
A Defeasible Reasoning Approach for Description Logic
Ontologies

Kody Moodley
Centre for Artificial

Intelligence Research
kmoodley@csir.co.za

Thomas Meyer
Centre for Artificial

Intelligence Research
tmeyer@csir.co.za

Ivan José Varzinczak
Centre for Artificial

Intelligence Research
ivarzinczak@csir.co.za

ABSTRACT
Classical reasoning for logic-based KR (Knowledge Represen-
tation) systems is in general, monotonic. That is, there is an
assumption in these systems that there is complete information
about a domain. This means that they generally cannot deal with
any new information arising which contradicts with the current
information. This is not an appropriate model for reasoning in
many applications. Therefore, alternative non-monotonic sys-
tems have been investigated which can reason under uncertainty
or with incomplete information. Defeasible reasoning is one par-
ticular model for implementing non-monotonic reasoning. It is
concerned with representing and reasoning with defeasible (non-
strict) facts about a domain. The defeasible counterpart of the
strict fact: “All birds fly” is the defeasible fact: “Most birds
fly” (or the alternative phrasing “Birds usually fly”). We discuss
two approaches for defeasible reasoning in the family of logic-
based KR languages known as Description Logics (DLs). They
are applicable to particular extensions of DLs that allow for the
statement of defeasible sentences similar to the aforementioned
examples. The approaches are known as prototypical reasoning
and presumptive reasoning and are both rooted in the notion of
Rational Closure developed by Lehmann and Magidor for an ex-
tension of propositional logic. Here we recast their definitions
in a DL context and define algorithms for prototypical and pre-
sumptive reasoning for DL knowledge bases (also called DL on-
tologies) that may contain defeasible sentences. In particular, we
present a plug-in for the Protégé ontology editor which imple-
ments these algorithms for OWL ontologies - the Web Ontology
Language (OWL) is a formal standard of languages whose se-
mantic basis is identical to that of DLs. Our plug-in, RaMP,
allows the modeller to indicate defeasible information in OWL
ontologies and perform logical inferencing to determine what de-
feasible conclusions one can draw from these ontologies.

Categories and Subject Descriptors
I.2.4 [Computing Methodologies]: Artificial Intelligence—KR
Formalisms and Methods

General Terms
Algorithms, Design, Languages, Theory

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SAICSIT ’12, October 01-03 2012, Pretoria, South Africa
Copyright 2012 ACM 978-1-4503-1308-7/12/10 ...$15.00.

Keywords
Defeasible reasoning, Rational closure, OWL, Protégé

1. INTRODUCTION
An artefact which formally describes a conceptual understand-

ing of a particular domain of interest is known as an ontology.
There are many uses for ontologies in computer information sys-
tems and also numerous formalisms that are used to capture them.
An obvious usage for them is as a tool for visualising (and there-
fore understanding) how systems and processes work and how
their components function together. More recently, with the ad-
vent of the Semantic Web [4], formal ontologies (those that can
be represented by a set of logical statements about the domain)
started to look like an attractive means for developing a seman-
tically enriched World Wide Web. The Web Ontology Language
(OWL) [20] was developed and the latest specification OWL 2
became a World Wide Web Consortium (W3C) recommended
standard in 2009 for representing Semantic Web ontologies. The
OWL family of languages are precise, logic-based formalisms.
Because of their precise syntax, ontologies expressed using these
languages are machine-readable. Moreover, because of the logi-
cal basis of the language, it becomes possible to build automated
reasoning systems to extract implicit information (knowledge)
from these ontologies which is not explicitly stated. A typical
reasoning task in such systems is logical inference. For example,
if we are given the two statements: “all birds fly" and “tweety is
a bird" then a reasoner could infer that “tweety flies".

Description Logics (DLs) [2] are another widely accepted and
appropriate class of knowledge representation languages to rep-
resent and reason about ontologies. Although they are distinct
from the OWL family of languages (also called fragments), from
a purely logical perspective they actually form the basis of most
OWL fragments. Description Logics as a family of ontology lan-
guages provide a good balance between expressive power (the
type of knowledge you can represent in the language) and com-
putational complexity of reasoning [5]. Since these languages
have a precise syntax and semantics (like OWL), they allow one
to represent an ontology purely as a set of logical statements
about the domain. Such a view of an ontology is called a knowl-
edge base (KB). Again it is possible to build inference engines
(DL reasoners [24, 25, 26]) for inferring implicit information
from these KBs. Furthermore, such reasoners for performing
logical inference have grown increasingly powerful and sophis-
ticated in the last decade.

In the setting we have established, i.e, in standard DL-based
reasoning systems, the notion of entailment (logical inferencing)
is monotonic. Monotonicity is a property of KR systems that are
built upon classical logics. It specifies that knowledge is always
‘incremental’. That is, adding to (or logically strengthening) the
information in a KB cannot result in any previously known con-
clusions being retracted from the KB. In classical logics, this one

69

intuitive notion of monotonic behaviour is exhibited on two lev-
els. Firstly, on the meta-level where if a statement ϕ follows
logically from a KB K then ϕ also follows from any superset of
K and, secondly, on the object level from α → β it follows that
α ∧ γ → β for any γ. We are particularly interested in this last
context which displays the monotonicity. If we let α represent
the statement “I am a bird”, β “I can fly” and γ “I am a pen-
guin” then the last notion of monotonicity becomes problematic
for our example. This is because the property essentially requires
that the statement: “If I am a bird then I can fly” also implies the
statement: “If I am a bird and I am a penguin then I can fly”. It
is clear that this conclusion is not reasonable in all domains. For
example, in a biological domain there is no evidence currently
to suggest that penguins can fly. Therefore in this setting, even
though penguins are classified as birds, we do not necessarily
want our representation of a penguin to inherit all the properties
of a bird. Especially the property of being able to fly.

Thus it turns out that there are applications in which mono-
tonicity is undesirable, i.e., non-monotonic reasoning is required.
A typical scenario is when one needs to model exceptions in a
domain. As we have demonstrated in the penguin example, in a
particular domain of interest it might be desirable to express logi-
cal statements that you want to hold in typical situations. That is,
we may want to say that birds typically fly and there are cases in
which birds do not fly (for example when we have a bird which
also happens to be a penguin). These non-typical cases represent
exceptions and are more rare but nevertheless entirely possible
scenarios. The statement that birds typically or usually fly is an
example of defeasible information. The broad approach to rea-
soning with KBs that contain defeasible information is known
as defeasible reasoning and is a popular way to introduce non-
monotonic reasoning behaviour into knowledge representation
and reasoning systems. We argue that it is very useful in nu-
merous domains to develop a defeasible reasoning approach to
capture intuitions as in the above examples. It would also be use-
ful to have a robust system in the DL setting that uses a purely
logical approach but is also capable of catering for exceptions as
demonstrated above. Lehmann and Magidor [19] provided such
an approach in the propositional logic context and Britz et al. [8]
provided an extension thereof for DLs.

The main goals of this paper are: (i) to give a flavour or in-
tuition for an approach we have developed to do defeasible rea-
soning in the DL context, (ii) to present two algorithms for im-
plementing this approach and (iii) to demonstrate a preliminary
version of a Protégé [16] plug-in which demonstrates our algo-
rithms and approach for defeasible reasoning with OWL ontolo-
gies. The plug-in is called RaMP and is discussed in more detail
in Section 5. Most of the theoretical notions presented in this
paper are extensions of the techniques adopted by Lehmann and
Magidor [19] who developed their approach for an extension of
propositional logic. We use the semantic foundation by Britz et
al. [8] as a basis for our approach.

Throughout this paper we shall adopt the convention of pre-
senting our theoretical research with respect to DLs with the un-
derstanding that the findings are easily translatable to a corre-
sponding OWL fragment. Similarly when it comes to describing
our practical implementation we do this in the context of OWL
because the tool we have built is for use with OWL ontologies.
The main reason for this is because of the good infrastructure
and support for OWL-related tools in the community.

2. PRELIMINARIES
In this section we give a short introduction to Description Log-

ics as well as defeasible reasoning approaches which are relevant
to ours. We begin by giving the syntax and semantics of the pop-
ular DL known as ALC. We focus on ALC because it has a

good trade-off between expressivity and computational complex-
ity and is therefore appropriate for most application domains.

2.1 The Description Logic ALC
DLs are decidable fragments of first-order logic with inter-

esting properties and a variety of applications, notably the for-
malisation of ontologies. There is a whole family of description
logics, an example of which isALC and on which we shall focus
in the present paper.1

ALC concept syntax:

The language of ALC is built upon a finite set of atomic con-
cept names NC and a finite set of role names NR such that
NC ∩ NR = ∅. An atomic concept is denoted by A, possibly
with subscripts, and a role name by r, possibly with subscripts.
> denotes the top concept and ⊥ the bottom concept. Complex
concepts are denoted by C,D, . . ., possibly with subscripts, and
are built using the constructors u (concept conjunction), t (con-
cept disjunction), ¬ (complement), ∃ (existential restriction) and
∀ (universal restriction) according to the rule

C ::= A | > | ⊥ | ¬C | C u C | C t C | ∃r.C | ∀r.C

We let L denote the set of allALC concepts. If we are in a med-
ical domain we may use ALC concept names to capture terms
that are relevant in this context. For example, if we are inter-
ested in viral diseases and bacterial infections we can use concept
names such as Meningitis, BacterialMeningitis, ViralDisease
and FatalInfection.

ALC concept semantics:

The semantics of ALC is the standard set theoretic Tarskian
semantics. An interpretation is a structure I = 〈∆I , ·I〉, where
∆I is a non-empty set called the domain, and ·I is an interpre-
tation function mapping concept names A to subsets AI of ∆I ,
and mapping role names r to binary relations rI over ∆I ×∆I :

AI ⊆ ∆I , rI ⊆ ∆I ×∆I

Given an interpretation I = 〈∆I , ·I〉, ·I is extended to inter-
pret complex concepts in the following way:

>I = ∆I ,
⊥I = ∅,

(¬C)I = ∆I \ CI ,
(C uD)I = CI ∩DI ,
(C tD)I = CI ∪DI ,

(∃r.C)I = {x ∈ ∆I | for some y, (x, y) ∈ rI and y ∈ CI},
(∀r.C)I = {x ∈ ∆I | for every y, (x, y) ∈ rI =⇒ y ∈ CI}

For example, MeningitisI can denote the set of all instances
of the meningitis infection in the domain. Intuitively, this may
represent all the strains of meningitis that we know of. Similarly,
(Meningitis u ViralDisease)I denotes the set of all objects in
our domain which belong to both MeningitisI and ViralDiseaseI .
Intuitively this may represent all those strains of meningitis that
are also viral diseases. We can give the intuitive meanings for
the other ALC concepts in a similar way.

ALC axiom syntax:

Given C,D ∈ L, C v D is a subsumption statement, and
it is read “C is subsumed by D”. C ≡ D (called an equiva-
lence statement) is an abbreviation for both C v D and D v
C. An ALC TBox T is a finite set of subsumption statements.
1For the reader not conversant with Description Logics but fa-
miliar with modal logics, there are results in the literature re-
lating some families of description logics to systems of modal
logic. For example, a well-known result is the one linking the
DL ALC with the normal modal logic K [23].

70

An example of an ALC subsumption is BacterialMeningitis v
Meningitis.

ALC axiom semantics:

An interpretation I satisfies C v D (denoted I C v D) if
and only if CI ⊆ DI . I C ≡ D if and only if CI = DI . I
satisfies BacterialMeningitis v Meningitis if and only if every
object in our domain that belongs to BacterialMeningitisI also
belongs to MeningitisI . Intuitively this means that every strain
of bacterial meningitis is also a strain of meningitis.

Entailment:

C v D is (classically) entailed by a TBox T , denoted T |=
C v D, if and only if every interpretation I which satisfies all
elements of T , also satisfiesC v D. If T ={BacterialMeningitis
v Meningitis, Meningitis v ¬FatalInfection}, a consequence
of T is T |= BacterialMeningitis v ¬FatalInfection. Intu-
itively, if every strain of bacterial meningitis is a strain of menin-
gitis and if every strain of meningitis is not fatal then every strain
of bacterial meningitis is also not fatal.

For more details on Description Logics in general and onALC
in particular, the reader is encouraged to read the Description
Logic handbook [2].

2.2 Defeasible Reasoning
In this section we give a brief overview of the defeasible rea-

soning approach developed by Kraus, Lehmann and Magidor (of-
ten called the KLM approach) [17, 19] for their extension of
propositional logic.

There are various approaches for introducing non-monotonic
reasoning capabilities in logic-based knowledge representation
systems. Among these, the KLM approach has been particu-
larly successful due to its elegance and robustness and many ex-
tensions [22, 13, 6, 9, 7, 8] of this work have been proposed
in the literature recently. The KLM approach essentially en-
riches propositional logic with a defeasible ‘implication’ oper-
ator (|∼). This operator allows one to write down defeasible im-
plication statements (also called conditional assertions) of the
form α |∼ β, where α and β are propositional formulas. The
sentence α |∼ β intuitively means that in those situations where
α is typically true, β is also true (for the precise semantics the
reader should consult the provided references).

Given a defeasible logic, such as the KLM-extension of propo-
sitional logic or the aforementioned extensions thereof, and a
conditional KB (a set of conditional assertions) it is very im-
portant for reasoning purposes to define precisely what kind of
inferences you can make from a conditional KB. Lehmann et
al. characterise the notion of rational closure [19, Section 5] and
motivate this notion to be a suitable description for what you
can conclude from a conditional KB. The name given to the rea-
soning approach that computes rational closure for conditional
KBs is prototypical reasoning. Prototypical reasoning is seen as
a conservative answer to the question of what you can conclude
from a conditional KB.

After defining prototypical reasoning Lehmann and colleagues
also began to explore other notions of non-monotonic reasoning
as well as extensions to prototypical reasoning. One such (ven-
turous) extension is known as presumptive reasoning [18]. Any
inference that follows from a conditional KB using prototypical
reasoning will necessarily also follow using presumptive reason-
ing while the converse is not necessarily true.

3. DEFEASIBLE REASONING FOR DLS
The first part of this section gives an overview of the defea-

sible subsumption operator [8] and the issue of what entailment
means in the context of defeasible KBs. The remainder of the

section is concerned with our contributions of algorithms (based
on the semantic adaptations that were required to move to DLs)
for computing or performing defeasible reasoning for DLs.

In the work by Britz et al [8], the authors propose a defeasible
extension of ALC. The defeasibility in this logic is introduced
through a defeasible subsumption operator (<

∼). This operator is
‘supraclassical’ to the classical subsumption operator (v) in the
sense that any pair of DL concepts that are related viav, are also
necessarily related via <

∼ . Intuitively, the semantics for <
∼ states

that given a defeasible subsumption axiom C <
∼D (where C and

D may be complex ALC concepts), then this statement means
that the most typical C’s are also D’s (as opposed to all C’s
being D’s in the classical case). Only a semantics for defeasible
subsumption is explicitly provided by the approach (although de-
feasible equivalence follows trivially as well) and the approach
is currently applied to ALC TBoxes but we intend to extend the
approach for ALC ABoxes as well.

Note that we do not state here the precise semantics of the
<
∼ operator because we are not concerned with its suitability for
capturing a good notion of defeasibility. For an explanation of
why this is in fact the case we refer the reader to the work by
Lehmann and Magidor [19]. They argue this for their proposi-
tional version of this operator. For a precise definition of the
semantics for <

∼ we refer the interested reader to the work by
Britz et al. [8]. We take a more proof theoretic approach in this
paper to describe how we can build a reasoning system which
behaves according to the defined semantics by Britz et al.

We can nevertheless state the integrity of <
∼ and its logical

underpinning by showing that its behaviour is determined by a
series of logical properties [19] which we adapt here for DLs.

Given ALC concepts C,D, C <
∼D is a defeasible subsump-

tion statement, and it is read “C is subsumed by D usually fol-
lows”. <

∼ is a binary relation on L × L where L is the set of
all possible ALC concepts. <

∼ is said to be a preferential sub-
sumption relation if and only if it satisfies the following set of
properties:

(Ref) C <
∼ C (LLE)

|= C ≡ D, C <
∼ E

D <
∼ E

(And)
C <
∼D, C <

∼ E

C <
∼D u E

(Or)
C <
∼ E, D <

∼ E

C tD <
∼ E

(RW)
C <
∼D, |= D v E

C <
∼ E

(CM)
C <
∼D, C <

∼ E

C uD <
∼ E

where Ref is short for Reflexivity, RW for Right Weakening and
CM for Cautious Monotonicity. If, in addition to these prefer-
ential properties, <

∼ also satisfies the following Rational Mono-
tonicity (RM) property, it is said to be a rational subsumption
relation:

(RM)
C <
∼D, C 6<∼ ¬E
C u E <

∼D

We have illustrated the well-founded logical behaviour of the
defeasible subsumption operator <

∼ and now we want to define
a notion of entailment for <

∼ that gives us intuitive inferences or
conclusions. That is, given an ALC KB that contains defeasi-
ble subsumption statements like C <

∼D (a defeasible KB), what
other statements (axioms) can one conclude from this KB?

Lehmann et al. have motivated why the standard Tarskian-
style notion of entailment is not suitable for defeasible KBs like
ours. This notion of entailment is characterised as follows: Let
K be a set of defeasible subsumption statements. We take the set
of all ordered pairs (C, D) such that C <

∼D ∈ K and call this
set Kp, and we let <

∼ all be the collection of sets of all <
∼ ’s that

satisfy the seven properties mentioned earlier in this section. If
we pick all those <

∼ i ∈ <
∼ all such that Kp ⊆ <

∼ i then their
intersection

⋂
<
∼ i defines a notion of entailment (called ranked

71

entailment [19]). However, this (Tarskian) definition of entail-
ment is not “enough”.

This is so due to two reasons: (i) A Tarskian-style entailment
relation still defines a consequence relation that is monotonic,
falling short of our stated aim of having a consequence relation
that can cope with retraction of knowledge previously known,
and (ii) It is known, both in the propositional case [19, Sec-
tion 4.2] as well as in the DL one [8, Section 5], that a Tarskian-
style entailment relation delivers defeasible inferences that are
not, in general, rational, i.e., they do not necessarily satisfy the
Rational Monotonicity (RM) property. This motivation for ex-
ploring other forms of entailment for defeasible KBs led to the
development of the notion of rational closure [19, Section 5].
Rational closure was found to satisfy Rational Monotonicity and
argued to be a sensible notion of entailment for defeasible KBs.

Rational closure for ALC defeasible KBs has been charac-
terised by Britz et al. and the authors present a result [8, The-
orem 5] which facilitates the development of an algorithm for
computing the rational closure of a defeasible KB. This marks
the start of our contribution to the work. We present our imple-
mentation of this algorithm (called prototypical reasoning) in the
next section.

3.1 Prototypical Reasoning
Prototypical reasoning corresponds exactly to the propositional

notion of rational closure, lifted to the DL case. We are not con-
cerned with the semantics here. For the semantics of rational
closure in a propositional context, the reader may consult the
work of Lehmann and colleagues [19]. For the semantics of ra-
tional closure in a defeasible extension of ALC one can consult
the work of Britz et al. [8].

The algorithm for prototypical reasoning, takes as input a sub-
sumption statement ϕ (also called a query) which may be de-
feasible or classical and a defeasible KB K. The output of the
algorithm is true if ϕ follows prototypically from/is in the ratio-
nal closure of K (denoted K |=Prot ϕ). Queries and defeasible
KBs are currently restricted to subsumption statements for sim-
plicity seeing that (in most cases) classical ALC TBox axioms
can be rewritten as classical ALC subsumption statements.

The algorithm begins by performing a classical transforma-
tion of the input KB. Essentially this amounts to rewriting all de-
feasible statements in the KB as their classical counterparts and
all classical statements into a specific normal form. The reason
behind this transformation is two-fold: (i) It allows classical rea-
soning techniques to be used on the transformed KB and (ii) The
normal form of the classical statements differentiates these (from
the perspective of the algorithm) from the defeasible statements
in the KB. As we shall see later, this last point also makes the
next sub-procedure of the algorithm possible (the computation
of a ranking of the statements in the KB). The transformation
procedure is given below and we give an example to illustrate:

Definition 1. (transformKB) Given a defeasible KB K:
transformKB(K) := {transform(ϕ) | ϕ ∈ K}, where

transform(ϕ) :=

{
α u ¬β v ⊥, if ϕ = α v β,
α v β, if ϕ = α <

∼ β

Example 1. Let K be the input of transformKB

K =

Meningitis <

∼ ¬FatalInfection,
BacterialMeningitis v Meningitis,
ViralMeningitis v Meningitis,
BacterialMeningitis <

∼ FatalInfection,
Meningitis <

∼ ViralDisease

If we execute the procedure in Definition 1 for K we get Kv:

Kv =

Meningitis v ¬FatalInfection,
BacterialMeningitis u ¬Meningitis v ⊥,
ViralMeningitis u ¬Meningitis v ⊥,
BacterialMeningitis v FatalInfection,
Meningitis v ViralDisease

We call Kv the classical counterpart of K.The second proce-

dure of the prototypical algorithm is the computation of a rank-
ing of sentences in the KB according to the notion of exception-
ality [19]. This procedure makes use of a sub-procedure excep-
tional which encodes the notion of exceptionality into the com-
putation of the ranking. Before we specify the pseudocode for
the complete procedure we define what we mean by the terms
ranking and exceptionality.

Definition 2. (Ranking) Let Kv be the classical counterpart
of some defeasible KB: A ranking for Kv is a total preorder on
the elements (axioms) inKv, with axioms higher up in the order-
ing interpreted as having a higher exceptionality or importance.

Note that a ranking can in practice be implemented as a col-
lection of sets where each element of this collection is a set of
sentences (which we call a rank) from the KB. Each sentence in
a particular set has the same magnitude of importance.

The way we decide which sentences belong to which ranks is
calculated according to the notion of exceptionality. Intuitively,
a concept C is said to be exceptional w.r.t. a defeasible KB K,
if it is the case that > v ¬C usually follows from K. That is,
typically everything is in ¬C, thereby making C an exception to
this rule. It is important to note that, on the level of sentences in
the KB, this notion of exceptionality is different to the notion of
exceptionality when we say that a penguin is an “exception” to
the rule that all birds fly. A more intuitive term for exceptionality
would have been specificity because ultimately what we are try-
ing to do is to arrange the sentences in the KB according to how
specific or general they are. Nevertheless, we employ the use of
the term exceptionality as Lehmann et al. have defined it.

It is also useful to recognise that in the context of our algo-
rithm, checking whether C is exceptional w.r.t K can be reduced
to checking if Kv classically entails C v ⊥ where Kv is the
classical transformation of K. Finally, the notion of exception-
ality can be extended to sentences and sets of sentences and we
formalise all this in the following definition:

Definition 3. (Exceptionality) Let K be a defeasible KB and
let C,D ∈ L. Also, let Kv be the classical counterpart of the
defeasible KB K:

- C is exceptional w.r.t. K iff Kv |= C v ⊥.

- C <
∼D is exceptional w.r.t. K iff C is exceptional w.r.t. K.

- C v D is exceptional w.r.t. K iff C u ¬D is exceptional
w.r.t. K.

- K′ ⊆ K, is exceptional w.r.t. K iff every element of K′
and only the elements of K′ are exceptional w.r.t. K (we
say that K′ is more exceptional than K).

We now specify a sub-procedure called exceptional(E) which
computes a more exceptional (specific) subset E ′ of some input
set of sentences E according to the last point in Definition 3.

A natural question following from Definition 3 and Proce-
dure exceptional is how this notion is used to decide the full
ranking of a defeasible KB. In other words, how do we know if
some sentence α is more exceptional than another sentence β?

72

Procedure exceptional(E)
Input: Set of sentences, E , from transformed KB
Output: More exceptional subset, E ′, of E

1 E ′ := ∅;
2 foreach C v D ∈ E do
3 if E |= C v ⊥ then
4 E ′ := E ′ ∪ {C v D};

5 return E ′;

To fully appreciate how this procedure influences the ranks of
the sentences in the KB one should study how it is used in the
complete procedure for computing the ranking of a defeasible
KB which we specify below:

Procedure computeRanking(K)
Input: Defeasible knowledge base K
Output: The ranking, D, for K

1 i := 0; Kv := transformKB(K);
2 E0 := Kv; E1 := exceptional(E0);
3 while Ei+1 6= Ei do
4 i := i + 1;
5 Ei+1 := exceptional(Ei);
6 n := i; max := n + 1;
7 Dmax := En; D := {Dmax};
8 for j = 1 to n do
9 Dj := Ej−1\Ej ;

10 D := D ∪ {Dj};
11 return D;

Recall that the ranking of the KB is computed as a collec-
tion of sets of sentences (D in Procedure computeRanking).
Each sentence in a particular set from D shares the same level
of exceptionality according to the algorithm. Given the collec-
tion of sets D = {D1, . . . ,Dn}, D1 represents the lowest rank
containing the least exceptional (specific) sentences in the KB.
Intuitively, because these sentences are seen as the least specific
they are the ones which can be “disregarded” with the most con-
fidence when contradicting information is found. On the other
end of the spectrum we have Dn representing the highest rank
which contains the most exceptional (specific) sentences in the
KB. Intuitively speaking, these sentences should only be disre-
garded as a “last resort”.

From an algorithmic perspective Dn is the highest rank but
strictly speaking the special rankDmax is the highest. This (pos-
sibly empty) rank contains the non-defeasible or classical sen-
tences in the KB. We sometimes refer to these sentences as hard
in contrast with defeasible statements which we sometimes refer
to as soft. Hard sentences can never be disregarded and should
always remain in the KB, hence the special rank for them. The
value of max is n+ 1 which is always one bigger than the num-
ber of “normal” ranks. This ensures that the algorithm never
“touches” the sentences in this rank because we only wish to
manipulate ranks up to Dn.

We give a simple example to illustrate how the ranking of a
defeasible KB is computed:

Example 2. Consider the KB K from Example 1:

K =

Meningitis <

∼ ¬FatalInfection,
BacterialMeningitis v Meningitis,
ViralMeningitis v Meningitis,
BacterialMeningitis <

∼ FatalInfection,
Meningitis <

∼ ViralDisease

Line 1 of Algorithm computeRanking computes the classi-
cal transformation of K which is then assigned to Kv. Kv is
shown below:

Kv =

Meningitis v ¬FatalInfection,
BacterialMeningitis u ¬Meningitis v ⊥,
ViralMeningitis u ¬Meningitis v ⊥,
BacterialMeningitis v FatalInfection,
Meningitis v ViralDisease

Lines 2 to 5 denote the first phase of the algorithm which in-

crementally “unpacks” the different subsets of exceptional sen-
tences from Kv. Line 6 captures the indices for the highest
and special ranks. Line 7 assigns the special rank as the most
exceptional (specific) sentences En which denote the hard sen-
tences. Lines 8-10 “prunes” the sets of unpacked exceptionality
sets into a set of ranks (the final ranking). This last step is re-
quired because an Ei is determined with respect to Ei−1 and thus
Ei ⊆ Ei−1 and so they cannot be ranks.

Returning to our example we recall that E0 is Kv (Line 1 of
the procedure). On first execution of Lines 2-5 we find that:

E1 =

 BacterialMeningitis u ¬Meningitis v ⊥,
ViralMeningitis u ¬Meningitis v ⊥,
BacterialMeningitis v FatalInfection

We continue execution of the while loop until we reach a fixed

point where Ei+1 = Ei. We do not show each computed Ei for
our example but suffice it to say that if the procedure is followed
correctly the final ranking for the original KB K is as follows:

Dmax =

{
BacterialMeningitis u ¬Meningitis v ⊥,
ViralMeningitis u ¬Meningitis v ⊥

}
D2 =

{
BacterialMeningitis v FatalInfection

}
D1 =

{
Meningitis v ¬FatalInfection,
Meningitis v ViralDisease

}

We now have a ranking for our original defeasible KB K (see
Example 1). Once this ranking is identified, then given a query,
the core prototypical reasoning algorithm (see Algorithm 1) can
be executed to determine if this query follows from the original
defeasible KB.Dmax represents the infinite rank which contains
the classical (non-defeasible) statements from the KB.

Algorithm 1: Prototypical reasoning
Input: The ranking D for some KB, K and a query ϕ of the

form C <
∼D (or C v D)

Output: true if K |=Prot C <
∼D (or K |=Prot C v D),

false otherwise
1 n := 1;
2 if ϕ = C v D then
3 return Dmax |= C v D;

4 else if ϕ = C <
∼D then

5 while
⋃
D |= C v ⊥ and D ⊃ {Dmax} do

6 D := D\{Dn};
7 n := n + 1;

8 return
⋃
D |= C v D;

We now give an example to illustrate the prototypical reason-
ing algorithm.

73

Example 3. Consider the ranking from Example 2:

Dmax =

{
BacterialMeningitis u ¬Meningitis v ⊥,
ViralMeningitis u ¬Meningitis v ⊥

}

D2 =
{

BacterialMeningitis v FatalInfection
}

D1 =

{
Meningitis v ¬FatalInfection,
Meningitis v ViralDisease

}
If we compute prototypical reasoning (via Algorithm 1) for the

following query ϕ = BacterialMeningitis <
∼ ViralDisease then

we get the negative result K 6|=Prot ϕ. We find the following
motivation for this: We have to execute the else clause of the
algorithm because ϕ is defeasible. The condition on Line 5 of
the algorithm holds because BacterialMeningitis v ⊥ is en-
tailed by the set Dmax ∪ D2 ∪ D1. We can derive this because
of the following axioms: the first axiom from Dmax, the only
axiom in D2 and the first axiom in D1. Therefore, we execute
the loop body and prune away the most general information we
can. This is rank 1. We execute the check again with the pruned
ranking and we find that

⋃
D 6|= BacterialMeningitis v ⊥. The

loop terminates and then we execute Line 8 of the algorithm, i.e.,
the classical entailment check

⋃
D |= BacterialMeningitis v

ViralDisease. We find that this is not the case because D2 ∪
Dmax 6|= BacterialMeningitis v ViralDisease. The algorithm
then terminates with the negative result.

We can describe the general behaviour of Algorithm 1 by notic-
ing that it works by trying to find the biggest subset of the KB in
which the antecedent of our query is not exceptional. Intuitively,
this can be thought of as finding a typical situation in which the
antecedent is satisfied. If the consequent holds in this situation
(Line 8) we can conclude that the query follows.

In the next section we introduce another algorithm for defeasi-
ble reasoning that is less conservative (intuitively, wants to make
more inferences) than prototypical reasoning. This approach is
known as presumptive reasoning.

3.2 Presumptive Reasoning
The presumptive reasoning algorithm is a venturous extension

of the prototypical one. Essentially the difference between them
(from an algorithmic perspective) is that presumptive reasoning
computes an extended version of the ranking that prototypical
reasoning does. Presumptive reasoning has a semantics for the
propositional case [18] which we shall not discuss here due to
space constraints. Intuitively, presumptive reasoning is more le-
nient than prototypical reasoning in allowing sentences to follow
from a defeasible KB, i.e., it presumes that some sentence fol-
lows from the KB as long as there is no evidence it can find
to the contrary. Both algorithms are virtually the same barring
one difference: the ranking of sentences in the input KB is com-
puted slightly differently in presumptive reasoning. Because a
presumptive ranking is an extension of a prototypical ranking,
we describe a procedure for converting a prototypical ranking
for a defeasible KB into a presumptive one.

We letD be a prototypical ranking for some defeasible KBK.
Each element Di ∈ D (which we refer to as a rank) is a set of
sentences fromK. To convertD to a presumptive rankingD′ we
add |Di| − 1 ranks above each Di in D. We give an example:

Example 4. LetDi = {ϕ1, ϕ2, ϕ3} be the only rank in a pro-
totypical ranking D: We recall that in order to extend D to a
presumptive ranking we need to add |Di| − 1 ranks above each
Di inD. In Example 4, we have just one rankDi with three sen-
tences as defined above. We thus need to add two ranks above
Di in D. To understand what these two ‘presumptive’ ranks will

look like we have to explain how a prototypical ranking is used
in the prototypical algorithm.

Recall that Lines 5-7 of Algorithm 1 essentially finds a max-
imal subset of the axioms in D in which the antecedent of the
query is satisfiable. However, the prototypical algorithm does
this in a ‘clunky’ way by removing entire ranks at a time (Line 6).
Presumptive reasoning is more thorough in finding a maximal
subset of the axioms in D because it only wants to remove the
entire rank as a last resort. So it first tries removing (all com-
binations of) one axiom from the lowest rank. If this does not
make the antecedent satisfiable then it tries to remove (all com-
binations of) two axioms etc., until it has no other choice but to
remove the entire rank. There is an elegant way to capture this
behaviour in the presumptive reasoning algorithm without hav-
ing to naïvely compute all these combinations of sets of axioms.
We illustrate this method here for the example ranking D.

We start with the initial rank Di = {ϕ1, ϕ2, ϕ3}. We want to
only remove Di from D as a last resort but before that we want
to try removing all combinations of one axiom and then two. We
use the fact that removing one axiom is the same as keeping two
in a set of three axioms as in Example 4. In other words we
would like to compute all unique combinations of two axioms
holding simultaneously in our Di. These are: (ϕ1 and ϕ2), (ϕ1

and ϕ3) and (ϕ2 and ϕ3) in Example 4. And this in turn means
we have to remove all combinations of one axiom from the KB.
These are: {ϕ1}, {ϕ2} and {ϕ3} in Example 4. We can imple-
ment presumptive reasoning by removing one of these sets from
the KB and then performing the check on Line 5 of Algorithm 1.
If the antecedent is still unsatisfiable then we put back this set
and remove the next one etc. We can see that this exhaustive ap-
proach will (in the worst case) require three entailment checks
for our example (in general n, for n combinations/sets). Since
these entailment checks are computationally quite complex we
would like to minimise them as far as possible.

It turns out that there is a way to reduce this operation to a
single check as follows: Given the classical counterpart Kv of
a defeasible KB K, let S = {{ϕ1, ϕ2}, {ϕ1, ϕ3}, {ϕ2, ϕ3}}
and a let α be a classical subsumption statement, if we want to
know whether Kv\{Si} |= α for some Si ∈ S where |S| = 3,
we do not have to perform all the checks Kv\{Si} |= ϕ where
1 ≤ i ≤ 3. We can instead transform the check into some-
thing likeKv\{S1} or . . . orKv\{S3} |= αwhere this check
should have the intuitive meaning: “does at least one Si ∈ S sat-
isfy Kv\{Si} |= α?” The question that arises is how do we
represent this check in DLs? That is, how do we combine ax-
ioms disjunctively or conjunctively? The answer is that there is
a result which proves the following rules for DL axioms (and
propositional formulas):

and(Ci v Di)
n
i=1 = > v un

i=1(¬Ci tDi) and,
or(Ci v Di)

n
i=1 = un

i=1Ci v tn
i=1Di

We give the intuition of these rules by noting that: Kv |=
and(Ci v Di)

n
i=1 iff Kv |= Ci v Di for all i such that 1 ≤

i ≤ n. Similarly, Kv |= or(Ci v Di)
n
i=1 iff Kv |= Ci v Di

for some i such that 1 ≤ i ≤ n.
Returning to our example, removing all combinations of one

axiom (keeping two) translates to the following check:

Kv\{or(ϕ1, ϕ2, ϕ3)} |= α

The above check can be read as “Is it the case that if we re-
move at least one set of {{ϕ1}, {ϕ2}, {ϕ3}} from Kv then we
can conclude α?”. The final iteration for our example is to re-
move for all combinations of two axioms (keeping one):

74

Kv\{or(and(ϕ1, ϕ2),and(ϕ1, ϕ3),and(ϕ2, ϕ3))} |= α

The above check can be read as “Is it the case that if we re-
move at least one set of {{ϕ1, ϕ2}, {ϕ1, ϕ3}, {ϕ2, ϕ3}} from
Kv then we can conclude α?”. We stop at this point because it
is clear that the next step is to remove all combinations of three
axioms which means we have reached the last resort of removing
the entire rank Di.

The final presumptive conversionD′i for the prototypical rank
Di in Example 4 is {{ϕ1, ϕ2, ϕ3}, {or(and(ϕ1, ϕ2), and(ϕ1,
ϕ3), and(ϕ2, ϕ3))}, {or(ϕ1, ϕ2, ϕ3)}}. We can perform the
aforementioned transformation on each Di in any prototypical
ranking to get a corresponding D′i and the final presumptive
ranking D′ is then computed as

⋃
D′i. Note that the special

rank Dmax is not converted using the described procedure but
remains as it is because our reasoning algorithms do not manip-
ulate this rank.

Therefore, to compute presumptive reasoning, we do the fol-
lowing: Obtain a prototypical ranking for the defeasible KB,
convert this ranking to a presumptive ranking and then execute
the prototypical reasoning algorithm (Algorithm 1) with the pre-
sumptive ranking as input. If the result is positive for the algo-
rithm then the query follows presumptively from the KB, other-
wise the query does not follow presumptively. We give a more
concrete example of presumptive reasoning below:

Example 5. Let K be the defeasible KB in Example 1, and
D be the prototypical ranking of its classical counterpart (see
Example 2). Also, let our query be the same as in Example 3. D
is denoted as follows:

Dmax =

{
BacterialMeningitis u ¬Meningitis v ⊥,
ViralMeningitis u ¬Meningitis v ⊥

}
D2 =

{
BacterialMeningitis v FatalInfection

}
D1 =

{
Meningitis v ¬FatalInfection,
Meningitis v ViralDisease

}
We would like to check if the query BacterialMeningitis <

∼
ViralDisease follows presumptively fromK (written asK |=pres

BacterialMeningitis <
∼ ViralDisease). We start by converting the

existing prototypical ranking to a presumptive one by following
the procedure described in Example 4. The converted ranking
D′ is as follows:

D′max =

{
BacterialMeningitis u ¬Meningitis v ⊥,
ViralMeningitis u ¬Meningitis v ⊥

}
D′2 =

{
BacterialMeningitis v FatalInfection

}
D′12 =

{
Meningitis v ¬FatalInfection t ViralDisease

}
D′11 =

{
Meningitis v ¬FatalInfection,
Meningitis v ViralDisease

}
To compute presumptive reasoning for the query we can use

Algorithm 1 with the above presumptive ranking. In this example
Algorithm 1 works by trying to find the largest subset ofD′ such
that the antecedent concept of the query (BacterialMeningitis) is
satisfiable (meaning that BacterialMeningitis 6v ⊥ with respect
to this subset). In our example, the first presumptive rank D′11
is discarded first and we find that BacterialMeningitis is satis-
fiable with respect to D′max ∪ D′2 ∪ D′12. We can therefore
stop discarding ranks and perform the check D′max ∪ D′2 ∪

D′12 |= BacterialMeningitis <
∼ ViralDisease. In our example,

this check holds and we can therefore conclude that K |=pres

BacterialMeningitis <
∼ ViralDisease. Note the difference in the

results between presumptive and prototypical reasoning given
the same query.

It is important to note that other than the difference in the com-
putation of the ranking, the prototypical and presumptive rea-
soning algorithms are identical. Therefore Algorithm 1 can be
executed with a presumptive ranking as input to compute pre-
sumptive reasoning for a given defeasible KB and query. We
have developed a Protégé plug-in that implements both proto-
typical and presumptive reasoning for DL-based (and therefore
OWL) ontologies. Before we present this plug-in we give a brief
introduction to OWL and Protégé.

4. OWL & Protégé
In this section we give an introduction to the OWL family of

ontology languages since Protégé is primarily designed to edit
and manage OWL ontologies. Thereafter, we give some back-
ground on Protégé as well as a brief primer on the anatomy of a
Protégé plug-in.

4.1 OWL
Since the advent of the notion of Semantic Web [4] an im-

portant task towards achieving this goal has been to develop an
appropriate language for constructing ontologies (the building
blocks of the Semantic Web). The World Wide Web Consor-
tium (W3C) formed the Web Ontology Working Group to de-
velop such a suitable language. They eventually came up with
the Web Ontology Language (OWL) which became a W3C rec-
ommendation in 2004 [20]. This initial version is known as OWL
or OWL 1. The latest standard OWL 2 superseded OWL 2 as the
W3C recommendation in 2009 [27].

The OWL 2 standard is actually a specification of several sub-
languages. The most prominent of these are OWL 2 RL, OWL
2 QL, OWL 2 EL, OWL 2 DL and OWL 2 Full. OWL 2 EL
is the least expressive of the family but allows for much sim-
pler reasoning. This “species” of OWL was chosen to represent
the current versions of important large-scale ontologies in the
bio-medical domain such as SNOMED [10], The Gene Ontology
(GO) [1] and The National Cancer Institute (NCI) thesaurus [12].
OWL 2 DL is more expressive than OWL 2 EL but less so than
OWL 2 Full which is the most expressive OWL language but, as
a result, reasoning in this case is undecidable.

OWL ontologies are serialised in various syntaxes such as the
Manchester OWL Syntax, OWL/XML and Turtle. The DL ax-
iom BacterialMeningitis v ViralDisease, for example, is repre-
sented in Figure 1 using OWL/XML syntax:

<SubClassOf>
<Class IRI="#BacterialMeningitis"/>
<Class IRI="#ViralDisease"/>

</SubClassOf>

Figure 1: Example OWL syntax

4.2 Protégé
Protégé (see Figure 2) is an ontology editor developed by the

Centre for Biomedical Informatics Research at Stanford Univer-
sity. Older versions of Protégé built ontologies using the frame-
based system. The latest version of the editor (Protégé 4.1) is
capable of handling ontologies of various formats but predomi-
nantly caters for OWL 2 ontologies.

75

Figure 2: Protégé 4 ontology editor.

The support and alignment with the OWL 2 standard is pro-
vided by the latest version of the underlying API that Protégé
uses. This is the java-based OWLAPI [11, 14] which it de-
pends on for executing management tasks such as creating, load-
ing and manipulating OWL ontologies. It also provides support
for integration of implemented reasoning engines (OWL reason-
ers) for analysing and revealing implicit information in loaded
ontologies during the modelling process. Lastly, it has a plug-
in friendly infrastructure which makes it ideal for extensibility.
There are many Protégé plug-ins that have been developed by
the Knowledge Representation community of varying types and
functionality which aim to streamline the ontology engineering
process.

4.3 Protégé plug-ins
Protégé plug-ins are categorised by their topic and type.2 The

topic of the plug-in explains the specific service which the plug-
in provides. For example, the topics of Protégé can range from
simple user interface tweaks to more involved ontology brows-
ing/maintenance tools. Examples are Ontology visualization tools
which provide a non-standard visual representation of the ontol-
ogy (usually to highlight relationships between defined entities
in the ontology); Ontology debugging and repair tools [3, 15,
21] which provide services for diagnosing and repairing mod-
elling errors and unwanted consequences in the ontology; And
ontology querying tools which allow one to query the ontology
for objects with specific properties or characteristics.

The type of plug-in denotes how it is integrated into the Pro-
tégé editor itself. The workspace tab plug-ins, as the name sug-
gests, adds their functionality to new tabs in the Protégé inter-
face. This is the case for plug-ins such as the DL Query Tab3

and our RaMP plug-in. A view component plug-in allows one
to use or extend the default ontology views, provided by Pro-
2http://protege.stanford.edu/doc/pdk/
plug-ins/overview.html
3http://protegewiki.stanford.edu/wiki/
DLQueryTab

tégé, in the plug-in implementation. For example, one can write
a view component plug-in to display the classes in the ontology
in a “tabbed” arrangement (i.e., the classes of the ontology repre-
sented in a list with the subclasses indented with respect to their
superclasses). There are other types as well such as backend
plug-ins, reasoner plug-ins etc.

Protégé has a “plug-in friendly” or modular architecture. In
fact, Protégé is a set of interdependent plug-ins which together
provide the functionality of the editor. The first step to creating
your own Protégé plug-in is to create a build of Protégé in your
Integrated Development Environment (IDE) of choice. The rec-
ommended way to do this is compile and run Protégé in your IDE
from sources in its subversion repository. Detailed instructions
on how to do this are available on the Protégé developer docu-
mentation pages.4 Once this is done one can add a new plug-in to
the build by initiating a new plug-in project in the IDE. A typical
plug-in has four main components:

• Java source code (stored in an appropriate folder structure)

• Manifest file (specifies meta information about plug-in)

• build.xml file (specifies instructions on how the plug-
in is compiled and run)

• plug-in.xml file (specifies further meta information
about the plug-in and exactly which part of Protégé it ex-
tends)

Detailed instructions on these components and how to compile
them in a plug-in are given on the Protégé developer pages.5

5. RAMP
We have developed a plug-in for Protégé which allows the on-

tology modeller to represent defeasible information in the ontol-
ogy without explicitly extending the underlying ontology lan-
guage (OWL). This is possible through axiom annotations in
Protégé which do not affect the logical meaning of the ontol-
ogy. Furthermore, this plug-in implements the prototypical and
presumptive reasoning algorithms. The plug-in is called RaMP6

which stands for Rational Monotonicity Plug-in. Figure 3 de-
picts the control panel of RaMP’s interface in Protégé 4.1.

Figure 3: RaMP: Reasoning controller panel

This component of the RaMP interface is called the reasoning
controller panel. This panel provides a text input field for the user
to enter an axiom (defeasible or hard). The axiom can be verified
to follow (or not follow) from the ontology, based on the cur-
rently selected reasoning algorithm. This task is accomplished
by clicking the “check” button in the same panel. The reason-
ing algorithm can be selected from a drop-down menu. Cur-
rently, only prototypical and presumptive reasoning algorithms
are available. There is also a checkbox for indicating if the ax-
iom entered should be treated as defeasible or classical (hard).
4http://protegewiki.stanford.edu/wiki/
Protege4DevDocs
5http://protegewiki.stanford.edu/wiki/
PluginAnatomy
6http://code.google.com/p/nomor/

76

http://protege.stanford.edu/doc/pdk/plug-ins/overview.html
http://protege.stanford.edu/doc/pdk/plug-ins/overview.html
http://protegewiki.stanford.edu/wiki/DLQueryTab
http://protegewiki.stanford.edu/wiki/DLQueryTab
http://protegewiki.stanford.edu/wiki/Protege4DevDocs
http://protegewiki.stanford.edu/wiki/Protege4DevDocs
http://protegewiki.stanford.edu/wiki/PluginAnatomy
http://protegewiki.stanford.edu/wiki/PluginAnatomy
http://code.google.com/p/nomor/

For convenience, RaMP provides a window display (Figure 4)
in Protégé to show the user the set of all axioms in the loaded
ontology that he/she has currently asserted to be defeasible.

Figure 4: RaMP: Defeasible axioms display

This brings us to the topic of how to assert that an axiom is
defeasible in the loaded ontology. RaMP indicates axioms as
defeasible in the ontology through a “flagging” mechanism. In
the Class Description window in Protégé, the superclasses and
equivalent classes of the selected class are indicated. Next to
each of these classes there is a button, labelled “d” for defeasi-
bility, which can be clicked to toggle whether that axiom should
be viewed as defeasible or not by RaMP. When an axiom is in-
dicated as defeasible the button turns pink and an axiom annota-
tion is added to the ontology which stores this information. This
mechanism is indicated in Figure 5.

Figure 5: RaMP: Toggling defeasibility of axioms

The reasoning algorithms implemented by RaMP work in a
similar way. They compute a ranking (ordering) of the axioms
in the ontology. This ranking (see Definition 2) indicates which
axioms are more “important” than others in the ontology viewed
from the perspective of the algorithm. For formal details of what
we mean by important we refer the reader to Definition 3 where
the principle of exceptionality is defined. The details of our al-
gorithms are provided in Sections 3.1 and 3.2 respectively. An
example ranking as displayed in RaMP is depicted below in Fig-
ure 6. The axioms appearing on the light pink background are
defeasible axioms while the axioms displayed on the light green
background are hard.

Figure 6: RaMP: Axiom ranking display

As an added feature of RaMP, we have also included a rudi-
mentary facility for the user to fine-tune the computed ranking

for the ontology. Adjacent to the defeasible toggle switch in Pro-
tégé, there is a button labelled “r” to prompt the user to enter
a numerical value representing the rank of the selected axiom.
By default, our algorithms compute a ranking of the axioms in
the ontology. Each rank of this ranking is a set of axioms. The
axioms in a particular rank share the same level of importance
according to the algorithm.

What this ranking feature is designed to provide is the freedom
for the user to modify the relative importance of the sentences
within each individual rank. The user is not however allowed
to modify the overall ranking structure. This ensures that the
reasoning results conform to Rational Closure (see Section 2.2
and Section 3 where we mention this notion). The specific nu-
merical value chosen for the rank of a particular axiom does not
matter. What matters is the relative ordering between these val-
ues. If axiom ϕ has rank 1 and it is necessary for axiom ϕ′ to
have a higher preference or importance than ϕ then ϕ′ can have
any rank value as long as it is larger than 1. The axiom ranking
feature is depicted in Figure 7.

Figure 7: RaMP: Axiom ranking feature

RaMP displays a positive result if the entered axiom follows
from the ontology with respect to the selected reasoning algo-
rithm (see Figure 8). In our example, “BacterialMeningitis Sub-
ClassOf ViralDisease” follows from the ontology using presump-
tive reasoning:

Figure 8: RaMP: Positive result

Conversely, RaMP displays a negative result if the entered
axiom does not follow from the ontology with respect to the
selected reasoning algorithm (see Figure 9). In our example,
“BacterialMeningitis SubClassOf ViralDisease” does not fol-
low from the ontology using prototypical reasoning:

Figure 9: RaMP: Negative result

6. CONCLUSION
We have presented a description of a Protégé plug-in which

implements a preliminary version of non-monotonic reasoning
for DL-based ontologies. The plug-in provides a mechanism for

77

indicating defeasible information in the ontology as well as an
implementation of two defeasible reasoning algorithms adapted
from the work of Lehmann and colleagues [19] in a proposi-
tional setting. The plug-in is still in the early stages of develop-
ment. We would like to introduce a more appropriate interface
to facilitate better integration with Protégé, we are also investi-
gating potential optimisations for the defeasible reasoning algo-
rithms. In the future we also plan to include: (i) ABox reasoning;
(ii) Defeasibility in other OWL constructs such as disjointness,
roles and role properties; (iii) More sophisticated reasoning tasks
available in standard monotonic systems such as Classification,
Instance checking etc [2] and (iv) Other versions of defeasible
reasoning (in addition to the ones discussed here). Currently
we are evaluating the results reported by the algorithms imple-
mented in the tool. The results will be evaluated in various appli-
cation domains to identify where each algorithm is most suitable
as a reasoning tool.

Acknowledgements
The financial assistance of the National Research Foundation
(NRF) towards this research is hereby acknowledged. Opinions
expressed and conclusions arrived at, are those of the author and
are not necessarily to be attributed to the NRF. The work of Ivan
Varzinczak was also supported by the National Research Foun-
dation under Grant number 81225.

7. REFERENCES
[1] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein,

H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S.
Dwight, J. T. Eppig, M. A. Harris, D. P. Hill,
L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E.
Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock.
Gene Ontology: tool for the unification of biology. Nature
Genetics, 25:25–29, 2000.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. Patel-Schneider, editors. The description logic
handbook. Cambridge, 2 edition, 2007.

[3] F. Baader and R. Peñaloza. Axiom pinpointing in general
tableaux. In Automated Reasoning with Analytic Tableaux
and Related Methods, volume 4548 of Lecture Notes in
Computer Science, pages 11–27. Springer Berlin /
Heidelberg, 2007.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. In Scientific American. Scientific American, May,
2001.

[5] R. J. Brachman and H. J. Levesque. The tractability of
subsumption in frame-based description languages. In
Proceedings of the Third National Conference on Artificial
Intelligence, pages 34–37. American Association for
Artificial Intelligence, 1984.

[6] K. Britz, J. Heidema, and T. Meyer. Semantic preferential
subsumption. In Proc. of KR, pages 476–484, 2008.

[7] K. Britz, T. Meyer, and I. Varzinczak. Preferential
reasoning for modal logics. Electronic Notes in
Theoretical Computer Science, 278:55–69, 2011. Proc. of
the Workshop on Methods for Modalities.

[8] K. Britz, T. Meyer, and I. Varzinczak. Semantic foundation
for preferential description logics. In Proc. of the
Australasian Conference on Artificial Intelligence, 2011.

[9] G. Casini and U. Straccia. Rational closure for defeasible
description logics. In Proc. of JELIA, pages 77–90, 2010.

[10] R. A. Cotè, editor. SNOMED International: The
systematized nomenclature of human and veterinary
medicine. College of American Pathologists, 3rd edition,
1993.

[11] B. Cuenca-Grau, I. Horrocks, B. Motik, B. Parsia, P. F.
Patel-Schneider, and U. Sattler. Cooking the semantic web
with the OWL API. Web Semantics: Science, Services and
Agents on the World Wide Web, 6(4):309–322, 2008.

[12] S. de Coronado, M. W. Haber, N. Sioutos, M. S. Tuttle,
and L. W. Wright. NCI Thesaurus: using science-based
terminology to integrate cancer research results. Medinfo,
11:33–37, 2004.

[13] L. Giordano, N. Olivetti, V. Gliozzi, and G. Pozzato.
ALC + T : A preferential extension of description logics.
Fundamenta Informaticae, 96(3):341–372, 2009.

[14] M. Horridge and S. Bechhofer. The OWL API: A Java API
for OWL ontologies. Semantic Web Journal, pages 1–11,
2010. http://www.semantic-web-journal.
net/sites/default/files/swj107_2.pdf.

[15] M. Horridge, B. Parsia, and U. Sattler. Explaining
inconsistencies in owl ontologies. In Scalable Uncertainty
Management, volume 5785 of Lecture Notes in Computer
Science, pages 124–137. Springer Berlin / Heidelberg,
2009.

[16] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A.
Musen. The Protégé OWL Plugin: An Open Development
Environment for Semantic Web Applications. In
Proceedings of the Third International Semantic Web
Conference (ISWC), volume 3298 of Lecture Notes in
Computer Science, 2004.

[17] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic
reasoning, preferential models and cumulative logics.
Artificial Intelligence, 44:167–207, 1990.

[18] D. Lehmann. Another perspective on default reasoning.
Annals of Mathematics and Artificial Intelligence,
15:61–82, 1995.

[19] D. Lehmann and M. Magidor. What does a conditional
knowledge base entail? Artificial Intelligence, 55(1):1–60,
1992.

[20] D. L. Mcguinness and F. van Harmelen. OWL Web
Ontology Language Overview, Feb. 2004.
http://www.w3.org/TR/owl-features.

[21] K. Moodley. Debugging and repair of Description Logic
ontologies. Master’s thesis, University of KwaZulu-Natal,
2011.

[22] J. Quantz. A preference semantics for defaults in
terminological logics. In Proc. of KR, pages 294–305,
1992.

[23] K. Schild. A correspondence theory for terminological
logics: Preliminary report. In Proceedings of the 12th
International Joint Conference on Artificial Intelligence
(IJCAI), pages 466–471, 1991.

[24] R. Shearer, B. Motik, and I. Horrocks. HermiT: a highly
efficient OWL reasoner. In Proceedings of the Fifth
International Workshop on OWL: Experiences and
Directions (OWLED), 2008.

[25] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz.
Pellet: A practical OWL-DL reasoner. Web Semantics:
Science, Services and Agents on the World Wide Web,
5(2):51 – 53, 2007.

[26] D. Tsarkov and I. Horrocks. FaCT++ description logic
reasoner: System description. In Automated Reasoning,
volume 4130 of Lecture Notes in Computer Science, pages
292–297. Springer Berlin / Heidelberg, 2006.

[27] W3C OWL Working Group. OWL 2 Web Ontology
Language Document Overview, W3C Recommendation,
World Wide Web Consortium, 2009.
http://www.w3.org/TR/owl2-overview.

78

http://www.semantic-web-journal.net/sites/default/files/swj107_2.pdf
http://www.semantic-web-journal.net/sites/default/files/swj107_2.pdf
http://www.w3.org/TR/owl-features
http://www.w3.org/TR/owl2-overview

	Introduction
	Preliminaries
	The Description Logic ALC
	Defeasible Reasoning

	Defeasible Reasoning for DLs
	Prototypical Reasoning
	Presumptive Reasoning

	OWL & Protégé
	OWL
	Protégé
	Protégé plug-ins

	RaMP
	Conclusion
	References

