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Abstract. Among the various proposals for defeasible reasoning for description
logics, Rational Closure, a procedure originally defined for propositional logic,
turns out to have a number of desirable properties. Not only it is computationally
feasible, but it can also be implemented using existing classical reasoners. One
of its drawbacks is that it can be seen as too weak from the inferential point of
view. To overcome this limitation we introduce in this paper two extensions of
Rational Closure: Basic Relevant Closure and Minimal Relevant Closure. As the
names suggest, both rely on defining a version of relevance. Our formalisation
of relevance in this context is based on the notion of a justification (a minimal
subset of sentences implying a given sentence). This is, to our knowledge, the
first proposal for defining defeasibility in terms of justifications—a notion that
is well-established in the area of ontology debugging. Both Basic and Minimal
Relevant Closure increase the inferential power of Rational Closure, giving back
intuitive conclusions that cannot be obtained from Rational Closure. We anal-
yse the properties and present algorithms for both Basic and Minimal Relevant
Closure, and provide experimental results for both Basic Relevant Closure and
Minimal Relevant Closure, comparing it with Rational Closure.

1 Introduction

Description logics, or DLs [1], are central to many modern AI applications because they
provide the logical foundations of formal ontologies. The past 20 years have witnessed
many attempts to introduce defeasibility in a DL setting, ranging from preferential ap-
proaches [8, 9, 12, 18, 28] to circumscription [4–6, 30], amongst others [2, 15].

Preferential extensions of DLs based on the KLM approach [23, 25] are particularly
promising for two reasons. Firstly, it provides a formal analysis of defeasible proper-
ties, which plays a central role in assessing how intuitive the obtained results are. And
secondly, it allows for decision problems to be reduced to classical entailment check-
ing, sometimes without blowing up the computational complexity with respect to the
underlying classical case. The main disadvantage of the KLM approach is that the its
best known form of inferential closure, Rational Closure [25], can be seen as too weak
from an inferential point of view. For example, it does not support the inheritance of
defeasible properties. Suppose we know that mammalian and avian red blood cells are
vertebrate red blood cells (MRBC v VRBC, ARBC v VRBC), that vertebrate red



blood cells normally have a cell membrane (VRBC @∼ ∃hasCM.>), that vertebrate red
blood cells normally have a nucleus (VRBC @∼ ∃hasN.>), but that mammalian red blood
cells normally don’t (MRBC @∼ ¬∃hasN.>). Rational Closure allows us to conclude that
avian vertebrate red blood cells normally have a cell membrane (ARBC @∼ ∃hasCM.>),
but not so for mammalian red blood cells (MRBC @∼ ∃hasCM.>). Informally, the for-
mer can be concluded because avian red blood cells are a normal type of vertebrate red
blood cell, while the latter can’t because mammalian red blood cells are an abnormal
type of vertebrate red blood cell.

In this paper we propose two new forms of defeasible reasoning to overcome this
limitation. Both rely on the formalisation of a version of relevance. In resolving con-
flicts between sets of defeasible statements, we focus only on those that are relevant
to the conflict, thereby ensuring that statements not involved in the conflict are guar-
anteed to be retained. For example, we regard VRBC @∼ ∃hasCM.> as irrelevant to
the conflict between the three statements MRBC v VRBC, VRBC @∼ ∃hasN.>, and
MRBC @∼ ¬∃hasN.>. As we shall see, this ensures that we can conclude, from both our
new forms of defeasible reasoning, that MRBC @∼ ∃hasCM.>.

The formal versions of relevance we employ are based on the notion of a justifica-
tion – a minimal set of sentences responsible for a conflict [21]. We regard any sentence
occurring in some justification as potentially relevant for resolving the conflict. All
other sentences are deemed to be irrelevant to the conflict. Both Basic and Minimal
Relevant Closure are based on the use of justifications. The difference between the two
proposals is related to the way in which the relevant statements are chosen from among
the potentially relevant ones.

Here we focus on the DLALC, although our definitions of Basic and Minimal Rel-
evant Closure are applicable to any DL. The rest of the paper is structured as follows.
First, we outline the DL ALC and how it can be extended to represent defeasible infor-
mation. Then we discuss existing approaches to defeasible reasoning for DLs, with a
focus on Rational Closure. This is followed by presentations of our proposals for Basic
Relevant Closure and Minimal Relevant Closure. We then consider the formal prop-
erties of our proposals, after which we present experimental results, comparing both
Basic Relevant Closure and Minimal Relevant Closure with Rational Closure. Finally,
we discuss related work and conclude with some indications of future work.

2 ALC with Defeasible Subsumption

The language of the description logicALC is built up from a finite set of concept names
NC and a finite set of role names NR. The set of complex concepts (denoted by L) is
built in the usual way according to the rule:

C ::= A | > | ⊥ | ¬C | C u C | C t C | ∃r.C | ∀r.C

The semantics of ALC is the standard Tarskian semantics based on interpretations I
of the form I := 〈∆I , ·I〉, where the domain ∆I is a non-empty set and ·I is an
interpretation function mapping concept names A in NC to subsets AI of ∆I and role
names r in NR to binary relations rI over ∆I ×∆I .

Given C,D ∈ L, C v D is a (classical) subsumption. An ALC TBox T is a
finite set of classical subsumptions. An interpretation I satisfies C v D iff CI ⊆ DI .



Entailment of C v D by T is defined in the standard (Tarskian) way. For more details
on DLs the reader is referred to the Description Logic Handbook [1].

For ALC with defeasible subsumption, or ALC( @∼ ), we also allow defeasible sub-
sumptions of the form C @∼D, collected in a defeasible TBox, or DBox (a finite set
of defeasible subsumptions) . The semantics for ALC( @∼ ) is obtained by augmenting
every classical interpretation with an ordering on its domain [8, 18]. A ranked interpre-
tation is a structureR = 〈∆R, ·R,≺R〉, where 〈∆R, ·R〉 is a DL interpretation and≺R
is a modular ordering on ∆R satisfying the smoothness condition (for every C ∈ L,
if CR 6= ∅ then min≺R(CR) 6= ∅), and where ≺R is modular iff there is a ranking
function rk : X −→ N s.t. for every x, y ∈ ∆R, x ≺R y iff rk(x) < rk(y). A defea-
sible subsumption C @∼D is satisfied in R iff min≺R(CR) ⊆ DR. Intuitively C @∼D
is satisfied by R whenever the most normal Cs are also Ds. It is easy to see that every
ranked interpretation R satisfies C v D iff R satisfies C u ¬D @∼⊥. That is, classical
information can “masquerade” as defeasible information.

3 Reasoning with Defeasible Knowledge Bases

From a KR perspective it is important to obtain an appropriate form of defeasible en-
tailment for ALC( @∼ ). We shall deal with (defeasible) knowledge bases K = 〈T ,D〉,
where T is a (classical) finite TBox andD a finite DBox. Given such a KB, the goal is to
determine what (classical and defeasible) subsumption statements ought to follow from
it. An obvious first attempt is to use the standard Tarskian notion of entailment applied
to ranked interpretations: K preferentially entails C @∼D iff every ranked interpretation
satisfying all elements of K also satisfies C @∼D. However, it is known that this con-
struction (known as Preferential Entailment) suffers from a number of drawbacks [25].
Firstly, it is monotonic—if C @∼D is in the Preferential Entailment of K, then it is also
in the Preferential Entailment of every K′ = 〈T ′,D′〉 such that T ⊆ T ′ and D ⊆ D′.
Secondly it is inferentially too weak—it does not support the inheritance of defeasible
properties. An alternative to Preferential Entailment, first proposed by Lehmann et al.
for the propositional case [25], and adapted to the DL case by Giordano et al. [17, 16]
and Britz et al. [9], is that of Rational Closure. It is inferentially stronger than Pref-
erential Entailment, is not monotonic, and has (limited) support for the inheritance of
defeasible properties. An elegant semantic description of Rational Closure was recently
provided by Giordano et al. for both the propositional case [19] and for ALC( @∼ ) [17,
16]. Our focus here is on an algorithm for Rational Closure for ALC( @∼ ), initially
proposed by Casini and Straccia [12] and subsequently refined and implemented by
Britz et al. [7]. A useful feature of the algorithm is that it reduces Rational Closure for
ALC( @∼ ) to classical entailment checking forALC. Below we define Rational Closure
and present the algorithm.

C ∈ L is said to be exceptional for a knowledge baseK iff> @∼ ¬C is preferentially
entailed byK. Exceptionality checking can be reduced to classical entailment checking.

Proposition 1. Britz et al. [7]: For a KB K = 〈T ,D〉, let D = {¬D t E | D @∼ E ∈
D}. For every C ∈ L, > @∼ ¬C is preferentially entailed by K iff T |=

d
D v ¬C.

Exceptionality is used to build up a sequence of exceptionality sets E0, E1, . . ., and
from this, an exceptionality ranking of concepts and defeasible subsumptions. Let



ET (D) := {C @∼D ∈ D | T |=
d
D v ¬C}. Let E0 := D, and for i > 0, let

Ei := ET (Ei−1). It is easy to see that there is a smallest n such that En = En+1. The
rank rK(C) of C ∈ L is the smallest number r such that C is not exceptional for Er. If
C is exceptional for all Ei (for i ≥ 0) then rK(C) = ∞. The rank rK(C @∼D) of any
C @∼D is the rank rK(C) of its antecedent C.

Definition 1. Lehmann et al. [25], Britz et al. [9]: C @∼D is in the Rational Closure of
K iff rK(C) < rK(C u ¬D) or rK(C) =∞.

Having defeasible subsumptions with infinite rank in the DBox is problematic from an
algorithmic point of view because it does not allow for a clear separation of classical in-
formation (in the TBox T ) and defeasible information (in the DBox D) in a knowledge
base K.

Definition 2. A knowledge base K = 〈T ,D〉 is well-separated iff rK(C @∼D) 6=∞ for
every C @∼D ∈ D.

We will frequently assume knowledge bases to be well-separated. It is worth pointing
out that this assumption is not a restriction of any kind, since every knowledge base can
be converted into a well-separated one, as shown by Britz et al. [7].

Below we present a high-level version of the algorithm for Rational Closure im-
plemented by Casini et al. [11]. It takes as input a well-separated KB K = 〈T ,D〉
and a query C @∼D, and returns true iff the query is in the Rational Closure of K.
It also assumes the existence of a partition procedure which computes the ranks of
the subsumptions in D and partitions D into n equivalence classes according to rank:
i = 0, . . . n,Di := {C @∼D | rK(C) = i}. Note that, becauseK is well-separated, none
of the elements ofD will have infinite rank. The partition procedure performs at most a
polynomial number of classical entailment checks to compute the ranks. The remaining
part of the algorithm performs a linear number of classical entailment checks (in the
size of D).

Algorithm 1: Rational Closure
Input: A well-separated KB 〈T ,D〉 and a query C @

∼D
Output: true iff C @

∼D is in the Rational Closure of 〈T ,D〉
1 (D0, . . . ,Dn, n) := partition(D);
2 i := 0; D′ := D;
3 while T |=

d
D′ v ¬C and D′ 6= ∅ do

4 D′ := D′ \ Di; i := i+ 1;

5 return T |= D′ u C v D;

Informally, the algorithm keeps on removing defeasible subsumptions fromD, start-
ing with the lowest rank, and proceeding rank by rank, until it finds the first DBox D′
for which C is no longer exceptional. C @∼D is then taken to be in the Rational Closure
of K iff T |= D′ u C v D. Observe that, since every classical subsumption C v D
can be rewritten as a defeasible subsumption C u ¬D @∼⊥, Algorithm 1 is, indirectly,



able to deal with classical queries (of the form C v D) as well. The same holds for the
other algorithms defined in this paper.

To see how the algorithm works, consider the following example, which we use as
a running example in the rest of the paper.

Example 1. We know that both avian red blood cells and mammalian red blood cells
are vertebrate red blood cells, and that vertebrate red blood cells normally have a cell
membrane. We also know that vertebrate red blood cells normally have a nucleus, but
that mammalian red blood cells normally don’t. We can represent this information in
the KB K1 = 〈T 1,D1〉 with T 1 = {ARBC v VRBC,MRBC v VRBC} and D1 =
{VRBC @∼ ∃hasCM.>, VRBC @∼ ∃hasN.>, MRBC @∼ ¬∃hasN.>}.
We get D1

0 = {VRBC @∼ ∃hasN.>, VRBC @∼ ∃hasCM.>}, and D1
1 = {MRBC @∼

¬∃hasN.>}. Given the query ARBC @∼ hasCM.>,D′ = D1 in line 5, from which it fol-
lows that the query is in the Rational Closure ofK1. Given the query MRBC @∼ hasCM.>,
however, we get D′ = D1

1 in line 5, and so this query is not in the Rational Closure
of K1. An analysis of the latter query turns out to be very instructive for our pur-
poses here. Observe that, to obtain D′, the algorithm removes all elements of D1

0 =
{VRBC @∼ ∃hasN.>, VRBC @∼ ∃hasCM.>} from D1. Informally, the motivation for the
removal of VRBC @∼ ∃hasN.> is easy to explain: together with MRBC v VRBC and
MRBC @∼ ¬∃hasN.> it is responsible for MRBC being exceptional. It is less clear, in-
tuitively, why the defeasible subsumption VRBC @∼ ∃hasCM.> has to be removed. One
could make the case that since it plays no part in the exceptionality of MRBC, it should
be retained. As we shall discuss in the next section, this argument forms the basis of an
approach to defeasible reasoning based on the relevance of defeasible subsumptions.

4 Relevant Closure

Here we outline our proposal for a version of defeasible reasoning based on relevance.
The principle is an obvious abstraction of the argument outlined at the end of the pre-
vious section—identify those defeasible subsumptions deemed to be relevant w.r.t. a
given query, and consider only these ones as being eligible for removal during the ex-
ecution of the Rational Closure algorithm. More precisely, suppose we have identified
R ⊆ D as the defeasible subsumptions relevant to the query C @∼D. First we ensure
that all elements of D that are not relevant to the query are not eligible for removal dur-
ing execution of the Rational Closure algorithm. For R ⊆ D let RelK(R) := 〈R,R−〉,
whereR− = D\R. That is,R− is the set of all the defeasible subsumptions that are not
eligible for removal since they are not relevant w.r.t. the query C @∼D. Then we apply
a variant of Algorithm 1 (the Rational Closure algorithm) to K in which the elements
of R− are not allowed to be eliminated. The basic algorithm for Relevant Closure is
outlined below (Algorithm 2). Note that, as in the case of Algorithm 1, we assume that
the knowledge base is well-separated. We say that a defeasible subsumption C @∼D is
in the Relevant Closure of (a well-separated) K w.r.t. a set of relevant defeasible sub-
sumptions R iff the Relevant Closure algorithm (Algorithm 2) returns true, with K,
C @∼D, and RelK(R) as input.

For Example 1, an appropriate choice for R would be the set {VRBC @∼ ∃hasN.>,
MRBC @∼ ¬∃hasN.>} since these are the two defeasible subsumptions responsible for



Algorithm 2: Relevant Closure
Input: A well-separated KB 〈T ,D〉, a query C @

∼D, and the partition
RelK(R) = 〈R,R−〉

Output: true iff C @
∼D is in the Relevant Closure of 〈T ,D〉

1 (D0, . . . ,Dn, n) := partition(D);
2 i := 0; R′ := R;
3 while T |=

d
R− u

d
R′ v ¬C and R′ 6= ∅ do

4 R′ := R′ \ (Di ∩R); i := i+ 1;

5 return T |=
d

R− u
d

R′ u C v D;

MRBC being exceptional (w.r.t.K). IfR = {VRBC @∼ ∃hasN.>, MRBC @∼ ¬∃hasN.>}
and R− = {VRBC @∼ ∃hasCM.>} (that is, it is information not eligible for removal), it
is easy to see that we can derive MRBC @∼ hasCM.>, since {ARBC v VRBC,MRBC v
VRBC} |= (¬VRBC t hasCM.>)u (¬MRBCt ¬∃hasN.>)uMRBC v hasCM.>.

4.1 Basic Relevant Closure

The explanation above still leaves open the question of how to define relevance w.r.t.
a query. The key insight in doing so, is to associate relevance with the subsumptions
responsible for making the antecedent of a query exceptional. We shall refer to such
sets of subsumptions as justifications.

Definition 3. For K = 〈T ,D〉, J ⊆ D, and C ∈ L, J is a C-justification w.r.t. K iff
C is exceptional for 〈T ,J 〉 (i.e. > @∼ ¬C is in the Preferential Entailment of 〈T ,J 〉)
and for every J ′ ⊂ J , C is not exceptional for J ′.

The choice of the term justification is not accidental, since it closely mirrors the notion
of a justification for classical DLs, where a justification for a sentence α is a minimal set
implying α [21]; it corresponds to the notion of kernel, used a lot in base-revision lit-
erature [20]. Given the correspondence between exceptionality and classical entailment
in Proposition 1, the link is even closer.

Corollary 1. J is a C-justification w.r.t. K = 〈T ,D〉 iff J ⊆ D, T |= J v ¬C, and
for every J ′ ⊂ J , T 6|= J ′ v ¬C.

This places us in a position to define our first relevance-based version of defeasible
reasoning. We identify relevance for a query C @∼D with all subsumptions occurring
in some C-justification for K. For C ∈ L, and a KB K, let J K(C) = {J | J is a
C-justification w.r.t. K}.

Definition 4. C @∼D is in the Basic Relevant Closure of K iff it is in the Relevant Clo-
sure of K w.r.t.

⋃
J K(C).

For Example 1, J = {VRBC @∼ ∃hasN.>, MRBC @∼ ¬∃hasN.>} is the one MRBC-
justification for D1, and MRBC @∼ hasCM.> is in the Basic Relevant Closure of K1 as
seen above, since the axiom VRBC @∼ ∃hasCM.> is not in any MRBC-justification and
is therefore deemed to be irrelevant w.r.t. the query.



To summarise, unlike Rational Closure, Basic Relevant Closure ensures that the de-
feasible property of having a cell membrane is inherited by mammalian red blood cells
from vertebrate red blood cells, even though mammalian red blood cells are abnormal
vertebrate red blood cells (in the sense of not having a nucleus).

4.2 Minimal Relevant Closure

Although Basic Relevant Closure is inferentially stronger than Rational Closure, it can
still be viewed as inferentially too weak, since it views all subsumptions occurring in
some C-justifications as relevant, and therefore eligible for removal. In particular, it
does not make proper use of the ranks of the subsumptions in a DBox. In this section
we strengthen the notion of relevance by identifying it with the subsumptions of lowest
rank occurring in every C-justification (instead of all subsumptions occurring in some
C-justification).

Definition 5. For J ⊆ D, let J Kmin := {D @∼ E | rK(D) ≤ rK(F ) for every F @∼G ∈
J }. For C ∈ L, let J Kmin(C) :=

⋃
J∈JK(C) J Kmin.

The intuition can be explained as follows. To make an antecedent C non-exceptional
w.r.t. K, it is necessary to remove at least one element of every C-justification from
D. At the same time, the ranking of subsumptions provides guidance on which sub-
sumptions ought to be removed first (subsumptions with lower ranks are removed first).
Combining this, the subsumptions eligible for removal are taken to be precisely those
that occur as the lowest ranked subsumptions in some C-justification.

Definition 6. C @∼D is in the Minimal Relevant Closure of K iff it is in the Relevant
Closure of K w.r.t.

⋃
JDmin(C).

To see how Minimal Relevant Closure differs from Basic Relevant Closure, we extend
Example 1 as follows.

Example 2. In addition to the information in Example 1, we also know that mammalian
sickle cells are mammalian red blood cells, that mammalian red blood cells normally
have a bioconcave shape, but that mammalian sickle cells normally do not (they nor-
mally have a crescent shape). We represent this new information as T 2 = {MSC v
MRBC} and D2 = {MRBC @∼ ∃hasS.BC, MSC @∼ ¬∃hasS.BC}.

To answer the query of whether mammalian sickle cells don’t have a nucleus (that is,
whether MSC @∼ ¬∃hasN.>) given a KB K2 = 〈T ,D〉, with T = T 1 ∪ T 2 and D =
D1∪D2, note that there are two MSC-justifications forK: J 1 = {MRBC @∼ ¬∃hasN.>,
VRBC @∼ ∃hasN.>}, and J 2 = {MRBC @∼ ∃hasS.BC, MSC @∼ ¬∃hasS.BC}. Therefore
MSC @∼ ¬∃hasN.> is in the Basic Relevant Closure of K2 iff it is in the Relevant Clo-
sure of K w.r.t. R, where R consists of all of D except for the only irrelevant axiom
VRBC @∼ ∃hasCM.> (the only axiom that does not appear in any MSC-justification).
It turns out that MSC @∼ ¬∃hasN.> is not in the Basic Relevant Closure of K2 since
MRBC @∼ ¬∃hasN.> is viewed as relevant w.r.t. the query.

To check if MSC @∼ ¬∃hasN.> is in the Minimal Relevant Closure, note thatJ 1
min =

{VRBC @∼ ∃hasN.>}, and J 2
min = {MRBC @∼ ∃hasS.BC}. Thus, MSC @∼ ¬∃hasN.> is



in the Minimal Relevant Closure of K iff it is in the Relevant Closure of K w.r.t. R,
where R consists of everything in D except for the defeasible subsumptions in the set
{VRBC @∼ ∃hasCM.>,MRBC @∼ ¬∃hasN.>,MSC @∼ ¬∃hasS.BC}. And this is the case,
since MRBC @∼ ¬∃hasN.> is now deemed to be irrelevant w.r.t. the query.

To summarise, unlike the case for Rational Closure and Basic Relevant Closure,
using Minimal Relevant Closure we can conclude that mammalian sickle cells nor-
mally don’t have a nucleus. The main reason is that, although Minimal Relevant Clo-
sure recognises that mammalian sickle cells are abnormal mammalian red blood cells,
the information that mammalian red bloods cells do not have a nucleus is deemed to be
irrelevant to this abnormality, which means that this defeasible property of mammalian
red blood cells are inherited by mammalian sickle cells.

5 Properties of Relevant Closure

The previous sections contain a number of examples showing that both Basic and Min-
imal Relevant Closure provide better results than Rational Closure. The purpose of this
section is to provide a more systematic evaluation. We commence by showing that Min-
imal Relevant Closure is inferentially stronger than Basic Relevant Closure which, in
turn, is inferentially stronger than Rational Closure.

Proposition 2. If C @∼D is in the Rational Closure of a knowledge base K, then it is
in the Basic Relevant Closure of K (the converse does not always hold). If C @∼D is in
the Basic Relevant Closure of K, then it is in the Minimal Relevant Closure of K (the
converse does not always hold).

It is known that Rational Closure and Preferential Entailment are equivalent w.r.t.
the classical subsumptions they contain. The next result shows that this result extends
to Basic and Minimal Relevant Closure as well.

Proposition 3. C v D is in the Minimal Relevant Closure of a knowledge base K, iff
it is in the Basic Relevant Closure of K, iff it is in the Rational Closure of K (iff it is in
the Preferential Entailment of K).

One of the reasons Proposition 3 is important is that it ensures that Basic and Minimal
Relevant Closure are proper generalisations of classical entailment: If K = 〈T ,D〉 is
reduced to classical subsumptions—that is, if K is well-separated and D = ∅—then
Minimal and Basic Relevant Closure coincide with classical entailment.

From a practical point of view, one of the main advantages of both Basic and Mini-
mal Relevant Closure is that, as for Rational Closure, their computation can be reduced
to a sequence of classical entailment checks, thereby making it possible to employ ex-
isting optimised classical DL reasoners for this purpose. Below we provide high-level
algorithms for both versions based on this principle.

The algorithm for Basic Relevant Closure takes as input a well-separated KB K =
〈T ,D〉, a query C @∼D, and uses the partition procedure which partitions the elements
of D according to ranks. It also assumes the existence of a justifications procedure
which takes as input a DBox K, a concept C, and returns the m C-justifications w.r.t.
K. It returns true iff the query is in the Basic Relevant Closure of K.



Algorithm 3: Basic Relevant Closure
Input: A well-separated K = 〈T ,D〉 and a query C @

∼D
Output: true iff C @

∼D is in the Basic Relevant Closure of K
1 (D0, . . . ,Dn, n) := partition(D);
2 (J1, . . . ,Jm,m) := justifications(K,C);
3 J :=

⋃j=m
j=1 Jj ; i := 0; D′ := D; X := ∅;

4 while X ∩ Jj = ∅ for some j = 1, . . . ,m and D′ 6= ∅ do
5 D′ := D′ \ (J ∩ Di);
6 X := X ∪ (J ∩ Di); i := i+ 1;

7 return T |= D′ u C v D;

In terms of computational complexity, the big difference between Algorithm 1 and
Algorithm 3 is that the latter needs to compute all C-justifications which can involve an
exponential number of classical entailment checks [21]. This is in contrast to Algorithm
1 which needs to perform at most a polynomial number of entailment checks. But, since
entailment checking for ALC is EXPTIME-complete, computing the Basic Relevant
Closure is EXPTIME-complete as well. From a practical perspective, Horridge [21]
has shown that computing justifications is frequently feasible even for large ontologies.
We address this issue again in the sections on experimental results and future work.

Next we provide a high-level algorithm for computing Minimal Relevant Closure.
Like Algorithm 3, it takes as input a well-separated KBK = 〈T ,D〉 and a queryC @∼D,

Algorithm 4: Minimal Relevant Closure
Input: A well-separated K = 〈T ,D〉 and a query C @

∼D
Output: true iff C @

∼D is in the Minimal Relevant Closure of K
1 (D0, . . . ,Dn, n) := partition(D);
2 (J1, . . . ,Jm,m) := justifications(K,C);
3 for j := 1 to m do
4 k := min(D0, . . . , Dn,Jj);
5 Mj := Jj ∩ Dk;

6 M :=
⋃j=m

j=1 Mj ; i := 0; D′ := D; X := ∅;
7 while X ∩Mj = ∅ for some j = 1, . . . ,m and D′ 6= ∅ do
8 D′ := D′ \ (M∩Di);
9 X := X ∪ (M∩Di); i := i+ 1;

10 return T |= D′ u C v D;

uses the partition procedure which partitions the elements of D according to ranks, and
uses the justifications procedure which takes as inputK, a concept C, and returns them
C-justifications w.r.t. K. In addition, it assumes the existence of a min procedure which
takes as input the partitioned version of D and any subset of D, say Y , and returns the
smallest j such that Y ∩ Dj 6= ∅.



Since the only real difference between Algorithm 3 and Algorithm 4 is the use of
the min procedure, which does not involve any classical entailment check, it follows
easily that computing the Minimal Relevant Closure is EXPTIME-complete as well.

To conclude this section we evaluate Basic and Minimal Relevant Closure against
the KLM properties of Kraus et al. [23] for rational preferential consequence, translated
to DLs.

(Cons) > 6 @∼⊥ (Ref) C @
∼ C

(LLE)
|= C ≡ D, C @

∼ E

D @
∼ E

(And)
C @
∼D, C @

∼ E

C @
∼D u E

(Or)
C @
∼ E, D @

∼ E

C tD @
∼ E

(RW)
C @
∼D, |= D v E

C @
∼ E

(CM)
C @
∼D, C @

∼ E

C uD @
∼ E

(RM)
C @
∼ E, C 6 @∼ ¬D
C uD @

∼ E

With the exceptions of Cons, these have been discussed at length in the literature for
both the propositional and the DL cases [23, 25, 24, 18] and we shall not do so here.
Semantically, Cons corresponds to the requirement that ranked interpretations have non-
empty domains. Although these are actually properties of the defeasible subsumption
relation @∼ , they can be viewed as properties of a closure operator as well. That is, we
would say that Basic Relevant Closure satisfies the property Ref, for example, whenever
C @∼ C is in the Basic Relevant Closure of D for every DBox D and every C ∈ L.

Proposition 4. Both Basic Relevant Closure and Minimal Relevant Closure satisfy the
properties Cons, Ref, LLE, And, and RW, and do not satisfy Or, CM, and RM.

While Basic Relevant Closure and Minimal Relevant Closure are inferentially stronger
than Rational Closure, and behave well in terms of the examples discussed, their failure
to satisfy the formal properties Or, CM and RM is a drawback. We are currently inves-
tigating refinements of both Basic Relevant Closure and Minimal Relevant Closure that
will satisfy these properties.

6 Experimental Results

In this section we report on preliminary experiments to determine the practical perfor-
mance of Basic and Minimal Relevant Closure relative to Rational Closure. Our algo-
rithms were implemented and applied to the generated dataset employed by Casini et al.
[11]. The DBoxes are binned according to percentage defeasibility (ratio of the number
of defeasible vs. classical subsumptions) in increments of 10 from 10 to 100, and vary
uniformly in size between 150 and 5150 axioms. In addition to the generated DBoxes,
we randomly generated a set of DBox queries using terms in their signatures. The task
is then to check whether a query is in the Basic (resp. Minimal) Relevant Closure of
the DBox and plot its performance relative to Rational Closure. The rankings of each
DBox were precomputed because determining the ranking can be viewed as an offline
process, and is not the central interest here. Experiments were performed on an Intel
Core i7 machine with 4GB of memory allocated to the JVM (Java Virtual Machine).
The underlying classical DL reasoning implementation used in our algorithm is Her-
miT (http://www.hermit-reasoner.com). As a preliminary optimisation we prune away



axioms from the rankings that are irrelevant to the query according to the notion of
entailment preserving modules [14]

Results: Overall, the Basic and Minimal Relevant Closure took around one order of
magnitude longer to compute than Rational Closure (see Figure 1).

Fig. 1. Average query execution performance of Basic Relevant Closure (in red) vs. Rational
Closure (in blue) over the dataset.

The reason for this discrepancy in performance is attributable to the relatively large
number of classical entailment checks required to compute the justifications (see Fig-
ure 2) for Basic and Minimal Relevant Closure. Rational Closure, on the other hand,
does not require to compute justifications and therefore in general is significantly faster.
Another contributing factor to this is that HermiT is not optimised for entailment checks
of the form found in Algorithms 3 and 4.

As expected, the performance of Basic (and Minimal) Relevant Closure drastically
degrades when it has to compute a large number of justifications. We found that 8% of
queries could not be computed in reasonable time. We introduced a timeout of 7000ms,
which is one order of magnitude longer than that of the worst case query answering
times for Rational Closure (700ms). The timeout accounts, to some extent, for the num-
ber of justifications being more or less constant. Despite this, we observe that an average
query answering time of 100 milliseconds is promising as an initial result, especially
since our algorithms are not highly optimised.

Since the practical feasibility of Basic and Minimal Relevant Closure relies on the
justificatory structure of the DBoxes, we plan to investigate the prevalence of justifica-



Fig. 2. Average number of justifications computed for query answering using Basic Relevant
Closure.

tions in real-world ontologies. This investigation could reveal the usefulness of these
forms of reasoning in such contexts.

Finally, given the minor differences between the algorithms for Basic and Minimal
Relevant Closure it is not surprising that the latter behaves very similarly to the former
from a performance perspective.

7 Related Work

The semantic underpinnings of our work has its roots in the propositional approach
to defeasible reasoning advocated by Lehmann and colleagues [23, 25, 24] and trans-
ported to the DL setting by Britz et al. [8, 9] and Giordano et al. [18, 17, 16]. From an
algorithmic perspective, Giordano et al. [18] present a tableau calculus for computing
Preferential Entailment which relies on KLM-style rules. To our knowledge, this has
not been implemented yet. Our work builds on that of Casini and Straccia [12] who
describe an algorithm for computing (a slightly different version of) Rational Closure
for ALC, and Britz et al. [7], who refined the Casini-Straccia algorithm to correspond
exactly to Rational Closure, and implemented the refined algorithm. Their accompa-
nying experimental results showed that enriching DLs with defeasible subsumption is
practically feasible.

Strongly related to our work as well is the approach to defeasible reasoning known
as Lexicographic Closure, first proposed by Lehmann [24] for the propositional case,
and extended to the DL case by Casini and Straccia [13]. Lukasiewicz [26] also pro-
posed a method that, as a special case, corresponds to a version of Lexicographic Clo-
sure. Below we present a description of Lexicographic Closure for ALC( @∼ ) (space
considerations prevent a more detailed description).

LetK = 〈T ,D〉 be a KB withD partitioned intoD0, . . . ,Dn. ForD′ ⊆ D, let kDi =
|Di ∩ D′|. Let ≺ be the lexicographic order on sequences of natural numbers of length
n + 2. For D′,D′′ ⊆ D, let D′ � D′′ iff [kD

′

0 , . . . , kD
′

n , kD
′

∞ ] ≺ [kD
′′

0 , . . . , kD
′′

n , kD
′′

∞ ].
For D′ ⊆ D and C ∈ L, D′ is a basis for C w.r.t. K iff T 6|= D′ v ¬C and D′ is
maximal w.r.t. the ordering �.

Definition 7. For C,D ∈ L, C @∼D is in the Lexicographic Closure of K = 〈T ,D〉 iff
for every basis D′ for C w.r.t. K, T |=

d
D′ u C v D.



Lexicographic Closure corresponds to what Lehmann [24] refers to presumptive rea-
soning and describes as the reading intended by Reiter’s Default Logic [29]. It satisfies
all the KLM properties, and is known to be inferentially stronger than Rational Closure.
It turns out to be stronger than Minimal Relevant Closure (and Basic Relevant Closure)
as well.

Proposition 5. If C @∼D is in the Minimal Relevant Closure of D, then it is in the
Lexicographic Closure of D. The converse does not hold.

Lexicographic Closure is a powerful form of defeasible reasoning and is certainly worth
further investigation in the context of DLs. At present, we are not aware of any imple-
mentation of Lexicographic Closure, though.

More generally, other proposals for defeasible reasoning include default-style rules
in description logics [3, 27], approaches based on circumscription for DLs [6, 5, 4, 30],
and approaches that combines an explicit knowledge operator with negation as failure
[22, 15]. To our knowledge, the formal properties of the consequence relation of these
systems have not been investigated in detail, and none of them have been implemented.

8 Conclusion and Future Work

In this paper we proposed a new approach to defeasible reasoning for DLs based on the
relevance of subsumptions to a query. We instantiated the approach with two versions of
relevance-based defeasible reasoning—Basic Relevant Closure and Minimal Relevant
Closure. We showed that both versions overcome some of the limitations of Ratio-
nal Closure, the best known version of KLM-style defeasible reasoning. We presented
experimental results based on an implementation of both Basic Relevant Closure and
Minimal Relevant Closure, and compared it with existing results for Rational Closure.
The results indicate that both Basic Relevant Closure and Minimal Relevant Closure
are only slightly more expensive to compute than Rational Closure.

The relevance-based reasoning proposed in this paper is, to our knowledge, the first
attempt to define a form of defeasible reasoning on the use of justifications—a notion
on which the area of ontology debugging is based. An obvious extension to the current
work is the investigation of relevance-based reasoning other than Basic and Minimal
Relevant Closure. We are currently investigating a version that is inferentially stronger
than Minimal Relevant Closure.

Here the focus was on defeasible reasoning for DBoxes without reference to ABox
assertions. The incorporation of defeasible ABox reasoning into both forms of Relevant
Closure presented here is similar to existing approaches for Rational Closure [17, 16,
10] and is left as future work.

Finally, there are two ways to deal with the computational burden associated with
Relevant Closure in comparison with Rational Closure. Firstly, there is the option of
optimised versions of the current implementations. Secondly, there is the possibility of
developing efficient algorithms for approximating Basic or Minimal Relevant Closure,
that are guaranteed to be at least as strong as Rational Closure, inferentially speaking.
We are pursuing both options.
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