. Building on the exist-
ing link between propositional rational consequence and belief revision,
we show that the same correspondence holds in the case of rational con-
sequence and belief revision defined on the language of PTL. Finally we
also investigate different notions of entailment for PTL and propose two
appropriate candidates.
The present text is an extended version of a paper which appeared in
the Proceedings of the 13th European Conference on Logics in Artificial
Intelligence [Booth et al., 2012].

1 Introduction

In artificial intelligence, there has been a great deal of work done on how to
introduce nonmonotonic reasoning capabilities in logic-based knowledge repre-
sentation systems [Brachman and Levesque, 2004; Friedman and Halpern, 2001;
Gabbay and Schlechta, 2009; Hansson, 1999; Harmelen et al., 2008; Makinson,
2005]. In particular, the approach for preferential reasoning introduced by
Shoham [1988] and developed by Kraus, Lehmann and Magidor [1990], often
called the KLM approach, turned out to be one of the most successful. This
has been the case due to at least three main reasons. Firstly, their frame-
work is based on semantic constructions that are elegant and neat. Secondly,
it provides the foundation for the determination of the important notion of
entailment in this context [Lehmann and Magidor, 1992]. Finally, it also of-
fers an alternative perspective on the problem of belief change [Gärdenfors
and Makinson, 1994]. Moreover recent work has shown that the KLM ap-
proach also provides an appropriate springboard from which to investigate fur-
ther facets of defeasible reasoning in more expressive logics [Britz et al., 2008;
Britz et al., 2011a; Britz et al., 2011b; Britz et al., 2012; Britz et al., 2013a;
Britz et al., 2013b; Britz and Varzinczak, 2012; Britz and Varzinczak, 2013;
Casini and Straccia, 2010; Giordano et al., 2009b; Lehmann and Magidor, 1990;
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Moodley et al., 2012], such as modal logic [Chellas, 1980; Blackburn et al., 2006]

and description logics (DLs) [Baader et al., 2007].
In their seminal papers [Kraus et al., 1990; Lehmann and Magidor, 1992],

Kraus and colleagues enrich classical propositional logic with a defeasible ‘im-
plication’ |∼ so that one can write down defeasible implication statements (also
called conditional assertions) of the form α |∼ β, where α and β are propo-
sitional formulae. In this setting, a sentence of the form α |∼ β is given the
meaning that “if α is the case, then usually (but not necessarily always) β is
the case”, making it possible to formalize the well-known example that “birds
usually fly” (b |∼ f), “penguins are birds” (p → b), but “penguins usually do
not fly” (p |∼ ¬f).

A curious aspect of the KLM approach (and of the corresponding belief
revision constructions) is that it is crucially, albeit tacitly, based on a notion
of normality [Boutilier, 1994] or typicality [Lehmann, 1998]. More formally, the
semantics of a statement of the form α |∼ β says that “all most preferred (i.e.,
most normal) α-worlds are β-worlds” (leaving it open for α-worlds that are less
preferred — or exceptional — not to satisfy β). In other words, the statement
α |∼ β captures the intuition that “typical α-cases are β cases”, which in our
example gives us “typical birds fly” and “typical penguins do not fly”. Given
this, it seems quite natural to be able to state, for instance, that “penguins
are non-typical birds”, or that “penguins and ostriches are the only birds that
typically do not fly”.

It turns out that in the corresponding underlying language it is not possible
to refer directly to such a notion of typicality and, importantly, use it in the
scope of other logical constructs. According to Britz and Varzinczak [2012],

This has to do partly with the syntactic restrictions imposed on |∼,
namely no nesting of conditionals, but, more fundamentally, it re-
lates to where and how the notion of normality is used in such state-
ments. . . . [I]n a KLM defeasible statement α |∼ β, the normality
spotlight is somewhat put on α, as though normality was a property
of the premise and not of the conclusion. Whether the situations in
which β holds are normal or not plays no role in the reasoning that
is carried out. In the original KLM framework, normality is linked
to the premise as a whole, rather than its constituents. Technically
this meant one could not refer directly to normality of a sentence
in the scope of logical operators.

In this chapter, we fill this gap with the introduction of an explicit operator
to talk about typicality. Intuitively, our new syntactic construction allows us
to single out those most typical states of affairs in which a given formula holds.
The result is a more expressive language allowing us, for instance, to make
statements formalizing the aforementioned examples in a succinct way.

In the rest of this section we set up the notation and conventions that shall
be followed in the upcoming sections. The remainder of the present chapter is
then structured as follows: In Section 2 we provide the required background
on the KLM approach to defeasible reasoning. We then define and investi-
gate PTL, a propositional typicality logic extending propositional logic (Sec-
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tion 3). The semantics of PTL is in terms of ranked models as studied in the
literature on preferential reasoning and summarized in Section 2. This allows us
to embed propositional KLM-style consequence relations in our new language.
In Section 4 we show that, although the addition of the typicality operator in-
creases the expressivity of the logic, the nesting of the typicality does not add
anything beyond the inclusion of a non-nested typicality operator. In Section 5
we investigate the link between AGM belief revision and PTL. We show that
propositional AGM belief revision can be expressed in terms of typicality, and
also that it can be lifted to a version of revision on PTL. We then move to an
investigation of rational consequence relations in terms of PTL (Section 6). We
show that propositional rational consequence can be expressed in PTL, that
it can be extended to PTL in terms of PTL itself, and that the propositional
connection between rational consequence and revision carries over to PTL. In
Section 7 we raise the question of what an appropriate notion of entailment
for PTL is. We propose and investigate different definitions of entailment and
identify two appropriate candidates. After a discussion of and comparison with
related work (Section 8), we conclude with a summary of the contributions and
directions for further investigation.

1.1 Logical Preliminaries

We work in a propositional language over a finite set of propositional variables
(alias atoms) P. (In later sections we shall adopt a richer language.) We
shall use p, q, . . . as meta-variables for the atomic propositions. Propositional
formulae (and in later sections, formulae of the richer language) are denoted
by α, β, . . ., and are recursively defined in the usual way: α ::= p | ¬α | α ∧ α.
All the other Boolean truth-functional connectives (∨, →, ↔, . . . ) are defined
in terms of ¬ and ∧ in the standard way. We use > as an abbreviation for
p ∨ ¬p, and ⊥ for p ∧ ¬p, for some atom p ∈ P. With L we denote the set of
all propositional formulae.

We denote by U the set of all valuations v : P −→ {0, 1}. Sometimes we
shall represent the valuations of the logic under consideration as sequences of 0s
and 1s, and with the obvious implicit ordering of atoms. Thus, for the logic
generated from P = {p, q}, the valuation in which p is true and q is false will
be represented as 10.

Satisfaction of a formula α ∈ L by v ∈ U is defined in the usual truth-
functional way and is denoted by v  α. With Mod(α) we denote the set
of all valuations satisfying α. Logical consequence and logical equivalence are
denoted by |= and ≡ respectively. Given sentences α and β, α |= β (α entails β)
means Mod(α) ⊆ Mod(β). α ≡ β is an abbreviation of α |= β and β |= α.

A knowledge base K is a finite set of formulae K ⊆ L. We extend the notions
of Mod(·), entailment and logical equivalence to knowledge bases in the usual
way: for a finite K ⊆ L, Mod(K) is the set of all valuations satisfying every
formula in K, and K |= α if and only if Mod(K) ⊆ Mod(α). With |= α (α is a
tautology) we understand ∅ |= α.
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2 Defeasible Consequence Relations

In the present section, we provide a brief outline of propositional preferential
and rational consequence relations as studied by Lehmann and colleagues in
the early 90’s with some minor modifications to their initial formulation. (For
more details, the reader is referred to the original work of Kraus et al. [1990]

and Lehmann and Magidor [1992].)

A defeasible consequence relation |∼ is defined as a binary relation on formu-
lae of our underlying propositional logic, i.e., |∼ ⊆ L × L. We say that |∼ is a
preferential consequence relation [Kraus et al., 1990] if it satisfies the following
set of properties, alias postulates or Gentzen-style rules, as they are sometimes
also referred to (below, |= denotes validity in classical propositional logic):

(Ref) α |∼ α (LLE)
|= α↔ β, α |∼ γ

β |∼ γ
(And)

α |∼ β, α |∼ γ
α |∼ β ∧ γ

(Or)
α |∼ γ, β |∼ γ
α ∨ β |∼ γ

(RW)
α |∼ β, |= β → γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ
α ∧ β |∼ γ

The semantics of preferential consequence relations is in terms of preferential
models; these are partially ordered structures with states labeled by proposi-
tional valuations. We make this terminology more precise below.

Let S be a set and ≺ ⊆ S×S be a strict partial order on S, i.e., ≺ is irreflexive
and transitive. Given S′ ⊆ S, we say that s ∈ S′ is minimal in S′ if there is
no s′ ∈ S′ such that s′ ≺ s. With min≺ S′ we denote the minimal elements of
S′ ⊆ S with respect to ≺. We say that S′ ⊆ S is smooth [Kraus et al., 1990]

if for every s ∈ S′ either s is minimal in S′ or there is s′ ∈ S′ such that s′ is
minimal in S′ and s′ ≺ s.

DEFINITION 1 A preferential model is a tuple P = 〈S, `,≺〉 where S is a set
of states; ` : S −→ U is a labeling function; ≺ ⊆ S× S is a strict partial order
on S satisfying the smoothness condition.1

Given a preferential model P = 〈S, `,≺〉 and α ∈ L, with JαKP we denote
the set of states satisfying α (α-states for short) in P according to the following
definition:

DEFINITION 2 Let P = 〈S, `,≺〉 be a preferential model and let α ∈ L. Then
JαKP := {s ∈ S | `(s)  α}.

In the KLM approach, states lower down in the order are seen as being more
preferred (or more normal) than those higher up.

As an example, let P = {b, f, p}, where b stands for the proposition “Tweety
is a bird”, f for “Tweety flies” and p for the proposition “Tweety is a penguin”.
Figure 1 below depicts the preferential model P = 〈S, `,≺〉 where S = {si | 1 ≤
i ≤ 6}, ` is such that `(s1) = 000, `(s2) = 010, `(s3) = 110, `(s4) = 100, `(s5) =
101 and `(s6) = 111, and ≺ is the transitive closure of {(s1, s4), (s1, s5), (s2, s4),
(s2, s5), (s3, s4), (s3, s5), (s4, s6), (s5, s6)}.

1That is, for every α ∈ L, the set JαKP (cf. Definition 2) is smooth.
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Figure 1. Example of a preferential model.

Given a preferential model P = 〈S, `,≺〉 and a sentence α ∈ L, we say
that α is satisfiable in P if JαKP 6= ∅, otherwise α is unsatisfiable in P. We
say that α is true in P (denoted P  α) if JαKP = S.

Given P = 〈S, `,≺〉 and α, β ∈ L, the defeasible statement α |∼ β holds
in P (noted α |∼P β) if and only if min≺JαKP ⊆ JβKP , i.e., every ≺-minimal
α-state is a β-state. As an example, in the model P of Figure 1, we have
b |∼P f (since min≺JbKP = {s3} ⊆ JfKP = {s2, s3, s6}), and p |∼P ¬f (since
min≺JpKP = {s5} ⊆ J¬fKP = {s1, s4, s5}).

The representation theorem for preferential consequence relations then states:

THEOREM 3 (Kraus et al. [1990]) A defeasible consequence relation is a pref-
erential consequence relation if and only if it is defined by some preferential
model, i.e., |∼ is preferential if and only if there exists P such that |∼P :=
{(α, β) | α |∼P β} is such that |∼ = |∼P .

If, in addition to the preferential properties, the defeasible consequence re-
lation |∼ also satisfies the following Rational Monotonicity property [Lehmann
and Magidor, 1992], it is said to be a rational consequence relation:

(RM)
α |∼ β, α 6|∼ ¬γ

α ∧ γ |∼ β

The semantics of rational consequence relations is in terms of ranked models,
i.e., preferential models in which the preference order is modular:

DEFINITION 4 Given a set S, ≺ ⊆ S× S is modular if and only if there is a
ranking function rk : S −→ N such that for every s, s′ ∈ S, s ≺ s′ if and only
if rk(s) < rk(s′).

DEFINITION 5 A ranked model R = 〈S, `,≺〉 is a preferential model such
that ≺ is modular.

The preferential model in Figure 1 is also an example of a ranked model.

The representation theorem for rational consequence relations then states:
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THEOREM 6 (Lehmann & Magidor [1992]) A defeasible consequence relation
is a rational consequence relation if and only if it is defined by some ranked
model, i.e., |∼ is rational if and only if there exists R such that |∼R:= {(α, β) |
α |∼R β} is such that |∼ = |∼R.

There seems to be an agreement in the nonmonotonic reasoning community
that rational consequence constitutes the ‘right’ type of entailment for non-
monotonic logics; one of the reasons stemming from its confluence with the
AGM paradigm for belief revision [Alchourrón et al., 1985; Hansson, 1999] (see
also Section 5). In the remainder of this chapter we shall therefore assume
that |∼ is at least rational.2

From a technical point of view, the main advantage of assuming rationality
is that we can do away with states and work with a much simpler semantics
in which the preferential ordering is placed directly on valuations [Gärdenfors
and Makinson, 1994]. Therefore, from now on we shall adopt the following
definition of ranked models:

DEFINITION 7 A ranked model R is a pair 〈V,≺〉, where V ⊆ U and ≺ ⊆
V × V is a modular order over V.

The definition above is of course not Lehmann and Magidor’s [1992] original
definition of ranked models, but as alluded to above, a characterization of
rational consequence à la Theorem 6 can be given in terms of ranked models
as we present them here [Gärdenfors and Makinson, 1994].

DEFINITION 8 Let α ∈ L and let R = 〈V,≺〉 be a ranked model. With JαK
we denote the set of valuations satisfying α in R, defined as follows:

JpK := {v ∈ V | v(p) = 1}, J¬αK := V \ JαK, Jα ∧ βK := JαK ∩ JβK

Given a (simplified) ranked model R, as in the case with states, the intuition
is that valuations lower down in the ordering are more preferred than those
higher up. Hence, a pair (α, β) is in the consequence relation defined by R
(denoted as α |∼R β) if and only if min≺JαK ⊆ JβK, i.e., the most preferred
(with respect to ≺) α-valuations are also β-valuations.

3 A Logic to Talk about Typicality

As alluded to in the Introduction, there is a need for a formalism in which
we can make statements such as “the typical bird-situations”, “ostriches are
non-typical birds”, and “penguins and ostriches are the only typical non-flying
birds”. In some cases, it may be possible to express these by means of several
|∼-statements, in a sort of ‘|∼-normal form’. However, in order for us to do so
in a succinct way, we should be able to shift the focus of typicality from the
premise of a KLM-style statement and drop the interdiction to nest |∼’s.

Boutilier’s [1994] conditional⇒ as well as Britz et al.’s [2009] internalized ≺
as a modality are good candidates for the type of extension that we have in mind

2Even in the context of rational consequence relations, in what follows we shall use pref-
erential semantics and preferential reasoning when referring to the KLM approach.
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here. Nevertheless, these approaches are too expressive for our purposes in that
there the preference relation ≺ becomes explicit to the user (cf. Section 8).
Here we argue for a way to express typicality in which the complexity of the
underlying semantics, here expressed as the preference relation ≺, is somehow
hidden from the users, who, from a knowledge representation perspective, want
a formalism which is precise but at the same time concise. (We shall come back
to this point at the end of this section.)

The remainder of the present section is devoted to the introduction of the
main focus of this chapter, namely a propositional typicality logic, called PTL,
which extends classical propositional logic with a typicality operator •, the
semantics of which implicitly refers to the preference ordering.

The language of PTL, denoted by L•, is recursively defined as follows:

α ::= p | ¬α | α ∧ α | •α

where, as before, p denotes an atom and all the other connectives are defined
in terms of ¬ and ∧, and > and ⊥ are seen as abbreviations. Assuming P =
{b, f, p, o}, where b, f and p are as before and o stands for “is an ostrich”, the
following are examples of L•-sentences: •b, o→ ¬ • b, p ∨ o↔ b ∧ •¬f.

Intuitively, a sentence of the form •α is understood to refer to the typical
situations in which α holds. (Note that α can itself be a •-sentence — more
on that in Section 4.) The semantics of our enriched language is in terms
of (simplified) ranked models (cf. Definition 7) and we extend the notion of
satisfaction from Definition 8 as follows:

DEFINITION 9 Let α ∈ L• and let R = 〈V,≺〉. Then J•αK := min≺JαK.

Given α ∈ L• and R a ranked model, we say that α is satisfiable in R if
JαK 6= ∅, otherwise α is unsatisfiable in R. We say that α is true in R (denoted
as R  α) if JαK = V. For K ⊆ L•, R  K if R  α for every α ∈ K. We say
that α is valid, denoted as |= α, if R  α for every ranked model R.3

As an example, let P = {b, f, p} and consider the (simplified) ranked model R
depicted in Figure 2. Then we have J•bK = {110}, J•pK = {101} and J•(b ∧
¬f)K = {100, 101}.

It is worth noting that for every ranked model R and every α ∈ L•, there
is a β ∈ L (i.e., a propositional formula) such that R  α ↔ β. That is to
say, given R, every α can be expressed as a propositional formula (β) in R.
Of course, this does not mean that propositional logic is as expressive as PTL,
since the formula β used to express α in the ranked model R depends on the
specific R. Rather, the relationship between PTL and propositional logic is
similar to the relationship between modal logic and propositional logic in the
sense that both modal logic and PTL add to propositional logic an operator that
is not truth-functional. (In Section 8 we discuss in more detail the relationship
between PTL and modal approaches to preferential reasoning.)

3The observant reader would have noticed that this sounds like modal logic [Chellas, 1980].
We shall defer a discussion on our typicality operator as a modality until the appropriate
point (Section 8).
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Figure 2. An L•-model for P = {b, f, p}.

Next is a result showing that if a ranked model R is such that R  •α
for some α ∈ L•, then R consists of only α-worlds in which all worlds are
incomparable (alias equally preferred) according to the preference relation ≺.
In other words, typicality allows a syntactic way of expressing the preference
relation is empty.

PROPOSITION 10 Let R = 〈V,≺〉. Then

1. ≺ = ∅ if and only if there exists α ∈ L• such that R  •α;

2. For every α ∈ L•, R  •α if and only if for every β ∈ L such that
R  α→ β, R  •β.

Proof.
Proving Part 1: Suppose that≺= ∅. Then it is not hard to verify that R  •>.
Conversely, suppose that R  •α for some α ∈ L•. That is, min≺JαK = V.
From this it follows that ≺ = ∅ since otherwise there would be a valuation
v ∈ V such that v /∈ min≺JαK.
Proving Part 2: Pick an α ∈ L• and suppose R  •α. Therefore R  α and
since R  α → β, it follows that R  β. Now, from R  •α it also follows
that ≺ = ∅, and from R  β we then have that R  •β. Conversely, suppose
that for every β ∈ L such that R  α → β, R  •β. Let β be α itself, from
which it then follows that R  •α. �

One of the consequences of this result is that if •α is true in a ranked model,
then so is α (but the converse, of course, does not hold).

Another useful property of the typicality operator • is that it allows us to
express (propositional) rational consequence, as defined in Section 2.

PROPOSITION 11 Let R = 〈V,≺〉. Then for every α, β ∈ L (i.e., α and β
are propositional formulae), α |∼R β if and only if R  •α→ β.

Proof. Let R = 〈V,≺〉 be a ranked model. α |∼R β if and only if min≺JαK ⊆
JβK if and only if min≺JαK ∩ J¬βK = ∅ if and only if J•α ∧ ¬βK = ∅ if and only
if J•α→ βK = V if and only if R  •α→ β. �
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Proposition 11 shows that the introduction of a typicality operator into the
object language allows us to express KLM-style rational consequence as defined
in Section 2.4 This forms part of our argument to show that our semantics
for typicality is the correct one, but it does not provide a justification for
introducing all the additional expressivity obtained from typicality. The next
two results provide such a justification.

PROPOSITION 12 There is an L•-sentence that cannot be expressed as a sin-
gle KLM-style |∼-statement. That is, there is α ∈ L• such that there exists R
such that R  α and for every β, γ ∈ L, β 6|∼R γ.

The sentence α = q ∧ (•q → ¬p) is such that it cannot be expressed as a single
|∼-statement. The proof is tedious and we shall omit it here. However, note
that α can be expressed as the set of defeasible statements {¬q |∼ ⊥, q |∼ ¬p}.

This raises the question whether the L|∼-language, i.e., the set of all |∼-
statements built up from a propositional language L, is as expressive as L•.
This is so if and only if for every α ∈ L• there is a subset X of L|∼ such that,
for every ranked model R, R  α if and only if R  X. The answer is ‘no’, as
witnessed by the following result.

PROPOSITION 13 There are L•-sentences that cannot be expressed as a set
of KLM-style |∼-statements.

Proof. Assume P = {p, q} and let α be the sentence •p. This sentence
is true in exactly four ranked models (all of which have empty orderings):
one with V = {11, 10}, one with V = {11}, one with V = {10} and one
with V = ∅. Assume that there is a set X of |∼-statements that are all true
in exactly these ranked models. Then for each ranked model built up from
P other than these four, there exists at least one |∼-statement contained in
X that is not true in it. In particular there exists such a |∼-statement, call
it β |∼ γ, for the ranked model in which V = {11, 10} and 11 is preferred
to 10. Since β |∼ γ is not true in this model, there is a world in min≺JβK
which is not in JγK. If 11 is such a world, then β |∼ γ cannot be true in
the ranked model 〈{11}, ∅〉 mentioned above. (Remember that β and γ are
both propositional and therefore their truth values are entirely determined by
the propositional valuations.) Alternatively, if 10 is such a world, then β |∼ γ
cannot be true in 〈{10}, ∅〉 either. Hence there cannot be such a world falsifying
the statement β |∼ γ, and therefore X does not rule out the ranked models
with a non-empty ordering, from which we derive a contradiction. Hence there
cannot be such a set X. �

A corollary of this result is that PTL does indeed add to the expressivity
of the KLM approach. In the next section we assess how much expressivity is
actually added by our typicality operator.

4Observe that Proposition 11 shows that rational consequence for propositional logic can
be expressed in PTL. In Section 6 we shall see that it is also possible to express, in PTL
itself, the extended notion of rational consequence for the more expressive language of L•.
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4 Unnesting the Birds

In the previous section we have argued for the need to include typicality ex-
plicitly in the object language. The observant reader would have noticed that
the language of PTL allows for any arbitrary (finite) nesting of the typicality
operator. An important point to consider is whether this much expressivity
is needed, and whether it is not perhaps sufficient to restrict the language to
non-nested applications of typicality.

In this section we show that once typicality is added to the language, nesting
does not increase the expressivity any further, provided that we are allowed to
add new propositional atoms. We shall thus be working with languages in which
the set of propositional atoms P may vary, and more specifically, with languages
with respect to a given knowledge base. So, given a knowledge base K, we
denote by PK the set of propositional atoms occurring in K. Furthermore,
by a ranked model on PK we mean a ranked model built up using only the
propositional atoms occurring in PK.

Now, given any finite K ⊆ L• we: (i) Show how to transform every sentence

β ∈ L• into a new sentence β̂ containing no nested instances of the • operator
(and therefore also how to transform K into a knowledge base K̂, containing no
nested instances of the • operator); (ii) Show how to construct an auxiliary set

of formulae Ê, containing no nested instances of the • operator, regulating the
behavior of the newly introduced propositional atoms, and (iii) Show how to

transform every ranked model R on PK into its ‘appropriate representative’ R̂

on the set of atoms PK̂ such that, for every β ∈ L•, β is true in R if and only if
β̂ is true in R̂. Using these constructions we show that K̂∪ Ê is the non-nested
version of the original knowledge base K in the sense that the ranked models
in which K̂ ∪ Ê are true are precisely the ‘appropriate representatives’ of the
ranked models in which K is true.

To be more precise, let K ⊆ L• be a knowledge base, let SK denote all the
subformulae of K, and let BK := {•α ∈ SK | α ∈ L}. So BK contains all
occurrences of subformulae in K containing a single • operator. Informally,
the idea is to substitute (all occurrences of) every element •α of BK with
a newly introduced atom p•α, and to require that p•α be equivalent to •α.
In doing so we reduce the level of nesting in K by a factor of 1. Now, let
EK := {p•α ↔ •α | •α ∈ BK}, and for every β ∈ L•, let βK be obtained
from β by the simultaneous substitution in β of (every occurrence of) every
•α ∈ BK by p•α (observe that βK = β if β is a propositional formula). We
refer to βK as the K-transform of β. Also, let K• := {βK | β ∈ K}. The idea
is that K• ∪ EK is a version of K with one fewer level of nesting.

EXAMPLE 14 Let K = {•(p ∧ q) → r, •(•p ∨ r), •(p ∧ •(q ∨ •r))}. Then we
have SK = K∪{•(p∧ q), p, q, r, •p, •(q ∨ •r), •r}. Then BK = {•(p∧ q), •p, •r}
and EK = {p•(p∧q) ↔ •(p ∧ q), p•p ↔ •p, p•r ↔ •r}. Now (•(p ∧ q) → r)K =
p•(p∧q) → r, (•(•p ∨ r))K = •(p•p ∨ r), (•(p ∧ •(q ∨ •r)))K = •(p ∧ •(q ∨ p•r)).
Hence K• = {p•(p∧q) → r, •(p•p ∨ r), •(p ∧ •q ∨ p•r)}. Observe that K has a
nesting level of 3, while K• has a nesting level of 2.

Let R = 〈V,≺〉 be a ranked model on PK. We define R• = 〈V•,≺•〉 on PK•
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as follows: for all v ∈ V, let v• be a valuation on PK• such that (i) v•(p) = v(p)
for every p ∈ PK, and (ii) for every p•α ∈ PK• \ PK, v•(p•α) = 1 if and only
if v ∈ J•αK in the ranked model R. And for all v•, v•′ ∈ V•, v• ≺• v•′ if
and only if v ≺ v′. So R• is an extended version of R with every valuation v
in R replaced with an extended valuation v• in which the truth values of the
atoms occurring in v remain unchanged, and the truth values of the new atoms
are constrained by the requirement that every p•α be equivalent to •α (for
•α ∈ BK). We refer to R• as the K-extended version of R. From this we
obtain the following result.

PROPOSITION 15 Let K be an L•-knowledge base. Then

1. For every ranked model R on PK, R•  EK;

2. A ranked model R′ on PK• is such that R′  EK if and only if there is
a ranked model R on PK such that R• = R′;

3. For all β ∈ L•, R  β if and only if R•  βK.

Proof. Let K ⊆ L• be finite.

Proving 1: Let R be a ranked model on PK and consider R• = 〈V•,≺•〉. Pick
any p•α ↔ •α ∈ EK and pick any v ∈ V•. By construction, v(p•α) = 1 if and
only if v ∈ J•αK, and so v ∈ Jp•α ↔ •αK. From this it follows that R  EK.

Proving 2: Pick a ranked model R′ on PK• and suppose that R′  EK is
the case. Let R = 〈V,≺〉 be the ranked model on PK obtained from R′ by
restricting V (and therefore ≺ as well) to PK. It follows immediately that the
ranked model R• on PK• obtained from R is therefore equal to R′. Conversely,
suppose there is a ranked model R on PK such that R• = R′. By construction,
v•(p•α) = 1 if and only if v• ∈ J•αK for every p•α ∈ PK• \ PK, from which
it follows that R•  p•α ↔ •α for every p•α ↔ •α ∈ EK. So R•, and
therefore R′, is a model of EK.

Proving 3: Pick any ranked model R = 〈V,≺〉 on PK. Suppose that R  K
and pick any β ∈ L. Pick a v ∈ V and suppose that v ∈ JβK. Now consider
R• = 〈V•,≺•〉 and, in particular, v• ∈ V•. From the construction of v•

and βK it follows immediately that v• ∈ JβKK in R•. Conversely, suppose that
R•  K• and pick any β ∈ L•. Pick a v• ∈ V• and suppose that v• ∈ JβKK.
Now consider R = 〈V,≺〉 and, in particular, v ∈ V. From the construction
of v• and •β it follows immediately that v ∈ JβKK. �

Proposition 15 above shows that the K-extended version of a ranked model R
is the only ‘appropriate representative’ of R in the class of ranked models based
on the extended language of K•. In addition, the K-extended versions of the
ranked models based on the language of K are the only ones satisfying EK.

From Proposition 15 it also follows that all sentences β of L• and their K-
transforms behave exactly the same with respect to, respectively, any ranked
model R and its K-extended version R•. This applies, in particular, to the
elements of K, as the next corollary shows.
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COROLLARY 16 Let K be an L•-knowledge base and let R be a ranked model
on PK. Then R  K if and only if R•  K•.

Proof. Follows from Part 3 of Proposition 15. �

These results show that the move from a knowledge base K to K• ensures
that we can reduce the level of nesting of • operators by a factor of 1. To
arrive at a set K̂ not containing any nested occurrences of • we just need to
iterate the transform process a sufficient number of times. So, we define K̂ as
follows: Let K0 := K, and for every i > 0, let Bi := BKi−1 , Ki := K•i−1, and let

n := min<{i | Bi+1 = ∅}. We then let K̂ := Kn. So for every i = 1, . . . , n, Ki
has one fewer level of nesting of • than Ki−1 until we get to Kn = K̂, which has

no nested occurrences of •. Similarly, for every β ∈ L•, we define β̂ as follows:
Let β0 := β, for every i = 1, . . . , n, let βi := βKi−1 , and let β̂ := βn. We refer
to β̂ as the full K-transform of β. In a similar vein, we let Ê :=

⋃i=n−1
i=0 EKi .

EXAMPLE 17 Continuing Example 14, let K0 = K. Then B1 = BK0 = BK,
and K1 = K• with E0 = EK. Then

SK1 = SK
•

= K• ∪ {p•(p∧q), r, p•p, p, •(q ∨ p•r), q, p•r}

and then B2 = BK1 = {•(q ∨ p•r)}, and E1 = {p•(q∨p•r) ↔ •(q ∨ p•r)}. Now
we have K2 = K•1 = K•• = {p•(p∧q) → r, •(p•p ∨ r), •(p ∧ p•(q∨p•r))}. Then, in
the second iteration, we get

SK2 = K2 ∪ {p•(p∧q), r, p•r, p, p•(q∨p
•r)}

and then B3 = BK2 = {•(p•p ∨ r), •(p ∧ p•(q∨p•r))} with E2 = {p•(p•p∨r) ↔
•(p•p∨r), p•(p∧p•(q∨p

•r)) ↔ •(p∧p•(q∨p•r))}. Then we get K3 = K•2 = {p•(p∧q) →
r, p•(p

•p∨r), p•(p∧p
•(q∨p•r))}. In the next iteration, we have

SK3 = K3 ∪ {p•(p∧q), r, p•(p
•p∨r), p•(p∧p

(•q∨p•r))}

and therefore B4 = ∅. Hence n = 3, and then

K̂ =
{
p•(p∧q) → r, p•(p

•p∨r), p•(p∧p
•(q∨p•r))

}

Ê =

{
p•(p∧q) ↔ •(p ∧ q), p•p ↔ •p, p•r ↔ •r, p•(q∨p•r) ↔ •(q ∨ p•r),

p•(p
•p∨r) ↔ •(p•p ∨ r), p•(p∧p•(q∨p

•r)) ↔ •(p ∧ p•(q∨p•r))

}

Finally, for any ranked model R on the set of propositional variables PK,
we define its full K-extended version R̂ as follows: Let R0 := R, and for all
i = 1, . . . , n, Ri := R•i−1. Then we let R̂ := Rn.

Using Proposition 15 and Corollary 16 we then obtain the result we require.

THEOREM 18 Let K be an L•-knowledge base. Then

1. For every R on PK, its full K-extended version R̂ is such that R̂  Ê;
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2. A ranked model R′ on PK̂ is a model of Ê if and only if there is a ranked
model R on PK such that R′ = R̂;

3. For all β ∈ L•, R  β if and only if R̂  β̂;

4. Let R be a ranked model R on PK. Then R  K if and only if R̂  K̂.

Proof. The proofs of Parts 1–3 follow by induction from the proofs of the
corresponding Parts 1–3 of Proposition 15. The proof of Part 4 follows by
induction from Corollary 16. �

5 Belief Revision and Typicality

Given the well-known connection between propositional rational consequence
relations and AGM-style belief revision [Alchourrón et al., 1985], as developed
by Gärdenfors and Makinson [1994], it is perhaps not surprising that propo-
sitional AGM belief revision can be expressed using the typicality operator.
In this section we make this claim more precise. The formal representation of
propositional AGM revision that we provide below is based on that given by
Katsuno and Mendelzon [1991].

The starting point here is to fix a non-empty subset V of U (as done by
Kraus et al. [1990]), and to assume that everything is done within the context
of V. In that sense, V becomes the set of all valuations that are available to us.
This is slightly more general than the Katsuno-Mendelzon framework, which
assumes V to be equal to U , but is a special case of the original AGM approach.
To reflect this restriction, we use ModV(α) to denote the set Mod(α) ∩ V. In
the same vein, in the rationality postulates below, validity is understood to be
modulo V. That is, for α ∈ L (i.e., α is a propositional sentence), we let |= α
if and only if ModV(α) = V.

Next, we fix a knowledge base κ ∈ L (i.e., represented as a propositional
formula) such that ModV(κ) 6= ∅. A revision operator ◦ on L for κ is a function
from L to L. Intuitively, κ ◦ α is the result of revising κ by α (clearly the
models of κ ◦ α should be in V). An AGM revision operator ◦ on L for κ is a
revision operator on L for κ which satisfies the following six properties:

(R1) |= (κ ◦ α)→ α

(R2) If 6|= ¬(κ ∧ α), then |= (κ ◦ α)↔ (κ ∧ α)

(R3) If 6|= ¬α, then 6|= ¬(κ ◦ α)

(R4) If |= κ1 ↔ κ2 and |= α1 ↔ α2, then |= (κ1 ◦ α1)↔ (κ2 ◦ α2)

(R5) |= ((κ ◦ α) ∧ β)→ (κ ◦ (α ∧ β))

(R6) If 6|= ¬((κ ◦ α) ∧ β), then |= (κ ◦ (α ∧ β))→ ((κ ◦ α) ∧ β)

Given V, a ranked model R = 〈V,≺〉 is defined as κ-faithful if and only
if min≺ V = JκK. We say that a revision operator ◦R (on L) is defined by a
κ-faithful ranked model R if and only if ModV(κ ◦R α) = min≺JαK. Katsuno
and Mendelzon [1991] proved that, for V = U , (i) every revision operator ◦R
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defined by a κ-faithful ranked model R is an AGM revision operator (on L),
and (ii) for every AGM revision operator ◦ (on L) for κ, there is a κ-faithful
ranked model R such that ModV(κ ◦ α) = ModV(κ ◦R α).

In what follows, we show that the revision operator ◦ can be expressed in L•
using typicality. The key insight is to identify the knowledge base κ to be
revised with the formula •>, while κ ◦ α is identified with •α.

PROPOSITION 19 Let κ ∈ L such that ModV(κ) 6= ∅ and let R = 〈V,≺〉 be a
κ-faithful ranked model.

1. For every α ∈ L, Jκ ◦R αK = J•αK;

2. Let ◦ be any AGM revision operator (on L) for κ. Then there is a κ-
faithful ranked model R = 〈V,≺〉 such that ModV(κ ◦ α) = J•αK.

Proof. Let κ ∈ L and let R = 〈V,≺〉 be a κ-faithful ranked model.

Proving 1: Pick any α ∈ L. By definition, Jκ ◦R αK = min≺JαK and J•αK =
min≺JαK, so the result holds.

Proving 2: Pick any AGM belief revision operator ◦ (on L) for κ. First we
need to prove that there is a κ-faithful ranked model R = 〈V,≺〉 such that
ModV(κ ◦ α) = min≺JαK. The proof is exactly the same as the proof of Theo-
rem 3.3 provided by Katsuno and Mendelzon [1991], but with U replaced by V.
The result then follows from the fact that J•αK = min≺JαK. �

This result shows that propositional AGM belief revision can be embedded
in PTL. But we can take this a step further and extend revision to apply to
the language of PTL, i.e., to L•, as well. So, with a given (non-empty) V still
fixed, and for α ∈ L•, we let RαV := {R | R = 〈V,≺〉 and min≺J>K = JαK}.
Then we fix a κ ∈ L• such that RκV 6= ∅. The definition of a revision operator ◦
is then the same as above, except that it is now with respect to L•. In order
to define an AGM belief revision operator on L• we need to rephrase the six
revision postulates with respect to κ and the elements R of RκV :

(R1•) R  (κ ◦ α)→ α

(R2•) If R 6 ¬(κ ∧ α), then R  (κ ◦ α)↔ (κ ∧ α)

(R3•) If R 6 ¬α, then R 6 ¬(κ ◦ α)

(R4•) If R  α1 ↔ α2, then R  (κ ◦ α1)↔ (κ ◦ α2)

(R5•) R  ((κ ◦ α) ∧ β)→ (κ ◦ (α ∧ β))

(R6•) If R 6 ¬((κ ◦ α) ∧ β), then R  (κ ◦ (α ∧ β))→ ((κ ◦ α) ∧ β)

This gives us a representation result similar to that of Katsuno and Mendel-
zon in the propositional case, but with the revision operator now defined on
the more expressive language L•.
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THEOREM 20 Let κ ∈ L• such that RκV 6= ∅ and let R ∈ RκV . Then ◦R
satisfies the postulates (R1•)–(R6•). Conversely, let ◦ be a revision operator
(for a fixed V and κ) satisfying the postulates (R1•)–(R6•). Then there is an
R ∈ RκV such that ModV(κ ◦ α) = ModV(κ ◦R α).

Proof. Let R = 〈V,≺〉 ∈ RκV be a κ-faithful ranked model. First we prove
that ◦R satisfies Postulates (R1•)–(R6•). For (R1•), observe that Jκ ◦R αK =
min≺JαK ⊆ JαK. For (R2•), suppose there is a v ∈ V such that v ∈ Jκ ∧ αK.
Since R is κ-faithful, it follows that for every w ∈ Jκ ∧ αK, w ∈ min≺J>K.
Therefore Jκ ◦R αK = min≺J>K = Jκ ∧ αK from which it follows that R 
(κ ◦R α) ↔ (κ ∧ α). For (R3•), suppose there is a v ∈ V such that v ∈ JαK.
Then Jκ ◦R αK = min≺JαK 6= ∅, and so R 6 ¬(κ ◦R α). For (R4•), suppose
that R  α1 ↔ α2. Then min≺Jα1K = min≺Jα2K from which it follows that
R  (κ ◦R α1) ↔ (κ ◦R α2). For (R5•), pick any v ∈ V and suppose that
v ∈ J(κ ◦R α) ∧ βK. That is, v ∈ min≺JαK ∩ JβK. We need to show that
v ∈ min≺Jα ∧ βK. If this is not the case, there is a w ∈ min≺Jα ∧ βK such that
w ≺ v. But this cannot be since v ∈ min≺JαK. So (R5•) is satisfied. For (R6•),
suppose that R 6 ¬(κ ◦R α) ∧ β. That is, there is a w ∈ min≺JαK ∩ JβK. Now
pick a v ∈ V and suppose that v ∈ Jκ ◦R (α ∧ β)K. That is, v ∈ min≺Jα ∧ βK.
We need to show that v ∈ min≺(JαK ∩ JβK). Since v ∈ min≺JβK, if this is not
the case, there is an x ∈ min≺(JαK ∩ J¬βK) such that x ≺ v. But then w ≺ v
as well, which is impossible (because v ∈ min≺Jα ∧ βK). So (R6•) is satisfied.

Conversely, let ◦ be a revision operator for κ satisfying Postulates (R1•)–
(R6•). We construct a ranked model R ∈ RκV such that ModV(κ ◦ α) =
ModV(κ ◦R α). The construction is essentially the same as that of Katsuno
and Mendelzon [1991, Theorem 3.3]. We let R = 〈V,≺〉, where ≺ is obtained
as follows. Define a binary relation � on V such that for every v, w ∈ V, v � w
if and only if either v ∈ JκK or v ∈ Jκ ◦ f(v, w)K where f(v, w) is any element
of L (i.e., a propositional formula) such that Jf(v, w)K = {v, w}. Katsuno and
Mendelzon show that � is a total preorder (a binary relation that is reflexive,
transitive, and connected). We let ≺ be the strict version of �: v ≺ w if and
only if v � w and w 6� v. It follows immediately that ≺ is a modular ordering
and that R is therefore a ranked model. To show that R ∈ RκV we need to
show that min≺J>K = JκK. We can split this into two parts: (i) If v, w ∈ JκK,
then v 6≺ w; (ii) If v ∈ JκK and w /∈ JκK, then v ≺ w. Part (i) follows im-
mediately from the definition of the relation �. For Part (ii), suppose that
v ∈ JκK and w /∈ JκK. From Postulate (R2•) it follows that Jκ ◦ f(v, w)K = {v}.
By the definition of �, it then follows that v ≺ w. It remains to show that
Jκ ◦ αK = Jκ ◦R αK = min≺JαK. The proof is the same as that of Katsuno and
Mendelzon [1991, Theorem 3.3]. �

6 Rational Consequence on L•
We have seen in Section 5 that typicality can be used to express propositional
AGM belief revision, as well as AGM belief revision defined for PTL. From
Proposition 11 we know that rational consequence for propositional logic can
be expressed in PTL itself. In this section we shall complete the picture by
showing that (i) the expected connection between rational consequence rela-
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tions and AGM belief revision for PTL holds, and that (ii) rational consequence
for PTL can be expressed in PTL itself, a result analogous to Theorem 20.

As in Section 5, we start by fixing a set of valuations V ⊆ U . In this case,
however, V is allowed to be empty as well. LetRV := {R | R = 〈V,≺〉}. Then
we let |∼ be a binary relation on L•. We say that |∼ is a rational consequence
relation on L• (with respect to R ∈ RV) if and only if |∼, viewed as a binary
connective on L•, satisfies the following seven properties, adopted from the
rationality properties from Section 2:

(Ref) R  α |∼ α (LLE)
R  α↔ β, R  α |∼ γ

R  β |∼ γ

(And)
R  α |∼ β, R  α |∼ γ

R  α |∼ β ∧ γ
(Or)

R  α |∼ γ, R  β |∼ γ
R  α ∨ β |∼ γ

(RW)
R  α |∼ β, R  β → γ

R  α |∼ γ
(CM)

R  α |∼ β, R  α |∼ γ
R  α ∧ β |∼ γ

(RM)
R  α |∼ β, R 6 α |∼ ¬γ

R  α ∧ γ |∼ β

As in Section 2, given a ranked model R, a pair (α, β) is in the consequence
relation defined by R (denoted as α |∼R β) if and only if min≺JαK ⊆ JβK. In
this case, however, α and β are taken to be elements of L• and not just of L.

In order for us to describe the connection between rational consequence and
AGM revision for PTL, we first consider the following additional property on
defeasible consequence relations:

(Cons) R 6 > |∼ ⊥

It is easy to see that for a ranked model R = 〈V,≺〉, > |∼R ⊥ holds if
and only if V = ∅. By insisting that Property (Cons) holds, we are restricting
ourselves to ranked models in which V 6= ∅, a restriction that is necessary to
comply with Postulate (R3) for AGM belief revision (cf. Section 5). So, we
consider only the case where the (fixed) set V is non-empty. (It is not hard
to see that if V = ∅, then L• × L• is the only rational consequence relation
satisfying all the seven rationality properties above, that R = 〈∅, ∅〉 is the only
ranked model, and that |∼R= L• × L•.)

Intuitively, given a rational consequence relation |∼ and a belief revision
operator ◦ for a given knowledge base κ, the idea is to (i) associate κ with
all the βs such that > |∼ β holds and (ii) to associate the consequences of
κ ◦ α with all the βs such that α |∼ β holds. Such is the approach adopted by
Gärdenfors and Makinson [1994] in the propositional case.

For a rational relation |∼ on L•, let C |∼ := {α ∈ L• | > |∼ α} and let
K|∼ be the set of all logically strongest formulae (modulo RV) to be defeasibly
concluded from >. That is,

K|∼ := {α ∈ C |∼ | for all β ∈ C |∼, if |= β → α, then |= α→ β},

where |= is understood to mean validity modulo RV .
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The following result establishes the connection between AGM revision and
rational consequence for L•. The result is closely related to that by Gärdenfors
and Makinson [1994]. (In fact, parts of the proof of Proposition 21 rely heavily
on results first obtained by Gärdenfors and Makinson.)

PROPOSITION 21

1. Let |∼ be a rational consequence relation on L• also satisfying (Cons),
and let κ ∈ K|∼. Then there is a κ-faithful ranked model R ∈ RV for
which the AGM revision operator ◦R on L• for κ is such that R  α |∼ β
if and only if R  (κ ◦R α)→ β.

2. Let κ be any element of L• such that 6|= ¬κ, and let ◦ be an AGM revision
operator on L• for κ. Let R ∈ RκV be the (κ-faithful) ranked model
R ∈ RκV such that ◦ = ◦R.5 Let |∼ be the defeasible consequence relation
on L• such that α |∼ β if and only if R  (κ ◦ α) → β. Then |∼ is a
rational consequence relation (with respect to R) also satisfying (Cons).

Proof.

Proving 1: Consider the following translated versions of the seven rationality
properties and the (Cons) property (making use of R  α |∼ β if and only if
R  (κ ◦R α)→ β).

(Ref) R  (κ ◦ α)→ α

(LLE)
R  α↔ β, R  (κ ◦ α)→ γ

R  (κ ◦ β)→ γ

(And)
R  (κ ◦ α)→ β, R  (κ ◦ α)→ γ

R  (κ ◦ α)→ β ∧ γ

(Or)
R  (κ ◦ α)→ γ, R  (κ ◦ β)→ γ

R  (κ ◦ (α ∨ β))→ γ

(RW)
R  (κ ◦ α)→ β, R  β → γ

R  (κ ◦ α)→ γ

(CM)
R  (κ ◦ α)→ β, R  (κ ◦ α)→ γ

R  (κ ◦ (α ∧ β))→ γ

(RM)
R  (κ ◦ α)→ β, R 6 (κ ◦ α)→ ¬γ

R  (κ ◦ (α ∧ γ))→ β

(Cons) R 6 (κ ◦ >)→ ⊥

We show below that any R ∈ RκV satisfying these properties, also satisfies
the properties (R1•)–(R6•). From Theorem 20 the result then follows.

5Remember that R exists by Theorem 20.
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(R1•) follows directly from (Ref), and (R4•) follows from (LLE). For (R5•),
observe that it is equivalent to the following property

(Con)
R  (κ ◦ (α ∧ β))→ γ

R  (κ ◦ α) ∧ β → γ

which, in turn, is equivalent to (Or). For Postulate (R6•), observe that it is
equivalent to (RM).

For (R3•), it can be shown that |∼ satisfies the following property:

(WRM)
R 6 (κ ◦ >)→ ¬α, R  (κ ◦ >)→ (α→ β)

R  (κ ◦ α)→ β

and that (R3•) follows from (WRM).

For (R2•), it can be shown that |∼ satisfies the following property:

(WC)
R  (κ ◦ α)→ β

R  (κ ◦ >)→ (α→ β)

and that (R2•) follows from (WRC).

Proving 2: We need to show that |∼ satisfies the seven rationality properties,
plus (Cons). This can be done by replacing each of these properties with the
translated versions in Part 1 of this proof (involving ◦R), and checking whether
the revision operator ◦R satisfies the translated properties.

Showing that (Ref), (LLE) and (RW) hold is easy. To show that (Cons) holds
observe that, since R is a κ-faithful ranked model, it follows that min≺J>K 6= ∅.
For (And), observe that from the fact that min≺JαK ⊆ JβK and min≺JαK ⊆ JγK
it follows that min≺JαK ⊆ JβK ∩ JγK. For (Or), observe that from the fact that
min≺JαK ⊆ JγK and min≺JβK ⊆ JγK it follows that min≺Jα ∨ βK ⊆ JγK (since
min≺Jα ∨ βK ⊆ min≺JαK ∪min≺JβK). For (CM), suppose that min≺JαK ⊆ JβK
and min≺JαK ⊆ JγK and pick a v ∈ min≺Jα∧βK. Then it must be the case that
v ∈ min≺JαK (if there were a w ∈ min≺JαK such that w ≺ v, then it would be the
case that w ∈ min≺Jα∧βK), from which it follows that v ∈ min≺JγK. For (RM),
suppose that min≺JαK ⊆ JβK and min≺JαK * J¬γK and pick a v ∈ min≺Jα∧γK.
Then it must be the case that v ∈ min≺JαK (from min≺JαK * J¬γK we know
there is at least one w ∈ min≺JαK such that w ∈ JγK), from which it follows
that v ∈ min≺JβK. �

Proposition 21 then allows us to obtain a representation result for rational
consequence relations on L•, as the following corollary shows.

COROLLARY 22 For every ranked model R, |∼R is a rational consequence
relation on L•. Conversely, for every rational consequence relation |∼ on L•
there exists a ranked model R such that |∼R = |∼.
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Proof. Pick a ranked model R = 〈V,≺〉. If V 6= ∅, then R ∈ RV . Let κ
be such that min≺J>K = JκK. So R ∈ RκV and by Part 2 of Proposition 21
it follows that |∼R is a rational consequence relation on L•. If V = ∅ , then
|∼R = L• × L•. And it is easy to see that |∼ is then a rational consequence
relation.

Conversely, let |∼ be a rational consequence relation on L• and let κ ∈ K|∼.
If > 6|∼ ⊥ is the case, then, from Part 1 of Proposition 21 it follows that there
is an R ∈ RκV such that |∼R = |∼. And since RκV ⊆ RV , the result follows. If
> |∼ ⊥ holds, then by (RW), (LLE) and (Or), |∼ = L• ×L•. And it is easy to
see that for the ranked model R = 〈∅, ∅〉, |∼R = |∼. �

7 Entailment for PTL

In this section we focus on what is perhaps the central question concerning PTL
from the perspective of knowledge representation and reasoning: What does it
mean for a PTL formula to be entailed by a (finite) knowledge base K?

Formally, we view an entailment relation as a binary relation |=∗ from the
power set of the language under consideration (in this case L•) to the language
itself. Its associated consequence relation is defined as:

Cn∗(K) ≡def {α | K |=∗ α}

Before looking at specific candidates, we propose some desired properties
for such an entailment relation. The obvious place to start is to consider the
properties for Tarskian consequence relations [Tarski, 1941].

(Inclusion) K ⊆ Cn∗(K)

(Idempotency) Cn∗(K) = Cn∗(Cn∗(K))

(Monotonicity) If K1 ⊆ K2, then Cn∗(K1) ⊆ Cn∗(K2)

Inclusion and Idempotency are both properties we want to have satisfied, but
Monotonicity is not. To see why not, it is enough to refer to the classic example
from the Introduction: Let K1 = {p → b, •b → f} (“penguins are birds” and
“birds typically fly”), and let K2 = K1 ∪{•p→ ¬f} (add to K1 that “penguins
typically do not fly”). Given this, we want •p→ f ∈ Cn∗(K1) (“penguins typ-
ically fly” as a consequence of K1), but we want •p→ f 6∈ Cn∗(K2) (“penguins
typically fly” not as a consequence of K2), thereby invalidating Monotonicity.

In addition to Inclusion and Idempotency we require |=∗ to behave classically
when presented with propositional information only (below |= denotes classical
entailment):

(Classic) If K ⊆ L, then for every α ∈ L, K |=∗ α if and only if K |= α

Therefore, we also require that the classical consequences of a knowledge
base expressed in L• be classically closed — below the Cn(·) operator refers to
classical consequence of the propositional language L:

(Classic Closure) Cn∗(K) ∩ L = Cn(Cn∗(K) ∩ L)

We now consider four obvious candidates for the notion of entailment in PTL:
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(1) K |=1 α if and only if for all R such that R  K, R  α (‘Global’)

(2) K |=2 α if and only if for all R, J
∧
KK ⊆ JαK (‘Local’)

(3) K |=3 α if and only if for all R such that R  •
∧
K,R  α (‘Classical’)

(4) K |=4 α if and only if for all R, J•
∧
KK ⊆ JαK (‘Supra-Local’)

In what follows we shall analyze each of these candidates against the afore-
mentioned properties.

The entailment relation |=1 in (1) corresponds to the standard Tarskian
notion of entailment [Tarski, 1941] applied to the semantics of PTL. It also
resembles the notion of global entailment in modal logic [Blackburn et al., 2001].
It is not difficult to see that |=1 satisfies Inclusion, Idempotency, Classic, and
Classic Closure, properties that we want. Note, though, that |=1 also satisfies
Monotonicity, a property that we do not want.

Entailment relation |=2 in (2) is the ‘local’ version of |=1 in the modal sense
and, as such, is stronger than |=1. |=1 does not imply |=2, as shown by the
following example: we have {•(α ∧ β)} |=1 •α but {•(α ∧ β)} 6|=2 •α. It is not
hard to see that |=2 is also a Tarskian consequence relation and, as such, it
satisfies the Monotonicity property as well.

The entailment relation |=3 in (3) above boils down to a version of classical
entailment in that only ranked models with an empty preference relation take
part in its definition — remember Proposition 10. It is easy to see that |=3 is
monotonic and therefore insufficient according to our desiderata.

Finally, note that the option represented by |=4 in (4) is weaker than |=2

in (2), and therefore we have |=2 ⊆ |=4. Moreover, it is not hard to see that |=4

is non-monotonic, which puts it in a good position as an appropriate candidate
for PTL-entailment. Unfortunately, there is an argument which eliminates |=4

from contention as a viable form of entailment. We explore this in more detail
in what follows.

DEFINITION 23 Let K ⊆ L• and let |=n, 1 ≤ n ≤ 4, be one of the entailment
relations above. Let

|∼Kn := {(α, β) | α, β ∈ L, K |=n •α→ β}

We say |∼Kn is the (propositional) consequence relation generated by K and |=n.

PROPOSITION 24 There is K ⊆ L• for which |∼K4 is not a preferential con-
sequence relation.

Proof. Let K = {•b → f, •b → w} (“typical birds fly” and “typical birds
have wings”). Let R = 〈V,≺〉, where V = {110, 100} and ≺= {(100, 110)}
(100 is more preferred than 110). Then J•((•b → f) ∧ (•b → w))K = 110, but
110 /∈ J•(b ∧ w) → fK. So we have both b |∼K4 f and b |∼K4 w, but b ∧ w 6|∼K4 f.
Hence |∼K4 does not satisfy cautious monotonicity (CM) and is therefore not a
preferential consequence relation. �
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This result rules |=4 out as an appropriate notion of entailment for PTL, as
the propositional defeasible consequence relation it induces does not comply
with the basic KLM properties from Section 2. The proposition above also
raises the obvious question on how the other entailment relations behave under
a similar scrutiny.

PROPOSITION 25

1. For every K ⊆ L•, |∼K1 is a preferential consequence relation;

2. There is K ⊆ L• for which |∼K2 is not a preferential consequence relation;

3. For every K ⊆ L•, |∼K3 satisfies Monotonicity:

α |∼ β
α ∧ γ |∼ β

Proof.
Proving Part 1: Let K ⊆ L• and let R be a ranked model. Then, given α ∈ L•,
we clearly have R  •α → α, so (Ref) holds. Let α, β, γ ∈ L and suppose
that R  •α → β and |= β → γ (|= here refers to classical validity). Then
R  •α → γ and then (RW) holds. Now suppose that R  •α → γ and
|= α ↔ β. Then •β → γ so (LLE) also holds. Suppose R  •α → β and
R  •α → γ. Then clearly R  •α → β ∧ γ and then (And) holds. Suppose
R  •α→ γ and R  •β → γ. It is not hard to check that R  •(α∨ β)→ γ,
so (Or) also holds. Now suppose R  •α → β and R  •α → γ. Pick
any w ∈ min≺Jα ∧ γK, i.e., w is a “best α ∧ γ-world”. If w ∈ min≺JαK, then
w ∈ JβK (since R  •α → β) and so w ∈ J•(α ∧ γ) → βK. If w /∈ min≺JαK,
then there is w′ such that w′ ≺ w and w′ ∈ min≺JαK. But then w′ ∈ J¬γK,
since w ∈ min≺Jα ∧ γK. So R 6 •α → γ, which is a contradiction. Hence
R  •(α ∧ γ)→ β, and therefore (CM) holds.

Proving Part 2: Let K and R be as in the proof of Proposition 24. Then
110 ∈ J

∧
KK (since 110 /∈ min≺JbK). However, 110 /∈ J•(b∧w)→ fK. From this

it is easy to see that |∼K2 does not satisfy (CM).

Proving Part 3: Let K ⊆ L• and pick any R = 〈V,≺〉 such that R  •
∧
K.

Then, by Proposition 10, we have min≺J
∧
KK = J

∧
KK and ≺ = ∅. Now

suppose R  •α → β. This means that for every w ∈ V, if w ∈ JαK, then
w ∈ JβK. Now pick any w ∈ Jα∧ γK. Since w ∈ JαK, we also have w ∈ JβK. The
same argument holds for any w ∈ min≺Jα∧ γK (since ≺ = ∅), and therefore we
have R  •(α ∧ γ)→ β. �

From the results above we can conclude that even though none of |=i, 1 ≤
i ≤ 4, is an appropriate notion of entailment in the context of PTL, |=1 turns
out to be the best of all options in that it delivers a consequence relation that is
preferential. There is, however, an additional argument against the use of |=1

as well, one that is based on an adaptation of a result obtained by Lehmann
and Magidor [1992] in the propositional case. To make the argument, we first
present a result showing that all formulae of L• can be rewritten as statements
of rational consequence:
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LEMMA 26 For every R and α ∈ L•, R  α if and only if R  •¬α → ⊥ if
and only if ¬α |∼R ⊥. Conversely for every R and α, β ∈ L•, α |∼R β if and
only if R  •α→ β.

Proof. Let R = 〈V,≺〉 and α ∈ L•. R  α if and only if JαK = V if and only
if J¬αK = ∅ if and only if (i) J•¬αK = ∅ if and only if J¬ • ¬αK = V if and only
if J•α→ ⊥K = V if and only if R  •¬α→ ⊥. But (i) is the case if and only
if min≺J¬αK = ∅ if and only if min≺J¬αK ⊆ J⊥K if and only if ¬α |∼R ⊥.

The proof of the converse part is analogous to that of Proposition 11. �

We can therefore think of L• as a language for expressing defeasible conse-
quence on L• with |∼ viewed as the only main connective. More precisely, let
L•|∼ := {α |∼ β | α, β ∈ L•}, and for any ranked model R, let R  α |∼ β if

and only if α |∼R β. The next result shows that the languages L• and L•|∼ are
equally expressive.

PROPOSITION 27 For every R and α |∼ β ∈ L•|∼, R  α |∼ β if and only
if R  •α → β. Conversely, for every R and α ∈ L•, R  α if and only if
R  ¬α |∼ ⊥.

Proof. Straightforward, by applying Lemma 26. �

L•|∼ is similar to the language for conditional knowledge bases studied by

Lehmann and Magidor [1992], but with the propositional component replaced
by L• (i.e., |∼ ⊆ L• × L•).

Based on this, we restate entailment in terms of the language L•|∼, and
propose an additional property that any appropriate notion of entailment ought
to satisfy. Let K be a (finite) subset of L•|∼, let |=∗ be a (potential) entailment

relation from P(L•|∼) to L•|∼, and let |∼K∗ be a defeasible consequence relation

on L• obtained from |=∗ as follows: α |∼K∗ β if and only if K |=∗ α |∼ β.

(Rationality) For every finite K ⊆ L•|∼, the consequence relation |∼K∗ obtained

from |=∗ should be rational

Rationality is essentially the property for the entailment of propositional
conditional knowledge bases proposed by Lehmann and Magidor [1992], but
applied to the language of L•|∼ (cf. Section 2). Based on their results, it follows

that the consequence relation |∼K1 obtained from |=1 does not satisfy Rational-
ity. In fact, analogous to one of their results [Lehmann and Magidor, 1992,
Section 4.2], we have the following one.

PROPOSITION 28 For finite K ⊆ L•|∼, let |∼K= {(α, β) | α |∼ β ∈ K},
and let |∼P be the intersection of all preferential consequence relations on L•
containing |∼K.6 For the consequence relation |∼K1 obtained from |=1, it follows
that |∼K1 = |∼P is a preferential consequence relation, but not necessarily a
rational consequence relation.

6Recall that a preferential consequence relation is one satisfying the first six properties
discussed in Section 2.
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Proof. The proof is analogous to that given by Lehmann and Magidor [1992,
Section 4.2] in the propositional case. �

Since L• and L•|∼ are equally expressive (cf. Proposition 27), Proposition 28

provides additional evidence that |=1 is not an appropriate form of entailment.

Having shown that none of the obvious notions of entailment above is an
appropriate form of entailment for PTL, we now turn our attention to an
alternative proposal. It is the notion of the rational closure of a conditional
knowledge base, proposed by Lehmann and Magidor [1992] for the propositional
case, but here applied to the language of L•|∼.

DEFINITION 29 Let |∼0 and |∼1 be rational consequence relations. |∼0 is
preferable to |∼1 (written |∼0 � |∼1) if and only if

• there is an α |∼ β ∈ |∼1 \ |∼0 such that for all γ such that γ ∨ α |∼0 ¬α
and for all δ such that γ |∼0 δ, we also have γ |∼1 δ;

• for every γ, δ ∈ L, if γ |∼ δ is in |∼0 \ |∼1, then there is an assertion
ρ |∼ ν in |∼1 \ |∼0 such that ρ ∨ γ |∼1 ¬γ.

The motivation for � here is essentially that for the same ordering for the
propositional case provided by Lehmann and Magidor [1992]. Given K ⊆ L•|∼,

the idea is now to define the rational closure as the most preferred (with respect
to �) of all those rational consequence relations which include K.

LEMMA 30 Let K ⊆ L•|∼ be finite, and let |∼K:= {(α, β) | α |∼ β ∈ K}.
Then there is a unique rational consequence relation containing |∼K which is
preferable (with respect to �) to all other rational consequence relations con-
taining |∼K.

This allows us to define the rational closure |=rc of a knowledge base on L•|∼.

DEFINITION 31 For finite K ⊆ L•|∼, let |∼K:= {(α, β) | α |∼ β ∈ K}, and

let |∼Krc be the (unique) rational consequence relation containing |∼K which
is preferable (with respect to �) to all other rational consequence relations
containing |∼K. Then α |∼ β is in the rational closure of K (written as
K |=rc α |∼ β) if and only if α |∼Krc β.

Definition 31 gives us a notion of rational closure for L•|∼. Since L• and L•|∼
are equally expressive (remember Proposition 27), we can use Definition 31 to
define rational closure for L• as well:

DEFINITION 32 Let K ⊆ L•, α ∈ L•, and let K|∼ := {¬β |∼ ⊥ | β ∈ K}.
Then α is in the rational closure of K (written as K |=rc α) if and only if
¬α |∼ ⊥ is in the rational closure of K|∼.
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It is not hard to show that rational closure satisfies Inclusion, Idempotency,
Classic, Classic Closure, and Rationality, but not Monotonicity. It is therefore
a reasonable candidate for entailment for PTL.

We conclude this section with an outlook on another proposal for entailment
for L• based on a semantic construction. It is inspired by a proposal by Gior-
dano et al. [2012]. The idea is to define a partial order on a certain subclass of
ranked models satisfying a knowledge base K ⊆ L•, with models lower down
in the ordering being viewed as more ‘conservative’, in the sense that one can
draw fewer conclusions from them, and therefore being more preferred.

For K ⊆ L•, let VK be the elements of U ‘permitted’ by K:

VK := {v | v ∈ V for some R = 〈V,≺〉 such that R  K}

Moreover, let RK := {R = 〈VK,≺〉 | R  K}. Now, for any R = 〈VK,≺〉 ∈
RK, let VR

0 := min≺ VK, and for i > 0 let VR
i := min≺

(
VK \ (∪j=i−1j=0 VR

j )
)

. So

VR
0 contains the elements of VK lowest down with respect to ≺, VR

1 contains the
elements of VK just above VR

0 with respect to ≺, etc. Next, for every v ∈ VK
we define the height of v in R as hR(v) = i if and only if v ∈ VR

i . And based on
that, we define the partial order � on RK as follows: R1 � R2 if and only if for
every v ∈ VK, hR1(v) ≤ hR2(v). From this we get the following result which is
a special case of Theorem 2 in the recent paper by Giordano et al. [2012].

PROPOSITION 33 (Giordano et al. [2012]) For every K ⊆ L•, the partial or-
der � on the elements of RK has a unique minimum element.

This allows us to provide a definition for the notion of minimum entailment
of a PTL knowledge base.

DEFINITION 34 Let K ⊆ L•, α ∈ L•, and RK be the (unique) minimum
element of RK with respect to the partial order � on RK. Then α is in the
minimum entailment of K (K |=min α) if and only if RK  α.

It can be shown that minimum entailment as defined above satisfies Inclu-
sion, Idempotency, Classic, Classic Closure, and Rationality, but not Mono-
tonicity. As for rational closure, it is a reasonable candidate for entailment
for L•. In fact, the connection between rational closure and minimal entail-
ment may even be closer than that. There is strong evidence to support the
conjecture that they actually coincide, but this remains to be investigated.

8 Discussion and Related Work

To the best of our knowledge, the first attempt to formalize a notion of typical-
ity in the context of defeasible reasoning was that by Delgrande [1987]. Given
the relationship between our constructions and those by Kraus and colleagues,
most of the remarks in the comparison made by Lehmann and Magidor [1992,
Section 3.7] are applicable in comparing Delgrande’s approach to ours and
therefore we do not repeat them here.

Crocco and Lamarre [1992] as well as Boutilier [1994] have explored the links
between defeasible consequence relations and notions of normality similar to the
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one we investigate here. In particular, Boutilier defines a family of conditional
logics of normality in which a statement of the form “if α, then normally β” is
formalized via a binary modality ⇒ as a conditional α ⇒ β. Here we achieve
the same with a unary operator.

Roughly speaking, Boutilier’s semantic intuition is the same as that of KLM
(and therefore same as ours). The main difference is that Boutilier defines a
conditional connective ⇒ in the language, whereas Kraus et al. define |∼ at a
meta-level to the language. In this respect, Boutilier’s approach is more general
in that it allows for nested conditionals. If these are omitted, i.e., if one works
in the ‘flat’ conditional logic in which⇒ is the main connective and no nesting
is allowed, then one gets the same results for both preferential and rational
entailment with both systems. So Boutilier achieves with modalities (he works
in a bi-modal language) what Kraus and colleagues achieve with a (meta-level)
preference order.

It turns out that in Boutilier’s approach one cannot always capture the
notion of “most typical α’s” (but for a different reason than that given in
Proposition 13). In Boutilier’s modal logic, such a set (of most normal α-worlds)
need not exist in general. This is because Boutilier drops the smoothness
condition [Boutilier, 1994, p. 103] and therefore at any point in a ranked model
one can have infinitely descending chains of more and more normal α-worlds.
If one imposes smoothness in Boutilier’s approach, which can be done by e.g.
requiring the ordering determined by Boutilier’s 2 also to be Noetherian7, one
could then define his conditional ⇒ more elegantly as follows:

(5) α⇒ β ≡def •α→ β

where, in Boutilier’s notation, •α would be given by

(6) •α ≡def α ∧2¬α

(Of course negated conditionals of the form α 6⇒ β can then be expressed
as ¬(•α → β).) In adopting smoothness and defining conditionals in this way
one would expect both approaches to become equivalent modulo the under-
lying language — ours is propositional, whereas Boutilier’s is modal. How-
ever, our statement •α → β differs from Boutilier’s α ⇒ β in a significant
way. In Boutilier’s approach, a statement of the form α ⇒ β is true at some
world (in a ranked model) if and only if it is true at all worlds in that ranked
model [Boutilier, 1994, p. 114]. On the other hand, it is not hard to find a
ranked model in which •α→ β holds at a world without being true in the whole
model. This establishes Boutilier’s conditional as a ‘global’ statement, while
ours has the (more general) ‘local flavor’. We can easily simulate Boutilier’s
notion of acceptance [Boutilier, 1994, p. 115] by stating > → (•α→ β).

It is also worth mentioning that our interpretation of the conditional ⇒
in (5) above and Boutilier’s differ in another subtle way, which also relates to
whether one adopts smoothness or not. In (5), α⇒ β is defined as “the normal
α’s are β’s”, whereas, strictly speaking, Boutilier’s definition of α ⇒ β reads
as “there is a point from which α → β is not violated”. Such a ‘frontier’ for

7By doing so Boutilier’s framework becomes very close to Britz et al.’s [2009].
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normality, implicitly referred to in Boutilier’s definition of α ⇒ β, is not as
crisp as ours in the sense that the point where one draws the normality line
might be too ‘far away’ (in the ordering) from the more and more normal α-
worlds. One can definitely make a case for dropping the smoothness condition,
but requiring it is a small price to pay compared to the much simpler account
of typicality one gets and that we have investigated in this chapter.

In a description logic setting, Giordano et al. [2009b] also study notions of
typicality. Semantically, they do so by placing an (absolute) ordering on objects
in first-order domains in order to define versions of defeasible subsumption rela-
tions in the description logic ALC. The authors moreover extend the language
of ALC with an explicit typicality operator T of which the intended meaning
is to single out instances of a concept that are deemed as ‘typical’. That is,
given an ALC concept C, T(C) denotes the most typical individuals having
the property of being C in a particular DL interpretation.

Giordano et al.’s approach defines rational versions of the DL subsump-
tion relation v satisfying the corresponding rationality properties stated in DL
terms. Nevertheless, they do not provide representation results à la KLM and
do not address the links with belief revision either. Recently Britz et al. [2011b;
2013b] have provided such representation results in the DL case. Even though
here we have investigated typicality in a propositional setting, we expect that
our representation result and constructions for the rational closure (as well as
the links with belief revision) can be lifted to the DL case, thereby filling the
mentioned gaps in Giordano et al.’s approach and shedding some light on the
issues related to typicality and defeasible reasoning in more expressive logics.

Britz et al. [2009] investigate another embedding of propositional preferen-
tial reasoning in modal logic. In their setting, the modular ordering is an
accessibility relation on possible worlds, axiomatized via a modal operator 2.
Without getting into the technical details of the axiomatization of their under-
lying modal logic, other than mentioning that their accessibility relation is a
modular ordering, it is worth noting that our typicality operator can be defined
in terms of their modality as •α ≡def 2¬α ∧ α (just as the alternative formu-
lation of Boutilier’s approach in (6) above). The modal sentence 2¬α∧α says
that the worlds satisfying it are α-worlds and whatever world is more prefer-
able than these is a ¬α-world. In other words, these are the minimal α-worlds.
The general case of defining Britz et al.’s modality in terms of our typicality
operator is not possible, but in a finitely generated language as we consider
here, the logics become identical.

In our enriched language the preference relation is not explicit in the syntax.
The meaning of the typicality operator is informed by the preference relation,
but the latter remains nevertheless tacit. This stands in contrast to the ap-
proaches of Baltag and Smets [2008], Boutilier [1994], Britz et al. [2009] and
Giordano et al. [2009a], which cast the preference relation as an (explicit) extra
modality in the language. From a knowledge representation perspective, our
approach has the advantage of hiding some complex aspects of the semantics
from the user (e.g. a knowledge engineer who will write down sentences in an
agents knowledge base).
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Finally, Britz and Varzinczak [2012; 2013] investigate another, complemen-
tary aspect of defeasibility by introducing (non-standard) modal operators al-
lowing us to talk about relative normality in accessible worlds. With their
defeasible versions of modalities, namely p∼∼p and p∼∼p , formalizing respectively the
notions of defeasible necessity and distinct possibility, it becomes possible to
make statements of the form “α holds in all of the normal (typical) accessible
worlds”, thereby capturing defeasibility of what is ‘expected’ in target worlds.
(Note that this is different from stating something like 2 • α, which says that
all accessible worlds are typical α-worlds.) Such preferential versions of modal-
ities allow for the definition of a family of modal logics in which defeasible
modes of inference such as defeasible actions, knowledge and obligations can
be expressed. These can be integrated either with existing |∼-based modal
logics [Britz et al., 2011a; Britz et al., 2012] or with a modal extension of our
typicality operator in striving towards a coherent theory of defeasible reasoning
in more expressive languages.

9 Concluding Remarks

The main contributions of the work reported in the present chapter can be
summarized as follows:

• We present the logic PTL which provides a formal account of typicality
in a propositional language allowing us to refer directly and concisely to
the most typical situations in which a given formula holds;

• We show that we can embed the (propositional) KLM framework within
the more expressive language of PTL, and we also define rational conse-
quence relations on the language of PTL itself;

• We establish a connection between rational consequence and belief revi-
sion, both on PTL, and

• We investigate appropriate notions of entailment for PTL and propose
two candidates.

For future work we are interested in algorithms for computing the appropri-
ate forms of entailment for PTL, specifically algorithms that can be reduced to
validity checking for PTL. It follows indirectly from results by Lehmann and
Magidor [1992] that this type of entailment has the same worst-case complexity
of validity checking for PTL. Given the aforementioned links with modal logic,
we know that this is at least a pspace-complete problem.

As briefly alluded to above, we also plan to extend PTL to more expressive
logics such as description logics and modal logics. With the introduction of
a typicality operator in these languages, it becomes possible to extend the
propositional properties for rational consequence and obtain a characterization
that reflects the additional structure of these languages, in the syntax and,
more importantly, in the semantics as well.

Finally, from a knowledge representation and reasoning perspective, when
dealing with knowledge bases, issues related to modularization [Cuenca Grau
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et al., 2006; Herzig and Varzinczak, 2005b; Herzig and Varzinczak, 2006], con-
sistency checking [Herzig and Varzinczak, 2004; Herzig and Varzinczak, 2005a;
Lang et al., 2003; Zhang et al., 2002], knowledge base integration [Meyer et
al., 2005] and maintenance [Herzig et al., 2006; Varzinczak, 2008; Varzinczak,
2010] as well as versioning [Franconi et al., 2010; Noy and Musen, 2002] show
up. These are tasks acknowledged as important by the community in the clas-
sical case [Herzig and Varzinczak, 2007; Konev et al., 2008; Moodley, 2011;
Thielscher, 2011; Varzinczak, 2006] and that also make sense in a nonmono-
tonic setting. When moving to a defeasible approach, though, such tasks have
to be reassessed and specific methods and techniques redesigned. This consti-
tutes an avenue worthy of exploration.
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