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Abstract

We present a general preferential semantic framework
for plausible subsumption in description logics, anal-
ogous to the KLM preferential semantics for proposi-
tional entailment. We introduce the notion of ordered
interpretations for description logics, and use it to define
two mutually dual non-deductive subsumption relations
⊏
∼

and ⊏
∼

∗. We outline their properties and explain how
they may be used for inductive and abductive reason-
ing respectively. We show that the preferential seman-
tics for subsumption can be reduced to standard seman-
tics of a sufficiently expressive description logic. This
has the advantage that standard DL algorithms can be
extended to reason about our notions of plausible sub-
sumption.

Introduction
Consider the following simplified scenario: A clinician at
a rural clinic examines a patient who displays a number of
symptoms – severe headache, fever and nausea. The clin-
ician, seeking plausible explanations for these symptoms,
identifies malaria and meningitis as two plausible causes.
She considers each of these in turn, checking for symptoms
such as a stiff and painful neck, eye sensitivity and muscu-
lar aches. Alerted to a strong possibility of meningitis, she
arranges for a lumbar puncture. The initial Xpert EV test re-
sult for viral meningitis is negative, hence she commences
a treatment of antibiotics for bacterial meningitis without
waiting the expected ten days for the conclusive test results
to be returned to the clinic.

This scenario illustrates the reasoning required during
medical diagnosis and drug administration: “Having ob-
served certain symptoms in a patient, which syndromes
would plausibly explain them?” This is abduction, the pro-
cess of seeking plausible, partial explanations for observa-
tions. “Having identified meningitis as a possibility, which
further symptoms should typically be present in the pa-
tient?” This is induction, the process of inferring plausi-
ble consequences from assumptions. “Most cases of viral
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meningitis would give a positive Xpert EV test result. Vi-
ral meningitis is therefore unlikely, but cannot be ruled out.”
Again an abductive inference. “The negative Xpert EV re-
sult would be typical in a case of bacterial meningitis. It is
therefore prudent to start administering antibiotic treatment
immediately.” Again an inductive inference.

These forms of defeasible reasoning can benefit greatly
from an intelligent knowledge system that supports defea-
sible reasoning. The system can suggest plausible (though
possibly wrong) explanations for observations, and can sug-
gest further tests and treatment programmes.

The knowledge representation formalism that has the best
potential to deal with these forms of defeasible reasoning in
complex structured domains is description logics (Baader,
Horrocks, and Sattler 2008). Description logics have al-
ready gained wide acceptance as underlying formalism in
intelligent medical knowledge systems and other applica-
tion domains (Rector 2003; Baader, Horrocks, and Sattler
2008). The expressive power of a description logic (DL) is
determined by the constructs available for building concept
descriptions. The nature of DL reasoning has traditionally
beendeductive, but there have been a fair number of pro-
posals to extend DLs to incorporate some form of defeasible
reasoning, mostly centered around the incorporation of some
form of default rules, e.g. (Donini, Nardi, and Rosati 2002).

An alternative model for defeasible reasoning isprefer-
ential reasoning(Kraus, Lehmann, and Magidor 1990); this
was motivated and used in the proposal of (Giordano et al.
2007) for a preferential semantics of concept inclusion.

We present a general preferential semantic framework
for defeasible subsumption in description logics, analogous
to the KLM preferential semantics for propositional en-
tailment. Following (Peirce 1974; Britz, Heidema, and
Labuschagne 2007), we distinguish between two forms of
defeasible reasoning, namely induction and abduction. We
accordingly propose defeasible subsumption relations that
lend themselves to these forms of reasoning.

The rest of the paper is structured as follows: We first fix
some standard semantic terminology on description logics
that will be useful later on. After giving some background
on rational preference orders, we introduce the notion of an
ordered interpretation. We then define two mutually dual
preferential subsumption relations⊏

∼
and ⊏

∼

∗ semantically,
in terms of their satisfaction by a fixed, ordered interpre-
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tation (Definitions 3 and 4 respectively), and discuss their
respective properties.

Next, we present a formal semantics of defeasible sub-
sumption, but now in terms of entailment by a knowledge
base, i.e. with the semantics now constrained by all or-
dered interpretations satisfying the knowledge base (Defi-
nition 10).

The subsequent section outlines some of the inductive and
abductive reasoning tasks that may be carried out using pref-
erential subsumption⊏

∼
and its dual ⊏

∼

∗ respectively. Fi-
nally, we relate our semantics of entailment of Definition 10
to a standard DL semantics. We show that our abstract se-
mantic framework for defeasible subsumption translates to
a standard semantics in which preferential subsumption and
its dual can be reduced to classical concept inclusion (The-
orem 14). We also relate both these semantics to a Hilbert-
style axiomatisation of rational preferential reasoning in a
suitably expressive description logic.

Preliminaries
In the standard set-theoretic semantics of concept descrip-
tions, concepts are interpreted as subsets of a domain of in-
terest, and roles as binary relations over this domain. An in-
terpretationI consists of a non-empty set∆I (thedomainof
I) and a function·I (the interpretation functionof I) which
maps each concept nameA to a subsetAI of ∆I , and each
role nameR to a subsetRI of ∆I × ∆I . The interpretation
function is extended to arbitrary concept descriptions (and
role descriptions, if complex role descriptions are allowed
in the language) in the usual way.

A DL knowledge base consists of aTboxwhich contains
terminological axioms, and anAboxwhich containsasser-
tions, i.e. facts about specific named objects and relation-
ships between objects in the domain. Depending on the ex-
pressive power of the DL, a knowledge base may also have
anRboxwhich containsrole axioms.

Tbox statements areconcept inclusionsof the formC ⊑
D, whereC andD are (possibly complex) concept descrip-
tions. C ⊑ D is also called asubsumption statement, read
“C is subsumed byD”. An interpretationI satisfiesC ⊑ D,
written I 
 C ⊑ D, iff CI ⊆ DI . C ⊑ D is valid, written
|= C ⊑ D, iff it is satisfied by all interpretations.

Objects named in the Abox are referred to by a finite num-
ber of individual names. These names may be used in two
types of assertional statements –concept assertionsof the
formC(a) androle assertionsof the formR(a, b), whereC
is a concept description,R is a role description, anda and
b are individual names. To provide a semantics for Abox
statements it is necessary to add to every interpretation an in-
jectivedenotation functionwhich satisfies the unique names
assumption, mapping each individual namea to a different
elementaI of the domain of interpretation∆I . An interpre-
tationI satisfies the assertionC(a) iff aI ∈ CI ; it satisfies
R(a, b) iff (aI , bI) ∈ RI .

Rbox statements may include amongst others, role inclu-
sions of the formR ⊑ S and role axioms that are used to
define role properties such as transitivity.

An interpretationI satisfies a DL knowledge baseK iff
it satisfies every statement inK. A DL knowledge baseK

entailsa DL statementφ, written asK |= φ, iff every inter-
pretation that satisfiesK also satisfiesφ.

Preferential semantics
In a preferential semantics for a propositional language, one
assumes some order relation on propositional truth valua-
tions (or on interpretations or worlds or, more generally, on
states) to be given. The intuitive idea captured by the order
relation is that interpretations higher up (greater) in the order
are more preferred, more normal, more likely to occur in the
context under consideration, than those lower down. (For
historical reasons the order is often inverted in the literature,
but we shall follow (Shoham 1988, p.74) in taking upwards
as the direction of increased preference. This also respects
the direction of accessibility relations in modal logic which
is relevant to this paper.)

Our choice of generalisation of preferential semantics to
more expressive languages is guided by one possible un-
derlying intuition of the meaning of the preference order.
Namely, we assume that some objects in the application do-
main are viewed as more typical than others. This leads us
to take as starting point a preference order on objects in the
application domain. Hence we assume that the domain of
any interpretationI, ∆I , is ordered by a preference relation.
We make the preference order on the domain of interpreta-
tion explicit through the notion of anordered interpretation:
(I,≤) is the interpretationI with preference order≤ on the
domain∆I .

The notion of an ordered first-order interpretation is natu-
rally analogous to an order on propositional valuations: The
information characterising a propositional valuation is the
truth or falsity of atomic propositions. In the context of de-
scription logics, the information characterising an object in
a given domain of interpretation is its membership (or not)
to each named concept. The link between description logics
and modal logics yields a closely related analogy. Namely,
the information characterising a modal possible world is the
truth or falsity of atomic propositions in that world. So, in
a description logic setting, we assume a preference order on
objects; in a modal logic setting, this translates to viewing
the accessibility relation to be a preference order on possi-
ble worlds.

Elaborating further on the analogy between truth valua-
tions in propositional logic and objects in description log-
ics, we note that semantic entailment of propositions cor-
responds to subsumption of concepts:φ |= ψ denotes the
statement “every model ofφ is also a model ofψ”, whereas
C ⊑ D denotes the statement “every object inC is also an
object inD”. In (Britz, Heidema, and Labuschagne 2007)
classical propositional entailment|= is generalised in two
mutually dual ways to preferential entailments|∼ and |∼∗;
analogously, here⊑ will be generalised to preferential sub-
sumptions⊏

∼
and ⊏

∼

∗ in Definitions 3 and 4 below.
To ensure that the subsumption relations eventually gen-

erated arerational (Freund, Lehmann, and Morris 1991;
Lehmann and Magidor 1992), we assume the preference or-
der to be amodular partial order, i.e. a reflexive, transitive,
anti-symmetric relation such that, for alla, b, c in ∆I , if a
andb are incomparable anda is strictly belowc, thenb is
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also strictly belowc. Modular partial orders have the effect
of stratifying each∆I into layers, with any two elements in
the same layer being unrelated to each other, and any two
elements in different layers being related to each other. (We
could also have taken the preference order to be a total pre-
order, i.e. a reflexive, transitive relation such that, for alla,
b in ∆I , a andb are comparable. Since there is a bijection
between modular partial orders and total preorders on∆I , it
makes no difference for present purposes which formalism
we choose.)

We further assume that the order relation isNoetherian
(and hence, in Shoham’s terminology (Shoham 1988, p.75),
bounded, which is the dual of well-founded, which in turn
implies, in the terminology of (Kraus, Lehmann, and Magi-
dor 1990), that the order relation is smooth), i.e., there is no
infinite strictly ascending chain of objects. In the presence
of transitivity, the Noetherian property is equivalent to the
following condition: For every nonempty subsetX of ∆I

anda ∈ X there is an elementb ∈ X , maximal inX , with b
greater than or equal toa.

Satisfaction of preferential subsumption
We introduced the notion of an ordered interpretation above.
We now develop a formal semantics for description logics
using ordered interpretations. We first introduce the notion
of satisfaction by an ordered interpretation, thereafter we re-
lax the semantics of concept inclusion to arrive at a defini-
tion of satisfaction of preferential subsumption relation⊏

∼

by an ordered interpretation. In the next subsection, we de-
fine the dual⊏

∼

∗ of this relaxation. We also outline important
properties of both⊏

∼
and ⊏

∼

∗ relative to a fixed ordered in-
terpretation. This subsection and the next then set the scene
for a generalisation from “satisfaction relative to a fixed in-
terpretation” to “entailment relative to a knowledge base”.
This will be addressed in the following subsection.

Definition 1 An ordered interpretation(I,≤) consists of an
interpretationI and a Noetherian, modular partial order≤
over its domain∆I .

Definition 2 An ordered interpretation(I,≤) satisfies
C ⊑ D, written (I,≤) 
 C ⊑ D, iff I satisfiesC ⊑ D.

We extend the semantics of⊑ to include more pairs
(C,D) by shrinkingCI to a smaller set, namely the setCI

−

of maximally preferred or typical objects in the extension of
C. The preferential semantics of the resulting relation⊏

∼
is

defined as follows:

Definition 3 An ordered interpretation(I,≤) satisfies the
preferential subsumptionC ⊏

∼
D, written (I,≤) 
 C ⊏

∼
D,

iff CI
−

⊆ DI , where

CI
−

= {x ∈ CI | for noy ∈ CI is x ≤ y buty 6≤ x}.

We make no assumption about which concept or role con-
structors are part of the DL language under consideration,
but assume that, if present, the constructors⊓, ⊔ and¬ are
interpreted in the standard way, ignoring the order≤ on I.
Some of the properties of⊏

∼
listed below (and of⊏

∼

∗ in the
following subsection) may therefore be irrelevant in some

DLs. For example, rational monotonicity is only relevant in
a DL which can express negated concepts.

Preferential subsumption⊏
∼

is supraclassical, nonmono-
tonicanddefeasible, in the following senses of these terms:

Supraclassicality: If(I,≤) 
 C ⊑ D then(I,≤) 
 C ⊏
∼

D.

Nonmonotonicity:(I,≤) 
 C ⊏
∼

D does not necessarily im-
ply (I,≤) 
 C ⊓ C′ ⊏

∼
D.

Defeasibility: (I,≤) 
 C ⊏
∼

D does not necessarily imply
(I,≤) 
 C ⊑ D.

Note that any strictly supraclassical relation is also defea-
sible, but that in general a defeasible relation need not be
supraclassical.

The following properties of⊏
∼

are analogous to the fa-
miliar properties of rational preferential entailment (Kraus,
Lehmann, and Magidor 1990; Lehmann and Magidor 1992).

Reflexivity: (I,≤) 
 C ⊏
∼

C.

And: If (I,≤) 
 C ⊏
∼

D and(I,≤) 
 C ⊏
∼

F

then(I,≤) 
 C ⊏
∼

D ⊓ F .

Or: If (I,≤) 
 C ⊏
∼

F and(I,≤) 
 D ⊏
∼

F

then(I,≤) 
 C ⊔ D ⊏
∼

F .

Left logical equivalence:If (I,≤) 
 C ⊑ D and
(I,≤) 
 D ⊑ C and(I,≤) 
 C ⊏

∼
F then(I,≤) 
 D ⊏

∼
F .

Left defeasible equivalence:If (I,≤) 
 C ⊏
∼

D and
(I,≤) 
 D ⊏

∼
C and(I,≤) 
 C ⊏

∼
F then(I,≤) 
 D ⊏

∼
F .

Right weakening:If (I,≤) 
 C ⊏
∼

D and(I,≤) 
 D ⊑ F

then(I,≤) 
 C ⊏
∼

F .

Cautious monotonicity:If (I,≤) 
 C ⊏
∼

D and
(I,≤) 
 C ⊏

∼
F then(I,≤) 
 C ⊓ D ⊏

∼
F .

Rational monotonicity:If (I,≤) 
 C ⊏
∼

D and
(I,≤) 1 C ⊏

∼
¬F then(I,≤) 
 C ⊓ F ⊏

∼
D.

Cut: If (I,≤) 
 C ⊓ D ⊏
∼

F and(I,≤) 
 C ⊏
∼

D

then(I,≤) 
 C ⊏
∼

F .

Satisfaction of dual preferential subsumption
The semantics ofC ⊏

∼
D relaxes that ofC ⊑ D by requiring

only thatCI
−

⊆ DI instead ofCI ⊆ DI . An alternative
relaxation of concept inclusion is obtained by dilatingDI

toDI
+

, for some appropriate choice ofDI
+

. SinceCI
−

is
the set comprising only the most preferred or typical objects
in the extension ofC, we takeDI

+

to be the dual notion,
i.e. the set of all objects except for the most preferred or
typical objects not in the extension ofD. We then define the
preferential semantics of the dual preferential subsumption
relation ⊏

∼

∗ as follows:

Definition 4 An ordered interpretation(I,≤) satisfies the
dual preferential subsumption statementC ⊏

∼

∗D, written
(I,≤) 
 C ⊏

∼

∗D, iff CI ⊆ DI
+

, where

DI
+

= DI ∪ {x ∈ ∆I | ∃y /∈ DI with x ≤ y andy � x}.

We may think ofDI
+

as obtained by adding toDI those
objects outside ofDI that are not maximally preferred. The
intuition underlying this form of subsumption is that, should
there (against expectations) be an object in the extension of
C which is not in the extension ofD (i.e. a counterexample
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to C ⊑ D), then this object or counterexample is abnormal
or exceptional, being not amongst the normal or typical ob-
jects not inDI .

The properties of⊏
∼

∗ (in the form of their analogues
for preferential propositional entailment) are discussed in
(Britz, Heidema, and Labuschagne 2007), where the rela-
tion was first defined in the context of abductive reasoning in
propositional logic. Briefly,⊏

∼

∗ is the dual of⊏
∼

, where the
operation()∗ is given by(C,D) ∈ ⊏

∼

∗ iff (¬D,¬C) ∈ ⊏
∼

,
i.e., ⊏

∼

∗ and ⊏
∼

arecontrapositives. While ⊏
∼

∗ is also supra-
classical and defeasible, it ismonotonic, belying the tacit as-
sumption often made that defeasible inference relations are
by definition also nonmonotonic. The dual properties of⊏

∼

∗

are as follows:

Reflexivity: (I,≤) 
 C ⊏
∼

∗

C.

Or: If (I,≤) 
 C ⊏
∼

∗

F and(I,≤) 
 D ⊏
∼

∗

F

then(I,≤) 
 C ⊔ D ⊏
∼

∗
F .

And: If (I,≤) 
 C ⊏
∼

D and(I,≤) 
 C ⊏
∼

∗

F

then(I,≤) 
 (C ⊏
∼

∗

D ⊓ F ).

Right logical equivalence:If (I,≤) 
 C ⊑ D and
(I,≤) 
 D ⊑ C and(I,≤) 
 F ⊏

∼

∗
C then(I,≤) 
 F ⊏

∼

∗
D.

Right defeasible equivalence:If (I,≤) 
 C ⊏
∼

∗

D and
(I,≤) 
 D ⊏

∼

∗

C and(I,≤) 
 F ⊏
∼

∗

C then(I,≤) 
 F ⊏
∼

∗

D.

Monotonicity: If (I,≤) 
 D ⊏
∼

∗
F and(I,≤) 
 C ⊑ D

then(I,≤) 
 C ⊏
∼

∗

F .

Cautious right weakening:If (I,≤) 
 C ⊏
∼

∗

D and
(I,≤) 
 F ⊏

∼

∗
D then(I,≤) 
 C ⊏

∼

∗
D ⊔ F .

Rational right weakening:If (I,≤) 
 C ⊏
∼

∗
D and

(I,≤) 1 ¬F ⊏
∼

∗

D then(I,≤) 
 C ⊏
∼

∗

D ⊔ F .

Cautious right strengthening:If (I,≤) 
 C ⊏
∼

∗

D ⊔ F and
(I,≤) 
 F ⊏

∼

∗
D then(I,≤) 
 C ⊏

∼
D.

We conclude this subsection by pointing out two special
cases where satisfaction of⊑, ⊏

∼
and ⊏

∼

∗ are directly related
to each other. Proposition 5 shows that both preferential sub-
sumption and its dual reduce to classical subsumption if the
preference order is the identity relation.

Proposition 5 Consider an ordered interpretation(I,=) in
which the order on∆I is the identity relation on this set. For
any conceptsC andD we have

(I,=) 
 C ⊑ D iff (I,=) 
 C ⊏
∼
D iff (I,=) 
 C ⊏

∼

∗D.

Proposition 6 shows how background informationA can be
captured by a (crude) preference order≤A.

Proposition 6 Consider any conceptA and ordered inter-
pretation (I,≤A) for which {AI ,¬AI} is a proper di-
chotomy of∆I (i.e., both sets are non-empty), while

<I

A:= {(x, y) ∈ ∆I × ∆I | x ∈ ¬AI andy ∈ AI},

i.e., every element ofAI is strictly preferred to every element
outsideAI .

Now letC andD be two concepts such thatC is consis-
tent withA (AI ∩ CI 6= ∅), and¬D is also consistent with
A (AI * DI ). Then we have

I 
 A⊓C ⊑ D iff (I,≤A) 
 C ⊏
∼
D iff (I,≤A) 
 C ⊏

∼

∗D.

Entailment of defeasible subsumptions
Satisfaction for preferential subsumption⊏

∼
and its dual⊏

∼

∗

is defined relative to a fixed, ordered interpretation. We now
take this a step further, and develop a general semantic the-
ory of entailment relative to a knowledge base using ordered
interpretations. Note that this does not yield a preferential
entailment relation. The entailment relation|⊜ of Definition
10 below is deductive, monotonic and, in a sense that we
shall make precise in Theorem 14, classical.

The modular partial order≤ on domain elements in an
ordered interpretation(I,≤) may be constrained by means
of a knowledge base. Namely, we extend the knowledge
base Abox to allow role assertions of the forma � b, such
that the interpretation of� is constrained to be that of≤:

Definition 7 An ordered interpretation(I,≤) satisfies an
assertiona � b iff aI ≤ bI .

As in the previous subsections, we do not make any fur-
ther assumptions about the DL language at present, but as-
sume that concept and role assertions, concept and role con-
structors, and classical subsumption are interpreted in the
standard way, ignoring the preference order of ordered in-
terpretations (see Definition 2).

Definition 8 The preferential subsumption statement
C ⊏

∼
D is valid, written |⊜ C ⊏

∼
D, iff it is satisfied by all

ordered interpretations(I,≤).
The dual preferential subsumption statementC ⊏

∼

∗

D is
valid, written |⊜ C ⊏

∼

∗D, iff it is satisfied by all ordered in-
terpretations(I,≤).

It turns out that validity of preferential and of dual prefer-
ential subsumption statements are not very interesting, since
they reduce to validity of classical subsumption.

Proposition 9 For any conceptsC andD,

|⊜ C ⊑ D iff |⊜ C ⊏
∼
D iff |⊜ C ⊏

∼

∗D.

It is only when subsumption is induced by a non-tautological
knowledge base that the semantics diverges from that of
classical subsumption:

Definition 10 A DL knowledge baseK entails the prefer-
ential subsumption statementC ⊏

∼
D, writtenK |⊜ C ⊏

∼
D,

iff every ordered interpretation that satisfiesK also satisfies
C ⊏

∼
D.

K entails the dual preferential subsumption statement
C ⊏

∼

∗D, written K |⊜ C ⊏
∼

∗D, iff every ordered interpre-
tation that satisfiesK also satisfiesC ⊏

∼

∗

D.

The following properties of⊏
∼

and ⊏
∼

∗ are direct conse-
quences of their corresponding properties relative to a fixed,
ordered interpretation:

⊏
∼

and ⊏
∼

∗ are both supraclassical: IfK |⊜ C ⊑ D then
alsoK |⊜ C ⊏

∼
D andK |⊜ C ⊏

∼

∗D.
⊏
∼

is nonmonotonic:K |⊜ C ⊏
∼
D does not necessarily

imply thatK |⊜ C ⊓ C′ ⊏
∼
D.

⊏
∼

∗ is monotonic: IfK |⊜ C ⊏
∼

∗D thenK |⊜ C ⊓ C′ ⊏
∼

∗D.
⊏
∼

and ⊏
∼

∗ are both defeasible: NeitherK |⊜ C ⊏
∼
D nor

K |⊜ C ⊏
∼

∗D necessarily implies thatK |⊜ C ⊑ D.
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The other properties of⊏
∼

listed earlier relative to a fixed,
ordered interpretation (i.e. reflexivity, and, or, left logical
equivalence, left defeasible equivalence, right weakening,
cautious monotonicity, rational monotonicity and cut) ex-
tend analogously in the context of entailment relative to a
knowledge base. For example, reflexivity of⊏

∼
relative toK

readsK |⊜ C ⊏
∼
C.

Similarly, the properties of⊏
∼

∗ listed earlier (i.e. reflexiv-
ity, or, and, right logical equivalence, right defeasible equiv-
alence, cautious right weakening, rational right weakening,
monotonicity and cautious right strengthening) also extend
analogously.

To recap then, we have defined a non-standard description
logic with a preferential semantics, which we shall refer to
asRDL in the remainder of the paper. We takeRDL to be
obtained from an arbitrary standard DL by allowing Tbox
statements of the formC ⊏

∼
D andC ⊏

∼

∗D, and Abox state-
ments of the forma � b.

Forms of reasoning
A central classical DL reasoning task is the establishment
of whether a knowledge baseK entails a concept inclusion
C ⊑ D, i.e. whetherK |= C ⊑ D. Here, the semantics of
both the entailment relation|= and the subsumption relation
⊑ aredeductive, the former allowing no counterexample in-
terpretationI that satisfiesK but does not satisfyC ⊑ D,
and the latter allowing no counterexample object inC which
is not inD, and so strictly preserving truth from “x is inC”
to “x is inD”.

A second classical reasoning task is the establishment of
whether a specific individual objectx is an instance of a con-
ceptC, i.e. whetherK |= C(x). Again, the reasoning is
deductivein two senses: no allowance is made for plausible
concept membership because|= is deductive, and because
K contains no plausible concept inclusions.

Although the entailment|⊜ of Definition 10 is deductive,
alternative reasoning patterns to deduction are obtained by
relaxing the semantic constraints on concept inclusion (i.e.,
rather than relaxing the semantic constraints on entailment
from the knowledge base). Defeasible subsumption state-
ments may be included in the knowledge base itself; whether
or not to allow this is an engineering design decision.

Besides deduction, the 19th century philosopher Charles
Sanders Peirce recognised two more forms of rational rea-
soning, calledinductionandabduction(Peirce 1974; Britz,
Heidema, and Labuschagne 2007). Though plausible, these
are defeasible inference relations and allow counterexam-
ples. Inductive reasoning takes a stance focussing on the
forward direction of reasoning from a premiss to plausible
consequences of that premiss, from a fact or observation to
predictions or prognoses, from, e.g., “We know thatx is in
C” to “Is it plausible that for that reasonx is then also in
D?”. Abductive reasoning, in contrast, aims in the converse
direction, from an established fact, construed as a putative
consequence, to plausible premisses, reasons, diagnoses that
would yield or explain this consequence, from “We know
thatx is inD” to “Is it plausible that a contributing reason,
maybe even a cause, for this is thatx is inC?”.

We proposeK |⊜ C ⊏
∼
D as an apt constraint on “C is

plausibly subsumed byD” in the context of an inductive
stance on the instance checking question. If objectx is a
counterexample toC ⊑ D but not toC ⊏

∼
D, then it is an

atypical object (with respect to the preference order as con-
strained byK) of classC and lies outside classD. If we now
defeasibly infer from the fact thatx is in C that it is also in
D, we presumably do not have full information aboutx and
C, namely that althoughx is inC, it is not a typical element
of C. Upon learning the full, sad truth aboutx, we would
have to retract the conclusion thatx is in D. This is the
characteristic pattern of inductive reasoning: from correct
but possibly incomplete information as premiss, to plausi-
ble, but possibly wrong, conclusions.

Dually, we proposeK |⊜ C ⊏
∼

∗D as an apt constraint on
“C is plausibly subsumed byD” in the context of an ab-
ductive stance on the instance checking problem. Now any
counterexample toC ⊑ D but not toC ⊏

∼

∗D is an atypi-
cal object of class¬D which lies in classC. Suppose we
observe that objecty is in D, and we seek some plausible
explanation for this observation. Suppose that the knowl-
edge base endorsesC ⊏

∼

∗D, is it then rational to consider “y
is in C” as plausible reason for the fact thaty is inD? Yes,
because all objects inC are, if not inD, at least atypical of
elements outside ofD. This is in accordance with Peirce’s
view of abduction as the reasoning process of seeking par-
tial, defeasible explanations for observations. Upon gaining
more information, we may learn thaty is in fact not inC,
and would have to retract our hypothesis. This is the charac-
teristic pattern of abductive reasoning: From an observation,
construed as a conclusion, to plausible, but possibly wrong,
partial explanations yielding that conclusion defeasibly. The
monotonicity of ⊏

∼

∗ allows for the accumulation of partial
explanations to build towards a complete explanation of evi-
dence. We now make these notions more concrete by means
of an example.

Employing clinical data
Clinical patient records contain a wealth of information re-
lating symptoms, diseases, and treatment programmes. To
simplify the example, we do not consider treatment pro-
grammes here, though the effects of drug administration are
also highly relevant to defeasible reasoning.

Consider the following simple entry in a clinical record,
whereA, B andC are symptoms, andY andZ are medical
conditions:

Number Date A B C . . . Y Z
03154 17/06/04 1 - 0 . . . - 1

This entry indicates that on 17/06/04 patient 03154 had
symptomA, did not have symptomC, and was known to
suffer from conditionZ. It does not indicate whether or not
the patient had symptomB, or suffered from conditionY .

For each medical condition, there are a number of symp-
toms deemed relevant to that condition. Suppose symptoms
A andC are relevant to conditionZ. Each completed en-
try of an (A,C,Z) profile in the medical record system,
i.e. each entry having values of 0 or 1 forA, C andZ,
contributes to the generation of a preference order on pa-
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tient profiles. This preference order represents the relative
likelihood of occurrence of the eight possible(A,C,Z) pro-
files in an arbitrary patient, from most likely (at the top) to
least likely (at the bottom). A crude order can be obtained
by counting the number of occurrences of each profile in
the available clinical databases; this may be refined with in-
put from medical domain experts, and using formal methods
such as formal concept analysis (Baader et al. 2007).

Suppose the following order has been generated for the
profile (A,C,Z):

100
010

011 111
101 000

001
110

Note that profiles are objects in the domain∆I represent-
ing the medical profiles of categories of patients. Profile 100
is deemed most typical in this order, representing patients
with symptomA, without symptomC, and who do not suf-
fer from conditionZ. Likewise, the least likely profile is
that of patients with both symptomsA andC, and who yet
do not suffer from conditionZ.

For each medical condition, such a preference order on
medical profiles relevant to that condition may be extracted
and generated from the medical record system. We propose
the use of these orderings in preferential reasoning to deter-
mine plausible explanations of, and predictions on, factors
related to patient diagnosis and treatment.

To illustrate how this may work, consider the following
question: “Given that a patient has symptomA, which med-
ical conditions would plausibly explain or predictA?” This
question can now be approached by qualitative defeasible
reasoning, different from quantitative probabilistic and sta-
tistical reasoning. In order to answer this question, we have
to consider each medical condition relevant to symptomA
in turn. In our example, one of these would be conditionZ.

In what follows (I,<) refers to the obviously relevant
ordered interpretation(s). We note thatA does not pre-
dict Z, nor doesZ predictA (neither(I,<) 
 A ⊏

∼
Z nor

(I,<) 
 Z ⊏
∼
A holds). So, althoughZ would explainA

((I,<) 
 Z ⊏
∼

∗A), the causal relationship betweenZ andA
is weak.

Further, since(I,<) 
 Z ⊏
∼
C, we may inductively pre-

dict that a patient suffering from conditionZ should also
have symptomC.

The population from which the preference order is gener-
ated impacts strongly on the usefulness of subsequent pref-
erential reasoning. One simple way to restrict the population
is to consider the order relative to a given set of symptoms.
For example, assumingA as given, we may consider only
profiles of the form(1, C, Z) in the preference order above.
This yields the following preference order:

100
111
101
110

Now suppose a patient, manifestingA, tests negative for
symptomC. Z can then no longer be offered as a plausible
explanation of this symptom profile, since it is neither the
case that(I,<) 
 Z ⊏

∼

∗A ⊓ ¬C, nor that(I,<) 
 A ⊓
¬C ⊏

∼
Z. On the other hand, should the patient test positive

for C, and noting that all of the following are satisfied by
(I,<): Z ⊏

∼

∗A ⊓ C; Z ⊏
∼
A ⊓ C; A ⊓ C ⊏

∼
Z, and evenA ⊓

C ⊏
∼

∗Z, it is highly plausible that the patient suffers from
conditionZ.

In a more realistic setting, the relationship between symp-
toms and medical conditions would be structured by Tbox
axioms in an ontology. Defeasible subsumption relations
may also be added to the Tbox, relating symptoms, medi-
cal conditions and treatment programmes. How this may be
translated to deductive DL reasoning is the topic of the next
section.

Preferential reasoning inALC∼

The mutually dual preferential subsumption relations⊏
∼

and
⊏
∼

∗ are produced by a preference order on the intended appli-
cation domain; their semantics are captured by Definitions 3
and 4 respectively, while the semantics of entailment (and
hence, of knowledge base satisfiability) using ordered inter-
pretations is captured by Definition 10. We now relate this
semantics to a standard first-order semantics for description
logics. The latter may be defined in at least two ways: The
first option is to add constructors for defeasible subsump-
tion as primitive relations to a suitable DL, and then de-
velop special-purpose algorithms to reason about them. In
essence, this is analogous to the approach taken in (Giordano
et al. 2007). The second option is to express⊏

∼
and ⊏

∼

∗ as
defined relations in a sufficiently expressive DL, preferably
one for which algorithms have already been developed.

We adopt the latter approach. To our knowledge, a tailor-
made DL for our purpose has not been proposed in the liter-
ature; neither do we construct a proof system or analyse the
complexity of such a logic in this paper. We shall address
the algorithmic aspects required by our semantic framework
in a subsequent paper, restricting this paper to the presen-
tation of a semantic framework that allows for a range of
algorithmic alternatives and refinements.

The logic of interest to us in this section is an extension
of the well-known DLALC (Schmidt-Schauß and Smolka
1991), hence we first introduce the relevantALC terminol-
ogy. Concept descriptions are built from concept names
using the constructors disjunction (C ⊔ D), conjunction
(C ⊓D), negation (¬C), existential restriction (∃R.C) and
value restriction (∀R.C), whereC,D denote concepts andR
a role name. The semantics of the constructors are defined
by:

(¬C)I = ∆I \ CI ;
(C ⊔D)I = CI ∪DI ;
(C ⊓D)I = CI ∩DI ;
(∃R.C)I = {x | ∃y s.t. (x, y) ∈ RI andy ∈ CI};
(∀R.C)I = {x | ∀y, (x, y) ∈ RI impliesy ∈ CI}.

In the context of this paper, the order on objects in the appli-
cation domain may be supplied by a domain expert. As such,
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it may well not automatically have the properties we require
of it. We constrain the interpretation of a preference order
on objects in the language by means of a role axiom added
to the knowledge base Rbox. Of course, one has to start
with an intuitively sensible order on objects in the domain in
order to obtain an intuitively sensible preference relation.

There is a natural bijection between modular partial or-
ders (modular, reflexive, transitive, antisymmetric relations)
and asymmetric, modular, transitive (hence also irreflexive
and antisymmetric) relations over the same domain – the
latter is just the strict counterpart of the former, while the
reflexive closure of an asymmetric, modular, transitive rela-
tion is a modular partial order. We can constrain a role to be
interpreted as a Noetherian, asymmetric, modular, transitive
relation by adding a role axiom to the language ofALC:

Definition 11 Let ALC∼ denote the extension of the DL
ALC obtained by allowing Rbox role axioms of the form:
Rational(R), whereR is a role name. An axiom of the
formRational(R) is true in an interpretationI, written as
I 
 Rational(R), iff RI is a Noetherian, asymmetric, mod-
ular, transitive relation.

We are now in a position to translate all statements express-
ible in the non-classical DLRDL into statements of a suit-
able classical DL, which we shall refer to asRDLt. Let
L be a specific instance of the language forRDL. That is,
L generates a set of Abox, Tbox and Rbox statements, in-
cluding statements of the formC ⊑ D, C ⊏

∼
D,C ⊏

∼

∗D, and
a � b (and possibly others), whereC andD are concepts
constructed from a fixed set of concept and role construc-
tors, and with a fixed alphabetA of object names, concept
names, and roles names. Then we defineLt as the exten-
sion of the language ofALC∼ containing all concept and
role constructors ofRDL, and allowing all Abox, Tbox and
Rbox statements ofRDL, except for statements of the form
C ⊏

∼
D, C ⊏

∼

∗D, anda � b. The alphabetAt from which
Lt is generated is obtained by extending the alphabetA by
adding to it a single new role name, sayR, not occurring in
A.

Definition 12 For every statementφ in L, thetranslationφt

of φ is defined as follows:

If φ has the forma � b thenφt = R(a, b);
If φ has the formC ⊏

∼
D thenφt = C ⊓ ∀R.¬C ⊑ D;

If φ has the formC ⊏
∼

∗

D thenφt = C ⊑ D ⊔ ∃R.¬D;
Otherwiseφt = φ.

It is clear that the translations of statements inL are all state-
ments inLt. The roleR is introduced to express preference
statements of the forma � b as classical role assertions.
Furthermore, in order to ensure thatR is always interpreted
as a Noetherian, asymmetric, modular, transitive relation, it
is necessary to perform reasoning relative to a knowledge
base containing at least the role axiomRational(R) in the
Rbox. Moreover, both forms of defeasible subsumption are
expressed as forms of classical subsumption. For⊏

∼
this is

achieved by exploiting the fact that, for any interpretationI
of theRDLt, C ⊓ ∀R.¬C is interpreted as the maximally
preferred objects (relative to the preference orderRI ) in the
extension ofC. So (C ⊓ ∀R.¬C)I plays the role of the

shrunken setCI
−

in Definition 3. Similarly, for ⊏
∼

∗ this is
achieved by exploiting the fact that, for any interpretationI
of theRDLt,D⊔∃R.¬D is interpreted as the set of objects
in ∆I that are not maximally preferred objects (relative to
the preference orderRI ) in the complement of the extension
ofD (i.e. ∆I \DI ). So(D⊔∃R.¬D)I plays the role of the
dilated setDI

+

in Definition 4.
We now proceed to prove that this translation is correct.

Definition 13 Let K be a knowledge base expressed inL.
Thetranslationof K, referred to asKt, is defined to be the
knowledge base (expressed inLt) obtained as follows:{φt |
φ ∈ K} ∪ {Rational(R)}.

SoKt is obtained by replacing every statement inK by its
translation, and adding the statementRational(R).

Theorem 14 For any knowledge baseK expressed inL and
any statementφ in L we have thatK |⊜ φ iff Kt |= φt.

Theorem 14 tells us that:

– checking whetherC ⊏
∼
D follows fromK can be reduced

to checking whetherC ⊓ ∀R.¬C ⊑ D follows fromKt

in RDLt.

– checking whetherC ⊏
∼

∗D follows fromK can be reduced
to checking whetherC ⊑ D ⊔ ∃R.¬D follows fromKt

in RDLt.

– checking whethera � b follows fromK can be reduced
to checking whetherR(a, b) follows fromKt in RDLt;

– checking whether any other statementφ in L follows from
K can be reduced to checking whetherφ itself follows
fromKt in RDLt.

Role transitivity has been investigated in (Schild 1991).
Asymmetry of roles is included in the underlying DL lan-
guage for OWL 1.1,SROIQ (Horrocks, Kutz, and Sattler
2006), although we have no need for the full expressivity
of that logic. To our knowledge, modular and Noetherian
roles have not been investigated, and neither has the simul-
taneous enforcement of these two properties together with
role asymmetry and transitivity. However, we do not ex-
pect such a restriction to impact negatively on the complex-
ity of entailment since we are already concerned with DLs
at least as expressive as the DLS (i.e. ALC plus transi-
tive roles) for which checking entailment is EXPTIME-hard
(Schild 1991).

Axiomatisation

The axiomatisation of propositional rational preferential rea-
soning was considered in (Britz, Heidema, and Labuschagne
2007), establishing modular Gödel-Löb logic as the under-
lying modal logic for rational inductive and abductive rea-
soning. This gives a syntactic Hilbert-style axiomatisation
of rational preferential reasoning.

Modular GL is the tense logic with modal operators2

and its converse2c. It is obtained from the minimal tense
logic K t (Blackburn, de Rijke, and Venema 2002, p.205) by
adding the transitivity axiom, Löb axiom (Boolos 1993), and
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weak modularity axioms for2 and2
c:

Modular GL = Kt ⊕ 2X → 22X

⊕ 2(2X → X) → 2X

⊕ 2(2X → Y ) ∨ 2(2Y → 2X)

⊕2
c(2cX → Y ) ∨ 2

c(2cY → 2
cX)

These axiom schemas can all be expressed inALC∼ with
role converses, denotedR− below (and usually referred to
as role inverses in the DL community), added:

Transitivity:⊢ ∀R.C ⊑ ∀R.(∀R.C);
Löb: ⊢ ∀R.((∃R.¬C) ⊔C) ⊑ ∀R.C;
Weak modularity:⊢ ∃R.(∀R.C ⊓ ¬D) ⊑ ∀R.(∃R.¬D ⊔
∀R.C);

Converse weak modularity:⊢ ∃R−.(∀R−.C ⊓ ¬D) ⊑
∀R−.(∃R−.¬D ⊔ ∀R−.C)

This axiomatisation is a syntactic counterpart for both the
ordered preferential semantics and the standard DL seman-
tics related in Theorem 14.

The semantics of description logics with additional modal
operators representing preferences lends itself naturally to
many-dimensional structures (Gabbay et al. 2003) – an ob-
ject dimension as is usual for the underlying description
language, and one or more dimensions to represent pref-
erence orders. The specific choices within this semantic
paradigm require further investigation. The authors would
like to thank Ulrike Sattler for pointers in this regard.

Conclusion and future work
We have presented a non-standard semantic framework for
preferential reasoning in description logics, based on the no-
tion of ordered interpretations, and which can be expressed
in the object language by virtue of the introduction of two
mutually dual relations for plausible subsumption,⊏

∼
and

⊏
∼

∗, as well as preference statements on objects of the form
a � b, leading to the definition of a non-classical description
logicRDL. Both ⊏

∼
and ⊏

∼

∗ are well-behaved in the sense
that they satisfy desirable properties for rational, defeasible
subsumption. An additional advantage is that reasoning in
RDL can be reduced to reasoning in a sufficiently expres-
sive classical DL, i.e. in extensions ofALC∼.

While the work done in this paper focuses on a single
mode of preference, the ordered semantics developed here
extends readily to multiple preference orders on objects, as
one would typically have in a DL. The notion of an ordered
interpretation(I,�) extends to an interpretation with a fi-
nite set of preference orders(I,�1, . . . ,�n). The defeasi-
ble subsumption relations⊏

∼
and ⊏

∼

∗ generalise accordingly
to ⊏

∼1, . . . , ⊏
∼n and ⊏

∼

∗

1, . . . , ⊏
∼

∗

n respectively.
The algorithmic aspects, complexity analysis, and evalu-

ation of a prototype system to determine the extent to which
both inductive and abductive plausible subsumption can pro-
vide useful guidelines in a medical scenario such as that out-
lined in the introduction and example are planned as part of a
wider research project. So, too, is the integration of the med-
ical ontology SNOMED CT into the clinical medical record
framework OpenMRS (Meyer et al. 2008).
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