
Information Processing Letters 103 (2007) 177–182

www.elsevier.com/locate/ipl

Relaxations of semiring constraint satisfaction problems

Louise Leenen a,∗, Thomas Meyer b, Aditya Ghose a

a Decision Systems Laboratory, School of Computer Science and Software Engineering, University of Wollongong, Australia
b Meraka Institute, CSIR, Pretoria, South Africa

Received 2 November 2005; received in revised form 9 November 2006; accepted 20 March 2007

Available online 5 April 2007

Communicated by A. Moffat

Abstract

The Semiring Constraint Satisfaction Problem (SCSP) framework is a popular approach for the representation of partial con-
straint satisfaction problems. In this framework preferences can be associated with tuples of values of the variable domains.
Bistarelli et al. [S. Bistarelli, U. Montanari, F. Rossi, Semiring-based constraint solving and optimization, Journal of the ACM
44 (2) (1997) 201–236] defines a maximal solution to a SCSP as the best set of solution tuples for the variables in the problem.
Sometimes this maximal solution may not be good enough, and in this case we want to change the constraints so that we solve
a problem that is slightly different from the original problem but has an acceptable solution. We propose a relaxation of a SCSP,
and use a semiring to give a measure of the difference between the original SCSP and the relaxed SCSP. We introduce a relaxation
scheme but do not address the computational aspects.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Semiring constraint satisfaction problems; Over-constrained problems; Preferences and soft constraints; Combinatorial problems
1. Introduction

There has been considerable interest over the past
decade in over-constrained problems, partial constraint
satisfaction problems and soft constraints. This has been
motivated by the observation that with most real-life
problems, it is difficult to offer a priori guarantees that
the input set of constraints to a constraint solver is solv-
able. This is because many real-life problems are inher-
ently over-constrained and also because it is difficult
for human users to peruse a given set of constraints
that have been obtained for a given problem to de-
termine if it is solvable. In general constraint solvers

* Corresponding author.
E-mail address: leenenl@iinet.net.au (L. Leenen).
0020-0190/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2007.03.011
must be able to deal with problems that are potentially
over-constrained. The key challenge in dealing with an
over-constrained problem is identifying appropriate re-
laxations of the original problem that are solvable. Early
approaches to such relaxations largely focused on find-
ing maximal subsets (with respect to set cardinality) of
the original set of constraints that are solvable (such as
Freuder and Wallace’s work on the MaxCSP problem
[6]). Subsequent efforts considered more fine-grained
notions of relaxation, where entire constraints did not
have to be removed (the HCLP framework [8], Fuzzy
CSPs [4], Probabilistic CSPs [5]).

Bistarelli et al. [3] proposed an abstract semiring
CSP scheme (SCSP) that generalized most earlier at-
tempts, while making it possible to define several useful
new instances of the scheme. The SCSP scheme as-



178 L. Leenen et al. / Information Processing Letters 103 (2007) 177–182
sumes the existence of a semiring of abstract preference
values, such that the associated multiplicative operator
is used for combining preference values, while the asso-
ciated additive operator is used for comparison. While a
classical constraint defines which combinations of value
assignments to the variables in its signature are allowed,
a SCSP constraint assigns a preference value to all pos-
sible value assignments to the variables in its signature.
These preferences implicitly define an approach to alter
constraints (“try to satisfy the constraint using the most
preferred tuples, else try the next most preferred tuples”
and so on).

Our aim in this paper is to define how a SCSP might
be relaxed. This may appear counter-intuitive, since a
SCSP is intended to define how soft constraints are re-
laxed. We explain our motivations by describing it in
terms of a generic optimization problem (C,O), defined
by a set of constraints C and an objective function O .
Assume that we have been given a lower bound on the
value of the optimal solution (e.g., a minimal thresh-
old on profit). Consider a situation where the optimal
solution obtained fails to meet this threshold (e.g., the
optimal profit figure is too low). We are interested in
seeking a new (relaxed) set of constraints C′ that is min-
imally different from the original set C such that the
revised optimization problem (C′,O) admits an opti-
mal solution that satisfies the threshold. The revised (or
relaxed) set of constraints C′ is potentially very useful,
because it can point to minimal changes in the physi-
cal reality being modeled by the constraints, which, if
effected, would permit us to meet the threshold on the
value of the objective function.

We attempt such an exercise in the context of SCSPs.
A SCSP does not have an explicit objective function.
Objectives are implicitly articulated via the preferences
over tuples in each SCSP constraint. Instead of an op-
timal solution, we are able to articulate the preference
values of the (potentially many) “best” solutions to a
SCSP. Consider a SCSP P and a threshold β on the pref-
erence value of the “best” solution(s) to P . Assume that
the “best” solutions to P fall short of this threshold. We
define a mechanism by which we may “minimally” al-
ter (i.e., relax) P to obtain a P ′ such that it admits a
“best” solution that meets this threshold. We use as a
running example a problem involving a hotel that is un-
able to attain a five-star rating and wishes to determine
the minimal changes required to its infrastructure in or-
der to achieve such a rating. The star rating of the hotel
is modeled via semiring preference values. We propose
a relaxation scheme for SCSPs but further research is re-
quired to develop efficient algorithms to compute these
relaxations.
2. The SCSP framework

Definition 1. A c-semiring is a tuple S = 〈A,+,×,0,1〉
such that

• A is a set with 0,1 ∈ A;
• + is defined over (possibly infinite) sets of elements

of A as follows:1

– for all a ∈ A,
∑

({a}) = a;
–

∑
(∅) = 0 and

∑
(A) = 1;

–
∑

(
⋃

Ai, i ∈ I ) = ∑
({∑(Ai), i ∈ I }) for all

sets of indices I ;
• × is a commutative, associative, and binary oper-

ation such that 1 is its unit element and 0 is its
absorbing element;

• for any a ∈ A and B ⊆ A, a × ∑
(B) = ∑

({a × b,

b ∈ B}).

The elements of the set A are the preference values
to be assigned to tuples of values of the domains of con-
straints. The operator × is used to combine constraints
in order to find a solution (i.e., a single constraint) to a
SCSP, and the operator + is used to define the c-value
of the projection of a tuple of values over a set of vari-
ables onto a subset of the variables. We derive a partial
ordering �S over the set A: α �S β iff α +β = β .2 The
minimum element in the ordering is 0, while 1 is the
maximum element.

Definition 2. A constraint system is a 3-tuple CS = 〈Sp,

D,V 〉, where Sp = 〈Ap,+p,×p,0,1〉 is a c-semiring,
V is an ordered finite set of variables, and D is a finite
set containing the allowed values for the variables in V .

Definition 3. Given a constraint system CS = 〈Sp,D,

V 〉, where Sp = 〈Ap,+p,×p,0,1〉, a constraint over
CS is a pair c = 〈def p

c , conc〉 where conc ⊆ V is called
the type of the constraint, and def p

c :Dk → Ap (where
k is the cardinality of conc) is called the value of the
constraint.

Definition 4. Given a constraint system CS = 〈Sp,D,

V 〉, a Semiring Constraint Satisfaction Problem (SCSP)
over CS is a pair P = 〈C, con〉 where C is a finite set
of constraints over CS and con = ⋃

c∈C conc . We also
assume that 〈def p

c1, conc〉 ∈ C and 〈def p
c2, conc〉 ∈ C im-

plies def p
c1 = def p

c2 .

1 When + is applied to sets of elements, we will use the symbol
∑

in prefix notation.
2 Singleton subsets of the set A are represented without braces.



L. Leenen et al. / Information Processing Letters 103 (2007) 177–182 179
Table 1
Constraint definitions

t def p
c1 (t) def p

c2 (t) def p
c3 (t) t def p

c1 (t) def p
c2 (t) def p

c3 (t)

〈0,0〉 0 0 0 〈2,0〉 0.5 0.5 0.5
〈0,1〉 0.25 0.25 0.25 〈2,1〉 0.5 0.5 0.5
〈0,2〉 0.75 0.75 0.75 〈2,2〉 0.5 0.5 0.5
〈0,3〉 1 1 1 〈2,3〉 0.25 0.25 0.25
〈1,0〉 0.25 0.25 0.25 〈3,0〉 1 1 1
〈1,1〉 0.25 0.25 0.25 〈3,1〉 0.5 0.5 0.5
〈1,2〉 0.5 0.5 0.5 〈3,2〉 0.5 0.5 0.5
〈1,3〉 0.5 0.5 0.5 〈3,3〉 0 0 0
Example 1. A hotel chain acquires a star rating that
is an accumulation of the different branches. Currently
it has a four star rating and it aims for a five star rat-
ing. Various renovations can be done at branches to in-
crease the rating of the hotel: lay new carpets, upgrade a
swimming pool, or paint the building. The manager has
to choose which (minimal) renovations to do at which
branches under certain restrictions (such as the budget).
We express the problem as a SCSP where the semiring
structure allows the manager to express his preferences
for particular tuples of domain values of the constraints.
X, Y and Z denote the three branches. At most one job
at a time can be done at a particular branch, and, in total,
as few jobs as possible should be done.

Let CS = 〈Sp,D,V 〉 and P = 〈C, con〉, where V =
con = {X,Y,Z}, D = {0,1,2,3}, C = {c1, c2, c3}, and
Sp = 〈{0,0.25,0.5,0.75,1},max,min,0,1〉. The value
of a decision variable indicates which job is to be done
at a particular branch: let the value 0 represent no job,
the value 1 represent re-carpeting, the value 2 repre-
sent pool renovation, and the value 3 represent painting.
A renovation job with a higher value will contribute
more towards a higher star rating. Assume three binary
constraints, c1 = 〈def p

c1, {X,Y }〉, c2 = 〈def p
c2 , {Y,Z}〉,

and c3 = 〈def p
c3, {X,Z}〉. The tuples of these constraints

together with their preference values (i.e. associated
semiring values) are given in Table 1. The manager’s
choice of semiring value represents the desirability of
that particular tuple. Consider def p

c1(〈0,2〉) = 0.75: tu-
ple 〈0,2〉 of constraint c1 represents the case where
nothing is to be done at branch X while branch Y ’s
swimming pool is to be upgraded. Its high preference
value indicates that it is preferred, for instance, to the
tuple 〈1,1〉 with a value of 0.25. A tuple with an associ-
ated value of 0 is highly undesirable.

Definition 5. Given a constraint system CS = 〈Sp,D,V 〉
with V totally ordered via 
, consider any k-tuple
t = 〈t1, t2, . . . , tk〉 of values of D and two sets W = {w1,

. . . ,wk} and W ′ = {w′ , . . . ,w′
m} such that W ′ ⊆ W ⊆
1
V and wi 
 wj if i � j and w′
i 
 w′

j if i � j . The pro-

jection of t from W to W ′, written t↓W
W ′ , is defined as

the tuple t ′ = 〈t ′1, . . . , t ′m〉 with t ′i = tj if w′
i = wj .

Definition 6. Given a constraint system CS = 〈Sp,D,V 〉
where Sp = 〈Ap,+p,×p,0,1〉 and two constraints
c1 = 〈def p

c1, conc1〉 and c2 = 〈def p
c2, conc2〉 over CS,

their combination, written c1 ⊗ c2, is the constraint c =
〈def p

c , conc〉 with conc = conc1 ∪ conc2 and def p
c (t) =

def p
c1(t↓conc

conc1
) ×p def p

c2(t↓conc
conc2

). Let (
⊗

C) denote
c1 ⊗ c2 ⊗ · · · ⊗ cn with C = {c1, . . . , cn}.

Definition 7. Given a constraint system CS = 〈Sp,D,

V 〉, where Sp = 〈Ap,+p,×p,0,1〉, a constraint c =
〈def p

c , conc〉 over CS, and a set I of variables (I ⊆ V ),
the projection of c over I , written c ⇓ I , is the con-
straint c′ = 〈def p

c′ , conc′ 〉 over CS with conc′ = I ∩ conc

and def p

c′(t ′) = ∑
{t |t↓conc

I∩conc
= t ′} def p

c (t).

Definition 8. Given a SCSP P = 〈C, con〉 over a con-
straint system CS, the solution of P is a constraint de-
fined as Sol(P ) = (

⊗
C).

A solution to a SCSP is a single constraint formed
by the combination of all the original constraints of
the problem. A maximal solution consists of the set of
k-tuples of D whose associated c-semiring values are
maximal with respect to �Sp .

Definition 9. Given a SCSP problem P = 〈C, con〉 with
Sol(P ) = 〈def p

c , con〉, the maximal solution of P is the
set ASol(P ) = {〈t, v〉 | def p

c (t) = v and there is no t ′
such that v <Sp def p

c (t ′)}. Let ASolV(P ) = {v | 〈t, v〉 ∈
ASol(P )}.

Example 2. First combine c1 and c2 to get the resulting
constraint c′

1 = c1 ⊗ c2. For example, def p
c1(〈0,1〉) ×p

def p
c2(〈1,3〉) = min(0.25,0.5) = 0.25, so tuple 〈0,1,3〉

of constraint c′
1 has a preference value 0.25. Now com-

bine c′ and c3 to get c′ = c′ ⊗ c3. The following tuples
1 2 1



180 L. Leenen et al. / Information Processing Letters 103 (2007) 177–182
of constraint c′
2 = c′

1 ⊗ c3 all have a preference value
of 0.5 and form the maximal solution with ASolV(P )

= {0.5}: 〈0,2,2〉; 〈0,3,2〉; 〈1,2,2〉; 〈1,3,2〉; 〈2,0,2〉;
〈2,1,2〉; 〈2,2,0〉; 〈2,2,1〉; 〈2,2,2〉; 〈3,0,2〉; 〈3,1,2〉;
〈3,2,0〉; 〈3,2,1〉 and 〈3,2,2〉. All other tuples have
preference values of either 0.25 or 0.

3. A relaxation of a SCSP

We are interested in a SCSP for which the maximal
solution is not considered to be good enough. For ex-
ample, our hotel manager may require a solution tuple
with a preference value of at least 0.75. The constraints
of a problem model requirements that may be relaxed.
We attempt to find a satisfactory solution to a relaxed
version of the original problem.

Definition 10. A nonempty subset F of a partially or-
dered set (A,�A) is called a filter, if the following con-
ditions hold:

• For every x, y ∈ F , there is some element z ∈ F ,
such that z �A x and z �A y.

• For every x ∈ F and y ∈ A, x �A y implies that
y ∈ F .

The smallest filter that contains a given element α is a
principal filter and α is called its principal element. The
principal filter for α is given by the set ↑α = {x ∈ A |
α �A x}.

We identify a partially ordered set of “lower bound”
preference values that are regarded as being good
enough.

Definition 11. Let a good enough (maximal) solution
for a SCSP P be such that some element in ASolV(P ) is
in the set LB = {⋃(↑β) | β ∈ A} of sufficient preference
values.

If ASolV(P )∩ LP �= ∅ we have found a good enough
solution for P . Otherwise, we want to find a relaxation
P ′ of P , such that ASolV(P ′) ∩ LB �= ∅. There should
not exist any relaxation of P that is closer to P than P ′.

Definition 12. A constraint cj = 〈def p
j , conj 〉 is called

a ci -weakened constraint of the constraint ci = 〈def p
i ,

coni〉 iff the following hold: coni = conj , and for all
tuples t , def p

(t) �S def p
(t).
i j
We represent the closeness of a c-weakened con-
straint to the constraint c by associating a c-semiring
value with the c-weakened constraint.

Definition 13. Given a constraint system CS = 〈Sp,V,

D〉 and a SCSP P = 〈C, con〉, for each c ∈ C, let Wc be
the set containing all c-weakened constraints, i.e. Wc =
{cj | cj is a c-weakened constraint}. Let Sd = 〈Ad,

+d,×d ,0,1〉 be a c-semiring and wdef d
c : Wc → Ad be

any function such that

• Ad is a well-founded set (it contains no infinite de-
scending chains);

• wdef d
c (cj ) = 0 iff cj = c;

• ∀ci, cj ∈ Wc, if for all tuples t def p
i (t) �Sp def p

j (t)

then wdef d
c (ci) �Sd

wdef d
c (cj );

• if there exists one tuple t such that def p
i (t) <Sp

def p
j (t) and for all tuples s we have def p

i (s) �Sp

def p
j (s), then wdef d

c (ci) <Sd
wdef d

c (cj ).

We use +d for comparing and ×d for combining c-
semiring values (see Definition 17). Observe that the set
Ad is restricted to sets that do not contain infinite chains
of weaker values such as the set of reals.

The function wdef d
c assigns c-semiring (difference)

values from the set of the c-semiring Sd to each c-
weakened constraint. If the preference values of all the
tuples of a c-weakened constraint cj are at least as good
as their preference values in another c-weakened con-
straint ci , wdef d

c assigns a difference value for cj that
is at least as good as the difference value it assigns
to ci . If there is at least one tuple that has a better
preference value in cj than in ci (and all other tuples
have preference values in cj that are at least as good as
those in ci ), then wdef d

c will assign a better difference
value to cj than to ci . This framework is deliberately
broad so as to accommodate any reasonable applica-
tion.

Definition 14.

• The c-weakened constraint ci is closer to c than
the c-weakened constraint cj , iff wdef d

c (ci) <Sd

wdef d
c (cj ).

• The c-weakened constraint ci is no closer to c than
the c-weakened constraint cj , iff wdef d

c (cj ) �Sd

wdef d
c (ci).

• The c-weakened constraints ci and cj are incompa-
rable with respect to closeness to c iff wdef d

c (ci) �Sd

wdef d
c (cj ) and wdef d

c (cj ) �Sd
wdef d

c (ci).



L. Leenen et al. / Information Processing Letters 103 (2007) 177–182 181
Table 2
Definitions of the c2-weakened constraints

t c2 c21 c22 c23 . . . c28 c29 c210 c211 . . .

〈0,1〉 0.25 0.25 0.25 0.25 . . . 0.75 0.25 0.25 0.25 . . .

〈0,2〉 0.75 0.75 0.75 0.75 . . . 0.75 0.75 0.75 0.75 . . .

〈0,3〉 1 1 1 1 . . . 1 1 1 1 . . .

〈1,0〉 0.25 0.25 0.25 0.25 . . . 0.25 0.75 0.25 0.25 . . .

〈1,1〉 0.25 0.25 0.25 0.25 . . . 0.25 0.25 0.75 0.25 . . .

〈1,2〉 0.5 0.75 0.5 0.5 . . . 0.5 0.5 0.5 0.5 . . .

〈1,3〉 0.5 0.5 0.75 0.5 . . . 0.5 0.5 0.5 0.5 . . .

〈2,0〉 0.5 0.5 0.5 0.75 . . . 0.5 0.5 0.5 0.5 . . .

〈2,1〉 0.5 0.5 0.5 0.5 . . . 0.5 0.5 0.5 0.5 . . .

〈2,2〉 0.5 0.5 0.5 0.5 . . . 0.5 0.5 0.5 0.5 . . .

〈2,3〉 0.25 0.25 0.25 0.25 . . . 0.25 0.25 0.25 0.75 . . .

〈3,0〉 1 1 1 1 . . . 1 1 1 1 . . .

〈3,1〉 0.5 0.5 0.5 0.5 . . . 0.5 0.5 0.5 0.5 . . .

〈3,2〉 0.5 0.5 0.5 0.5 . . . 0.5 0.5 0.5 0.5 . . .

all other tuples 0 0 0 0 0 0 0 0 0 . . .
Definition 15. A SCSP P ′ = 〈C′, con〉 is a d-relaxation
of the SCSP P = 〈C, con〉 where

Sd = 〈Ad,+d ,×d,0,1〉,
iff there is a bijection f :C → C′ and ∀c ∈ C,f (c) is a
c-weakened constraint.

For a f (c) ∈ C′ and c ∈ C, wdef d
c (f (c)) is an indi-

cation of the closeness of f (c) to c. For every c ∈ C, C′
contains one c-weakened constraint, i.e., every c can be
regarded as being replaced by a c-weakened constraint
f (c). We want to find a d-relaxation P ′ = 〈C′, con〉
of P = 〈C, con〉 such that every c-weakened constraint
c′ ∈ C′ is the closest possible to the constraint c ∈ C

while the maximal solution of P ′ is still good enough
(with respect to the set LB).

Theorem 3.1. Let cik be a ci -weakened constraint, and
cjm and cjn be cj -weakened constraints.

If wdef d
cj

(cjm) <Sd
wdef d

cj
(cjn), then

wdef d
ci
(cik) ×d wdef d

cj
(cjm)

<Sd
wdef d

ci
(cik) ×d wdef d

cj
(cjn).

Proof. The multiplicative operator of a c-semiring is
monotone on a partial order on the set of a c-semiring
(see [3]). Thus ×d is monotone on <Sd

. �
Definition 16. Let R(P ) = {P ′ | P ′ is a d-relaxation
of P }, RLB(P ) = {P ′ ∈ R(P ) | ASolV(P ′) ∩ LB �= ∅},
and ASolRLB(P ) = {〈t, v〉 | 〈t, v〉 ∈ ASol(P ′) and P ′ ∈
RLB(P )}.

RLB(P ) contains all those SCSPs that are weakened
versions of P whose best tuples intersect with LB and
ASolRLB(P ) contains those best tuples. We define a
measure of difference between a problem P and a d-re-
laxation P ′.

Definition 17. Given a d-relaxation P ′ = 〈C′, con〉
of a SCSP P = 〈C, con〉 such that P ′ ∈ RLB(P ), let
d(P ′) = ×dc∈C(wdef d

c (f (c))) be the difference be-
tween P and P ′. 3

We have to find every P ′ ∈ RLB(P ) with a minimal
difference between P ′ and P . Let MRLB(P ) = {P ′ ∈
RLB(P ) | �P ′′ ∈ RLB(P ) such that d(P ′′) <S d(P ′)}.

Example 3. The manager needs a solution that gives a
semiring value of at least 0.75. In our attempt to find a
d-relaxation to this problem with a sufficient solution
we only consider some relaxations of the second con-
straint as shown in Table 2. In each of the constraints c24

up to c27 we only changed a single tuple’s value from
0.5 to 0.75. With Sd = 〈{0,1,2,3,4,5},min,max,5,0〉
we associate the following c-semiring values with
each of the relaxed constraints: wdef d

c2
(c2) = 0,

wdef d
c2

(c21) up to wdef d
c2

(c27) = 1, and wdef d
c2

(c28) up
to wdef d

c2
(c211) = 2. The function wdef should reflect

the manager’s preferred way to relax constraints: wdef
assigns a smaller value for relaxations where the least
number of changes to tuples’ preference values and the
smallest adjustments have been made, i.e., a change
from 0.5 to 0.75 is regarded as being smaller than a
change from 0.25 to 0.75. There are a number of other
possible relaxations of which the most relaxed one will

3 We use ×d in prefix notation when it is applied to more than two
arguments.



182 L. Leenen et al. / Information Processing Letters 103 (2007) 177–182
be a constraint where all tuples have a preference value
of 1. Our d-relaxation must be as close as possible to the
original problem. We initially consider any one of the
c2-weakened constraints with a c-semiring value of 1. If
we select the relaxation c23 we will be able to raise one
of the maximal solution tuples above the others. One
d-relaxation of the problem P is P ′

1 = 〈C′
1, con〉 with

C′
1 = {c1, c23 , c3}. The combination of the constraints,

pc1 = c1 ⊗ c23 ⊗ c3 gives def p
pc1(〈2,0,2〉) = 0.75. The

manager can raise the star rating of the hotel chain by
selecting this solution tuple.

4. Conclusion, related work, and future work

We have proposed an extension to the SCSP frame-
work for solving CSPs where a relaxation of a SCSP
is constructed if the solution for the original SCSP is
not good enough. We define a suitable relaxation of the
SCSP by adjusting the preferences associated with the
tuples of some of the constraints of the original SCSP.
Difference values (i.e., c-semiring values) are associ-
ated with each relaxed constraint so that different relax-
ations of a problem can be compared in terms of their
difference from the original problem.

Our future work will focus on computational aspects
of this process. When a solution to a SCSP P is not
good enough, we use a set of cut-off values, LB, to de-
fine a threshold that should be reached. We need only
consider relaxations to constraints of P that have the
potential to form a good enough solution. Such relaxed
constraints can be found by looking for at least one tu-
ple in the original constraint with a preference value
that is not in the set LB and then raise it so that it has
a preference value in LB. We plan to develop efficient
algorithms to find suitable subsets of relaxations, and to
develop techniques to calculate the best relaxation for a
SCSP efficiently.

Bistarelli et al. [1] use the semiring-based framework
to model partial CSPs: they show how to use a semi-
ring to represent a notion of distance between a solution
and a problem. It has been shown that tradeoffs between
user preferences (if all requirements cannot be met) can
be modeled as additional constraints. Bistarelli et al. [2]
presents a framework where “tradeoffs” between prefer-
ences are modeled in the semiring framework. Our work
can be seen as a form of tradeoff where the added and
removed constraints involve the same variables. Ghose
and Harvey [7] extended the SCSP framework by spec-
ifying a metric for each constraint in addition to the
preference values associated with the tuples of values.
The metric provides real valued differences between the
preference values which are used to measure the devia-
tion of a solution to a SCSP from some desired solution
that is good enough.

References

[1] S. Bistarelli, E. Freuder, B. O’Sullivan, Encoding partial con-
straint satisfaction in the semiring-based framework for soft con-
straints, in: Proceedings of the 16th IEEE International Confer-
ence on Tools with Artificial Intelligence, 2004.

[2] S. Bistarelli, J. Kelleher, B. O’Sullivan, Tradeoff generation using
soft constraints, in: Proceedings of CSCLP, 2003.

[3] S. Bistarelli, U. Montanari, F. Rossi, Semiring-based constraint
solving and optimization, Journal of the ACM 44 (2) (1997) 201–
236.

[4] D. Dubois, H. Fargier, H. Prade, The calculus of fuzzy restrictions
as a basis for flexible constraint satisfaction, in: Proceedings of
the IEEE Conference on Fuzzy Systems, 1993.

[5] H. Fargier, J. Lang, Uncertainty in constraint satisfaction prob-
lems: a probabilistic approach, in: Proceedings of the ECSQARU,
1993.

[6] E.C. Freuder, J.W. Wallace, Partial constraint satisfaction, Artifi-
cial Intelligence 58 (1992) 21–70.

[7] A. Ghose, P. Harvey, Partial constraint satisfaction via semiring
CSPs augmented with metrics, in: Proceedings of the Australian
Joint Conference on AI, in: Lecture Notes in Computer Science,
vol. 2557, Springer, 2002.

[8] M. Wilson, A. Borning, Hierarchical constraint logic program-
ming, Journal of Logic Programming 16 (1993) 277–318.


