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ABSTRACT. Intelligent agents are often faced with the problem of trying to com-
bine possibly conflicting pieces of information obtained from different sources into a
coherent view of the world. We propose a framework for the modelling of such com-
bination operations with roots in the work of Spohn [Spo88, Spo91]. We construct a
number of combination operations and we measure them against various properties
that such operations ought to satisfy. We conclude by discussing the connection be-
tween combination operations and the use of infobases [Mey99, MLHO00).
KEYWORDS: Knowledge representation, belief revision, combination operations,
merging, knowledge bases, epistemic states.

1 Introduction

To be able to operate in its environment an intelligent agent must have a
coherent view of the world. This demand is often complicated by the fact that
such agents receive conflicting pieces of information from different sources. This
issue is usually addressed by considering the merging of possibly inconsistent
knowledge bases [BI84, Lin96, BKM91, BKMS92, KPP98, LS98, Rev93, Rev97,
Sub94]. In this paper we adopt a view that is more general in two ways.
Firstly, we study the more general class of combination operations. Secondly,
the operations are defined in terms of epistemic states — structures in the
style of Spohn [Spo88, Spo91] — instead of knowledge bases. The combination
operations we study are thus closely related to the combination of preferences
in the context of group decision making [LLO0O].

In section 2 we give a brief introduction to the merging of knowledge bases,
focussing on the work of Konieczny and Pino-Pérez [KPP98]. This is followed,
in section 3, by a description of our framework for the combination of epistemic
states. In section 4 we construct a number of combination operations and show
how they measure up to proposed properties. Section 5 discusses links between
combination operations and the infobases of Meyer [Mey99].

*Currently on sabbatical from the Department of Computer Science, University of Preto-
ria, South Africa.



We assume a finitely generated propositional language L closed under the
usual propositional connectives and with a classical model-theoretic semantics.
U is the set of interpretations of L and M («) is the set of models of a € L.
Classical entailment is denoted by F and logical equivalence by =. We use U
to denote the concatenation of lists. We let ™ denote the list consisting of n
versions of z. The length of a list / is denoted by [I|.

2 Merging knowledge bases

In the spirit of the work of Katsuno and Mendelzon [KM91] approaches to
the merging of knowledge bases usually represent the beliefs of an agent as a
single wif ¢ of L, known as a knowledge base, where ¢ represents the set of all
wils entailed by ¢. The goal is to construct, from a finite list of such knowl-
edge bases, an appropriate consistent knowledge base in some rational fashion.
Konieczny and Pino-Pérez [KPP98] have proposed a general framework for the
merging of knowledge bases. A knowledge list e is a non-empty finite list of
consistent knowledge bases [¢1,...,d,]. Two knowledge lists e; and ey are
element-equivalent, written as e; & eq, iff for every element ¢; of e; there is
a unique element ¢o (position-wise) of es such that ¢ = ¢2 and for every
element ¢, of es there is a unique element ¢, (position-wise) of e; such that
¢2 = ¢1. A KP-merging operation ¢ is a function from the set of all knowledge
lists to the set of all knowledge bases satisfying the following postulates (the
KP-postulates):

(KP1) d(e) £ L

(KP2) 1 AL ¢; ¥ L then d(e) = A2, 1

(KP3) If e; ~ ez then d(e1) = d(e2)

(KP4) If ¢; A 2 E L then §([¢1] U [¢2]) ¥ 61

(KP5) d(e1) Ad(es) E d(eq Ues)

(KP6) If §(e1) A d(ep) ¥ L then d(e; U es) E &(er) Ad(es)

(KP1) requires the knowledge base obtained to be satisfiable. (KP2) states that
if it is possible to retain all the information contained in a list of knowledge
bases (i.e. if they are consistent) then we should do so. (KP3) can be seen as
two properties rolled into one. Firstly, it is an appropriate version of Dalal’s
principle of the irrelevance of syntax [Dal88]: two knowledge lists that are
element-equivalent should yield semantically identical results. But the use of
element-equivalence also commits us to commutativity. (KP4) is known as the
fairness postulate; when two knowledge bases are inconsistent it forces us not to
prefer one completely over the other. (KP5) and (KP6) correspond to Pareto’s
conditions in social choice theory [Arr63]. Together they state that whenever
the results of merging two knowledge lists are consistent, merging the combined



lists should give exactly the same result as retaining all the information when
merging the two lists separately.

Konieczny and Pino-Pérez also distinguish between two subclasses of merg-
ing operations. An arbitration operation tries to take as many differing opinions
as possible into account, while the intuition associated with magority opera-
tions is that the opinion of the majority should prevail. They initially propose
the following postulates for arbitration and majority operations.

(arb) Vn d(el ¢™) = (el [¢])
(maj) In Slel ¢™) FE ¢

It turns out that there is no KP-merging operation satisfying (arb). From this
result Konieczny and Pino-Pérez conclude that (arb) is too strong. We are of
the opinion that it is not (arb) that is at fault, but some of the KP-postulates.
Below we argue against the inclusion of (KP4) as a postulate that needs to be
satisfied by all combination operations.

3 Combining epistemic states

One of the central points of departure in this paper is that knowledge bases do
not have sufficient structure to represent the beliefs of agents in an adequate
manner, a point that has been made a number of times in the belief revision
literature.! As a result, we focus on combination operations on the level of
epistemic states. We see an epistemic state as providing a plausibility ranking
of the interpretations of L; the lower the number assigned to an interpretation,
the more plausible it is deemed to be.

Definition 3.1 An epistemic state ® is a function from U to the set of natural
numbers. Given an epistemic state ®, the knowledge base associated with ®,
denoted by ¢g, is some ¢ € L such that M(¢) = {u | ®(u) =0}. B

This representation of an epistemic state and its associated knowledge base
can be traced back to the work of Spohn [Spo88, Spo91]. An epistemic state
contains, not just the current beliefs of an agent (in the form of a knowledge
base), but also information about the importance, or entrenchment, that an
agent attaches to specific beliefs; information that is used to guide the combi-
nation process. As an extreme example, an epistemic state with an inconsistent
associated knowledge base still contains useful information since it is able to
differentiate between different levels of plausibility, or entrenchment, of beliefs.

3.1 Preliminaries

An epistemic list E = [®F,..., ®[;] is a finite list of epistemic states. It is
instructive to view an epistemic list pictorially as in figure 1. While such a pic-
torial view is only useful in representing epistemic lists containing two elements,

1See, for example, Darwiche and Pearl [DP97].



Figure 1: A pictorial representation of an epistemic list containing two epistemic
states ®; and ®2. The sequence of two digits in each cell above indicates the natural
numbers associated with interpretations by the two epistemic states. A cell containing
the sequence ij indicates the placement of those interpretations assigned the value i
by ®; and assigned the value j by ®,.

it serves as a good foundation for understanding the principles underlying the
combination of epistemic states in general. For any epistemic state ®, let

min(®) = min{®(u) | u € U},

let
max(®) = max{®(u) |u € U},

and for an epistemic list F, let
max(E) = max{max(®”) | 1 <i < |E|}.

For an epistemic list F and u € U, let min®(u) = min{®F(u) | 1 < i < |E|}
and let max?(u) = max{®F(u) | 1 < i < |E|}. We denote by seq(FE) the set
of all sequences of length |E| of natural numbers, ranging from 0 to max(FE).
We denote by seq<(FE) the subset of seq(E) of all sequences that are ordered
non-decreasingly, and by seg>(E) the subset of seq(E) of all sequences that are
ordered non-increasingly. For u € U, we let s¥(u) be the sequence containing
the natural numbers ®f (u),..., &}, (u) in that order, we let sZ(u) be the

sequence s¥(u) ordered non-decreasingly, and we let sg (u) be the sequence
s¥(u) ordered non-increasingly. Clearly s”(u) € seq(E), sZ(u) € seq<(E)
(B,<) (E,>)

and sZ(u) € seq>(E). Furthermore, we denote by sF(u), s; and s
respectively the i-th digit in sZ(u), sZ(u) and sZ(u) respectively. Given any
set seq of finite sequences of natural numbers and a total preorder C on seq,
we define the function QF? : seq — {0, ..., |seq| — 1} by assigning consecutive
natural numbers to the elements of seq in the order imposed by C, starting
by assigning 0 to the elements lowest down in C. We denote the lezicographic

ordering on seq by Cye;.



3.2 Properties for combining epistemic states

A combination operation A on epistemic states is a function from the set of
all non-empty epistemic lists to the set of all epistemic states. We propose the
following basic properties for the combination of epistemic states:

(E0) A([®])(uv) = ®(u) — min(®)
(E1) Just. A(E)(u) =

(B2) &7 (u) =
A(E)(w)

<
(B3) If &7(u) <
(E4) If A(E)(u)

P (u) Vi,j € {1,...,|E|} and sZ(u) Cier sZ(v) implies that
A(E)(v)

®F(v) Vi € {1,...,|E|} then A(E)(w) < A(E)(v)

< A(E)(v) then ®F(u) < ®F(v) for some i € {1,...,|E|}

(E0) is the reasonable requirement that trivial combination (with a singleton
list) leaves matters unchanged, except in the case where the associated knowl-
edge base is inconsistent. (E1) is simply a restatement of (KP1) in this more
general framework. (E2) is a generalisation of (KP2). This can be explained
as follows. A knowledge base ¢ is a crude epistemic state in the sense that
the models of ¢ are deemed to be strictly more plausible than its countermod-
els. So, semantically speaking, (KP2) states that those interpretations that are
considered to be most plausible by all of the knowledge bases in a knowledge
list are strictly more plausible than any of the remaining interpretations. In
this case the “remaining interpretations ” can be decribed as those regarded
by every knowledge base to be at most as plausible as the most plausible ones,
but less plausible by at least one of the knowledge bases. In the same vein (E2)
says that whenever all of the epistemic states in E agree on the level of plau-
sibility of a particular interpretation » then, in the epistemic state obtained
from a combination operation, u should be strictly more plausible than any
interpretation v which is regarded by every epistemic state to be at most as
plausible as u, but less plausible than u by at least one of the epistemic states.
(E3) states that if all epistemic states in E agree that u is at least as plausible
as v, then so should the resulting epistemic state. (E4) expects justification
for regarding an interpretation u as at least as plausible as v after combination
has taken place: there has to be at least one epistemic state in E which regards
u as at least as plausible as v. (E4) is a restatement of the Pareto Principle
(in its contrapositive form), one of the properties used to establish Arrow’s
impossibility theorem in social choice theory [Arr63].

The following fundamental principle for the combination of epistemic states
follows easily from (E3):

(Unit) If 8F(u) = ®F(v) Vi € {1,...,|E|} then A(E)(u) = A(E)(v)



(Unit) requires interpretations that are treated identically by all epistemic
states in an epistemic list to be treated identically in the epistemic state re-
sulting from a combination operation.?

Two epistemic lists E; and E, are element-equivalent, written as Ey ~ Es,
iff for every element ®; of E; there is a unique element ®» (position-wise)
of B such that ®; = ®5 and for every element ®5 of E, there is a unique
element ®; (position-wise) of E; such that &, = ®;. The following property
is a generalisation of (KP3). It is instructive to note that the definition of
epistemic states obviates the need for any principle of irrelevance of syntax.
(Comm) is thus simply a commitment to commutativity.

(Comm) E; ~ E, implies A(E;) = A(E»)

We do not think that (Comm) is an appropriate property for all combination
operations. Instead, (Comm) should be seen as a postulate picking out an
interesting subclass of combination operations which includes the merging op-
erations on epistemic states. By way of justifying this claim we take a brief
look in section 4.5 at a class of operations that seem to be valid combination
operations, but that do not satisfy (Comm).

Let & be a finite list of epistemic lists & = [Fy,..., Ejg/]. We also consider
the following two properties:

(E5) A(E;)(u) < A(E;)(v) Vi € {1,...,|€|} implies that A(LILZ, Ei)(u) <
AUEL E) )

(E6) If A, E;)(u) < A(UE, Ei)(v) then A(E;)(u) < A(E;)(v) for some

1=

ie{l,...,|€]}

In the presence of (E0), and with the restriction to epistemic states of consistent
associated knowledge bases, it is clear that (E5) generalises (E3) and (E6)
generalises (E4). In fact, in the presence of (E1), (E5) also implies (KP5).

Proposition 3.2 Let A be a combination operation on epistemic states that
satisfies (E1) and (E5). Then A also satisfies (KP5).

Proof: Pick any u such that A(E;)(u) = A(E2)(u) =0 (if such a u does not
exist, the result is trivial). We have to show that A(E; U Es)(u) = 0. It follows
from (E5) that A(E; U E2)(u) < A(Ey U E)(v) for all v € U. And from (E1)
it follows that A(E; U Ez2)(u) =0 [ |

The arbitration postulate (arb) and the majority postulate (maj) can be
generalised as follows for combination operations on epistemic states:

(Arb) Vn A(EU[®])(u) < A(EU[®])(v) iff A(BEU®")(u) < A(EU ®™)(v)
(Maj) 3n s.t. Yu,v € U, ®(u) < ®(v) if A(EU ™) (u) < A(EU ®™)(v)

2Note that (Unit) does not imply (EO0).



(Arb) is a straightforward generalisation of (arb), but perhaps (Maj) needs
some explanation. Semantically speaking (maj) says that the addition of
enough instances of the knowledge base ¢ to the knowledge list e ensures that
the models of the result obtained when merging is a subset of the models of ¢.
In other words, merging refines the knowledge base ¢. Similarly, (Maj) states
that the addition of enough instances of the epistemic state ® to the epistemic
list E ensure that the result obtained when combining epistemic states is a
refined version of ®.

It is easily established that, in the presence of (Comm), (Arb) and (Maj)
cannot both be satisfied.?

Proposition 3.3 If A satisfied (Comm) then it cannot satisfy both (Maj) and
(Arb).

Proof: Assume that A satisfies (Comm), (Arb) and (Maj). From (Arb) and
(Maj) it follows that ®(u) < ®(v) if A(EU[®])(u) < A(E U [®])(v). Now pick
awuand a v, and a ®; and a @3, such that ®;(u) < ®1(v) and P2(v) < B2(u).
From the combination of (Arb) and (Maj) it follows that A([®2,®1])(u) <
A([®2, ®1])(v), and similarly, that A([®1, P2])(v) < A([®1,P2])(u). So, by
(Comm) we have that A([®1, P2])(u) < A([P1, P2])(v); a contradiction. [ |

The attentive reader will have observed that we do not provide a generalised
version of (KP4). This is because we do not regard it as a suitable property
for all rational forms of combining epistemic states; not even for the merging
of epistemic states. Our basic argument is that the models of a knowledge
base associated with an epistemic state ®; may sometimes be given such an
implausible ranking by an epistemic state ®, that it would seem reasonable
to exclude all these models from the models of ¢ ((s,]u[@.))- As we shall see,
none of the combination operations we consider in section 4 satisfies (KP4).
See section 6 for a more detailed discussion of this property.

Similarly, we have not provided a generalised version of (KP6). It is easily
established that (KP6) does not follow from (E6).* On the one hand, (KP6)
seems to be a reasonable property to require of a combination operation (on
knowledge bases). Indeed, being one of the Pareto conditions, it is widely
accepted in the social choice theory community as a useful property. However,
in section 4 we shall encounter a number of reasonable combination operations
which do not satisy (KP6). At present it seems to us that the failure to satisfy
(KP6) is due to the shift from knowledge bases to epistemic states, and that a
suitably reformulated version of (KP6) will be satisfied by all these operations.

3This is a similar to a result by Konieczny and Pino-Pérez [KPP98] on knowledge base
merging.

4The combination operation Apax defined in section 4.1 satisfies (E0)-(E6) but does not
satisfy (KP6).



4 Constructing combination operations

In [KPP98] Konieczny and Pino-Pérez discuss several merging operations on
knowledge bases using Dalal’s measure of distance between interpretations
[Dal88]. For any two interpretations u and v, let dist(u,v) denote the num-
ber of propositional atoms on which u and v differ. The distance Dist(¢,u)
between a knowledge base ¢ and an interpretation w is defined as follows:
Dist(¢,u) = min{dist(u,v) | v € M(¢)}. It is clear that this distance measure
can be used to define an epistemic state ® as follows:

Vu € U, ®(u) = Dist(¢,u).

It is easily seen that ®(u) = 0 iff u € M(¢) and therefore ¢ = ¢. Many
of the combination operations on epistemic states that we propose below are
appropriate generalisations of these merging operations on knowledge bases.

When reading through the remainder of this section, the reader should
observe that the construction of every combination operation consists of two
steps. In the first step natural numbers are assigned to interpretations. After
the completion of this step it will often be the case that none of the interpre-
tations have been assigned the value 0. To ensure compliance with (E1) the
second step performs an appropriate uniform subtraction of values which we
shall refer to as normalisation. Much (if not all) of the notation used in the
formal construction of the combination operations in this section is defined in
section 3.1, and it is suggested that the reader consult this section if any piece
of terminology looks unfamiliar.

4.1 Arbitration

Inspired by an arbitration operation proposed by Liberatore and Schaerf [LS98]
we propose the following combination operation on epistemic states.

Definition 4.1 If E contains a single epistemic state ®, let ®Z. = &. If not,

min

let &, (u) = 2min® (u) if PE(w) = <I>JE(u) Vi,j € {1,...,|E|} and ®E, (u) =
2min? (u) 4 1 otherwise. Then Apin(E)(u) = ®F. (u) — min(®Z, ). m

Figure 2 contains a pictorial representation of Ap;,. The construction of A,
can be explained as follows. Identify the interpretations for which there is total
agreement among all epistemic states about them being the most plausible, and
take these to be the most plausible in the epistemic state resulting from the
combination operation. The interpretations on the next level of plausibility is
obtained by considering all interpretations which are deemed to be most plau-
sible by at least one epistemic state. For the next level of plausibility we move
to the interpretations on which there is total agreement about them being the
second most plausible set of interpretations, followed by those interpretations
which are regarded as the second most plausible by at least one epistemic state.
The process described above is repeated until all levels of plausibility for all
the epistemic states have been catered for.



Figure 2: A representation of the combination operation Amin. The number in a
cell represents the numbers that the appropriate combination operation assigns to
the interpretations contained in that cell before normalisation.

Proposition 4.2 A, satisfies (E0)-(E5), (Comm) and (Arb), but it does not
satisfy (KP6), (E6) or (Maj). It satisfies (KP4) only if the knowledge bases
associated with epistemic states are consistent.

Proof: The satisfaction of (E0) and (E1) are trivial. For (E2), pick a u such
that ®F(u) = ®F(u) for all 4,5 € {1,...,|E|}. Then &%, (u) = 2min®(u).
Now consider a v such that sZ(u) Ty, sZ(v). So it has to be the case
that min®(u) < min?(v). If min®(u) < min®(v) then clearly Apin(E)(u) <
Amin(E)(v). Otherwise, ®F, (v) = 2min®(v) + 1, and so Apin(E)(u) <
Apin(E)(v). For (E3), pick a v and a v such that ®F(u) < ®F(v) for all
i € {1,...,]E|}. Then it has to be the case that min”(u) < min®(v) from
which it follows that Amin(E)(u) < Amin(E)(v). For (E4) we prove the con-
trapositive. Pick a u,v such that ®F(v) < ®F(u) for all i € {1,...,|E|}.
Then it has to be the case that min”(v) < min®(u), from which it fol-
lows that Apin(E)(v) < Amin(E)(u). For (E5), suppose that Apin(E;)(u) <
Apmin(E;)(v) Vi € {1,...,|€|}. Assume that

€] €]

Amin(l_l Ei)(v) < Aumin(|_| E:)(w).

i=1
We have two cases. For case 1, suppose that

[E]
Amin(l_l Ei)(v) = 2min(LiZ: B4 (v).
i=1

(there has to be at least one), Apin(E;)(v) < Amin(Ei)(uv); a contradiction.
For case 2, suppose that Amin(| 1€, Ei)(v) = 2 min(UiZh B4 (v) + 1. Now pick

i=

Now it follows that for some E; such that Ay (E;)(v) = A,,ﬂin([_]‘z.‘g'1 E;)(v)



any F; such that min® (v) = min{min® (v) | 1 < j < ||} (clearly there is at
least one such F;). But then it follows that min® (v) < min® (u), and therefore

AP (v) < AEi (u); a contradiction. The proofs that (Comm) and (Arb) hold
are trivial. From proposition 3.3 it then follows that A, does not satisfy
(Maj).

For a counterexample to (KP6), consider three interpretations u, v and
w, and three epistemic states ®;, ®5 and ®3 such that &;(u) = P2(w) =
P3(u) = ®3(v) = e3(w) = 0, ¢1(v) = @1(w) = P2(u) = P2(v) = 1, and
let ®1(x) = ®3(x) = ®3(x) = 2 for all other interpretations. Now, let E; =
[®1,®,] and let E» = [®3]. It is easily seen that the knowledge bases associated
with Apin(E1) and Ay (Es) are consistent, and that A, (E; U Es)(v) =
Apin(E2)(v) = 0, but that Ay (E;)(v) = 1. For a counterexample to (E6),
consider two interpretations u and v, and three epistemic states ®4, 5 and Pq4
such that ®4(v) = ®5(u) = P5(v) =0, B4(u) = Bs(v) = 1, Pg(u) =2, and let
®4(z) = B5(z) = ®s(z) = 3 for all other interpretations. Now, let E5 = [®4],
E, =[®4,®5] and E5 = [®g]. It can be verified that Apin(E3 U Eq U E5)(u) <
Amin(E3 U FEy U Es)(’l}), but that Amnin (Ez (’U) < Amin(Ez' (u) for i = 3,4,5.

For (KP4), suppose that {w | ®1(w) = 0} # 0, {w | ®2(w) = 0} # 0, but
that {w | ®1(w) =0} N{w | P2(w) =0} = 0. Then {w | Apin([®1, P2]) (w) =
0} ={w| ®1(w) =0} U {w | ®2(w) = 0}, from which the result follows easily.
To show that (KP4) is not satisfied if the associated knowledges base may be
inconsistent, simply choose ®; so that its associated knowledge base is incon-
sistent and choose ®» so that its associated knowledge base is consistent. H

Next we consider a combination operation that is a generalisation of the 0 ax
operation of Konieczny and Pino-Pérez, which was inspired by an example of
Revesz’s model-fitting operations [Rev97].

Definition 4.3 Let ®F

max
min(®Z, ). m

(u) = maxP(u). Then Apax(E)(u) = ®E, (u) —

Figure 3 contains a pictorial representation of Ay ax. It assigns levels of plausi-
bility by looking at the maximum level of plausibility assigned to an interpre-
tation by any of the epistemic states.

Proposition 4.4 A,,.x satisfies (E0)-(E6), (Comm) and (Arb), but it does
not satisfy (KP4), (KP6) or (Maj).

Proof: Consider an epistemic list E = [®F ... ®F]. The satisfaction of (E0)
and (E1) are trivial. For (E2), pick a u such that ®7(u) = &7 (u) for all
i,j € {1,...,|E|}. Now consider a v such that s£(u) Cier sE(v). Then
max®(u) < max®(v) from which the result follows. For (E3), pick a u and
a v such that ®F(u) < ®F(v) for all i € {1,...,|E|}. Then it has to be
the case that max?(u) < max?(v) from which it follows that Amax(E)(u) <
Amax(E)(v). For (E4) we prove the contrapositive. Pick a u,v such that
®E(w) < ®E(u) for all i € {1,...,|E|}. Then it has to be the case that



max”(v) < max®(u), from which it follows that Anyax(E)(v) < Apax(E)(u).
For (E5), suppose that Apax(E )( ) < Apax(E;)(v) for all i € {1,...,|€]}. So
max?i (u) < max¥P (v) Vi € {1,...,|€|}. Thus max{max i(w)|1< i <€} <
max{max? (v) | 1 <i < |€|}. And therefore max"i= =y El( ) < max" = ‘Ef( ).
That is, Apax(LIiz |£|E ) (u) < Apax(U '_‘ElE ;) (v). For (E6) we prove the con-
trapositive. Pick au, v such that Amax(E Y(v) < Amax(Ei)(uw) Vi€ {1,...,|E]}.
So max®i(v) < maxfi(u) Vi € {1,...,|€|}. Thus max{maxE'( )l 1<
i < |&} < max{maxPi(v) | 1 < i < |S|} And therefore max“i=1" Bi(y) <
max"“i=1 Pi(v). That is, Amax (U UZIE B (1) < Amax(WEFE) (v). The proofs
that (Comm) and (Arb) hold are trivial. From proposition 3.3 it then fol-
lows that Ap;, does not satisfy (Maj). For a counterexample to (KP4), let
D (u) = ®3(v) = 0, By(u) = 1, ®1(v) = 3, and D1 (x) = Py(x) = 4 for
all remaining interpretations z. For a counterexample to (KP6) let & (u) =
®2(v) = C2(w) = 3(u) = @3(w) =0, 21(v) = @1 (w) = B3(v) =1, P2(u) = 2,
and let ®1(z) = ®o(x) = ®3(xz) = 3 for all other interpretations. Now, let
F = [@1,@2] and let By = [‘1’3] | ]

Konieczny and Pino-Pérez do not regard dpnax as a merging operation on
knowledge bases since it fails to satisfy (KP6). This is in contrast with our
view of Anax as a valid arbitration operation since it satisfies the postulates
(E1)-(E6), (Comm) and (Arb).

4.2 Consensus

In this section we consider the idea of consensus operations in which agreement
on the plausibility ranking of interpretations, instead of the ranking itself, is
of overriding importance. We start with a very crude version of this idea. In
the definition of these operations we use the following notion of distance. For

Figure 3: A representation of the combination operation Apax. The number in a
cell represents the numbers that the appropriate combination operation assigns to
the interpretations contained in that cell before normalisation.



Figure 4: A representation of the combination operation Acopns. As usual, the number
in a cell represents the numbers that the appropriate combination operation assigns
to the interpretations contained in that cell before normalisation.

s € seq(E), let

|E| |E|
d®(s) =" ) lsi—s;
i=1 j=it+1

where s; denotes the ith element of s.

Definition 4.5 Define the total preorder C on seq(E) as follows: s C ¢
iff d2(s) < dP(t). Let @%,,(u) = Q" (sP(u)). Then Acons(E)(u) =
®E  (u) — min(®F ). m

cons cons

Figure 4 contains a pictorial representation of A ,y,s. Informally, A.,,s consid-
ers only the level of agreement of the plausibility ranking of an interpretation
and ignores the ranking itself completely. Such an operation seems like a bad
idea, and indeed, it fails to satisfy even some of the basic properties.

Proposition 4.6 A.,,s fails to satisfy (E3) and (E4).

Proof: Let &;(v) =0, ®3(v) = 1 and &1 (u) = $3(u) = 2. Then &, (v) < &4 (u)
and ®3(v) < P3(u) but Apons([®1,P2])(u) = 0 < Acons([P1, P2])(v) = 1.
Also, Acons([®1, ®2])(u) = 0 < Acons([®1, P2])(v) = 1 but @4(v) < ®1(u) and
(1)2(1)) < <I>2(u). |

One way to try and force A.,,s to take account of the plausibility ranking
is to refine it follows.

Definition 4.7 Define the total preorder C on seq<(E) as follows: s
iff d¥(s) < dP(t) or (d¥(s) = dP(t) and s Ciep t). Now, let ®L  (u

Ct
Rcons ) =
Q54 (sE(u)). Then Agecons(E)(w) = L, ,,,, (1) — min(®

Rcons Rcons) -

Figure 5 contains a pictorial representation of Agcons- AReons Still regards the
agreement on the relative plausibility of interpretations as most important, but



Figure 5: A representation of the combination operation Agcons. As usual, the
number in a cell represents the numbers that the appropriate combination operation
assigns to the interpretations contained in that cell before normalisation.

if two interpretations are equal in this regard, it uses the plausibility ranking
to choose between them.

Unfortunately this refinement is not enough for Ag.o,s to qualify as a rea-
sonable combination operation.

Proposition 4.8 Ag .. fails to satisfy (E3) and (E4).

Proof: The same example can be used as in proposition 4.6. [ |

So it seems that consensus is not a reasonable way to combine epistemic
states. The problem seems to be that consensus operations place too strong
an emphasis on agreement and do not take the ranking of interpretations se-
riously enough. Although neither of the operations defined in this section are
reasonable combination operations we shall see in section 4.3 that it may be
useful to employ Agons tO refine some combination operations.

4.3 Majority

We now turn our attention to majority operations, operations in which the
viewpoints of the majority of epistemic states carry the most weight. In our
definition of majority operations we shall make use of the following form of
summation. For s € seq(E), let

|E|
sum® (s) = Z 8
i=1
where s; is the ith element of s.

Definition 4.9 Let ®£(u) = sum®(s¥(u)). Then Ax(E)(u) = ®E(u) —
min(®L). m



Figure 6: A representation of the combination operation Ax. As usual, the number
in a cell represents the numbers that the appropriate combination operation assigns
to the interpretations contained in that cell before normalisation.

Figure 6 contains a pictorial representation of Ay. It is an appropriate generali-
sation of an example by Lin and Mendelzon [LM99] and was also independently
proposed by Revesz [Rev93] as an example of weighted model fitting. The idea
is simply to obtain the new plausibility ranking of an interpretation by sum-
ming the plausibility rankings given by the different epistemic states and then
to normalise.

Proposition 4.10 Ay, satisfies (E0)-(E6), (Comm), (Maj) and (KP6). It
does not satisfy (KP4) or (Arb).

Proof: (E0) and (E1) are trivial and so are (E2), (E3), the contrapositive of
(E4), (E5), the contrapositive of (E6) and (Comm). For (Mayj), pick any k such
that Ax(E U ®F)(u) < As(E U ®%)(v) but ®(v) < ®(u). Now let I(u,v) =
Ax(E U ®%)(v) — Ag(FE U ®*)(u). Observe that Ag(E U ®FHHw)+1y() >
Ay (E U ®F+1(w2)+1Y () In this way an n can be found such that Ay (F L
™) (u) > Ax(E U ®™)(v) from which the result follows. By proposition 3.3 it
also follows that Ay does not satisfy (Arb). For (KP6), let Ax(E;)(w) =0
and Ax(E;)(w) = 0. Since Ay, satisfies (E1) and (E5) it follows from propo-
sition 3.2 that it also satisfies (KP5), and so Ax(E; U E»)(w) = 0. Now, pick
any u such that Ax(E; U Es)(u) = 0, and assume that Ax(Er)(u) # 0 or
Asx(E2)(u) # 0. Without loss of generality we assume that Ax(E1)(u) # 0.
Then sum®(sP1(w)) < sumP(sP1(u). But sumPUP2(u) = sumPUF2 (w)
and so it follows that sum®2(s%2(u)) < sum®P2 (sP2(w)); contradicting the fact
that Ax(FEs)(w) = 0. For a counterexample to (KP4) use the counterexample
to (KP4) used in the proof of proposition 4.4. [ |

The next majority combination operation we consider is an example of how
consensus can be usefully employed in the refinement of combination opera-
tions. It is a refinement of the majority operation Ay.



Figure 7: A representation of the combination operation Agsx. As usual, the number
in a cell represents the numbers that the appropriate combination operation assigns
to the interpretations contained in that cell before normalisation.

Definition 4.11 Define the total preorder C on seq(F) as follows: s C ¢ iff
sum®(s) < sum®(t) or (sum®(s) = sum®(t) and d¥(s) < d¥(t)). Now, let
5y, (u) = QET) (55 (u)). Then Ags(E)(u) = Bhy(u) — min(Bfy,). m

Figure 7 contains a pictorial representation of Agy. Apgy is Ay refined by
using consensus. That is, Ay determines the plausibility of an interpretation
by summing the plausibility level assigned to it by all the epistemic states. And
if this results in two interpretations obtaining the same level of plausibility, it
tries to distinguish between them further by taking into account the level of
agreement about the relative plausibility of each interpretation.

Proposition 4.12 Agy, satisfies (E0)-(E4), (Comm) and (Maj). It does not
satisfy (KP4), (Arb), (E5)-(E6) and (KP5)-(KP6).

Proof: (E0) is trivial and so are (E1), (E2) and (Comm). For (E3), sup-
pose that ®F (u) < ®F(v) Vi € {1,...,|E[}. If F(u) < ®F(v) for some j €
{1,...,|E|}, it follows that Ags(E)(u) < Ags(E)(v). Otherwise d¥ (s (u)) =
dP(s¥(v)) from which the result then follows. For the contrapositive of (E4),
suppose that ®F(v) < ®F(u) Vi € {1,...,|E|}. Then it has to be the case that
sum®(v) < sumP(u) and so Arx(E)(v) < Ags(E)(u). The proof for (Mayj)
is identical to the one for (Maj) used in proposition 4.10. For (KP4), take the
counterxample to (KP4) used in proposition 4.4. By proposition 3.3 it then
also follows that A gy, does not satisfy (Arb). As a counterexample to (E5), let
<I>1(u) = (1)4(11,) = @4(’0) = 0, @1(’0) = @2(’1)) = <I>5(u) = (1)5(’1)) = 1, (I)Q(U) =
P3(u) =3, ®3(v) =4, and let By = [®1, B2, P3] and Ey =[P4, P5]. As a coun-
terexample to the contrapositive of (E6), let ®;(v) = 0, ®1(u) = ®4(u) = 1,
@4(1}) = @5(1]) = 27 q)Q(u) = @5(11) = 37 q)Q(U) = (:[)3(1)) = 67 (1)3(11/) = 87 and let
E;, = [®1,Ps, D3] and Ey = [y, P5]. As a counterexample to (KP5), take the
counterexample used for (E5) and assume that for any z other than u and v,
®,;(x) =10 Vi € {1,...,5}. Similarly, as a counterexample to (KP6), take the



Figure 8: A representation of the combination operation Agmin. The number in a
cell represents the numbers that the appropriate combination operation assigns to
the interpretations contained in that cell before normalisation.

counterexample for (E6) and for all interpretations  other than « and v, let
®;(x) =20Vie{1,...,5}. |

4.4 Other forms of combination

In this section we consider two combination operations that are neither arbi-
tration nor majority operations. The first is a refined version of Ap;,.

Definition 4.13 Let ®E

Rmin

(u) = QS (E) (sZ(u)). Then

ARmin (E) (U) = ngm ('LL) - mln(q)gmm)
|

Figure 8 contains a pictorial representation of Apg,. Informally the construc-
tion of Agmnin can be explained as follows. It makes the same relative dis-
tinction between the plausibility of interpretations as Ap;, but it goes further;
it distinguishes between interpretations that are regarded as equally plausi-
ble by Anin by taking into account all the levels of plausibility assigned to a
interpretation by the different epistemic states.

Proposition 4.14 Ag.., satisfies (E0)-(E6), (Comm) and (KP6), but it does
not satisfy (KP4), (Arb) or (Maj).

Proof: Consider an epistemic list £ = [®F,...,®F]. The satisfaction of

(E0) and (E1) are trivial. (E2) follows immediately from the definition of

ARmin- For (E3), suppose that ®F(u) < ®F(v) Vi € {1,...,|E|}, and as-

sume that Agmin(E)() < Armin(E)(u). Then JFi € {1,...,|E|} such that
s\

sES) () < S (B2 () = S (w) Vj € {1,...,i — 1}. Since

(u) and s; )



ng’S)(u) < ng’S) (u)Vj € {i+1,...,|E|} it has to be the case that SECE’S)(u) <
ng’S)(U) for some k € {1,...,i — 1}. But this means there has to be an

le€{i...,|E|} and an m € {1,...,i — 1} such that sl(E’S)(u) < sg’S)(v);

contradicting the fact that ng’S)(fu) < ng’S)(u). For (E4) we prove the

contrapositive. Suppose that ®F(v) < ®F(u) Vi € {1,...,|E|}, and as-

sume that Agmin(E)(w) < Agmin(E)(w). Then Ji € {1,...,|E|} such that
s

ng’S)(u) < ng’S)(v) and ng’S)(u) = (-E’S)(U) Vi € {1,...,4 —1}. Since

j
ng’S)(v) < ng’S) (v) Vj € {i+1,...,|E|} it has to be the case that s,(cE’S)(v) <

ng’S)(u) for some k € {1,...,i — 1}. But this means there has to be an
le{l,...,i—1} and an m € {i,...,|E|} such that 355’5’(@) < sl(E’S)(u), con-

tradicting the fact that ng’S)(u) < ng’S) (v). The proofs for (E5) and (E6)
are similar to those for (E3) and (E4) respectively and are omitted, and the
proof for (Comm) is trivial. For (KP6) let w be such that Aguyin (E1)(w) =0
and Agmin (E2)(w) = 0. Since Agpnin satisfies (E1) and (E5) it follows from
proposition 3.2 that it also satisfies (KP5) and s0 A gpmin (E1UE>)(w) = 0. Now
pick any u such that Agmin(E1 U Ea)(u) = 0. Then s21952 (y) = sE12E2 (yp),
Assume that Agmin(E1)(u) # 0 or Agmin(E2)(u) # 0. Without loss of gen-

erality we assume that Aguin(E1)(u) # 0. Then sgl (W) Crex 5231 (u). Now,

522 (u) = s22(w) contradicts sZ'"F2(u) = sZ1YF2(w), and so does s22(w) <

522 (u). So it has to be the case that s2*(u) < s2*(w), contradicting the fact
that ARmin (E2)(w) = 0. As a counterexample to (KP4) let ®; (u) = ®2(v) = 0,
by (v) = 2, Po(u) =1, and let &1 (w) = P3(w) = 3 for the remaining interpre-
tations. As a counterexample to (Arb), choose any E, ®, u and v where
®(u) = &;(v) =0, (v) = ®1(u) = 2 and E = [®;]. As a counterex-
ample to (Maj) let ®,(u) = 0,®;(v) = 2,®(u) = 4 and ®(v) = 3. Then
Asiin (1] U B7) (1) < Ayuin([81] L 87)(0) Y even though d(v) < &(u). m

The next combination operation we consider is a refined version of Ay ax. It
can be seen as a generalisation of the d g4, Operation of Konieczny and Pino-
Pérez which, in turn, was inspired by an example of Revesz’s model-fitting
operations [Rev97].

Definition 4.15 Let @Emm
CI)E

Rmaz (U) - min(égmuz)' u

(w) = 0= (s5(w). Then Apmas(E)(u) =

Figure 9 is a pictorial representation of Agmaz- ARmar refines Apmay in a way
that is analogous to the way A g, refines Apnin. Whereas A ax assigns levels
of plausibility based only on the maximum level of plausibility assigned to a
interpretation by epistemic states, Agmaqz also takes into account all the other
levels of plausibility assigned to the interpretation.

Proposition 4.16 Apgy,,; satisfies (E0)-(E6), (Comm) and (KP6). It does
not satisfy (KP4), (Arb) and (Maj).



Figure 9: A representation of the combination operation Agma..- The number in
a cell represents the numbers that the appropriate combination operation assigns to
the interpretations contained in that cell before normalisation.

Proof: Consider an epistemic list E = [®F ..., ®F]. The satisfaction of
(E0) and (E1) are trivial. For (E2) observe that if ®7(u) = ®F(v) Vi,j €
{1,...,|E|} and sZ(u) Cier sE(v) then s¥(u) Cier sZ(v), from which the re-
sult follows. For (E3), suppose that ®F(u) < ®F(v) Vi € {1,...,|E|}, and
assume that Aprmes(E)(v) < ARmaz(E)(w). Then i € {1,...,|E|} such
that SEE’Z)(’U) < SEE’Z)(u) and sg-E’Z)(U) = sg-E’Z)(u) Vi e {1,...,i—1}.

gE’Z)(u) < sg-E’Z)(u) Vj € {1,...,4 — 1} it has to be the case that
siE’Z)(u) < ng’Z) (v) for some k € {i+1,...|E|}. But this means there has to
beanm € {i+1,...,|E|}andanl € {1,...,i} such that sl(E’Z)(u) < sﬁfe)(v);
contradicting the fact that ng’Z)(v) < SEE’Z)(U). For (E4) we prove the con-
trapositive. Suppose that ®F(v) < ®F(u) Vi € {1,...,|E|}, and assume that
ARmaz(E) (1) < Agmas(E)(v). Then 3i € {1,...,|E|} such that s{¥2)(u) <

S(E’Z)(’U) and sg-E’Z)(u) = $§E’Z)(U) Vj e {1,...,5— 1}. Since ng’Z)(u) >

(3

Since s

sg.E’Z)(u) Vje{i+1,...,|E|} it has to be the case that ng’Z) (v) < s,(cE’Z)(u)
for some k € {1,...,i—1}. But this means there hastobeanl € {1,...,i—1}
and an m € {i,...,|E|} such that sl(E’Z)(v) < sgfe)(u), contradicting the fact

that ng’Z)(u) < ng’Z) (v). The proofs for (E5) and (E6) are similar to those for
(E3) and (E4) respectively and are omitted, and the proof for (Comm) is triv-
ial. For (KP6) let w be such that Agpqq (E1)(w) =0 and Agpaq (E2)(w) = 0.
Since ARmas satisfies (E1) and (E5) it follows from proposition 3.2 that it
also satisfies (KP5) and so Agmqsz(F1 U Es)(w) = 0. Now pick any u such
that Agmas(F1 U Ep)(u) = 0. Then sZ19F2(y) = sZ14F2(y). Assume that
ARmaz(F1) (1) # 00r Agmas (F2)(u) # 0. Without loss of generality we assume
that ARmaz(E1)(u) # 0. Then s2' (w) < 5% (u). Now, s22(u) = s22(w) con-
tradicts s2'2 (u) = sZ""E2(w), and so does 52 (w) < s2*(u). So it has to be

the case that sgz (u) < 31252 (w), contradicting the fact that A gmas (E3)(w) = 0.



Figure 10: A representation of the combination operation Aj,. As usual, the number
in a cell represents the numbers that the appropriate combination operation assigns
to the interpretations contained in that cell before normalisation.

As a counterexample to (KP4), use the counterexample to (KP4) used in the
proof of proposition 4.4. For (Arb), let &; (v) = ®(u) = 0 and ®,(u) = &(v) =
2. Then Agrmaz([®1] U [®])(v) = Agmaz([21] U [®])(v), but Agmas([®1] U
3?)(u) < ARmaz([®1] U ®%)(v). For (Maj), let &1 (u) = ®(v) = 0,®1(v) = 10
and ®(u) = 5. Then Agma([1]U ") (u) < ARrmaes ([®1] U 27)(v) Yn, but
D(v) < D(u). [

The fact that we do not regard Agmq; as an arbitration operation is in
conflict with the view of Konieczny and Pino-Pérez who regard dgmaes as an
arbitration operation on knowledge bases even though the latter does not satisfy
(arb).?

4.5 Non-commutative combination

Thus far we have restricted ourselves to the construction of commutative com-
bination operations — satisfying (Comm) — but a complete description of com-
bination operations ought to take into account constructions such as that of
Nayak [Nay94], in which the combination of two epistemic states is obtained
by a lexicographic refinement of one by the other. We present here a gener-
alised version of Nayak’s proposal. For this case the epistemic states in an
epistemic list are assumed to be ranked according to reliability. That is, given
an epistemic list £ = [®F ... <I>|b;5|], ®F is at least as reliable as &7 iff i < j.

Definition 4.17 Let ®Z_(u) = QSEZEEE) (sP(u)). Then Aoy (E)(u) = E_(u)—
min(®Z ). m

lex

Figure 10 contains a pictorial representation of Aj.,. It satisfies all the basic
properties for combination operations.

5Tt satisfies their weaker version of (arb).



Proposition 4.18 Ay, satisfies (E0)-(E6), as well as (KP5)-(KP6). It does
not satisfy (KP4) and (Comm,).

Proof: (E0) and (E1) are trivial. For (E2) suppose that ®;(u) = ®;(u) Vi, j €
{1,...,|E|}, and let sE(u) Ciep sZ(v). This means s¥(u) Ciep sF(v) from
which the result follows. For (E3), suppose that ®;(u) < ®;(v) Vi € {1,...,|E|}.
Then sZ(u) Ciep s¥(v), from which the result follows. For the contrapositive
of (E4), suppose that ®;(v) < ®;(u) Vi € {1,...,|E|}. Then s¥(v) Cies
s¥(u), from which the result follows. For (E5), suppose that A, (E;)(u) <
Atew (Es)(v) Vi € {1,...,|€|}. That is, s (u) Cres s5(v) Vi € {L,..., E|}.
But then 55215 (u) Ty s%i215 (v) from which the result follows. For the con-
trapositive of (E6), suppose that Aje, (E;)(v) < Ager (Ei)(u) Vi € {1,...,]€]}.
That is, s (v) Crer 8% (u) Vi € {1,...,|€|}. But then it is the case that
S B (1) Ty 8942154 (v) from which the result follows. The failure of (KP4)
is trivial. To see that (Comm) isn’t satisfied, let ®1(u) = ®2(v) = 0, ®1(v) =
®y(u) = 1, and let ®4(z) = P2(z) = 2 for all other interpretations z. Then
[@1, 2] = [®2, @1] but Aser ([P1, P2]) # Atex ([P2, B1])- u

It is easily shown that A;., does not satisfy (Maj). Also, the fact that A,
is not commutative can be exploited to phrase (Arb) in such a way that A,
fails to satisfy it.

(Arb’) Vn A(E U [®])(u) < A(EU[®])(v) if A(®" U E)(u) < A(®" U E)(v)
Proposition 4.19 If A satisfies (Comm) then it satisfies (Arb) iff it satisfies
(Arb’).

Proof: The proof is trivial and is omitted. ]

Proposition 4.20 Ay, does not satisfy (Arb’) and (Maj).

Proof: Let ®1(u) = ®2(v) = 0 and ®1(v) = P2(u) = 1. For (Arb’), ob-
serve that Alez([Ql,@Q])(u) < Alem([q)l,@g])(’l}), but Alea:([(I)L(}l;‘I)Z])('U) <
Aoz ([®2, @1, ®2])(u). For (Maj) observe that Aje, ([21]U35)(u) < Ajer ([@1]U
®7)(v) VYn but that ®2(v) < ®2(u). [ ]

So Ay, seems to be a reasonable combination operation although it is nei-
ther an arbitration nor a majority operation and is not commutative.

5 Combination and infobases

Our description of combination operations uses a representation of epistemic
states as functions assigning a plausibility ranking to the interpretations of L,
but where do these plausibility rankings come from? One way in which to
generate them is by using the infobases of Meyer [Mey99]. An infobase is a



finite list of wifs. Intuitively it is a structured representation of the beliefs of an
agent with a foundational flavour. It is assumed that every wif in an infobase
is obtained independently. Meyer uses an infobase to define a total preorder
on U, which is then used to perform belief change. However, we can also use
an infobase to define an epistemic state. The idea is to consider the number of
times that an interpretation occurs as a model of one of the wifs in an infobase:
the more it occurs, the higher its plausibility ranking.

Definition 5.1 For u € U, define the IB-number u;p of u as the number of
elements « in an infobase IB such that u € M (a), and let

max(IB) = max{usp | u € U}.

Now we define the epistemic state ®/F associated with IB as follows: for u €
U, ®8(u) = max(IB) —usp. m

Observe that an inconsistent infobase still contains useful information about
an agent’s beliefs. In fact, the knowledge base associated with an epistemic
state ®/2 is always consistent, regardless of whether the wffs in IB are jointly
consistent.

Below we show that, under certain circumstances, infobases seem to pro-
vide a natural setting in which to apply combination operations. This is not a
detailed investigation, but should simply seen as providing corroborating evi-
dence for the claim that there are useful links to be explored between infobases
and combining epistemic states.

Firstly, define an infobase list EB = [IB,...,IB|gp|] as a finite non-empty
list of infobases and let EZZ denote the epistemic list [®#/81,... ®Biesi] of
epistemic states associated with the infobases occurring in EB. It turns out
that concatenating the different infobase lists into one big infobase list yields
exactly the same associated epistemic state as the one obtained when Ay is
applied to EFB.

Proposition 5.2 Consider the infobase list EB = [IBy,...,IB gg|] and let
1B = | |IP51IB;. Then Ax(EZB) = &5,

61t is easily verified that adding tautologies to an infobase IB does not alter the epistemic
state associated with it.



Proof:

As(EPP)(u)
5,27 18 (u) — min(®E"")

= Eﬁ?l (max{vip; |v € U} —up;) — min{égm (w) |weU}
227 (max{vrp, | v € U} — uip,)
—min{ELi?l(max{mBi veU}—wp,)|welU}

|EB| |EB|

= Ei:l max{vIBi | S U} — Ei:l UIB;
—nglg}gax{vwi lveU}+ rrga;c{EEJflwlBi |we U}

= max{ELzl l'w[Bi | w e U} - ZL:I "LL[B

= max{wp |w €U} —urp

= ®B(y)

|
Secondly, Konieczny and Pino-Pérez [KPP98] give a convincing example to
show that we may sometimes want to include, as models of §(e), interpretations
other than the models of the knowledge bases in e. Below is a scaled down
version of their example.

Example 5.3 We want to speculate on the stock exchange and we ask two
equally reliable financial experts about two shares. Let the atom p denote the
fact that share 1 will rise and ¢ the fact that share 2 will rise. The first expert
says that both shares will rise: ¢; = p A ¢, while the second one believes that
both shares will fall: ¢ = —p A —q. Intuitively it seems reasonable to conclude
that both experts are right (and wrong) about exactly one share, although
we don’t know which share in either case. That is, we require the result of
combining these two knowledge bases to be such that M (6([¢1] U [¢2])) =
{10,01}.7 Observe that M (6([¢1] Ll [¢2])) € M (¢1) U M(¢2). B

An analysis of this example shows that both experts are assumed to make an
implicit assumption of independence of the performance of the shares. In other
words, both see the performance of one share as completely independent of
the other (and vice versa). And it is precisely this kind of independence that
can be captured by the use of infobases. The beliefs of the first expert can
thus be expressed most accurately as the infobase IB1 = [p, g] and the beliefs
of the second expert as the infobase IBy = [-p,—g]. The epistemic states
obtained from these two infobases are: ®51(11) = 0, ®/B1(10) = ®'B1(01) =
1,®'81(00) = 2, and ®'32(00) = 0, ®'P2(10) = ®'B2(01) = 1,®"P2(11) = 2.
It can be verified that Apax(EF8) = Armae (EPB) = Aps(EPB) = &, where
EB = [IB;, IB;], ®(10) = ®(01) = 0 and ®(11) = ®(00) = 1. So Agrx, Amax
and AR yield the results corresponding to our intuition for this example.
"We represent interpretations as sequences consisting of 0s (representing falsity) and 1s

(representing truth), where the first digit in a sequence represents the truth value of p and
the second one the truth value of q.



Properties Combination operations
Amin Amax AE ARE AR'rm'n ARm(w Alem

(EO) v vV v v v
(E1) v vV v v v
(E2) v vV v v v
(E3) v vV v v v
(E4) v vV v v v
(E5) v v ooV ox v v v
(E6) x v ooV ox v v v
(KP4) X X x X X X X
(KP5) v v oovox v v v
(KP6) ple X Vv x Vv Vv 4
(Arb) 4 4 X X X X -
(Arb’) 4 4 X X X X X
(Mayj) X X 4 4 X X X
(Comm) v v Vv v v X

Table 1: A summary of the combination operations considered in this paper
and the properties they satisfy. The table does not contain A.,,s and Ageons
which were discussed in section 4.2.

6 Conclusion

Table 6 contains all the combination operations we have constructed, ex-
cept for the two consensus operations discussed in section 4.2, and indicates
which properties they satisfy. These results are consistent with the view that
(E0)-(E4) may be regarded as basic postulates for combination operations on
epistemic states. The status of (E5) and (E6) is less clear. The main obstacle
to satisfying these properties seems to be the normalisation process to ensure
that at least one interpretation has a plausibility ranking of 0.

From the results obtained it also seems clear that (KP4) is too strong a
property to insist on. It is interesting to observe that the constructions of
Konieczny and Pino-Pérez [KPP98], on which some of our constructions are
based, all satisfy (KP4), while none of ours do. This apparent anomalous
behaviour can be explained by noting that the Konieczny and Pino-Pérez con-
structions are based on a measure of distance between interpretations which is
more restrictive than the notion of distance used in epistemic states.

This brings us to the question of whether (KP6) is a reasonable property
to impose on all combination operations. Informally, (KP6) tries to bring in a
kind of independence by insisting that the concatenation of two epistemic lists
be at least as strong, logically speaking, as conjunction. Together with (KP5),
(KP6) states that if the combination of F; is consistent with the combination
of E, then the combination of F; LI F5 should yield the same knowledge base
as the conjunction of the separate combination process. On the one hand then,



(KP6) seems like a reasonable property to impose on all combination oper-
ations. Unfortunately some of the reasonable combination properties, Ay ax,
Amin and Agy, do not satisfy (KP6). At present we suspect that it is the
move from knowledge bases to epistemic states which causes this anomalous
behaviour, and that a version of (KP6), appropriately modified for epistemic
states will indeed by satisfied by these operations.

Our results suggest that (Arb) is an appropriate postulate for the subclass
of arbitration operations. This position conflicts, to some extent, with that
of Konieczny and Pino-Pérez [KPP98] who argue against the use of (arb), the
knowledge base version of (Arb), on the basis that it is not consistent with
(KP4) and (KP6). Our position is supported, firstly, by the fact that (Arb)
is an appropriate formalisation of the intuition of arbitration, while we have
shown that (KP4) is suspect as a property to be applied universally. And
secondly, the arbitration operations Ap;, and Ap., that we have presented
seem to be valid both as combination operations in general and arbitration
operations in particular.

The results also provide support for the use of (Maj) as a suitable postulate
for the subclass of majority operations. It is compatible with the view of
majority espoused by Konieczny and Pino-Pérez, since (Maj) is a generalisation
of (maj); their knowledge base version of a majority postulate.

And finally, section 4.5 provides evidence that combination operations need
not be commutative, i.e. they need not satisfy (Comm). Instead, (Comm)
should be seen as picking out an interesting subclass of combination operations
which are worth studying on their own.

In conclusion, then, the main contributions of this paper are to argue that
it is useful to consider combination operations in general, and merging, arbi-
tration and majority operations, in particular, on the level of epistemic states,
and to provide an initial contribution towards the construction of a general
framework for combination operations. An immediate point of departure for
further research is the investigation of links between combination operations
in this context and the huge body of related (but not identical) work in social
choice theory [Arr63]. In particular, the question of devising strategy proof vot-
ing procedures seems to be very relevant for combination operations defined
on epistemic states. We are currently investigating the problem of strategy-
proofness in this context. And finally, on a more practical level, the question
of combining lists of infobases is one that needs to be investigated as well.

References

[Arr63] K. J. Arrow. Social choice and individual values (2nd edition).
Wiley, New York, 1963.

[BI&4] A. Borgida and T. Imielinski. Decision making in committees: A
framework for dealing with inconsistency and non-monotonicity. In
Non-Monotonic Reasoning Workshop (1984 : New Paltz, N.Y.),



[BKMO1]

[BKMS92]

[Dal88]

[DPY7]

[KMO1]

[KPP98]

[Lin96]

[LLOO]

[LM99]

[LS98]

pages 21-32, Menlo Park, CA, 1984. American Association for Ar-
tificial Intelligence.

C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge
bases. IEEE Transactions on Knowledge and Data Engineering,
3(2):208-220, 1991.

C. Baral, S. Kraus, J. Minker, and V.S. Subrahmanian. Combining
multiple knowledge bases consisting of first-order theories. Compu-
tational Intelligence, 8(1):45-71, 1992.

Mukesh Dalal. Investigations into a theory of knowledge base revi-
sion. In Proceedings of the 7th National Conference of the American

Association for Artificial Intelligence, Saint Paul, Minnesota, pages
475-479, 1988.

Adnan Darwiche and Judea Pearl. On the logic of iterated belief
revision. Artificial Intelligence, 89:1-29, 1997.

H. Katsuno and A.O. Mendelzon. Propositional knowledge base
revision and minimal change. Artificial Intelligence, 52:263-294,
1991.

Sébastien Konieczny and Ramén Pino-Pérez. On the logic of merg-
ing. In A. G. Cohn, L. Schubert, and S. C. Shapiro, editors, Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of
the Sixth International Conference (KR ’98), pages 488-498, San
Francisco, California, 1998. Morgan Kaufmann.

J. Lin. Integration of weighted knowledge bases. Artificial Intelli-
gence, 83(2):363-378, 1996.

Céline Lafage and Jérome Lang. Logical representation of prefer-
ences for group decision making. In Proceedings of the 7th Interna-
tional Conference on Principles of Knowledge Representation and
Reasoning (KR 2000), Breckenridge, Colorado, USA, 12-15 April
2000, San Mateo, CA, 2000. Morgan Kaufmann.

J. Lin and A. O. Mendelzon. Knowledge base merging by majority.
In R. Pareschi and B. Fronhoefer, editors, Dynamic Worlds: From
the Frame Problem to Knowledge Management. Kluwer Academic
Publishers, 1999.

Paolo Liberatore and Marco Schaerf. Arbitration (or How to Merge
Knowledge Bases). IEEE Transactions on Knowledge and Engi-
neering, 10(1):76-90, January/February 1998.



[Mey99]

[MLHO0]

[Nay94]

[Rev93]

[Rev97]

[Spo88]

[Spo91]

[Sub94]

Thomas Meyer. Basic Infobase Change. In Norman Foo, edi-
tor, Advanced Topics in Artificial Intelligence, volume 1747 of Lec-
ture Notes In Artificial Intelligence, pages 156-167, Berlin, 1999.
Springer-Verlag.

Thomas A. Meyer, Willem A. Labuschagne, and Johannes Heidema.
Infobase Change: A First Approximation. Journal of Logic, Lan-
guage and Information, 9(3):353-377, 2000.

Abhaya C. Nayak. Iterated belief change based on epistemic en-
trenchment. Erkenntnis, 41:353-390, 1994.

P. Z. Revesz. On the Semantics of Theory Change: Arbitration
between Old and New Information. In Proceedings PODS ’98, 12th
ACM SIGACT SIGMOD SIGART Symposium on the Principles of
Database Systems, pages 71-82, 1993.

P. Z. Revesz. On the semantics of arbitration. International Journal
of Algebra and Computation, 7(2):133-160, 1997.

Wolfgang Spohn. Ordinal conditional functions: A dynamic theory
of epistemic states. In William L. Harper and Brian Skyrms, editors,
Causation in Decision: Belief, Change and Statistics: Proceedings
of the Irvine Conference on Probability and Causation: Volume II,
volume 42 of The University of Western Ontario Series in Philoso-
phy of Science, pages 105-134, Dordrecht, 1988. Kluwer Academic
Publishers.

Wolfgang Spohn. A Reason for Explanation: Explanations Pro-
vide Stable Reasons. In Wolfgang Spohn, Bas C. Van Fraassen,
and Brian Skyrms, editors, Existence and Explanation: Essays pre-
sented in Honor of Karel Lambert, volume 49 of University of West-
ern Ontario series in philosophy of science, pages 165-196. Kluwer
Academic Publishers, Dordrecht, 1991.

V.S. Subrahmanian. Amalgamating knowledge bases. ACM Trans-
actions on Database Systems, 19(2):291-331, 1994.



