
Implementing Iterated Belief Change Via Prime
Implicates

Zhi Qiang Zhuang1, Maurice Pagnucco2, and Thomas Meyer3

1 School of Computer Science and Engineering, The University of New South Wales, Sydney,
NSW 2052, Australia

zqzh390@cse.unsw.edu.au
2 ARC Centre of Excellence for Autonomous Systems and National ICT Australia, School of

Comp. Sci. and Eng., The University of New South Wales, Sydney, NSW 2052, Australia
morri@cse.unsw.edu.au

http://www.cse.unsw.edu.au/˜morri/
3 National ICT Australia and School of Computer Science and Engineering, The University of

New South Wales, Sydney, Australia
Thomas.Meyer@nicta.com.au

http://www.cse.unsw.edu.au/˜tmeyer/

Belief change is concerned with modelling the way in which an idealised (rational)
reasoner maintains their beliefs and the way in which those beliefs are modified as the
reasoner acquires new information. The AGM [1,3,5] framework is the most widely
cited belief change methodology in the literature. It models the reasoner’s belief state
as a set of sentences that is logically closed under deduction and provides for three
belief change operations: expansion, contraction and revision. Each of the AGM belief
change operations is motivated by principles of rationality that are formalised by way
of rationality postulates.

Pagnucco [10] formalised a way of implementing the AGM belief change opera-
tions using a knowledge compilation technique involving prime implicates in order to
improve computational efficiency. This technique exploits the epistemic entrenchment
construction for AGM belief change by Gärdenfors and Makinson [4] by introducing
the notion of a compiled epistemic entrenchment. It has a number of significant fea-
tures: (a) the belief change operators constructed satisfy the AGM postulates; (b) when
compilation has been effected only subsumption checking and some simple syntactic
manipulation is required in order to contract (or revise) the reasoner’s belief state.

The aim of this paper is twofold. Firstly, to supply algorithms for Pagnucco’s [10]
formally specified prime-implicate technique for AGM belief change thus facilitating
implementation. Secondly, to provide an empirical analysis of a Java-based implemen-
tation of these algorithms (and thus the formal technique).

Implementations of AGM belief change include the work of Dixon and Wobcke [2]
and Williams [16] who adopt theorem proving techniques to realise each of the opera-
tions. The work here can be seen as an attempt to improve the computational efficiency
of implementations like these through the use of knowledge compilation. Prime impli-
cates have been used in truth maintenance systems by Reiter and de Kleer [11] and by
Kean [8]. However these approaches lack any preferential structure that allows them
to be used for more general forms of belief change. Gorogiannis and Ryan [6] use an
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alternate form of knowledge compilation—binary decision diagrams (BDDs)—but fo-
cus on the complexity of specific operations.

1 Background

We assume a fixed finite propositional object language L with the standard logical con-
nectives. Cn represents the classical consequence operator while � represents the clas-
sical consequence relation (i.e., Γ � φ iff φ ∈ Cn(Γ )). We also adopt the following
linguistic conventions to simplify the presentation. Lower case Greek letters φ, ψ, χ,
. . . denote sentences of L. Upper case Greek letters Δ, Γ , . . . denote sets of formu-
las. Theories (closed under logical consequence) are used to represent reasoners’ belief
states in AGM belief change and will be denoted by upper case Roman characters H ,
K , . . . (i.e., K = Cn(K)) that are termed belief sets. The inconsistent belief set is
denoted K⊥. Lower case Roman characters l, k, . . . denote literals (both positive and
negative). Upper case Roman characters C, D, . . . denote clauses.

Prime implicates are minimal length clauses (in terms of set inclusion) implied by a
knowledge base. Transforming a knowledge base into a set of prime implicates gives
a uniform, and logically equivalent, way of expressing the sentences in the knowledge
base that can be exploited to enhance computational efficiency. We denote the set of
prime implicates of an arbitrary set of sentences Γ by Π(Γ ). When Γ is a set of
clauses, prime implicates are easily computed by repeated application of resolution
and removing subsumed (i.e., implied) clauses [15]. This strategy can be improved by
using incremental methods [9,7], and the use of efficient data structures [11]. Compil-
ing a knowledge base into prime implicate form can lead to an exponential number of
implicates in the number of atoms (see [13]).

1.1 AGM Belief Change

Alchourrón,Gärdenfors and Makinson (AGM) [1,3,5] introduced one of the most widely
adopted belief change frameworks. The AGM considers three types of transformations
on beliefs sets as new information is acquired: belief expansion by φ in which this new
information is added to the initial belief set K without removal of any existing beliefs
(K + φ); belief contraction by φ where belief in φ is suspended (K

.−φ); and, belief
revision by φ where φ is assimilated into K while existing beliefs may need to be sus-
pended in order to maintain consistency (K ∗ φ). These operations are motivated by
rationality criteria and characterised by a set of rationality postulates which—for the
sake of brevity—we do not reproduce here but rather refer the interested reader to the
AGM account [1,3,5].

One element of the AGM that does interest us here is the notion of epistemic en-
trenchment that can be used to construct a contraction or revision function satisfying
the AGM rationality postulates. An epistemic entrenchment is an ordering over the sen-
tences in K that can be used to determine which sentences to remove during belief
contraction and revision. Formally, an epistemic entrenchment relation ≤ satisfies the
following properties [4].

(EE1) If φ ≤ ψ and ψ ≤ γ then φ ≤ γ
(EE2) If {φ} � ψ then φ ≤ ψ
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(EE3) For any φ and ψ, φ ≤ φ ∧ ψ or ψ ≤ φ ∧ ψ
(EE4) When K �= K⊥, φ �∈ K iff φ ≤ ψ for all ψ
(EE5) If φ ≤ ψ for all φ then � ψ

(EE1)–(EE3) entail that ≤ is a total pre-order. In other words, a ranking of sentences.
(EE4) says that non-beliefs are minimally entrenched while (EE5) says that tautologies
are maximally entrenched. The following condition [4] tells us how to define a contrac-
tion function using epistemic entrenchment.

(C .−) ψ ∈ K
.−φ iff ψ ∈ K and either φ < φ ∨ ψ or � φ

In the principal case a belief ψ is retained when contracting K by φ provided that there
is additional evidence to support it (φ < φ ∨ ψ).

1.2 Compiling Epistemic Entrenchment

Pagnucco [10] introduces a theory to reduce the amount of information required to
construct an AGM contraction function via epistemic entrenchment by compiling the
relation using prime implicates. An observation by Rott [12] is central to this idea.

Proposition 1. [12] For arbitrary sentence ψ ∈ L, {φ : ψ ≤ φ} = Cn({φ : ψ ≤ φ}).

Put simply, if we were to “cut” the epistemic entrenchment relation at any level, the
beliefs that are at least this entrenched would form a set that is deductively closed (i.e.,
a belief set)1.

A compiled epistemic entrenchment is essentially one in which we take each cut and
replace it by its prime implicates thus significantly reducing the number of sentences
required to be explicitly represented in the entrenchment.

Definition 1. (≤Π)

Given an epistemic entrenchment ordering ≤ satisfying properties (EE1)–(EE5) we de-
fine a compiled epistemic entrenchment ordering ≤Π as follows. For any two clauses
C, D, C ≤Π D iff all of the following hold:

1. C ≤ D;
2. C ∈ Π({φ : φ ≤ ψ}) for some ψ ∈ L; and,
3. D ∈ Π({φ : φ ≤ χ}) for some χ ∈ L

Note that the empty clause is less entrenched than all clauses which we denote ⊥ ≤ C.

We omit the theorems that show the correctness of this and most of the following defi-
nitions as they can be found in Pagnucco [10].

One concept we require is the (maximal) level of entrenchment of a clause.

Definition 2. Let C be a clause, max≤Π (C) = {D : such that

1. D is a clause where D ⊆ C, and
2. there is no other clause D′ ⊂ C and D ≤Π D′.}
1 The term “cut” is due to Rott [12] and we shall adopt it here.
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We can now define AGM contraction using the compiled entrenchment by appropriately
modifying condition (C .−). The following definition deals with contraction of K by a
single clause and we shall show how to extend it shortly. It is a simplified version of
the definition in [10]. Note that while max≤Π (C) is a set of clauses, all these clauses
are at the same level of entrenchment and so we abuse this notation in the following by
allowing this set to be represented by any one of its elements.

Definition 3. Given an epistemic entrenchment relation ≤ and a clause C we define the
contracted compiled epistemic entrenchment ≤C

Π of a compiled epistemic entrenchment
≤Π by C as: D ≤C

Π E iff either

1. D ≤ E and max≤Π (C) < max≤Π (C ∪ D), max≤Π (C ∪ E), or
2. A ≤ B and A = C ∪ F with max≤Π (C) < C ∪ D ∪ F and B = E ∪ G with

max≤Π (C) < C ∪ E ∪ G (note F and G may be empty).

Condition (1) uses (C
.−) directly to determine when clauses in the original compiled

epistemic entrenchment should be retained. The second condition determines whether
clauses that do not satisfy condition (1) and are removed should be replaced by weaker
clauses. If we do not allow replacement by weaker clauses, the AGM postulates will not
be satisfied. We see that this definition is correct as far as single clauses are concerned.

Theorem 1. [10] Let K be a belief set,
.− an AGM contraction function satisfying

(K
.−1)–(K

.−8) and ≤ an epistemic entrenchment relation defined from
.− by condition

(C≤). Furthermore, let C be a clause. Then K
.−C = Cn({D : ⊥ <C

Π D}).

Pagnucco uses some properties of epistemic entrenchment to show that contraction by
an arbitrary formula can be easily achieved by converting the formula into CNF and
contracting by the minimally entrenched conjuncts.

Definition 4. Let φ ∈ L, the set of minimal conjuncts of φ is defined as follows:
min≤Π (CNF (φ)) = {Ci ∈ CNF (φ) : max≤Π (Ci) ≤Π max≤Π (Cj) for all Cj ∈
CNF (φ)}.

We now extend our previous result to show that this produces the desired contraction.

Theorem 2. [10] Let K be a belief set,
.− an AGM contraction function satisfying

(K
.−1)–(K

.−8) and ≤ an epistemic entrenchment relation defined from
.− by condition

(C≤). Furthermore, let φ be a sentence.
Then K

.−φ =
⋂

Ci∈min≤Π
(CNF (φ)) Cn({D : ⊥ <Ci

Π D}).

Belief revision can be implemented by combining contraction and expansion via the
Levi Identity: K ∗ φ = (K .−¬φ) + φ where AGM expansion is simply deductive
closure (i.e., K + φ = Cn(K ∪ {φ})).

2 Algorithms

The basis for the knowledge compilation approach we adopt is the compiled epistemic
entrenchment relation. As noted above it is a total pre-order over clauses (i.e., a rank-
ing). We model this pre-order using ranked levels identified by integers; the greater the
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Algorithm 1. Algorithm for finding the level of entrenchment of a clause C in belief set K

represented as a compiled epistemic entrenchment relation. On termination the algorithm returns
the level at which the clause C is entrenched, −1 if the belief set K does not contain C or ∞ if
C is a tautology.

FIND-LEVEL(K, C)
1 if C is a tautology then
2 return ∞
3 L ← LK

4 while L is not empty do
5 m ← highest level in L
6 L ← L \ {m}
7 for each clause D ∈ K(m) do
8 if D ⊆ C then
9 return m

10 return −1

integer, the higher the level of epistemic entrenchment. Each formula (implicate) has an
associated integer level of entrenchment.

This means that the belief change operations of expansion and revision which in-
volve the addition of information, require that the level of entrenchment for the formula
representing the new information be supplied as well. This is not how the respective
AGM operations work however we note that this is required only to allow for iterated
belief change. If we were only interested in a single expansion or revision, then this
level of entrenchment would not be required.

We adopt the following notation to simplify the algorithms in this section. For a belief
set K we denote by K(n) the set of clauses explicitly stored at level n in the compiled
epistemic entrenchment. Similarly, K(n+) denotes the set of clauses explicitly retained
at level n or greater while K(n−) denotes those clauses explicitly retained at level n or
less. LK is a set of integers denoting the levels of the compiled epistemic entrenchment
at which clauses are explicitly maintained. LK(n+) (respectively, LK(n−)), denotes
the set of integer levels in the compiled entrenchment containing clauses greater than
or equal to (respectively, less than or equal to) n. A function computePI() takes a set of
clauses and returns the corresponding prime implicates.

2.1 Find Level

The first algorithm that we require is one to determine the rank (i.e., level) of a clause
in the compiled epistemic entrenchment relation. This is required for belief expansion
and also to implement belief contraction using the (C

.−) condition.
The heart of Algorithm 1 is lines 4–9. Starting with the highest level of the com-

piled entrenchment2 the algorithm looks through each successive level of entrenchment

2 Keep in mind that the compiled entrenchment—unlike AGM entrenchment—does not explic-
itly maintain tautologies.



512 Z.Q. Zhuang, M. Pagnucco, and T. Meyer

Algorithm 2. Algorithm for expanding belief set K by clause C at level n

EXPANSION(K, C, n)
1 h ← FIND-LEVEL(K, C)
2 if h ≥ n then
3 return
4 if n �∈ LK then
5 LK ← LK ∪ {n}
6 L ← LK(n−)
7 while L is not empty do
8 m ← highest level in L
9 L ← L \ {m}

10 if m = n then
11 P ← computePI(K(m+) ∪ {C})
12 else
13 P ← computePI(K(m+))
14 if P is empty then
15 K ← K⊥
16 return
17 N ← P \ K(m+)
18 for each clause D ∈ K(m−) do
19 for each clause D

′ ∈ N do
20 if D

′ ⊆ D then
21 remove D from K
22 add all clauses in N to level m of K

to determine whether the clause in question is subsumed by one of the implicates at
that level. As soon as such an implicate is found, the level at which this implicate is
entrenched corresponds to the level at which the clause is entrenched by Proposition 1.

2.2 Belief Expansion

Belief expansion using a compiled entrenchment differs slightly from AGM expansion
because we are interested in iterated belief change. This is in keeping with implemen-
tations like those of Dixon and Wobcke [2] and Williams [16] and the belief change
framework of Spohn [14]. Accordingly, the belief expansion operation takes three in-
puts: a belief set K , a clause C to be added and a level n at which it is to be added to
the compiled entrenchment. Note that if a formula is to be added rather than a clause,
the formula can be converted to CNF and each clause added at that level.

Lines 2–3 of Algorithm 2 determine whether the clause is already implied by the
compiled entrenchment at a level greater than or equal to n and, if so, nothing is re-
quired to be done. Lines 4–5 concern the case in which the clause needs to be added at
a level that does not explicitly exist in the compiled entrenchment in which case n is
simply added to the levels in LK . The remaining lines 7–22 take care of adding C to the
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Algorithm 3. Algorithm for contracting a belief set K by a single clause C. On termination it
returns the resulting compiled entrenchment for belief set K

.−C.

SINGLE-CLAUSE-CONTRACTION(K, C)
1 n ← FIND-LEVEL(K, C)
2 if n = −1 or n = ∞ then
3 return K
4 remove C from K
5 L ← LK(n−)
6 while L is not empty do
7 m ← highest level in L
8 L ← L \ {m}
9 N ← {}

10 for each clause D ∈ K(m) do
11 h ← FIND-LEVEL(K, C ∪ D)
12 if n = h then
13 remove D from K
14 for each literal l ∈ C do
15 k ← FIND-LEVEL(K, {¬l} ∪ D)
16 if k = m then
17 N ← N ∪ {{¬l} ∪ D}
18 for each clause E in K((n + 1)+) do
19 if C ∪ D ⊆ E then
20 E ← (E \ C) ∪ D
21 N ← N ∪ {E}
22 P ← computePI(N ∪ K(m+))
23 P ← P \ K(m+)
24 add all clauses in P to level m of K
25 return K

compiled entrenchment and re-computing the prime implicates at each level less than or
equal to n. Line 11 is executed the first time through the loop, adding C to the compiled
entrenchment at level n while line 12 is executed on subsequent iterations. Lines 11 and
12 re-compute the prime implicates at each level. Lines 17–21 take care of removing
any subsumed clauses from the compiled entrenchment to ensure that only those clauses
that need to be represented are maintained. Lines 14–16 handle the case of expansion
into inconsistency. Note that the function computePI() can be implemented using an
incremental technique [7,9] to reduce the amount of computation required.

2.3 Belief Contraction

As with the theoretical development of belief contraction using a compiled epistemic
entrenchment relation we begin by considering the algorithm for belief contraction by
a single clause C. Algorithm 3 uses Definition 3 which is motivated by Gärdenfors and
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Algorithm 4. Algorithm for intersecting two compiled entrenchments representing belief sets K1

and K2. On termination it returns the intersection of the two compiled entrenchments.

INTERSECTION(K1, K2)
1 K ← empty belief set
2 L1 ← LK1

3 L2 ← LK2

4 for each level n ∈ L2
5 if n �∈ L1 then
6 L1 ← L1 ∪ {n}
7 while L1 is not empty do
8 m ← highest level in L1
9 L1 ← L1 \ {m}

10 N ← {}
11 for each clause C ∈ K1(m) do
12 for each clause D ∈ K2(m+) do
13 if C ⊆ D and FIND-LEVEL(K, D) = −1 then
14 N ← N ∪ {D}
15 for each clause C ∈ K2(m) do
16 for each clause D ∈ K1(m+) do
17 if C ⊆ D and FIND-LEVEL(K, D) = −1 then
18 N ← N ∪ {D}
19 P ← computePI(N)
20 add all clauses in P to level m of K
21 return K

Makinson’s condition (C
.−). Lines 1–3 determine whether it is necessary to perform

contraction. Definition 3 and condition (C .−) tell us that clauses at a higher level of
entrenchment to C are unaffected by contraction. The while loop encompassing lines
6–24 considers the clauses explicitly entrenched at levels less than or equal to that of C
in the compiled entrenchment, determining which are to be removed and whether they
are replaced by weaker clauses in order to adhere to the AGM postulates. Definition 3(2)
(and Condition (C

.−)) tell us that a clause D in the compiled entrenchment that is at a
level less than or equal to that of clause C should be removed whenever C = C ∨ D
which is the condition tested on lines 11 and 12 and the clause is subsequently removed
at line 13. Having determined to remove the clause we now need to determine whether
the clause D should be replaced by logically weaker clauses. This is done in lines 18–21
of the algorithm. Lines 14–17 add clauses that are required by the Recovery postulate
(K .−5). The remaining lines 22–24 re-compute the prime implicates as required.

To contract a compiled entrenchment by an arbitrary sentence requires a slightly
special form of intersection that takes into account subsumed clauses. This is in keeping
with our desire to implement iterated belief change. Lines 4–7 ensure that all levels of
both compiled entrenchments are considered (which is required for subsumed clauses).
A clause C at level m of K1 is checked against all clauses at level j of K2 for all j ≥ m.



Implementing Iterated Belief Change Via Prime Implicates 515

If there are clauses that C subsumes but C is not in the resulting belief set K then the
subsumed clause is added to level m of K since it is minimal. As the same procedure
has to be performed for both belief sets, we have two for loops in lines 11–14 and 15–
18 of the algorithm that iterate over each of the compiled entrenchments for both belief
sets achieving this task. Finally, in lines 19–20 prime implicates are re-computed.

We are now in a position to implement the algorithm to contract by arbitrary sen-
tences converted into CNF. By Theorem 1 we only need to consider the minimally
entrenched clauses in the CNF of the formula, contract K by each in turn and take the
intersection of the result. Algorithm LEAST-ENTRENCHED-CLAUSE(K, S) takes
care of determining the least entrenched clauses while ARBITRARY-SENTENCE-
CONTRACTION(K, S) performs the individual contractions and takes the required
intersections using the preceding algorithm.

Algorithm 5. Algorithm for contracting belief set K by an arbitrary sentence S in CNF

LEAST-ENTRENCHED-CLAUSE(K, S)
1 N ← {}
2 for each clause C ∈ S do
3 if N ← {} then
4 N ← {C}
5 else
6 D ← first element in N
7 if FIND-LEVEL(K, C) > FIND-LEVEL(K, D) then
8 N ← {C}
9 elif FIND-LEVEL(K, C) = FIND-LEVEL(K, D) then

10 N ← N ∪ {C}
11 return N

ARBITRARY-SENTENCE-CONTRACTION(K, S)
1 I ← empty belief set
2 N ← LEAST-ENTRENCHED-CLAUSE(K, S)
3 for each clause D ∈ N do
4 K

′ ← K

5 I
′ ← SINGLE-CLAUSE-CONTRACTION(K

′
, D)

6 if I is empty belief set then
7 I ← I

′

8 else
9 I ← INTERSECTION(I, I

′
)

10 K ← I

Note that belief revision is now easily achieved by combining belief contraction and
belief expansion via the Levi Identity (K ∗ φ = (K .−φ) + φ) so we omit a specific
algorithm for this straightforward operation.
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3 Analysis

The foregoing algorithms were implemented in Java and subjected to empirical anal-
ysis as we describe here. The experiments performed were conducted on randomly
generated 3-clauses using belief revision rather than just expansion or contraction. The
reason for this latter decision is that using expansion alone may lead to an inconsistent
belief set and contraction may involve a lot of degenerate cases (attempting to contract
a clause that is not implied by the compiled entrenchment) which would skew the re-
sults. Adopting revision is guaranteed to require one of expansion or contraction to be
performed and possibly both.

In the first experiment the compiled entrenchment is continually revised by a ran-
domly generated 3-clause which is added at a random level of entrenchment between 1
and 20. Each 3-clause is generated from a vocabulary of 5 propositional letters to ensure
that there is a reasonable chance for interaction among the clauses added to the com-
piled entrenchment (otherwise the experiments will tend to be uninteresting). For each
number of clauses 50 trials were conducted and the average time taken recorded. The
resulting graph is show in Figure 1(a). We see that initially, with few clauses, the aver-
age running time increases dramatically. At about 50 clauses the graph begins to level
off. This indicates that there is indeed an advantage to compiling the entrenchment re-
lation using prime implicates. After some initial work, changes tend to be minor. Note
however that our choice to restrict the language to 5 propositional letters may also be
a factor as after some time, clauses may be more likely to either already occur in the
compiled entrenchment. This requires no work in terms of revision. Note however that
there is also an increased likelihood of conflict occurring.
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Fig. 1. (a) Running time vs number of clauses; (b) running time vs range of levels; (c) running
time vs range of propositional letters

The second experiment involves adjusting the coarseness of the compiled entrench-
ment by varying the maximum number of levels of entrenchment allowed. In this case
the compiled entrenchment is revised by 100 randomly generated 3-clauses (again, cho-
sen from a vocabulary of 5 propositional letters) but with the maximum number of levels
increasing by 10 each time. 50 trials were conducted for each data point. While there
is a reasonable fluctuation in the graph—shown in Figure 1(b)—a closer look reveals
a general upward trend. This is to be expected. In conducting either expansion or con-
traction, the crucial phase is to re-compute prime implicates. For expansion this occurs
at all levels less than or equal to the one at which the clause is added. For contraction it
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occurs at all levels less than or equal to the one at which the clause resides. With more
levels of entrenchment, the possibility of having to do this over a greater number of
levels increases. Even with the use of an incremental algorithm for re-computing prime
implicates this incurs a significant cost.

The final experiment varies the range of propositional letters used to generate 3-
clauses from 3 to 10. Again 50 trials are conducted for each data point with 100 3-
clauses generated for revision. As expected we observe a significant increase in the
average running time as the number of propositional letters increases. However, we
have not at this stage attempted many optimisations in (re-)computing prime implicates
which may help to ameliorate this situation.

4 Conclusions

In this paper we have introduced algorithms that implement Pagnucco’s [10] formal
framework for implementing AGM belief revision through the use of prime implicates
to compile the epistemic entrenchment relation. We have also subjected these algo-
rithms to an initial empirical analysis. This analysis indicates that the compilation of
the epistemic entrenchment relation can lead to an improvement in the average running
time for belief revision. Further empirical analysis is expected to confirm these findings.

Apart from a larger range of experiments, further work involves trying to optimise
parts of the algorithms we have presented, in particular the generation of prime impli-
cates and the cost of subsumption checking. These can be achieved through a better
choice of data structures and the employment of heuristic techniques commonly used
in modern SAT solvers. Another avenue for future research is the extension of our al-
gorithms to first-order logic where the definition of prime implicates becomes more
problematic but where a restricted definition may afford some purchase.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. J. of Symbolic Logic 50, 510–530 (1985)

2. Dixon, S.E., Wobcke, W.: The implementation of a first-order logic AGM belief revision
system. In: Proc. of the Fifth IEEE Int. Conf. on Tools in Art. Int. (1993)

3. Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. Bradford
Books, MIT Press, Cambridge Massachusetts (1988)

4. Gärdenfors, P., Makinson, D.: Revisions of knowledge systems using epistemic entrench-
ment. In: Proc. of 2nd Conf. on Th. Aspect of Reas. About Knowl., pp. 83–96 (1988)

5. Gärdenfors, P., Rott, H.: Belief revision. In: Handbook of Logic in AI and Logic Program-
ming vol. IV: Epistemic and Temporal Reasoning, OUP, pp. 35–132 (1995)

6. Gorogiannis, N., Ryan, M.D.: Implementation of belief change operators using BDDs. Studia
Logica 70(1), 131–156 (2002)

7. Jackson, P.: Computing prime implicates incrementally. In: Proceedings of the Eleventh Con-
ference on Automated Deduction (June 1992)

8. Kean, A.: A formal characterisation of a domain independent abductive reasoning system.
Technical Report HKUST-CS93-4, Dept. of Computer Science, HKUST (1993)

9. Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates.
Journal of Symbolic Computation 9, 185–206 (1990)



518 Z.Q. Zhuang, M. Pagnucco, and T. Meyer

10. Pagnucco, M.: Knowledge compilation for belief change. In: Sattar, A., Kang, B.-H. (eds.)
AI 2006. LNCS (LNAI), vol. 4304, pp. 90–99. Springer, Heidelberg (2006)

11. Reiter, R., de Kleer, J.: Foundations of assumption-based truth maintenance systems: Prelim-
inary report. In: Proc. of the Nat. Conf. in AI, pp. 183–188 (1987)

12. Rott, H.: Preferential belief change using generalized epistemic entrenchment. Journal of
Logic, Language and Information 1, 45–78 (1992)

13. Schrag, R., Crawford, J.M.: Implicates and prime implicates in random 3-SAT. Artificial
Intelligence 81(1-2), 199–222 (1996)

14. Spohn, W.: Ordinal conditional functions: A dynamic theory of epistemic states. In: Causa-
tion in Decision, Belief Change, and Statistics, II, pp. 105–134. Kluwer, Dordrecht (1988)

15. Tison, P.: Generalization of consensus theory and application to the minimization of boolean
functions. IEEE Trans. on Elec. Computers 4, 446–456 (1967)

16. Williams, M.-A.: Iterated theory change: A computational model. In: Proc. of the Fourteenth
International Joint Conference on Artificial Intelligence, pp. 1541–1550 (1995)


	Implementing Iterated Belief Change Via Prime Implicates
	Background
	AGM Belief Change
	Compiling Epistemic Entrenchment

	Algorithms
	Find Level
	Belief Expansion
	Belief Contraction

	Analysis
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /MTEX
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




