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Abstract

Intelligent agents have to be able to merge informational inputs received from
different sources in a coherent and rational way. Several proposals have been made
for information merging in which it is possible to encode the preferences of sources
(Benferhat, Dubois, Prade, & Williams, 1999; Benferhat, Dubois, Kaci, & Prade,
2000; Lafage & Lang, 2000; Meyer, 2000, 2001; Andreka, Ryan, & Schobbens, 2001).
Information merging has much in common with social choice theory, which aims to
define operations reflecting the preferences of a society from the individual prefer-
ences of the members of the society. Given this connection, frameworks for infor-
mation merging should provide satisfactory resolutions of problems raised in social
choice theory. We investigate the link between the merging of epistemic states and
some results in social choice theory. This is achieved by providing a consistent set
of properties for merging akin to those used in Arrow’s well-known impossibility
theorem (Arrow, 1963). It is shown that in this framework Arrow’s impossibility
result does not hold. Similarly, by extending this to a consistent framework which
includes properties corresponding to the notion of being strategy-proof, we show
that results due to Gibbard and Satterthwaite (Gibbard, 1973; Satterthwaite, 1973,
1975) and others (Benoit, 2000; Barberá, Dutta, & Sen, 2000) do not hold in merging
frameworks.
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1 Introduction

A crucial aspect of commonsense reasoning is the ability of agents to accept
information from multiple sources and to put it together to come up with
a composite picture that can guide further action and deliberation. Without
this ability, most reasoning would quickly grind to a halt, with agents bewil-
dered by the multiplicity and often, the mutual inconsistency of sources and
the information forthcoming from them. Clearly, intelligent agents employing
commonsense reasoning have to be able to merge inputs received from different
sources in a coherent and rational way. Examples of this need already exist in
robotics. As robotics moves from dealing with large complex industrial robots
to simpler, smaller and less sophisticated— ‘fast, cheap and out-of-control’—
robots that rely on reduced intricacy in sensing and control, several problems
have acquired significance. One of these is the problem of sensory deprivation
and inconsistent sensory fusion: clearly the issue of merging of information is
important here.

Several proposals for formalisms that incorporate this ability have been made
for the merging of structures in which it is possible to encode the preferences
of sources. In (Benferhat et al., 1999, 2000) information fusion is described
in terms of possibility distributions (Dubois, Lang, & Prade, 1994; Zadeh,
1978) and the κ-framework developed in (Williams, 1995). In (Meyer, 2000,
2001), information merging is described in terms of epistemic states, struc-
tures in the style of (Spohn, 1988). In (Andreka et al., 2001) the combination
of preferences is described in a framework where preferences are represented
as arbitrary binary relations. In these frameworks, the notion of what would
constitute ‘rational’ merging still remains an open question. Since it has been
pointed out that information merging is similar to the operations studied in
social choice theory—where the aim is to provide fair and equitable methods
for aggregating the preferences of the members of a society to produce a sin-
gle relation reflecting the preferences of society (Booth, 2002; Konieczny &
Pino-Pérez, 1998; Maynard-Reid & Shoham, 1998; Konieczny & Pino-Pérez,
1999, 2002; Maynard-Reid & Lehmann, 2000)— it seems that one ‘rationality’
criterion for any proposed framework for information merging is that it deal
satisfactorily with problems raised in social choice theory.

The formal similarity between the two areas is brought out best by an example.
Consider an agent that is told by its two sources s1, s2, the following items of
information:

• s1: Stock X will rise tomorrow; stock Y will remain constant; stock Z will
fall. (s1’s preferences then, are X, Y, Z)

• s2: Stock X will fall tomorrow; stock Y will remain constant; stock Z will
rise. (s2’s preferences then, are Z, Y, X)
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The agent’s epistemic task at this stage is to combine these two expressions of
preference into an item of information that can guide its further actions i.e.,
which stock to purchase. Now consider a social aggregation operation that
is handed the following input from the two members of society m1, m2 that
express preferences for social goods (say, a particular taxation profile):

• m1: Option X is highly desirable; option Y is tolerable; option Z is highly
undesirable. (Source m1’s preferences then, are X, Y, Z)

• m2: Option X is highly undesirable; option Y is tolerable; option Z is highly
desirable. (Source m2’s preferences then, are Z, Y, X)

The task of the social aggregation operation is to take the inputs and to
convert them into an ordering which will guide social policy i.e., the choice
of which taxation profile to adopt. The prima facie similarity between the
two scenarios above is obvious; unsurprisingly, so is the formal framework
developed to model them.

The difficulties involved in devising a social aggregation operation are best
illustrated by an example such as the Condorcet Paradox. 1

Suppose that Alice, Brian and Cait, are choosing between three candidates,
Primus, Secunda, and Tertius, for a job. Alice prefers Primus to Secunda to
Tertius. Brian prefers Secunda to Tertius to Primus. Cait prefers Tertius to
Primus to Secunda. So a majority prefer Primus to Secunda, and a majority
prefer Secunda to Tertius, and, paradoxically, a majority prefer Tertius to
Primus. So preferences obtained by majority voting between pairs do not
give a coherent ranking. Or, to put it differently, the outcome depends on
the order in which the options are presented. If the first choice is between
Primus and Secunda then Secunda will be eliminated and Primus will win
when compared with Tertius. But if the first choice is between Primus and
Tertius then Primus will be eliminated and then Secundus will win when
compared with Tertius.

In this paper we extend the work in (Meyer, Ghose, & Chopra, 2001b) to in-
vestigate the link between the merging of epistemic states and some impossi-
bility results in social theory: the Arrow and Gibbard-Satterthwaite theorems.
Arrow showed that there is no aggregation operation satisfying certain reason-
able postulates (Arrow, 1963). We show that the Arrow result does not hold
in merging frameworks when preferences are represented in terms of epistemic
states. Informally, epistemic states assign ranks to the valuations, or possible
worlds, of the logic under consideration. We provide a list of properties to be
satisfied by all rational merging operations and prove that the Arrow postu-
lates, suitably modified to apply to this framework, can be derived from these

1 Example taken from entry on voting paradoxes at
www.xrefer.com/entry/553842
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properties. We show that these properties are consistent.

Gibbard (Gibbard, 1973) and Satterthwaite (Satterthwaite, 1973, 1975) inde-
pendently proved that under certain conditions, every reasonable method to
aggregate the preferences of members of a society is vulnerable to strategic
manipulation by the members of that society. This strategic manipulation is
most relevant in voting scenarios where electors can misrepresent their actual
preference profile so as to strategically elect their desired candidate. One of
the Gibbard-Satterthwaite conditions on the output of the aggregation oper-
ation, single-valuedness, is quite restrictive, but similar impossibility results
hold even in its absence (Benoit, 2000; Barberá et al., 2000). We extend our
framework for the merging of epistemic states by adding properties which
disallow various forms of manipulation. In particular, we propose properties
which force merging operations to be strategy-proof and show that the addi-
tion of these properties results in a consistent extension of the basic framework
for merging.

Why are these connections with social choice theory worth making? This is an
important question since it is well-known that a move to structures richer than
purely relational objects is a way to circumvent impossibility results (May,
1952; Dubois & Koning, 1991). We believe the answer to this is two-fold. At
a purely formal level, there is interest in seeing how the formalisms of belief
merging and social aggregation operations are really similar or dissimilar. More
ambitiously, is there anything that the two areas could learn from each other?
While the traffic might seem to be all one-way at this point in that social choice
theory has a rich suite of impossibility theorems (Kelly, 1978) and aggregation
operators which could be of value to the artificial intelligence community, it
is not inconceivable that techniques –such as representational schemes and
domain-specific aggregation operators– developed in the merging area would
be of some use to the social choice theory community as well.

We believe the connection goes beyond the merely formal however. At a con-
ceptual level, the provision of information by sources never takes place in a
vacuum. The source’s reliability, the context in which the information is pro-
vided, and most importantly, the uses to which it can be put are important
factors in devising a method for aggregating this information. It makes sense
then, to consider the connections with a formal framework developed by a
community that deals with precisely this problem: a comprehensive theory for
agent interactions should reflect the inputs of work aimed at formalising as-
pects of collective decision making. Furthermore, while social choice theory is
primarily concerned with the aggregation of preferences, belief merging, from
the angle we look at it, deals with the question of how to combine plausibility
rankings of different sources. While these two questions are not the same, there
is a sufficiently large overlap to justify a comparison of formalisms developed
in the two areas.
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Where does strategizing come into all of this? Voting scenarios can be seen
as competitions where agents may strategize so as to get their preferences
(preferred candidates) chosen by the aggregation operation. In order for the
operation to be fair, it must be strategy proof. This is of value in a theory
of automated agents since one can imagine a scenario in which agents have
a vested interest in getting their preferences to show up higher in the com-
posite preference profile. As an elaborate example, imagine a scenario where
a small group of robots are sent on a reconnaissance mission on the surface
of a remote planet to guide further exploration and mining. The information
gathered in this fashion will be used by a central aggregator robot that is
in charge of collecting the information collected by the discovery robots to
come up with a plan for further exploration. If we assume that these robots
are highly autonomous and—more ambitiously—equipped with some notion
of self-interest, then the task of the central aggregator is to ensure that no
robot is able to misrepresent its actual preferences so as to influence further
discovery plans (perhaps the mother spacecraft is owned by a mining consor-
tium made up of supposedly co-operating units). In this scenario, there is an
assumption of autonomy on the part of the agents. Such an assumption is
apt as artificial intelligence sets itself the goal of designing highly autonomous
agents. Any such study will be incomplete without the investigation of scenar-
ios in which agents are viewed as competitive and having conflicting desires
and objectives. Clearly, merging operations need to deal with the possibility
of the misrepresentation of beliefs so as to strategically influence the behavior
of the composite system. In our robot example, we can imagine a situation
in which the robots could have a vested interest in investigating a particular
portion of the planet as opposed to another. The mechanisms that we de-
scribe in this paper are designed to take care of these sorts of scenarios. The
connections then, between social theory and the formalisms for artificial in-
telligence, are timely and important at both the formal and conceptual levels.
Most fundamentally, if we view the pooling or merging of epistemic resources
as guiding the future actions of a group of agents then the comparison with
social choice theory is especially appropriate.

The format of the paper is as follows. In Section 2 we lay the foundation
for the discusssion to follow by defining epistemic states, lists and merging
operations. In Section 3, we then provide a description of our framework via a
presentation of some basic merging operations and their properties. In Section
4, we move on to describe the connections with social choice theory and voting
procedures, pointing out the points of similarity and departure. Section 5 is
devoted to a discussion of strategy-proof merging including a development of
the abstract distance measures that play a crucial role in our framework. We
conclude with some comments on the connections we have drawn in this study
and provide some pointers to future work.

A brief note on our notation. We assume a finitely generated propositional
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language L closed under the usual propositional connectives and equipped
with a classical model-theoretic semantics; the constants ⊤,⊥ are in L. V is
the set of valuations of L and M(α) is the set of models of α ∈ L. Classical
entailment is denoted by |=. The set of natural numbers is denoted by N.
For i ∈ N, we let I(i) = {0, . . . , i} and I+(i) = {1, . . . , i}. A preorder is a
reflexive, transitive relation. A binary relation R on a set X is connected iff, for
every x, y ∈ X, either xRy or yRx; a total preorder is a connected preorder.
Examples involving valuations are phrased in the language with two atoms, p
and q. Valuations are represented as sequences of 0s and 1s representing falsity
and truth respectively: the first digit represents the truth value of p and the
second one the truth value of q.

2 Epistemic states, lists and merging operations

We operate under the assumption that from the epistemic state of an agent the
preferences of its sources can be represented as plausibility rankings of natural
numbers on the valuations of L; the lower the number assigned to a valuation,
the more plausible it is deemed to be. This is along the lines of work initially
proposed by Spohn (Spohn, 1988) and was used in (Meyer, 2000, 2001) to
define merging. Epistemic states are very similar to possibility distributions
(Dubois et al., 1994) and the κ-framework (Spohn, 1988; Williams, 1995); it
is relatively easy to translate between these frameworks. It is possible to use
epistemic states in various ways. Our intention is for the ranks assigned to
valuations to serve as markers in order to define a notion of relative distance
between valuations, and nothing more. The reason for using it in this way is to
avoid, to some extent, the problem of having to justify a particular assignment
of numbers. At the same time it allows us to express the strength with which
preferences are held; something that cannot be achieved with orderings on
valuations. For example, in an epistemic state it is possible to express the
information that I prefer u to v more than I prefer v to w.

Definition 1 An epistemic state Φ is a (total) function from V to N.

It is possible to extract a consistent classical knowledge base from an epistemic
state Φ by considering only those valuations with the best level of plausibility
assigned to them. Let M i(Φ) = {v ∈ V | Φ(v) = i} and let min(Φ) =
min{Φ(v) | v ∈ V }.

Definition 2 A formula φ ∈ L is said to be a knowledge base extracted from
Φ iff M(φ) = Mmin(Φ)(Φ).

Following (Katsuno & Mendelzon, 1991), a knowledge base φ represents the
set of wffs entailed by φ. Observe that the knowledge bases extracted from
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Fig. 1. A pictorial representation of an epistemic list containing two epistemic states
Φ1 and Φ2. The sequence of two digits in each cell above indicates the natural
numbers associated with valuations by the two epistemic states. A cell containing
the sequence ij indicates the placement of those valuations assigned the value i by
Φ1 and assigned the value j by Φ2.

Φ are all logically equivalent. We will often abuse notation by using B(Φ) to
refer to the knowledge base extracted from Φ. The intention is that B(Φ) is
some canonical representative of all the knowledge bases extracted from Φ. By
extracting knowledge from an epistemic state in this way we ensure that B(Φ)
will always be satisfiable, even though it may be the case that no valuation has
a rank of 0 associated with it. This is in line with our informal interpretation of
the natural numbers assigned to valuations; the choice of having 0 as the best
plausibility rank which can be assigned to a valuation is purely a convenience.

Formally, we view merging as an operation in which the preferences of a se-
quence of sources, in the form of epistemic states, are combined to provide a
new epistemic state representing the merged preferences of the sources. It is
not sufficient to use finite sets of epistemic states, since different sources may
have identical preferences, and the presence of more than one instance of an
epistemic state may have a significant impact on the way in which merging is
conducted.

Definition 3 An epistemic list E is a finite non-empty list, or sequence, of
epistemic states. We let |E| denote the length of E.

It is instructive to view an epistemic list pictorially as in figure 1. While
such a pictorial view is only useful in representing epistemic lists containing
two elements, it serves as a good foundation for understanding the principles
underlying the merging of epistemic states in general.

In order for merging to be carried out at all it is crucial to make an assump-
tion of commensurability ; that all sources employ the same scale when they
rank valuations. In practice this can be achieved by obtaining a worst level
of plausibility P commonly agreed upon by all sources. Such a commitment
in our formalism does not mean that any of the sources has to rank at least
one valuation at P ; it simply means that this is the worst level of plausibility
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that a source would ever consider attributing to any valuation. An agreement
to use a particular worst level of plausibility means that all sources agree on
a fixed level of granularity. That is, all agents are required to have the same
worst level of plausibility. Note that such an approach is not without its own
difficulties. It is reasonable to require that such a commonly agreed upon worst
level of plausibility be no less than the worst level of plausibility initially as-
signed by individual sources. However, difficulties arise in deciding precisely
how the diverse scales of plausibility are to be mapped on to a common scale.
For example, suppose source A uses 1 as its worst level of plausibility and
source B uses 2. A common level of granularity is then obtained by taking P
to be at least two. Now suppose that we set P = 5, in order to ensure that
the total number of ranks in the original two epistemic states are distributed
evenly and equally to accomodate the variances in granularity. Suppose fur-
ther that source B had a valuation ranked at 1, initially. In the new epistemic
state, where P = 5, everything initially ranked at 1 by source B now have
to be ranked at either rank 2 or rank 3. But which one? We can force it to
choose, of course, but it might simply not have enough information available
to make an informed decision.

Definition 4 An epistemic state Φ is P -capped, where P ∈ N, iff Φ(v) ≤ P
for every v ∈ V . An epistemic list E is P -capped iff every epistemic state in
E is P -capped. The set of all P -capped epistemic lists is denoted by EP . The
set of all epistemic states is denoted by E∞.

The following figure pictorially depicts a 7-capped epistemic state. Note that
no valuation is assigned a rank of 0 in this example, but three are assessed
as the most plausible (the ones receiving the lowest assigned rank of 1). Note
also that no valuation has a rank of 7.

7
6
5
4
3
2
1
0

This brings us to the formal definition of merging.

Definition 5 A P -capped merging operation ∆ is a function from EP to E∞.
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P -capped merging does not necessarily yield P -capped epistemic states. In
some cases, attempts to merge the information contained in an epistemic list
may increase the granularity level of information contained in the resulting
epistemic state. This is expected since an increase in granularity indicates
more information available to the agent enabling a more fine-grained distinc-
tion to be made amongst different epistemic possibilities by the agent. For
example, if I am assessing the chances of different teams in the basketball
competition, I might rank two teams at par, but later, on receiving more in-
formation on player backgrounds, injury records and statistics from television
reports and sports newspapers, rank one higher than the other. It should be
noted though, that a monotonic increase of granularity is problematic since
one would invariably end up with a linear ordering of valuations. A realistic
account of merging should therefore also include a definition of ‘contraction’
like merging operations in which the level of granularity can be lowered in re-
sponse to merging. This point is easily illustrated by reference to our previous
example: I might have ranked one team above the other before receiving in-
formation that now forces me to revise my initial assessment and rank the two
teams at the same level. In this case, the revision of plausibilities has resulted
in a decrease in the granularity of my assessments of the team’s chances in the
competition. A development of ‘contraction’ like merging operations is not our
present concern however, and we leave that topic aside as one for (interesting)
future research.

Definition 6 For every n ≥ 1, every P -capped merging operation ∆ is Q-
bound for n iff for every P -capped epistemic list E s.t. |E| = n, ∆(E) is Q-
capped and for some P -capped epistemic list F s.t. |F | = n and some v ∈ V ,
∆(F )(v) = Q. ∆ is Q-bound iff it is Q-bound for n for every n ≥ 1. A
P -capped merging operation which is Q-bound for n is referred to as (P, Q, n)-
capped. Similarly, a P -capped merging operation which is Q-bound is referred
to as (P, Q)-capped.

For n ≥ 1, every P -capped merging operation is (P, Q, n)-capped for some
Q, but, as will be seen in section 3.1, need not be (P, Q)-capped for some Q.
Q-boundedness should be understood as the new increased level of granularity
obtained after merging has been conducted.

3 Basic merging

We are now in a position to provide some basic properties with which all
P -capped merging operations ought to comply. Our claim is not that these
properties define merging. Indeed, in section 5 we consider more desirable
properties for merging which cannot be derived from (∆0)-(∆6) below. For the
remainder of the paper we follow the convention that an epistemic list E has
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the form [Φ1, . . . , Φ|E|] and that an epistemic list F has the form [Ψ1, . . . , Ψ|F |].
In the list given below v, w denote arbitrary members of V , the set of valua-
tions.

(∆0) ∆(E)(v) ≥ min{Φi(v) | i ∈ I+(|E|)}
(∆1) If |E| = |F | and if ∀i ∈ I+(|E|) Φi(v) = Ψi(v) , then ∆(E)(v) =

∆(F )(v)

(∆2) ∀n ≥ 1, if ∆ is Q-bound for n, then ∀q ∈ I(Q) there is an E ∈ EP and
a v ∈ V s.t. ∆(E)(v) = q

(∆3) If there is a bijection π : I+(|E|) → I+(|F |) such that Φi = Ψπ(i) ∀i ∈
I+(|E|), then ∆(E) = ∆(F )

(∆4) If Φi(v) ≤ Φi(w) ∀i ∈ I+(|E|), then ∆(E)(v) ≤ ∆(E)(w)

(∆5) If ∆(E)(v) ≤ ∆(E)(w), then Φi(v) ≤ Φi(w) for some i ∈ I+(|E|)

(∆6) If Φi(v) = Φj(v) ∀i, j ∈ I+(|E|), Φi(v) ≤ Φi(w) ∀i ∈ I+(|E|), and
Φj(v) < Φj(w) for some j ∈ I+(|E|), then ∆(E)(v) < ∆(E)(w)

These properties need some explanation and motivation. (∆0) requires that
the rank assigned to a valuation after merging be no less (that is, no better)
than the smallest (best) rank assigned to this valuation by any of the sources.
This requirement can be justified by observing that there is no reason for an
agent to regard a valuation as more plausible than suggested by any of its
sources, even if all sources agree on the level of plausibility. That is, after
merging a valuation should be seen as no more plausible than judged by the
individual sources. (∆1) states that the rank that ∆ assigns to a valuation v is
independent of the ranks assigned to any of the other valuations. This is similar
in spirit to the property in social choice theory known as the Independence
of Irrelevant Alternatives (Arrow, 1963) and is intended to capture a similar
intuition. This issue will be discussed in more detail in section 4. The adoption
of (∆1) enables us to define merging in terms of aggregation functions on the
natural numbers, i.e. as an operation on sequences of natural numbers. Let
seqP = {s | s = s1, . . . , sn where n ≥ 1 and si ∈ I(P ) ∀i ∈ I+(n)}. For
s ∈ seqP we denote the length of s by |s|. The following proposition follows
directly from (∆1).

Proposition 1 Let ∆ be a P -capped merging operation satisfying (∆1). Then
there is a function δ : seqP → N such that, ∀v ∈ V , ∀E ∈ EP , ∀s ∈ seqP , if
|s| = |E| and si = Φi(v) ∀i ∈ I+(|E|), then δ(s) = ∆(E)(v).

Merging operations on sequences thus have an indirect connection with the
merging of epistemic states and it is only with the adoption of a property
such as (∆1) that this connection can be made explicit. This is in contrast
with other approaches in the literature, such as that of (Benferhat et al.,
1999, 2000), in which merging is defined directly in terms of sequences. We
choose not to follow such an approach since the adoption of a propositional
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logic framework allows us to, firstly, compare our formalism for merging with
other approaches such as (Benferhat et al., 1999, 2000; Lafage & Lang, 2000;
Meyer, 2000, 2001; Andreka et al., 2001) and secondly, so as to make explicit
the assumption (∆1), which would otherwise have been impossible.

(∆2) is a convexity assumption. It ensures that for a merging operation bound
by Q for n, no rank from 0 to Q remains unused for epistemic lists of length
n. That this is a useful property can be seen by the fact that the ranks that
are unused by an epistemic state are not useless and will be utilized in the
epistemic state resulting from the merger of some epistemic list. If we did
not have such a convexity assumption underlying merging, we would be in
the position of having some ranks, for no special reason lying unused, thus
assigning some special status to them not assigned to others. (∆3) ensures that
the order in which epistemic states occur in an epistemic list does not affect
the outcome of merging. In (Meyer, 2000, 2001) this property was referred to
as commutativity and in social choice theory it is known as anonymity (Kelly,
1978). (∆3) rules out any notion of prioritized merging in which some sources
are seen to be more important, or trustworthy, than others. This does not
mean that we deem prioritized merging to be undesirable, but rather that
prioritized merging depends on the existence of rational merging operations
in which all sources are equally reliable. Indeed, in (Meyer, Ghose, & Chopra,
2001a) it is shown that there is a unique method of lifting non-prioritized
merging operations into a prioritized setting. The adoption of (∆3) means
that it would be possible to define merging operations which receive inputs
in the form of multisets or bags, instead of lists, of epistemic states. It is
our position, however, that such assumptions should be made explicit, in the
form of properties, instead of being encoded indirectly in the representational
formalism. (∆4) states that if all epistemic states in E agree that u is at least
as plausible as v, then so should the resulting epistemic state. In the context
of social choice theory, this is referred to as the weak Pareto principle. (∆5)
expects justification for regarding a valuation u as at least as plausible as v
after merging has taken place: there has to be at least one epistemic state
in E which regards u as at least as plausible as v. (∆5) is a restatement of
the Pareto Principle (in its contrapositive form), one of the properties used to
establish Arrow’s impossibility theorem in social choice theory (Arrow, 1963).
The intuitions associated with (∆6) have been discussed in (Meyer, 2000,
2001): in merging of knowledge bases, one of the basic properties is that if
the knowledge bases to be merged are consistent then the merging is simply
the conjunction of the knowledge bases. (This can be seen as an application
of the methodological principle of minimal change of belief revision). (∆6) is
a generalisation of this principle for epistemic states. A knowledge base φ is
a crude epistemic state in the sense that the models of φ are deemed to be
strictly more plausible than its countermodels. Semantically, the conjunction
of the knowledge bases amounts to the requirement that those valuations
judged to be the most plausible by all knowledge bases have to strictly more
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plausible than any other valuation. In the same vein (∆6) says that whenever
all of the epistemic states in E agree on the level of plausibility of a particular
interpretation u then, in the epistemic state obtained from a combination
operation, u should be strictly more plausible than other valuations for which
this unanimity does not hold. In this case, the lack of unanimity about a
valuation v amounts to every epistemic state regarding v to be at most as
plausible as u, but less plausible than u by at least one of the epistemic
states. 2

A possible additional property to consider is the following:

(Invariance) ∆([Φ, . . . , Φ]) = Φ

It turns out that, although (Invariance) might be a desirable property for
certain subclasses of merging operations, such as arbitration (Meyer, 2001), it
is invalidated by some intuitively desirable operations, such as ∆Σ, which we
consider in the next section.

The following useful properties follow easily from the above properties.

Proposition 2 Let ∆ be a P -capped merging operation satisfying (∆0).

(1) If ∆ is Q-bound for n then Q ≥ P .
(2) If ∆ satisfies (∆1) and (∆6), and ∃i, j,∈ I+(|E|) s.t. Φi(v) 6= Φj(v),

then ∆(E)(v) > min{Φi(v) | i ∈ I+(|E|)}.

Part (1) of proposition 2 shows that the granularity level of information grows
monotonically with merging, while part (2) provides lower bounds on the
ranks assigned to valuations after merging. These results are consistent with
the intuitions that:

• An increase in information provided by sources leads to an increase in the
level of granularity of the merged epistemic state.

• The increase in plausibility of valuations is bounded in some ‘rational’ sense

For the latter, it is clear that merging operations which bring about unmo-
tivated increases in the plausibility of certain valuations, such as a valuation
being more plausible than judged by all of the individual sources, are unlikely
to be judged as being ‘rational’.

2 Observe that dropping the first condition in the antecedent of (∆6) is not feasible
since the resulting property would be invalidated by certain reasonable merging
operations, such as ∆min1.
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3.1 Constructing merging operations

In this section we briefly consider some methods for constructing merging
operations on epistemic states. This is not an exhaustive survey of merging
operations found in the literature. The intention is merely to show that there
are constructions which satisfy (∆0)-(∆6). We consider the following merging
operations (as before, in the list below v denotes an arbitrary member of V ,
the set of valuations):

(1) ∆max(E)(v) = max{Φi(v) | i ∈ I+(|E|)}

(2) ∆min1(E)(v) =











2Φ1(v) if Φi(v) = Φj(v) ∀i, j ∈ I+(|E|),

2 min{Φi(v) | i ∈ I+(|E|)} + 1 otherwise

(3) ∆min2(E)(v) =











Φ1(v) if Φi(v) = Φj(v) ∀i, j ∈ I+(|E|),

min{Φi(v) | i ∈ I+(|E|)} + 1 otherwise

(4) ∆Σ(E)(v) =
∑

i∈I+(|E|) Φi(v)

These operations have been proposed and discussed in (Konieczny & Pino-
Pérez, 1998; Benferhat et al., 1999, 2000; Meyer, 2000, 2001; Meyer, Ghose,
& Chopra, 2001c), amongst others. Observe that ∆max and ∆min2 are (P, P )-
capped, ∆min1 is (P, 2P )-capped, but that ∆Σ is not (P, Q)-capped for any Q.
We do know, however, that ∆Σ is (P, nP, n)-capped for every n ≥ 1.

∆min1 may be thought of as a credulous merging operation; its construction
may be explained as follows. Identify the valuations, if any, for which there is
total agreement among all epistemic states about them being the most plau-
sible, and take these to be the most plausible in the epistemic state resulting
from the merging operation. The valuations on the next level of plausibility
is obtained by considering all valuations which are deemed to be most plausi-
ble by at least one epistemic state. For the next level of plausibility we move
to the valuations on which there is total agreement about them being the
second most plausible set of valuations, followed by those valuations which
are regarded as the second most plausible by at least one epistemic state.
The process described above is repeated until all levels of plausibility for all
the epistemic states have been catered for. At the heart of ∆min2 are three
principles:

(1) The strong Pareto principle, which says that if all sources agree that
valuation u is strictly better than v then the merging operation should
rank u strictly better than v.

(2) When two sequences of natural numbers have the same minimum then
the one in which there is total agreement is assigned a strictly better
rank.
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(3) Furthermore, it assigns to every interpretation the lowest possible value
that can be assigned.

∆min2 is the most credulous merging operation allowed by (∆0) to (∆6) in
that it assigns valuations the best levels of plausibility allowed by the these
postulates. To see why, observe that (∆0) requires of the value assigned to a
valuation v to be no lower than the minimum value assigned to v by any of the
sources. If all sources agree on the value assigned to v, then ∆min2 does indeed
assign this minimum value to it. Furthermore, (∆6) demands that the value
assigned to a valuation w on which all sources are not in agreement, should
be higher than the value assigned to a valuation v for which all sources are
in agreement, as long as all sources agree that w is no better than v. What
this means, is that whenever all sources are not agreement about w, then the
value assigned to w has to be higher than the minimum value assigned to w
by any of the sources. What ∆min2 does is to assign to w the smallest value
that is still bigger than this minimum.

∆max assigns levels of plausibility by looking at the worst level of plausibility
assigned to a valuation by any of the epistemic states. It may be thought of
as representing a skeptical approach to merging: when confronted with dif-
fering assessments of plausibility of a particular valuation, pick the one that
requires lesser commitment. ∆Σ is an appropriate generalisation of an example
by Lin and Mendelzon (Lin & Mendelzon, 1999) and was also independently
proposed by Revesz (Revesz, 1993) as an example of weighted model fitting.
The idea is simply to obtain the new plausibility ranking of a valuation by
summing the plausibility rankings given by the different epistemic states. ∆Σ

may be considered a neutral—neither credulous nor skeptical—merging op-
eration. Consider a 2-capped epistemic state and suppose v is ranked with a
0 by source A and a 2 by source B. ∆Σ assigns 2 to v which might seem to
indicate that it is as skeptical as ∆max. However, while 2 is the maximum rank
that ∆max can assign, 2 is about halfway between the best and the worst rank
that ∆Σ can assign for two sources (the worst rank being 4).

The diagrams in figure 2 represent some of the merging operations studied in
this paper. The number in a cell represents the value assigned to a valuation by
the merging operation. As an example, for ∆max, consider the cells containing
the value 3. These cells contain the valuations assigned the value 3 by Φ1

and 0,1,2 or 3 by Φ2 or 3 by Φ2 and 0,1,2 or 3 by Φ1; the merging operation
assigns them all a 3. For ∆Σ, the cell containing the value 6 at the top, is
the cell containing the valuation assigned 3 by both epistemic states, thus
explaining the assignment of the value 6. Note that in the illustration below,
it is clear that while the original epistemic states considered the lowest level
of plausibility to be 3, ∆Σ has assigned a maximum level of 6. However, this
should not be taken as indicating that the valuation assigned 6 is considered
twice as implausible as the original valuations. Instead, the way to understand
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Fig. 2. A pictorial representation of four of the merging operations studied in this
paper.

this appropriately is to think of the merging operation as having enabled a
finer grained distinction amongst valuations. As the following result shows,
the basic set of merging operations are satisfactory in a baseline sense: they
satisfy the basic list of properties taken to be desirable for merging operations.

Proposition 3 ∆max, ∆min1, ∆min2 and ∆Σ all satisfy (∆0)-(∆6).

4 Social choice and merging

Social choice theory (Arrow, 1963; Sen, 1986) is a research area where the
problems under scrutiny are similar to the problems encountered in merging.
Social choice theory is concerned with the aggregation of preferences. There
are many ways to aggregate individuals preferences to obtain societal ones:
convention, established customs, religious doctrine and so on. Since most of
these aren’t ‘fair’ in being biased towards some members of society, how would
a fair aggregation operation be constructed? Social choice theory abstracts
the most salient requirements on the operations and then investigates the
possibility of the existence of operations that could meet these requirements.
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An individual’s preferences are usually represented as a total preorder � over
a (finite) set of alternatives Ω. For x, y ∈ Ω, x � y means that x is at least
as preferred as y. The interest then lies in the description of an aggregation
operation over the preferences of n individuals, �1, . . . ,�n which produces
a new preference ordering over Ω. The similarities between this formalism
and our framework for the merging of epistemic sets are obvious. We take Ω
to be V , the set of permissible valuations, and use the total preorder on V
induced by an epistemic state. Observe that such an induced total preorder
contains less information than the epistemic state from which it was induced.
For example, consider an agent that assigns a rank of 5 to w, 4 to v and 1 to
u. This ranking clearly induces a preorder on valuations that tells us that an
agent ranks u as more likely than v and w as more implausble than v, but it
would not inform us of the fact that the agent considers v and w as closer to
each other in plausibility than v is to u.

One of the most important results in social choice theory is Arrow’s impossibil-
ity theorem (Arrow, 1963) which shows that there is no aggregation operation
satisfying some intuitively desirable postulates. In this section we show that
Arrow’s result does not hold when recast into the framework of epistemic
states. It is not our intention to show that this affects Arrow-type results in
social choice scenarios. As noted in (Sen, 1970), Arrow-type results do not
hold in social choice scenarions where interpersonal comparison of utilities is
allowed. Social choice theorists have often used numerical scales for associa-
tion with alternatives, but have attached far more significance to the numerical
scales than we do. In the social choice context, such approaches are deemed
problematic because of the difficulty in justifying numerical scales. By adopt-
ing the abstract distance measures discussed in Section 5, we concentrate on
what properties are necessary for such a scale. Our (limited) objective is to
clear the decks for merging operations and frameworks by showing that there
is no need to fear the absence of ‘rational’ merging operations. Before pre-
senting the postulates we note that social choice theorists fix the number of
members of a society, and also assign each a unique index, while we make
neither of these assumptions. This has some subtle effects on a number of
postulates below, such as (IIA) and (ND).

Arrow’s first postulate, dubbed Restricted Range, requires the result of an
aggregation operation to be a total preorder on Ω. Essentially, if a list of pref-
erences is submitted, then the output should look like one of its elements.
In the context of belief revision this injunction is referred to as the principle
of categorical matching. (Gärdenfors & Rott, 1995). In our framework this
translates to the requirement that a merging operation produce an epistemic
state – something which is built into our definition of merging. The second
Arrow postulate, known as Unrestricted Domain, states that one ought to
be able to apply the aggregation operation to any n-tuple of total preorders
on Ω. Here the requirement is that any possible combination of preferences
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should be acceptable as inputs to the aggregation operation: the a priori rejec-
tion of certain inputs would indicate a biased aggregation operation, one that
automatically rules out certain combinations as well. In our framework this
translates to the requirement that merging may be applied to any (P -capped)
epistemic set – again, something that is built into our definition of merging.
The third Arrow postulate, known as the Pareto Principle, can be phrased as
follows for epistemic sets:

(PP) If Φi(v) < Φi(w) ∀i ∈ I+(|E|), then ∆(E)(v) < ∆(E)(w)

Note that (PP) is the contrapositive of (∆5). The Pareto Principle requires
that a preference that is held by all members of the input set should be
respected by the aggregation operation. This is clearly intuitive: it would be
strange if the aggregation operation were to produce a result that did not
reflect the fact that option A was preferred to option B by all members of
the group and regardless of the position of the other alternatives, this option
should clearly reflect the preferences of the group.

The fourth Arrow postulate, known as the Independence of Irrelevant Alter-
natives, translates to the following postulate:

(IIA) ∀E, F ∈ EP s.t. |E| = |F |, Φi(v) ≤ Φi(w) iff Ψi(v) ≤ Ψi(v) ∀i, j ∈
I+(|E|) implies that ∆(E)(v) ≤ ∆(E)(w) iff ∆(F )(v) ≤ ∆(F )(w)

When deciding on the relative ordering of valuations v and w, (IIA) requires of
us to disregard all other valuations. At least, that is the intuition. For example,
if individual x prefers A to B then his ordering of these two should not be
affected by the presence of the third alternative C. Why should an elector’s
preference for Gore over Bush be affected by the presence of Nader? The elector
might vote for Nader in the final analysis but that would be because the voter
preferred Nader over both alternatives and not because his ranking of Gore
and Bush had changed. It is easily seen that the intuition does not hold in our
more structured framework in which it is possible to define degrees of relative
plausibility between valuations. Indeed our suspicion is that this intuition is
not always properly captured in social choice contexts as well, thus providing
perhaps a hint of an explanation for the impossiblity results.

Example 1 Consider valuations v, w ∈ V and let E = [Φ1,Φ2], F = [Ψ1,Ψ2]
such that Φ1(v) = Ψ2(w) = 0, Φ1(w) = Φ2(w) = Ψ1(v) = Ψ2(v) = 1, and
Φ2(v) = Ψ1(w) = 2. It is easily verified that Φ1(v) ≤ Φ1(w) iff Ψ1(v) ≤ Ψ1(w)
and that Φ2(v) ≤ Φ2(w) iff Ψ2(v) ≤ Ψ2(w). Now consider the merging ∆max

defined in section 3.1. It can be verified that ∆max(E)(w) = ∆max(F )(v) = 1,
and ∆max(E)(v) = ∆max(F )(w) = 2. So it is not the case that ∆max(E)(v) ≤
∆max(E)(w) iff ∆max(F )(v) ≤ ∆max(F )(w). ∆max therefore does not satisfy
(IIA). Observe, however, that the ranks of v and w are obtained without ref-
erence to any of the other valuations! The rank assigned to v is even obtained
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without reference to w, and that of w is assigned without reference to v. In
fact, it is easy to see that the rank of any valuation obtained by applying ∆max

is independent of all other alternatives, even though ∆max does not satisfy
(IIA).

The example above shows that the representational framework of social choice
theory is not expressive enough, and as a result, (IIA) states a stronger for-
mal requirement than required by the intuition underlying it. Our framework
enables distinctions not possible in social choice contexts via a scheme that
would allow assignments of ranks to indicate strength of preferences. Take the
election example above. I am sure that I do not wish to see Bush elected but
am ambivalent about Gore. So I rank Bush at 10 and Gore at 5. Now Nader
announces his candidacy and I rank him at 2. In doing so I did not need to
refer to the ranks assigned to Bush and Gore. A voter might have been inter-
ested in voting for Gore over Bush till Nader announced his candidacy. While
this voter would now rather vote for Nader, a more accurate expression of its
preferences would be a scheme that would enable it to indicate that it pre-
ferred Nader to Gore, but both of these were to be far more preferable choices
than Bush. In the usual social choice theory framework, where only total pre-
orders are used, it is necessary to define independence indirectly, in terms of
the ordering between two valuations. In our more structured framework this
independence can be described directly, in terms of the rank assigned to a
valuation. Our contention, then, is that (∆1) is an appropriate reformulation
of (IIA) since the rank of a valuation after merging has taken place is deter-
mined solely by the ranks assigned to the valuation by the various sources.
The ranks assigned to other valuation do not play any role in the assignment
of a rank during merging.

The last of the Arrow postulates, known as Non-Dictatorship, states that one
source should never be able to completely dominate. In an epistemic scenario
this corresponds to a situation whereby complete and total trust is not in-
vested in a source to the extent that the source is able to bring about the
disregard of conflicting information coming from other sources in any situa-
tion. For commonsense reasoning this clearly corresponds to a certain healthy
skepticism. We can phrase this as follows.

(ND) For a fixed n > 1, there is no i ∈ I+(n) such that, for every E ∈ EP ,
such that |E| = n, Φi(v) < Φi(w) implies ∆(E)(v) < ∆(E)(w) for every
v, w ∈ V

Note that our version of (ND) fixes the length of the epistemic lists under
consideration, something that is implicit in social choice theory scenarios.

It is easy to see that (ND) follows from (∆3).

Proposition 4 If a merging operation satisfies (∆3) then it will also satisfy
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(ND).

From the result above and the comments on Arrow postulates which preceded
it, it follows that the modified Arrow postulates all follow from (∆0)-(∆6).
And since proposition 3 shows that there are merging operations which satisfy
(∆0)-(∆6), we have shown that the Arrow impossibility result does not hold.
It is the move from the total preorders on V to epistemic states, which have
more structure than mere total preorders, which makes this possible. Note
that the addition of such structure via an expression of the strength of prefer-
ences is recommended in the social choice literature as a possible method for
circumventing Arrow’s result. In those contexts, the selection of a suitable unit
for commensuration of preferences is a question of much interest. The defini-
tion of epistemic states as functions from the set of valuations to the natural
numbers—which are capped—solves this problem in merging scenarios.

5 Strategy-proof merging

Strategy-proofness is an idea that has received a great deal of attention in
social choice theory, where it is frequently discussed in the context of elec-
tions. Voting theory concerns itself with the same set of problems as does
social choice theory: how to define a voting procedure that most accurately
and fairly represents the preferences of the population. Other concerns arise
as well. Can the system be manipulated? What happens if new candidates
enter or drop out of contention? Which method most accurately captures
the voters’ true intentions? The aim then, is to define an election procedure
in which a winner is chosen in such a way that the outcome is immune to
manipulation by voters, or coalitions of voters. The first impossibility result
related to strategy-proofness is due to Gibbard (Gibbard, 1973) and Satterth-
waite (Satterthwaite, 1973, 1975). Given some basic conditions on the number
of available alternatives and the size of the electorate, and the (strong) re-
quirement that an election procedure should produce a unique winner, their
result shows that every election procedure which is non-dictatorial cannot be
strategy-proof. This result is, perhaps, not particularly surprising. Consider,
for example, the case in which two voters, Jack and Jill, have to choose be-
tween two candidates, Al and George. If Jack strictly prefers Al to George and
Jill strictly prefers George to Al then there simply is not enough information
to declare either Al or George the unambiguous winner. However, even if the
requirement of producing a unique winner is relaxed it seems that Gibbard-
Satterthwaite type results still hold (Benoit, 2000; Barberá et al., 2000).

Our aim in this section is to investigate notions of strategy-proofness in the
context of merging. Requiring merging operations to be strategy-proof seems
as necessary, and as desirable, as is the case for election procedures, or indeed,
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for aggregation operations in general. Constructing strategy proof procedures
for merging ensures the existence of a procedure that lets the agent overcome
misrepresentation of the value of the information provided by the sources
and can be viewed as a form of epistemic safeguarding. The agent is able to
repose a certain amount of trust in its decision making if it can be assured
of the fact that the sources which present it with information are unable to
systematically distort the final result to suit themselves. Before formalising
the notion of strategy-proofness we consider two properties that allude to it.

Definition 7 For E, F ∈ EP s.t. |E| = |F |, and for I ⊆ I+(|E|), we denote
by rep(E, I, F ) the epistemic list obtained by replacing Φi with Ψi for every
i ∈ I.

Intuitively rep(E, I, F ) produces a modified version of E in which the sources
mentioned in I have changed their preferences. That is, rep(E, I, F ) represents
the epistemic list obtained from E when Φi (the ith epistemic state in E) is
replaced with Ψi (the ith epistemic state in F ) for every i ∈ I. For example,
if E = [Φ1, Φ2, Φ3] and F = [Ψ1, Ψ2, Ψ3], then rep(E, {2, 3}, F ) = [Φ1, Ψ2, Ψ3].
In the properties (Mon↑) and (Mon↓) defined below, the set I in rep(E, I, F ) is
the singleton set {i}, from which it might seem that the notation rep(E, I, F )
is unnecessarily clumsy. However, in some of the properties later in the section
we use this notation with I being any subset of I+(|E|).

(Mon↑) if Φi(v) ≤ Ψi(v) then ∆(E)(v) ≤ ∆(rep(E, {i}, F ))(v)

(Mon↑) ensures that ∆ exhibits monotonic behaviour. That is, it states that
if a source worsens the rank it assigns to a valuation v, ∆ will respond with a
rank for v that is no better than the original. It is easy to show that (Mon↑)
is equivalent to the the following property.

(Mon↓) if Φi(v) ≥ Ψi(v) then ∆(E)(v) ≥ ∆(rep(E, {i}, F ))(v)

(Mon↓) states that if a source improves the rank it assigns to a valuation v,
∆ will respond with a rank for v that is no worse than the original. The class
of merging operations that we consider satisfies (Mon↑). 3

Proposition 5 If ∆ satisfies (∆4) then it also satisfies (Mon↑) (and (Mon↓)).

This property does not guarantee strategy-proof behaviour, however, as will
be shown in theorems 1 and 2. For a merging operation to be regarded as
strategy-proof it must be the case that there is no incentive for any source to
misrepresent its preferences. To be more precise, whenever a source provides
an accurate representation of its preferences there should be a guarantee that

3 These properties have also been considered in the context of the ELECTRE meth-
ods used in multicriteria decision-making (Roy & Bouyssou, 1993).
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the result of merging will be no less compatible with its true preferences than
if it had misrepresented its preferences.

5.1 Distance measures

Of course, the formalisation of such properties presupposes the existence of
an appropriate measure of compatibility between epistemic states. Instead of
defining one such measure, our approach will be to define a class of appropriate
compatibility measures, all of which are obtained from the following abstract
notion of distance between epistemic states. Let D be a set of distance objects
and � a partial order on D. We assume that D contains a null element, which
we denote by 0, which is a minimum under �.

Definition 8 For any set of epistemic states E , a function # : E × E → D is
a distance measure on E iff satisfies the following properties:

(Ref) #(Φ, Ψ) = 0 iff Φ = Ψ
(Sym) #(Φ, Ψ) = #(Ψ, Φ)

It is instructive to note that # satisfies the basic postulates for equidistance,
used in (Borsuk & Szmielew, 1960) to define qualitative distance. There,
equidistance is a four-place relation E(a, b, c, d) on a set of points, which is
read as “point a is just as far from point b as point c is from point d”. The
basic postulates for equidistance are

(E1) If E(a, a, p, q) then p = q
(E2) E(a, b, b, a)
(E3) If E(a, b, c, d) and E(a, b, e, f) then B(c, d, e, f)

For a discussion of these postulates, see (Gärdenfors, 2000), pp. 15-17. For our
purposes we define equidistance as a four-place relation on the set of epistemic
states as follows: E(Φ1, Φ2, Ψ1, Ψ2) iff #(Φ1, Φ2) = #(Ψ1, Ψ2).

Proposition 6 The equidistance relation defined on E∞ satisfies (E1)-(E3).

The distance measure # helps us define a measure of compatibility between
epistemic states.

Definition 9 Given a distance measure # on a set of epistemic states E , an
epistemic state Ψ is at least as compatible with Φ as Υ is, denoted by Ψ ⊑Φ Υ,
iff #(Ψ, Φ) � #(Υ, Φ).

Clearly every compatibility measure is a preorder.
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At present, it is unclear how even a qualitative distance between epistemic
states of differing granularities can be defined. Section 6 presents some ideas
on this matter. Because of this we consider distance measures defined on P -
capped epistemic states only. The restriction to distances measure on elements
of EP permits us to consider some more desirable properties.

(UB) If |Φ(v) − Ψ(v)| ≤ |Φ(v) − Υ(v)| for every v ∈ V then #(Φ, Ψ) �
#(Φ, Υ)

(SUB) For W ⊂ V , if |Φ(w) − Ψ(w)| < |Φ(w) − Υ(w)| for every w ∈ W and
Φ(v) = Ψ(v) = Υ(v) for every v ∈ V \ W then #(Φ, Ψ) ≺ #(Φ, Υ)

(LB) If #(Φ, Ψ) � #(Φ, Υ) then
∑

v∈V |Φ(v) − Ψ(v)| ≤
∑

v∈V |Φ(v) − Υ(v)|
(SLB) If #(Φ, Ψ) ≺ #(Φ, Υ) then

∑

v∈V |Φ(v) − Ψ(v)| <
∑

v∈V |Φ(v) − Υ(v)|

The crucial point for our framework is that we use distances between any
pair of objects that satisfy some basic properties. Recall that the numeric
ranks assigned to valuations are markers with the naturals being used for
convenience.

(UB) says that an epistemic state Φ is more compatible with an epistemic
state Ψ than an epistemic state Υ if the difference between the ranks assigned
to all valuations by Φ and Ψ respectively is less than that assigned by Φ and Υ.
Note that this property requires us to ignore distances between valuations in
a particular epistemic state and to concentrate on distances across epistemic
states. (SUB) is a strict version of (UB); it insists that differnces between
the ranks assigned to a particular set of valuations by Φ and Ψ respectively
be strictly less than that assigned by Φ and Υ; for the remaining valuations,
it insists that the three epstemic states agree on their rankings. (LB) is the
converse of (UB); if Ψ is judged to be atleast as compatible with Φ as Υ is, then
the sum of the distances between Φ and Υ is at least as great as that between
Φ and Ψ. (SLB) is its corresponding strict version. These properties set limits
for distance measures based on the internal structures of the epistemic states
under consideration. To see why, consider the following two distance measures.

Definition 10 (1) Consider the distance measure #min on all P -capped epis-
temic states for which D = N, the null element is 0, � is the normal linear
order on natural numbers, and #min(Φ, Ψ) =

∑

v∈V |Φ(v) − Ψ(v)|.
(2) Let D be the set of all sequences of natural numbers of length |V |, and let

the null element be the sequence consisting of |V | zeros. For any two such
sequences s1, . . . , s|V | and t1, . . . , t|V |, we say that s1, . . . , s|V | � t1, . . . , t|V |

iff si ≤ ti for every i ∈ I+(|V |). We assume that there is an enu-
meration v1, v2, . . . , v|V | of the elements of V . Now let #max(Φ, Ψ) =

|Φ(v1) − Ψ(v1)| , . . . ,
∣

∣

∣Φ(v|V |) − Ψ(v|V |)
∣

∣

∣.

Observe that #max is the Pareto order and that some of the results to follow
rely on its well-known properties.
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Proposition 7 #min and #max both satisfy (Ref), (Sym), (UB), (SUB), (LB)
and (SLB).

Note next that #max is the strongest of the distance measures satisfying these
properties, and #min is the weakest.

Proposition 8 Let # be a distance measure satisfying (UB) and (LB).

(1) If #max(Φ, Ψ) � #max(Φ, Υ) then #(Φ, Ψ) � #(Φ, Υ).
(2) If #(Φ, Ψ) � #(Φ, Υ) then #min(Φ, Ψ) � #min(Φ, Υ).

Now consider the compatibility measures between P -capped epistemic states
obtained from these two distance measures.

Definition 11 ⊑min is the compatibility measure obtained from #min and
⊑max is the compatibility measure obtained from #min. I.e. Ψ ⊑min

Φ Υ iff
#min(Ψ, Φ) � #min(Υ, Φ) and Ψ ⊑max

Φ Υ iff #max(Ψ, Φ) � #max(Υ, Φ)

Observe that ⊑min is a total preorder but that ⊑max is just a preorder.

It turns out that ⊑max is the strongest form of compatibility allowed by the
properties above, and ⊑min is the weakest. For ease of readibility we refer
to compatibility measures as satisfying (Ref), (Sym), (UB) or (LB) when it
is actually the distance measures used to obtain the compatibility measures
which satisfy these properties.

Corollary 1 Suppose ⊑ is a compatibility measure satisfying (Ref), (Sym),
(UB) and (LB).

(1) If Υ ⊑max
Φ Ψ then Υ ⊑Φ Ψ.

(2) If Υ ⊑Φ Ψ then Υ ⊑min
Φ Ψ.

The proof is immediate from proposition 8.

A possible objection to our framework may be formulated and responded to as
follows. Consider three epistemic states Φ, Ψ and Υ which differ only on the
values assigned to valuations v and w, and for which Φ(v) = 0 and Φ(w) = 1,
Ψ(v) = 3, Ψ(w) = 2, Υ(v) = 3 and Υ(w) = 4. It is easy to check that the
compatibility measures we allow will all consider Ψ to be more compatible
with Φ than Υ is with Φ. But note that Φ and Υ have the same ordering of
v and w, whereas in Ψ the ordering of these valuations is reversed. However,
this apparently anomalous situation can be resolved by an appeal to the spirit
of the property of Independence of Irrelevant Alternatives, since it compels
us to ignore the distance between distinct valuations present in an epistemic
state when determining the compatibility of that epistemic state with others.
It is our contention that the removal of this apparent anomaly would require
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us to dispense with properties such as (∆1) which try and enforce the spirit
of the Independence of Irrelevant Alternatives in the merging framework.

5.2 Strategy-proof merging operators

We are now in a position to consider properties of merging operations requiring
various versions of strategy-proofness. The first one we consider is intended to
ensure that individual sources cannot gain anything by misrepresenting their
preferences.

(ISP) ∀E, F, G ∈ EP s.t. |E| = |F | and G = rep(E, {i}, F ), ∆(E) ⊑Φi
∆(G)

(ISP) requires of ∆(E) to be at least as compatible with the preferences of
source i than ∆(G) is, where E is the epistemic list in which i’s preferences
are represented accurately and G is obtained from E by i misrepresenting its
preferences in some way. Given these properties a rational source will realise
that is in its own interests to represent its preferences accurately.

In addition to misrepresenting its preferences, it is conceivable that a source
may stand to benefit by completely abstaining from providing information.
To consider our robot example again, take the case of a robot that simply
refuses to confirm the investigations of other discovery robots. Such a lack of
confirmation by abstention can affect the decision of the central aggregator
(if say, it were employing some form of a majoritarian aggregation operator).
Our goal is to define merging in such a way that it would be in the interest
of every source to actually provide the required information, and not to omit
any relevant information it may have.

Definition 12 For E ∈ EP and for some I ⊂ I+(|E|) we denote by rem(E, I)
the epistemic list obtained by removing Φi from E for every i ∈ I+(|E|). In-
tuitively, rem(E, I) produces a modified version of E in which the sources
mentioned in I abstain from providing information.

For example, if E = [Φ1, Φ2, Φ3] then rem(E, {1, 3}) = [Φ2].

The following property ensures that it is in the interests of a source to supply
all the information it has at its disposal.

(IAP) ∀E, G ∈ EP s.t. G = rem(E, {i}), ∆(E) ⊑Φi
∆(G)

(IAP) requires of ∆(E) to be at least as compatible with the preferences of
source i as ∆(G), where G is obtained from E by removing the information
supplied by source i.
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Recall from section 3.1 that ∆max and ∆min2 are the only two (P, P )-capped
merging operations we consider in this paper. As such, they are the only two
merging operations which can be tested for strategy-proofness. The following
result shows that ∆max is both strategy-proof and abstention-proof for any of
the distance measures we regard as reasonable.

Theorem 1 Consider any compatibility measure ⊑ satisfying (Ref), (Sym),
(UB) and (LB).

(1) ∆max satisfies (ISP) and (IAP).
(2) ∆min2 satisfies (IAP) but does not satisfy (ISP).

Together, (ISP) and (IAP) thus ensure that when ∆max is applied, a source
will provide its beliefs, all its beliefs, and nothing but its beliefs. Part 1 of the-
orem 1 shows that Gibbard-Satterthwaite style results do not hold in merging
frameworks: in the context of epistemic states, it is possible to define rational
merging operations which are immune to strategic manipulation or abstention
by single sources.

5.3 Coalitions and coalition-proof merging

(ISP) defines strategy-proofness only relative to single sources and does not
exclude the possibility of groups of sources, or coalitions, misrepresenting their
preferences in such a way that the group as a whole benefits. The notion of
benefit in an epistemic scenario is best explicated by reference to our example
of the exploring robots. Consider a group amongst them that is interested in
particular valuations being given preference by the central aggregator since
this would allow a particular area of the planet surface to be explored further
rather than ones they are not interested in. Such a group would be a coali-
tion if some deliberate misrepresentation of their preferences resulted in an
outcome which matches their true preferences more closely than if they had
truthfully conveyed their preferences. In our example, we can imagine such a
coalition forming as follows. There are three areas to be explored—X, Y, Z—
by nine sources of information. A coalition of 3 members—s2, s4, s5—would
prefer that Z be explored first, followed by Y and X, that is their preference
profile is (Z, Y, X). Assume now that the aggregator employs a majority based
scheme for aggregating information. If the coalition is aware of the fact that 4
members—s1, s6, s7, s9—have the profile (X, Y, Z) and other two members—
s3, s8—have the profile (Y, X, Z) then if the coalition were to represent its
choices truthfully, it would see that its least desired item X would be the one
picked. If however, it represented its profile strategically then it would make
sense for it to change its profile to Y, Z, X in order to ensure that X does not
get ranked first and instead that Y gets picked by the aggregator.

25



We denote a coalition of sources by their indices. The following coalition-
proof property is intended to exclude the possibility of forming coalitions. It
ensures that the coalition as a whole cannot benefit from misrepresenting their
preferences.

(CP) ∀I ⊆ I+(|E|), ∀E, F, G ∈ EP such that |E| = |F | and G = rep(E, I, F ),
it is not the case that ∆(G) ⊑Φi

∆(E) for all i ∈ I and ∆(G) ⊏Φj
∆(E)

for some j ∈ I

(CP) ensures that there is no group of sources which can misrepresent their
preferences in such a way that no one of them is disadvantaged by it and at
least one gains from it. As a result, the coalition as a whole cannot be seen to
benefit from such a representation.

Observe that (CP) does not imply (ISP). If we restrict I in (CP) to singleton
sets we obtain the following property.

(ICP) ∀i ∈ I+(|E|), and ∀E, F, G ∈ EP such that |E| = |F | and G =
rep(E, {i}, F ), ∆(G) 6⊏Φi

∆(E)

But observe that ⊑Φi
need not be a total preorder, and so ∆(G) 6⊏Φi

∆(E)
does not necessarily mean that ∆(E) 6⊑Φi

∆(G). Indeed, (ICP) includes the
possibility that ∆(E) 6⊑Φi

∆(G) and ∆(G) 6⊑Φi
∆(E).

The option of abstention is open to coalitions of sources as well. For groups
of sources the analogy with the epistemic counterpart in the robot’s example
is easily extended: consider a group of robots that decide together to refuse
to report their findings. The following abstention-proof property is intended
to exclude the possibility of the abstention of a coalition for the benefit of the
coalition as a whole.

(AP) ∀I ⊆ I+(|E|), ∀E, G ∈ EP such that G = rem(E, I), it is not the case
that ∆(G) ⊑Φi

∆(E) for all i ∈ I and ∆(G) ⊏Φj
∆(E) for some j ∈ I

(AP) ensures that there is no group of sources which can abstain from provid-
ing information, and by doing so ensure that no one of them is disadvantaged
by it and at least one gains from it. As a result, the coalition as a whole cannot
be seen to benefit from abstaining. Observe that (AP) does not imply (IAP).
As is the case with (CP) and (ISP), this is because ⊑Φi

need not be a total
preorder.

By providing a property which combines the requirement of being coalition-
proof and abstention-proof with regard to groups of sources, we arrive at a
general definition of strategy-proofness.

Definition 13 Consider groups of sources I,J ⊆ I+(|E|) such that J ⊆ I,
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and let K = I \ J . For F ∈ EP s.t. |E| = |F | we let rr(E,J , F,K) =
rem(rep(E,J , F ),K).

That is, rr(E,J , F,K) is the result obtained by first replacing Φj in E with
Ψj for every j ∈ J and then removing Φk from the modified E for every
k ∈ K. For example, for E = [Φ1, Φ2, Φ3, Φ4] and F = [Ψ1, Ψ2, Ψ3, Ψ4],
rr(E, {2}, F, {1, 4}) = [Ψ2, Φ3].

The property (SP) below requires of a merging operation to be strategy-proof :
both coalition-proof and abstention-proof.

(SP) ∀I,J ⊆ I+(|E|) such that J ⊆ I, ∀E, F, G ∈ EP such that |E| = |F |
and G = (rr(E, I, F, I \ J ), it is not the case that ∆(G) ⊑Φi

∆(E) for all
i ∈ I and ∆(G) ⊏Φj

∆(E) for some j ∈ I

(SP) ensures that there can be no coalition of sources which misrepresent
beliefs or refuse to provide information, and in doing so ensure that no member
of the coalition is worse off, while at least one member j of the coalition benefits
from this arrangement. (SP) ensures that there is no incentive for sources to
present anything other than their true preferences, individually or in groups.
Clearly (SP) implies both (CP) and (AP). It can be shown that when the
distance measure #max is used, ∆max is strategy-proof in this sense.

Theorem 2 Consider the compatibility measure ⊑max.

(1) ∆max satisfies (SP) and therefore also (CP), (AP) and (ICP).
(2) ∆min2 satisfies (AP). It does not satisfy (ICP), and therefore satisfies

neither (CP) or (SP).

These results show that when the distance measure #max is employed, ∆max

is immune to manipulation and abstention from coalitions of sources as well.
In addition, the fact that some strategy-proof properties are not satisfied by
∆min2 shows that these properties cannot be derived from the basic properties
for merging and that their addition constitutes a strict extension of (∆0)-
(∆6). The design of epistemic merging operations that satisfy these properties
should be useful in fully illustrating the intuitions behind the postulates. That
is, we expect that once specific constructions have been arrived at that satisfy
these properties, the epistemic behavior they describe will further clarify the
requirements placed on merging operations by the postulates.

6 Conclusion

In this paper we have drawn connections between information merging and
social choice theory and shown that Arrow’s impossibility result and versions
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of the Gibbard-Satterthwaite theorem disappear when the representation of
preferences is recast in terms of epistemic states. We started by considering a
list of desirable properties for merging with no judgement made on whether
these constituted any sort of canonical list. We then selected a class of merging
operations and showed that they satisfied our initial list of properties. Once
we reformulated the Arrow postulates for the epistemic case, we were able to
show that the merging operations defined by us do enable a joint satisfaction
of the postulates. Moving on to voting scenarios, we formalized concepts in the
epistemic case which are the counterparts of those in voting, such as strate-
gizing and coalition formation. We then showed that additional properties for
merging would reflect the presence of these intuitions and showed that one of
the merging operations defined satisfied our combined list of properties.

The results described here need to be elaborated upon, though. In section 5
the focus was on the special case of (P, P )-capped merging operations since
measures of compatibility between P -capped epistemic states are then easily
obtained. In the general case, however, where we are dealing with a (P, Q)-
capped merging operation, we are faced with the problem of comparing epis-
temic states with different levels of granularity. For example, ∆min1 defined
in section 3.1 is a (P, 2 · P )-capped merging operation, making it necessary
to define an appropriate way of comparing P -capped epistemic states with
2 · P -capped ones. Currently it is unclear how to do so. One possible way to
deal with this issue is to provide an appropriate method for mapping epistemic
states with a high granularity level into epistemic states with the appropriate
lower level of granularity. Such a mapping can be seen as a way to “convert”
a Q-capped epistemic state to a P -capped one, thus making it possible to
compare the two epistemic states. A mapping of this kind is depicted picto-
rially below. For example, for ∆min1 we need a suitable method for mapping
the elements of I(2 · P ) to I(P ). In this case the appropriate mapping seems
to be the function ρ : I(2 · P ) → I(P ) such that ρ(i) = ⌈i/2⌉ (where ⌈i/2⌉
denotes the smallest integer which is no smaller than i/2). However, it is not
clear how to determine which mappings are appropriate in the general case.
At present the best we can do is to insist that a mapping ρ which converts a
Q-capped epistemic state to a P -capped one should be a surjective function
from I(Q) to I(P ) such that ρ(i) ≤ ρ(j) whenever i ≤ j.

Much work remains to be done in this area. How far can the connections
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between merging and social choice theory really be taken? Are there other
impossibility theorems that are of relevance to the merging community and
can a study of them be of use? What is the significance of epistemic sources
knowing which merging operations are to be used on their inputs? A rich body
of work has been done by the economics community in social aggregation
operations and impossibility theorems; the study of these operations promises
to be of much value to the merging theorist. Similarly, the rich suite of merging
operations now being developed by merging theorists could conceivably be
of use to the social choice theorist. The additional properties that we have
suggested here should, in our opinion, be considered part of a canonical list
of properties for merging operators. In that sense, our work in this study can
be seen as preparatory for significant representation theorems to be proved.
These would establish a class of merging operators as being rational provided
they satisfy the canonical list. For the theory of autonomous agents in general,
any exploration with a field that studies the possibly competitive nature of
agents seeking to maximize their own interests and preferences is of value. In
that sense, this connection with social choice theory, is in our opinion, timely
and appropriate.
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A Proofs

Proposition 2. Let ∆ be a P -capped merging operation satisfying (∆0).
(1) If ∆ is Q-bound for n then Q ≥ P .
(2) If ∆ satisfies (∆1) and (∆6), and ∃i, j,∈ I+(|E|) s.t. Φi(v) 6= Φj(v),

then ∆(E)(v) > min{Φi(v) | i ∈ I+(|E|)}.

Proof:

(1) Follows by considering any epistemic list E such that, for some v ∈ V ,
Φi(v) = P for every i ∈ I+(|E|).

(2) (∆0) ensures that ∆(E)(v) ≥ min{Φi(v) | i ∈ I+(|E|)}. The strict in-
equality follows from (∆1) and (∆6).
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Proposition 3. ∆max, ∆min1, ∆min2 and ∆Σ all satisfy (∆0)-(∆6).

Proof: We first consider ∆max. (∆0) follows by noting that ∆max(E)(v) =
max{Φi(v) | i ∈ I+(|E|)}. (∆1) is immediate. For (∆2), observe firstly
that ∆max is P -bound. Now, pick any p ∈ I(P ). We have to show that
∆max(E)(v) = p for some v ∈ V and some E ∈ EP . To do so we let E = [Φ]
and Φ(v) = p for every v ∈ V . (∆3) is trivial. For (∆4), suppose that
Φi(v) ≤ Φi(w) for all i ∈ I+(|E|). Then it follows that max{Φi(v) | i ∈
I+(|E|)} ≤ max{Φi(w) | i ∈ I+(|E|)}. That is, ∆max(E)(v) ≤ ∆max(E)(w).
For (∆5), suppose that ∆(E)(v) ≤ ∆(E)(w). That is, max{Φi(v) | i ∈
I+(|E|)} ≤ max{Φi(w) | i ∈ I+(|E|)}. Suppose that j is such that Φj =
max{Φi(w) | i ∈ I+(|E|)}. Then it also follows that Φj(v) ≤ Φj(w). For (∆6),
suppose that Φi(v) = Φj(v) ∀i, j ∈ I+(|E|), Φi(v) ≤ Φi(w) ∀i ∈ I+(|E|), and
Φj(v) < Φj(w) for some j ∈ I+(|E|). Then ∆max((E)(v) = Φi(v) ∀i ∈ I+(|E|).
Furthermore, since there is some j such that Φj(w) > Φj(v), it has to be the
case that ∆(E)(w) ≥ Φj(w) > Φi(v) = ∆(E)(v).

Next we consider ∆min2. (∆0) follows by definition. (∆1) is immediate. For
(∆2) observe that ∆min2 is P -bound. Now, pick any p ∈ I(P ). We have to
show that ∆min2(E)(v) = p for some v ∈ V and some E ∈ EP . To do so we let
E = [Φ] and Φ(v) = p for every v ∈ V . (∆3) is trivial. For (∆4), suppose that
Φi(v) ≤ Φi(w) for all i ∈ I+(|E|). If Φi(v) = Φj(v) for every i, j ∈ I+(|E|),
then ∆min2(E)(v) = min{Φi(v) | i ∈ I+(|E|)} and then ∆min2(E)(v) ≤
∆min2(E)(w). Otherwise ∆min2(E)(v) = min{Φi(v) | i ∈ I+(|E|)} + 1, and
we need to consider two subcases. Subcase a: If Φi(w) = Φj(w) for every
i, j ∈ I+(|E|), then Φi(w) ≥ Φj(v) for every i, j ∈ I+(|E|), from which
it follows that ∆min2(E)(w) ≥ ∆min2(E)(v). Subcase b: If Φi(w) 6= Φj(w)
for some i, j ∈ I+(|E|), then ∆min2(E)(w) > min{Φi(v) | i ∈ I+(|E|)},
from which it follows that ∆min2(E)(w) ≥ ∆min2(E)(v). For (∆5), suppose
that ∆(E)min2(v) ≤ ∆(E)min2(w) and assume that Φi(w) < Φi(v) for ev-
ery i ∈ I+(|E|). If Φi(w) = Φj(w) for every i, j ∈ I+(|E|) then it fol-
lows immediately that ∆min2(E)(w) < ∆min2(E)(v), contradicting our sup-
position. So we consider the case where Φi(w) 6= Φj(w) for some i, j ∈
I+(|E|). If Φi(v) = Φj(v) for every i, j ∈ I+(|E|) then it has to be that
min{Φi(w) | i ∈ I+(|E|)} + 1 < min{Φi(v) | i ∈ I+(|E|)} and there-
fore ∆min2(E)(w) < ∆min2(v), contradicting our supposition. On the other
hand, if Φi(v) 6= Φj(v) for some i, j ∈ I+(|E|), then follows immediately
that ∆min2(E)(w) < ∆min2(v), again contradicting our supposition. So, the
assumption leads to a contradiction in all case, from which it follows that
Φi(v) ≤ Φi(w) for some i ∈ I+(|E|). For (∆6), note that, under the conditions
imposed by this property, it follows that ∆min2(v) = min{Φi(v) | i ∈ I+(|E|)}
and ∆min2(w) = min{Φi(w) | i ∈ I+(|E|)} + 1, from which the result then

30



follows immediately.

Next we consider ∆min1. (∆0) follows by definition. (∆1) is immediate. For
(∆2) observe that ∆min1 is (2 · P )-bound. Now, pick any p ∈ I(2 · P ). We
have to show that ∆min1(E)(v) = p for some v ∈ V and some E ∈ EP . To
do so we let E = [Φ] and Φ(v) = p/2 for every v ∈ V if p is even, and
E = [Φ1, Φ2], Φ1(v) = (p− 1)/2, and Φ2(v) = (p+1)/2 for every v ∈ V , if p is
odd. (∆3) is trivial. For (∆4), suppose that Φi(v) ≤ Φi(w) for all i ∈ I+(|E|).
If Φi(v) = Φj(v) for every i, j ∈ I+(|E|), then ∆min1(E)(v) = 2 · min{Φi(v) |
i ∈ I+(|E|)} and then ∆min1(E)(v) ≤ ∆min1(E)(w). Otherwise ∆min1(E)(v) =
2 · min{Φi(v) | i ∈ I+(|E|)} + 1, and we need to consider two subcases.
Subcase a: If Φi(w) = Φj(w) for every i, j ∈ I+(|E|), then Φi(w) ≥ Φj(v) for
every i, j ∈ I+(|E|), from which it follows that ∆min1(E)(w) ≥ ∆min1(E)(v).
Subcase b: If Φi(w) 6= Φj(w) for some i, j ∈ I+(|E|), then ∆min1(E)(w) >
2 · min{Φi(v) | i ∈ I+(|E|)}, from which it follows that ∆min1(E)(w) ≥
∆min1(E)(v). For (∆5), suppose that ∆(E)min1(v) ≤ ∆(E)min1(w) and as-
sume that Φi(w) < Φi(v) for every i ∈ I+(|E|). If Φi(w) = Φj(w) for every
i, j ∈ I+(|E|) then it follows immediately that ∆min1(E)(w) < ∆min1(v), con-
tradicting our supposition. So we consider the case where Φi(w) 6= Φj(w) for
some i, j ∈ I+(|E|). If Φi(v) = Φj(v) for every i, j ∈ I+(|E|) then it has
to be that min{Φi(w) | i ∈ I+(|E|)} + 1 < min{Φi(v) | i ∈ I+(|E|)}
and therefore ∆min1(E)(w) < ∆min1(v), contradicting our supposition. On the
other hand, if Φi(v) 6= Φj(v) for some i, j ∈ I+(|E|), then follows immedi-
ately that ∆min1(E)(w) < ∆min1(v), again contradicting our supposition. So,
the assumption leads to a contradiction in all case, from which it follows that
Φi(v) ≤ Φi(w) for some i ∈ I+(|E|). For (∆6), note that, under the conditions
imposed by this property, it follows that ∆min1(v) = min{Φi(v) | i ∈ I+(|E|)}
and ∆min1(w) ≤ 2 ·min{Φi(w) | i ∈ I+(|E|)}+ 1, from which the result then
follows immediately.

Finally we consider ∆Σ. (∆0) follows by noting that min{Φi(v) | i ∈ I+(|E|)}
≤

∑

i∈I+(|E|) Φi(E)(v). (∆1) is immediate. For (∆2), observe firstly that ∆Σ is
n ·P -bound for n. Now, pick any n > 0 and any p ∈ I(n ·P ). We have to show
that ∆Σ(E)(v) = p for some v ∈ V and some E ∈ EP . To do so we let E =
[Φ1, . . . , Φn]. Now, let d = ⌊p/n⌋ and let r = p−(d·p). That is, r is the remain-
der when dividing p by n. We let Φi(v) = d for i ∈ I+(n−r) and Φi(v) = d+1
for i > n−r and i ≤ n. It is a matter of arithmetic to verify that ∆Σ(E)(v) = p.
(∆3) is trivial. For (∆4), suppose that Φi(v) ≤ Φi(w) for all i ∈ I+(|E|). It
follows immediately that

∑

i∈I+(|E|) Φi(E)(v) ≤
∑

i∈I+(|E|) Φi(E)(w). We prove
the contrapositive of (∆5). Suppose that Φi(w) < Φi(v) for all i ∈ I+(|E|).
It follows immediately that

∑

i∈I+(|E|) Φi(E)(w) <
∑

i∈I+(|E|) Φi(E)(v). For
(∆6), suppose that Φi(v) = Φj(v) ∀i, j ∈ I+(|E|), Φi(v) ≤ Φi(w) ∀i ∈
I+(|E|), and Φj(v) < Φj(w) for some j ∈ I+(|E|). It follows immediately
that

∑

i∈I+(|E|) Φi(E)(v) <
∑

i∈I+(|E|) Φi(E)(w). 2
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Proposition 4. If a merging operation satisfies (∆3) then it will also satisfy
(ND).

Proof: Pick an n > 1 and assume that for some i ∈ I+(n), Φi(v) < Φi(w)
implies ∆(E)(v) < ∆(E)(w) for every v, w ∈ V , and for every E ∈ EP such
that |E| = n. Now, if i = 1, let F be the epistemic list obtained from E by
swapping around Φ1 and Φ2 in E, otherwise, let F be the epistemic list ob-
tained from E by swapping around Φ1 and Φi in E. By (∆3), ∆(E) = ∆(F ).
But this constradicts our assumption. For if i = 1 we can pick E in such a
way that Φ1(v) < Φ1(w) and Φ2(w) < Φ2(v) for some v, w ∈ V , from which
it follows by (ND) that ∆(E)(v) < ∆(E)(w) and ∆(F )(w) < ∆(F )(v). The
case where i > 1 is similar. 2

Proposition 5. If ∆ satisfies (∆4) then it also satisfies (Mon↑) (and (Mon↓)).

Proof: For (Mon↑), suppose ∆ satisfies (∆4), let Φi(v) ≤ Ψi(v), and let
G = rep(E, {i}, F ) = [Φ1, . . . , Ψi, . . . , Φn]. Observe that Φj(v) ≤ Φj(v) for
every j ∈ I+(|E|) such that j 6= i, and that Φi ≤ Ψi. So, by (∆4), ∆(E)(v) ≤
∆(G)(v). The proof for (Mon↓) is similar. 2

Proposition 6. The equidistance relation defined on E∞ satisfies (E1)-(E3).

Proof: For (E1), observe that that #(Φ1, Φ1) = 0 by (Ref) and that if
#(Ψ1, Ψ2) = 0 then Ψ1 = Ψ2 by (Ref). (E2) follows from (Sym). For (E3),
observe that if #(Φ1, Φ2) = #(Ψ1, Ψ2) and #(Φ1, Φ2) = #(Υ1, Υ2) then
#(Φ1, Φ2) = #(Υ1, Υ2). 2

Proposition 7. #min and #max both satisfy (Ref), (Sym), (UB), (SUB), (LB)
and (SLB).

Proof: (Ref) and (Sym) are trivial. For the remaining properties we first
consider #min. (LB) and (SLB) follow directly from the definition of #min.
For (UB), suppose |Φ(u) − Ψ(u)| ≤ |Φ(u) − Υ(u)| for every u ∈ V . Then
∑

v∈V |Φ(v) − Ψ(v)| ≤
∑

v∈V |Φ(v) − Υ(v)| and therefore it is the case that
#min(Φ, Ψ) � #min(Φ, Υ). For (SUB), pick a W ⊂ V . Now suppose that
|Φ(w) − Ψ(w)| < |Φ(w) − Υ(w)| for every w ∈ W and that Φ(v) = Ψ(v) =
Υ(v) for every v ∈ V \W . Then

∑

w∈W |Φ(w) − Ψ(w)| <
∑

w∈W |Φ(w) − Υ(w)|
and therefore it is the case that #min(Φ, Ψ) ≺ #min(Φ, Υ).

Next we consider #max. (UB) and (SUB) follow directly from the defini-
tion of #max. For (LB), suppose that #max(Φ, Ψ) � #max(Φ, Υ). That is,
|Φ(u) − Ψ(u)| ≤ |Φ(u) − Υ(u)| for every u ∈ V . Then

∑

v∈V |Φ(v) − Ψ(v)| ≤
∑

v∈V |Φ(v) − Υ(v)|. For (SLB), suppose that #max(Φ, Ψ) ≺ #max(Φ, Υ). That
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is, |Φ(u) − Ψ(u)| ≤ |Φ(u) − Υ(u)| for every u ∈ V , and for some v ∈ V ,
|Φ(u) − Ψ(u)| < |Φ(u) − Υ(u)|. Then it is the case that

∑

v∈V |Φ(v) − Ψ(v)| <
∑

v∈V |Φ(v) − Υ(v)|. 2

Proposition 8. Let # be a distance measure satisfying (UB) and (LB).
(1) If #max(Φ, Ψ) � #max(Φ, Υ) then #(Φ, Ψ) � #(Φ, Υ).
(2) If #(Φ, Ψ) � #(Φ, Υ) then #min(Φ, Ψ) � #min(Φ, Υ).

Proof:

(1) Suppose that #max(Φ, Ψ) � #max(Φ, Υ). That means that for every
u ∈ V , |Φ(u) − Ψ(u)| ≤ |Φ(u) − Υ(u)|. By (UB) it then follows that
#(Φ, Ψ) � #(Φ, Υ).

(2) Suppose #(Φ, Ψ) � #(Φ, Υ). Then it follows that
∑

v∈V |Φ(v) − Ψ(v)| ≤
∑

v∈V |Φ(v) − Υ(v)| by (LB). And this means that #min(Φ, Ψ) � #min(Φ, Υ).

2

Theorem 1. Consider any compatibility measure ⊑ satisfying (Ref), (Sym),
(UB) and (LB).
(1) ∆max satisfies (ISP) and (IAP).
(2) ∆min2 satisfies (IAP) but does not satisfy (ISP).

Proof:

(1) For (ISP), let E = [Φ1, . . . , Φn], let F = [Ψ1, . . . , Ψn] and let G =
rep(E, {i}, F ) for some i ∈ I+(n). If we can show that for every v ∈ V ,
|∆max(E)(v) − Φi(v)| ≤ |∆max(G)(v) − Φi(v)|, then the result follows
from (UB). So pick a v ∈ V . If ∆max(G)(v) ≥ ∆max(E)(v) then, since
Φi(v) ≤ ∆max(E)(v), we have that |∆max(E)(v) − Φi(v)| ≤
|∆max(G)(v) − Φi(v)|. On the other hand, if ∆max(G)(v) < ∆max(E)(v),
it must have been the case that Φi(v) = ∆max(E)(v), and so it follows
that |∆max(E)(v) − Φi(v)| < |∆max(G)(v) − Φi(v)|.

For (IAP), let E = [Φ1, . . . , Φn] and let G = rem(E, {i}) for some
i ∈ {1, . . . , n}. If we can show that for every v ∈ V , |∆max(E)(v) − Φi(v)|
≤ |∆max(G)(v) − Φi(v)|, then the result follows from (UB). So pick a
v ∈ V . Observe that it has to be the case that ∆max(G)(v) ≤ ∆max(E)(v).
If ∆max(G)(v) = ∆max(E)(v) then |∆max(E)(v) − Φi(v)| =
|∆max(G)(v) − Φi(v)| and we are done. On the other hand, if ∆max(G)(v) <
∆max(E)(v), it must have been the case that Φi(v) = ∆max(E)(v), and
so |∆max(E)(v) − Φi(v)| < |∆max(G)(v) − Φi(v)|.

(2) For (ISP), let E = [Φ1, Φ2], F = [Ψ1, Ψ2], Φ1(v) = 1 for every v ∈
V , Φ2(v) = 2, for every v ∈ V , Ψ1(v) = 0 for every v ∈ V , and
G = rep(E, {1}, F ). That is, to obtain G from E, Φ1 is replaced by
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Ψ1. It is easily verifiable that ∆min2(G) ⊏Φ1
∆min2(E), and so (ISP) is

not satisfied. For (IAP), let E = [Φ1, . . . , Φn], and G = rem(E, {i})
for some i ∈ I+(n). We need to show that |∆min2(E)(v) − Φi(v)| ≤
|∆min2(G)(v) − Φi(v)|. So pick a v ∈ V . If Φi(v) = Φj(v) for every
i, j ∈ I+(n), then ∆min2(E)(v) = ∆min2(G)(v) and so the result fol-
lows immediately. So we suppose that this is not the case and consider
three cases. For the first case, if ∆min2(G)(v) = ∆min2(E)(v), the result
follows immediately. For the second case, suppose that ∆min2(G)(v) >
∆min2(E)(v). Then, by the definition of ∆min2, it has to be the case
that Φi(v) = min{Φj(v) | 1 ≤ j ≤ n}, which means that Φi(v) ≤
∆min2(E)(v), from which the result follows. And for the third case, sup-
pose that ∆min2(G)(v) < ∆min2(E)(v). Then it has to be the case that
Φi(v) ≥ ∆min2(E)(v), from which the result follows immediately.

2

Theorem 2. Consider the compatibility measure ⊑max.
(1) ∆max satisfies (SP) and therefore also (CP), (AP) and (ICP).
(2) ∆min2 satisfies (AP). It does not satisfy (ICP), and therefore satisfies

neither (CP) or (SP).

Proof:

(1) Let E = [Φ1, . . . , Φn], let F = [Ψ1, . . . , Ψn], and let G = rr(E,J , F,K)
for some I,J ,K ⊆ {1, . . . , n} such that K = I \ J . Assume that
∆max(G) ⊑max

Φi
∆max(E) for every i ∈ I and that ∆max(G) ⊏

max
Φj

∆max(E)
for some j ∈ I. That is, |∆max(G)(v) − Φi(v)| ≤ |∆max(E)(v) − Φi(v)|
∀v ∈ V , ∀i ∈ I and |∆max(G)(w) − Φi(w)| < |∆max(E)(w) − Φj(w)| for
some w ∈ V and some j ∈ I. Observe firstly that, because
|∆max(G)(w) − Φj(w)| < |∆max(E)(w) − Φj(w)|, it has to be the case
that ∆max(G)(w) < ∆max(E)(w). But there is some k ∈ I such that
∆max(E)(w) = Φk(w), which means that |∆max(G)(w) − Φk(w)| >
|∆max(E)(w) − Φk(w)|. It has to be the case that k ∈ I since ∆max(G)(w)
< ∆max(E)(w). But this contradicts the supposition that
|∆max(G)(v) − Φi(v)| ≤ |∆max(E)(v) − Φi(v)| ∀v ∈ V , ∀i ∈ I.

(2) For (ICP), consider the counterexample in theorem 1 which shows that
∆min2 does not satisfy (ISP). For (AP), let E = [Φ1, . . . , Φn] and let
G = rem(E, I) for some I ⊆ I+(n). Assume that ∆min2(G) ⊑max

Φi

∆min2(E) for every i ∈ I and that ∆min2(G) ⊏
max
Φj

∆min2(E) for some
j ∈ I. That is, |∆min2(G)(v) − Φi(v)| ≤ |∆min2(E)(v) − Φi(v)| ∀v ∈ V ,
∀i ∈ I and |∆min2(G)(w) − Φj(w)| < |∆min2(E)(w) − Φj(w)| for some
w ∈ V and some j ∈ I. Observe firstly that this means that Φj(w) 6=
∆min2(E)(w). Now we consider the remaining two cases. For the first
case, suppose that Φj(w) = ∆min2(E)(w) − 1. Then it has to be the
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case that Φj(w) = ∆min2(G)(w) and that there is some k ∈ I such that
Φk(w) ≥ ∆min2(E)(w). But this means that |∆min2(E)(w) − Φk(w)| <
|∆min2(G)(w) − Φk(w)|, contradicting the supposition that
|∆min2(G)(v) − Φi(v)| ≤ |∆min2(E)(v) − Φi(v)| ∀v ∈ V , ∀i ∈ I. For the
remaining case, suppose that Φj(w) > ∆min2(E)(w). Then it has to be
the case that ∆min2(G)(w) > ∆min2(E)(w). Now, by definition of ∆min2

there is a k ∈ I such that Φk(w) ≤ ∆min2(E)(w). And from this it follows
that |∆min2(E)(w) − Φk(w)| < |∆min2(G)(w) − Φk(w)|, again contradict-
ing the supposition that |∆min2(G)(v) − Φi(v)| ≤ |∆min2(E)(v) − Φi(v)|
∀v ∈ V , ∀i ∈ I.

2

References

Andreka, H., Ryan, M. D., & Schobbens, P.-Y. (2001). Operators and laws
for combining preference relations. Journal of Logic and Computation,
12 (1), 13–53.

Arrow, K. J. (1963). Social choice and individual values (2nd edition). Wiley,
New York.
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