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Abstra
t

The ability to 
hange one's beliefs in a rational manner is one of many fa
ets of the

abilities of an intelligent agent. Central to any investigation of belief 
hange is the

notion of an epistemi
 state. This dissertation is mainly 
on
erned with three issues

involving epistemi
 states:

1. How should an epistemi
 state be represented?

2. How does an agent use an epistemi
 state to perform belief 
hange?

3. How does an agent arrive at a parti
ular epistemi
 state?

With regard to the �rst question, note that there are many di�erent methods for


onstru
ting belief 
hange operations. We argue that semanti
 
onstru
tions involving

ordered pairs, ea
h 
onsisting of a set of beliefs and an ordering on the set of \possible

worlds" (or equivalently, on the set of basi
 independent bits of information) are, in an

important sense, more fundamental.

Our answer to the se
ond question provides indire
t support for the use of semanti


stru
tures. We show how well-known belief 
hange operations and related stru
tures


an be modelled semanti
ally. Furthermore, we introdu
e new forms of belief 
hange

related operations and stru
tures whi
h are all de�ned, and motivated, in terms of

su
h semanti
 representational formalisms. These in
lude a framework for unifying

belief revision and nonmonotoni
 reasoning, new versions of entren
hment orderings

on beliefs, novel approa
hes to withdrawal operations, and an expanded view of iterated

belief 
hange.

The third question is one whi
h has not re
eived mu
h attention in the belief 
hange

literature. We propose to extra
t extra-logi
al information from the formal representa-

tion of an agent's set of beliefs, whi
h 
an then be used in the 
onstru
tion of epistemi
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ii ABSTRACT

states. This proposal is just a �rst approximation, although it seems to have the po-

tential for developing into a full-
edged theory.

Keywords: Belief 
hange, theory 
hange, theory revision, belief revision, epistemi


state, 
ontra
tion, nonmonotoni
 reasoning, withdrawal, epistemi
 entren
hment, base


hange, base revision, base 
ontra
tion.
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Chapter 1

Introdu
tion

Of 
ourse not. After all, I may be wrong.

Bertrand Russell, on being asked whether

he would be prepared to die for his beliefs.

The 
omi
 strip on the opposite page 
on
isely 
aptures the 
entral topi
 of this disser-

tation: that a rational intelligent agent is sometimes for
ed to adjust its 
urrent beliefs

in some appropriate fashion when 
onfronted with new information. The investigation

of the reasoning patterns involved in su
h a task is known as the study of belief revision

or belief 
hange.

The ability to 
hange one's beliefs in a manner that 
an be des
ribed as rational

is one of many fa
ets of the abilities of an intelligent agent. Central to the analysis

of reasoning is the (somewhat nebulous) notion of an epistemi
 state. An epistemi


state 
ontains, in one form or another, the knowledge and beliefs of an agent, together

with the information needed for 
oherent reasoning. This in
ludes, in parti
ular, the

strategies for performing belief 
hange. Our aim in this dissertation is to obtain a


lear pi
ture of the part of an epistemi
 state involving belief 
hange. In doing so, it

is ne
essary to draw a 
lear distin
tion between an agent's knowledge and its beliefs.

We 
onsider the beliefs of an agent to be the information that it is willing to a
t on,

while knowledge 
omprises the beliefs that the agent refuses to retra
t; at least until

some state 
hange takes pla
e. Belief, then, is defeasible knowledge, a view that is


ompatible with that of Moses and Shoham [1993℄.

1



2 CHAPTER 1. INTRODUCTION

This di�eren
e between belief and knowledge is also the basis of the di�eren
e

between belief 
hange and belief update. The former is 
on
erned with 
hanges to

the epistemi
 state of an agent resulting from new information in a stati
 world. In


ontrast, the latter deals with 
hanges to epistemi
 states when the world des
ribed by

it 
hanges; 
hanges to epistemi
 states in a dynami
 world, if you will.

1

In our view,

the knowledge of an agent 
an only be substantially altered on
e a state 
hange has

taken pla
e (although knowledge 
an in
rease monotoni
ally without any 
hange in the


urrent state). By 
on
entrating on belief 
hange, we operate under the assumption

that the knowledge of an agent is �xed.

In the 
ourse of resear
h into the area of belief 
hange, two di�erent (but not

ne
essarily in
ompatible) approa
hes have begun to emerge; the foundationist and 
o-

herentist approa
hes. The distinguishing feature of the foundationist approa
h is that

it assumes the existen
e of a set of basi
 beliefs whi
h need no justi�
ation. All other

beliefs in a foundational system have a justi�
atory pedigree. Every su
h a belief 
an

be justi�ed in terms of other beliefs, whi
h in turn, 
an be justi�ed in terms of other

beliefs, until we eventually en
ounter the set of basi
 beliefs on whi
h the original be-

lief is ultimately based. The best known examples of foundational systems are Doyle's

[1979, 1992℄ Truth Maintenan
e Systems and their su

essors, Reiter and de Kleer's

[1987℄ Assumption Based Truth Maintenan
e Systems. Approa
hes to base 
hange

[Fuhrmann, 1991, Hansson, 1989, 1992b, 1993
, 1996℄ are also motivated by founda-

tionist ideas. The 
oherentist approa
h, on the other hand, sees the justi�
ation for

beliefs in terms of the way they intera
t or \
ohere" with other beliefs. In determining

whether a belief is justi�ed, one should thus look at its relationship with other beliefs.

A proper des
ription of belief 
hange demands that we spe
ify an appropriate rep-

resentational formalism. For our purposes, a 
ertain family of logi
 languages with a

propositional stru
ture will be suÆ
ient. More details 
an be found in se
tion 1.3. For


on
reteness, the reader may think of a propositional language generated by a (possibly

in�nite) number of atoms, and equipped with a 
lassi
al semanti
s. (See, for instan
e,

Enderton [1972℄ or Fitting [1996℄.) The beliefs of an agent, as well as any information

obtained, will be expressed in this language. The knowledge of an agent is equated

with the senten
es whose models establish the semanti
 framework within whi
h belief

1

Keller and Wilkins [1985℄ �rst pointed out the distin
tion between belief 
hange and belief update.

Subsequently, Katsuno and Mendelzon [1992℄ formalised this distin
tion and proposed an abstra
t

framework for belief update.
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hange o

urs. This implements the view of knowledge as those beliefs that an agent

refuses to retra
t.

Having 
hosen an appropriate language, we now turn to the three basi
 issues 
on-


erning belief 
hange that we shall be addressing:

1. How should an epistemi
 state (or at least the part pertaining to belief 
hange)

be represented?

When addressing this question, observe that we are only 
on
erned with that part

of an epistemi
 state whi
h involves belief 
hange. When we talk about representing

an epistemi
 state in a 
ertain manner, it should be understood that su
h a represen-

tation 
an be extra
ted from the epistemi
 state.

We shall primarily be 
on
erned with three representations of epistemi
 states; the

se
ond two being ri
her in stru
ture than the �rst. The �rst representation is as a belief

set, a set of senten
es 
losed under logi
al entailment. Although su
h a representation


ontains too little information to be appropriate, it plays an important role in the

establishment of abstra
t patterns and properties. As su
h, it is an extremely useful

�rst approximation. The next representation is as an ordered pair, 
onsisting of a belief

set and an ordering on a set of \possible worlds" asso
iated with the logi
 language

under 
onsideration (or equivalently, as a belief set and an ordering on the basi
 bits

of information from whi
h any set of beliefs is built up). As we shall see, su
h a view

of epistemi
 states has proved to be a signi�
ant step forward in the study of belief


hange. Finally, epistemi
 states are often represented as ordered pairs 
onsisting of

a belief set and an epistemi
 entren
hment ordering on the senten
es of the language

under 
onsideration. While su
h an ordering is, in a sense, equivalent to an ordering

on possible worlds, we shall argue that the latter is a more fundamental 
onstru
tion.

In doing so, we rely on the following prin
iple:

(Redu
tionism) Complex obje
ts are built up from simpler obje
ts.

A 
onsequen
e of the fa
t that these representations make use of belief sets, is the

assumption that agents believe all the logi
al 
onsequen
es of their beliefs. Levi [1991℄

refers to this as the agent's epistemi
 
ommitment, and su
h agents are referred to as

logi
ally omnis
ient. In this sense, we provide an analysis of belief 
hange on Newell's

[1982℄ knowledge level . Newell postulated the existen
e of a knowledge level above the
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symbol level , on whi
h there is no distin
tion between expli
it information and derived

information. This implies the satisfa
tion of Dalal's [1988℄ prin
iple of the Irrelevan
e

of Syntax:

(Irrelevan
e of Syntax) A belief 
hange operation is independent of the form of the

belief set involved.

The assumption of logi
al omnis
ien
e is 
learly an idealisation, though, and future re-

sear
h on belief 
hange will, no doubt, in
orporate results on the resour
e-boundedness

of agents.

Regardless of the way in whi
h epistemi
 states are represented, however, it is

important that the following prin
iple is adhered to:

(Categori
al Mat
hing) A belief 
hange operation performed on epistemi
 states

should produ
e an epistemi
 state.

While this prin
iple is almost too obvious to mention expli
itly, mu
h of the resear
h

on belief 
hange has 
on
entrated on operations that produ
e sets of beliefs, and not

epistemi
 states. We now turn to the se
ond issue.

2. How does an agent use an epistemi
 state to perform belief 
hange?

Let us �rst make it 
lear that, although there are psy
hologi
al studies whi
h fo
us on

the way human agents perform belief 
hange and similar kinds of reasoning [Edwards,

1968, Einhorn and Hogarth, 1978, Ross and Lepper, 1980, Hoenkamp, 1988, Pelletier

and Elio, 1997℄, our interest lies in the development of a normative a

ount of belief


hange. That is, we are not (ne
essarily) 
on
erned with the way in whi
h human

agents reason, but with the ways in whi
h all rational agents ought to reason.

An answer to the question of how to use an epistemi
 state to perform belief 
hange

will, of 
ourse, depend on the spe
i�
 belief 
hange operation to be performed. Never-

theless, there are some basi
 prin
iples underlying the appropriate use of information


ontained in epistemi
 states. The most important of these is the prin
iple of Minimal

Change [Harman, 1986℄.

(Minimal Change) Keep loss and addition to a minimum.

The basi
 idea is that the 
urrent epistemi
 state possesses a kind of inertia, and

that any 
hanges made to it ought to be only those that have to be made. We shall
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also en
ounter two more spe
i�
 versions of this prin
iple, known as the prin
iples of

Informational E
onomy and Conservatism:

(Informational E
onomy) Keep the loss of information to a minimum.

(Conservatism) Keep the set of beliefs as large as possible.

One of the main obsta
les to be en
ountered when attempting to satisfy prin
iples su
h

as these, is that there may not be a unique way in whi
h to e�e
t minimal 
hange. In

su
h an event, the use of the prin
iple of Indi�eren
e is frequently advo
ated.

(Indi�eren
e) Obje
ts held in equal regard should be treated equally.

A related prin
iple, the prin
iple of Preferen
e, will play an important role in the

analysis of withdrawal, an important form of belief 
hange.

(Preferen
e) Obje
ts held in higher regard should be a�orded a more favourable

treatment.

This brings us to the third issue.

3. How does an agent arrive at a parti
ular epistemi
 state?

This is a question whi
h has not re
eived mu
h attention in the belief 
hange liter-

ature, and there are, most probably, quite a number of angles from whi
h it 
an be

approa
hed. We investigate one parti
ular proposal in this regard. Our idea is to use

�nite ordered sequen
es of senten
es to represent the beliefs of an agent. The stru
-

ture of this representational formalism is then exploited to aid in the 
onstru
tion of

epistemi
 states. On one level this is a violation of the prin
iple of the Irrelevan
e

of Syntax, but on other levels, this prin
iple is still being respe
ted. This proposal is

not intended as a broad investigation into the question posed in point (3). It is just

a �rst approximation, although it seems to have the potential for developing into a

full-
edged theory.

Having outlined the three questions whi
h we intend to address, it is perhaps ne
-

essary to mention that this dissertation does not 
ontain a des
ription of the 
ompu-

tational aspe
ts of belief 
hange. This is not be
ause we regard it as unimportant.

On the 
ontrary, the algorithmi
 and 
omplexity-theoreti
 aspe
ts of belief 
hange is
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perhaps the most important issue to be dealt with in future resear
h. But, although

some results dealing with these issues have re
ently begun to appear [Lehmann and

Magidor, 1992, G�ardenfors and Rott, 1995, Goldszmidt and Pearl, 1996, Greiner, 1999℄,

a more general pi
ture has yet to emerge.

1.1 A brief history of belief 
hange

The quest for a detailed theory of belief 
hange is an old one. In 1907, for example,

James [1907,p. 59℄ already gave a detailed des
ription of a pro
ess by whi
h we a
quire

new beliefs. Among 
ontemporary resear
hers, Isaa
 Levi [1973, 1980, 1991, 1996℄ has

been a
tive in resear
h related to belief 
hange for three de
ades, and many of the ideas

being developed today 
an be tra
ed ba
k to Levi's writings.

A major advan
e in the development of a detailed theory of belief 
hange o

urred

during the �rst half of the 1980s. Known as the AGM approa
h to belief 
hange,

and named after its three originators, Carlos Al
hourr�on, Peter G�ardenfors and David

Makinson, it was developed in a number of papers published in the late seventies and

the beginning of the eighties [G�ardenfors, 1978, 1982, 1984, Al
hourr�on and Makinson,

1981, 1985, Al
hourr�on et al., 1985℄. It forms the basis of most 
urrent resear
h on

belief 
hange, in
luding this dissertation.

AGM belief 
hange is primarily 
on
erned with three types of operations:

� A removal o

urs when information is removed from the 
urrent set of beliefs of

an agent.

� A revision o

urs when new information is in
orporated into the 
urrent set of

beliefs in a way that ensures 
onsisten
y.

� An expansion o

urs when new information is simply added to the information


urrently in the set of beliefs, regardless of the 
onsequen
es.

Expansion turns out to be non-problemati
, and is de�ned by adding the new informa-

tion to the agent's 
urrent set of beliefs, and then 
losing under logi
al 
onsequen
e.

It is the AGM proposals for removal and revision operations whi
h have proved to be

so in
uential. A
tually, AGM belief 
hange is mostly 
on
erned with methods for 
on-

stru
ting removal operations. This 
an be translated into the 
onstru
tion of revision

operations by the appli
ation of one of Isaa
 Levi's ideas. Levi 
laims that the only
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legitimate ways of transforming an epistemi
 state are expansion and removal [Levi,

1977℄, a view known as the 
ommensurability thesis [Levi, 1991℄. In this view, a revision

by a senten
e � 
onsists of a removal of the negation of �, followed by an expansion

with �.

AGM belief 
hange is 
oherentist in nature. It subs
ribes to the prin
iple of Min-

imal Change in that it strives to make the minimal 
hanges ne
essary to an agent's

set of beliefs following a 
hange operation. Ironi
ally, their version of revision, whi
h

is de�ned in terms of removal, has been a

epted enthusiasti
ally, while their propos-

al for removal, known as 
ontra
tion, has met with some resistan
e [Makinson, 1987,

Fuhrmann, 1991, Lindstr�om and Rabinowi
z, 1991, Niederee, 1991, Hansson, 1991,

1992a, 1993
, 1996℄. In re
ent years, there have been a number of proposals for 
on-

stru
ting removal operations that retain the advantages of AGM 
ontra
tion without

su�ering from its disadvantages [Levi, 1991, 1998, Hansson and Olsson, 1995, Rott and

Pagnu

o, 1999, Cantwell, 1999, Ferm�e, 1998, Ferm�e and Rodriguez, 1998℄.

Sin
e AGM belief 
hange is 
oherentist in nature, it is 
on
erned with sets of beliefs


losed under logi
al 
onsequen
e without any justi�
atory stru
ture. It has been ar-

gued though [Al
hourr�on and Makinson, 1982, Makinson, 1985, Hansson, 1989, 1992b,

Fuhrmann, 1991℄, that some of our beliefs have no independent standing, but arise

only as inferen
es from our basi
 beliefs. This foundationist view has led to the devel-

opment of a generalisation of AGM belief 
hange, known as base 
hange, in whi
h the

emphasis is pla
ed on 
hanges made to the set of basi
 beliefs of an agent. While su
h

an approa
h a

ommodates the idea of basi
 beliefs, it is, to a large extent, in violation

of the prin
iple of the Irrelevan
e of Syntax. It 
an thus be seen as operating on the

symbol level, thereby forfeiting an important 
hara
teristi
 of AGM belief 
hange: an

analysis of belief 
hange on the knowledge level. Interestingly enough though, it turns

out that by relaxing some widely held assumptions about base 
hange, it is indeed

possible to provide a knowledge level des
ription of base 
hange [Nebel, 1989, 1990,

1991, 1992℄.

AGM belief 
hange pla
es the emphasis on sets of beliefs 
losed under logi
al 
on-

sequen
e. As su
h, it is in violation of the prin
iple of Categori
al Mat
hing. For,

although it needs more than just a set of beliefs to perform revision and 
ontra
tion,

it 
on
entrates only on the sets of beliefs obtained when performing su
h 
hange op-

erations. This is one of the reasons why AGM belief 
hange is not able to provide a

proper a

ount of iterated belief 
hange, the des
ription of the pro
ess of performing
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sequen
es of 
hanges. One of the most important 
ontributions to the enterprise of

belief 
hange in re
ent years 
on
erns the realisation that belief 
hange ought to be

des
ribed on the level of epistemi
 states, and not on the level of belief sets. This has

led to an in
uential proposal by Darwi
he and Pearl [1994, 1997℄ for a framework for

iterated belief 
hange. Their proposal has served to highlight the semanti
 methods

for 
onstru
ting AGM-style belief 
hange operations, for it presupposes the existen
e

of the semanti
 stru
tures used for 
onstru
ting AGM belief 
hange.

Finally, in this brief dis
ussion we have 
on
entrated on revision and removal, but

AGM belief 
hange has also been the inspiration for a number of other types of belief


hange su
h as relational 
hange [Lindstr�om and Rabinowi
z, 1991℄, multiple 
hange

[Fuhrmann and Hansson, 1994, Peppas and Sprakis, 1999℄ and multi-agent belief 
hange

[K�r-Dahav and Tennenholtz, 1996℄, with merging [Borgida and Imielinski, 1984, Baral

et al., 1991, 1992, Subrahmanian, 1994, Liberatore and S
haerf, 1998, Konie
zny and

Pino-P�erez, 1998℄ as a spe
ial 
ase of the latter.

1.2 A reader's guide

The next two 
hapters are mainly 
on
erned with 
lassi
 AGM belief 
hange. Chap-

ter 2 is a survey of AGM belief 
hange, 
ontaining sets of rationality postulates for

revision and 
ontra
tion, as well as a des
ription of the primary methods used in the


onstru
tion of su
h operations. The one aspe
t whi
h is missing from this 
hapter is

a dis
ussion of the semanti
 modellings of AGM belief 
hange. We regard the latter as

important enough to devote the whole of 
hapter 3 to it. The semanti
 
onstru
tion

methods dis
ussed in 
hapter 3 form the 
ornerstone of the results presented in the rest

of the dissertation. Besides the well-known semanti
 modellings in terms of orderings

on the interpretations of the logi
 language under 
onsideration, we propose that an

information-theoreti
 semanti
s be used, with orderings on the basi
 bits of information

available to an agent. While su
h a semanti
s has very strong formal links with the

traditional possible-worlds semanti
s (they are dual to ea
h other in a sense that will be

made pre
ise in propositions 3.1.5 and 3.1.6), we 
ontend that the information-theoreti


view is of use in the intuitive justi�
ation of su
h semanti
 
onstru
tive methods. By

summarising well-known results about AGM belief 
hange, we show that the methods

dis
ussed in 
hapter 2, for 
onstru
ting AGM belief 
hange operations, 
an all be seen

as being obtained from the semanti
 method of 
onstru
tion. Although this is to be
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expe
ted, given the various representation results linking these methods to AGM belief


hange, it is diÆ
ult to es
ape the 
on
lusion that the semanti
 modelling is more

\basi
", in a sense.

Chapter 4 explores the relationship between belief 
hange and nonmonotoni
 rea-

soning. As has been noted, the in
uential semanti
 approa
hes of Kraus et al. [1990℄

and Lehmann and Magidor [1992℄ to nonmonotoni
 reasoning have mu
h in 
ommon

with the semanti
 
onstru
tion of belief 
hange. So mu
h so, in fa
t, that it has been


laimed that the pro
esses involved in belief revision and nonmonotoni
 reasoning are

the same, although used for di�erent purposes [G�ardenfors and Makinson, 1994℄. We

show that these two areas 
an be uni�ed into a more general theory of bold and 
au-

tious reasoning. Furthermore, applying the view of belief 
hange as a dynami
 pro
ess

to nonmonotoni
 reasoning, we argue that most approa
hes to nonmonotoni
 reasoning

operate under the impli
it assumption that obtaining new pie
es of eviden
e sequen-

tially is equivalent to obtaining them simultaneously; a view that seems too strong to

be appropriate for a general theory of nonmonotoni
 reasoning.

Chapter 5 is 
on
erned with one of the standard methods for 
onstru
ting AGM

belief 
hange; in terms of epistemi
 entren
hment orderings on senten
es of the logi


language to be used. We provide a survey of the �eld, and present a new form of

entren
hment | termed re�ned entren
hment | whi
h does not su�er from the same

drawba
ks as the best known form of epistemi
 entren
hment [G�ardenfors and Makin-

son, 1988, G�ardenfors, 1988℄. Re�ned entren
hment is de�ned semanti
ally, but it 
an

also be 
hara
terised in terms of a set of rationality postulates. Chapter 6 is devoted

to the study of a family of removal operations whi
h are intended as alternatives to

AGM 
ontra
tion; the withdrawal operations. We survey the �eld, and propose the

addition of a new member of this family, known as systemati
 withdrawal. It is de�ned

semanti
ally (in terms of the same set of orderings used to de�ne re�ned entren
hmen-

t), but 
an also be 
hara
terised in terms of a set of rationality postulates. Systemati


withdrawal seems to retain the advantages of most forms of withdrawal, while not be-

ing subje
t to their disadvantages. Some of the results in 
hapters 5 and 6 suggest the

use of a general set of orderings on interpretations whi
h 
an be used to 
onstru
t a

wide variety of entren
hment orderings and withdrawal operations.

In 
hapter 7 we investigate the issue of iterated belief 
hange. We dis
uss the

frameworks re
ently proposed by Darwi
he and Pearl [1994, 1997℄ and Lehmann [1995℄,

as well as the work of Spohn [1988℄ (whi
h had served as inspiration for Darwi
he
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and Pearl), and its generalised version in the form of the transmutations proposed by

Williams [1994℄. Both of the proposed frameworks for iterated belief 
hange operate

on the level of epistemi
 states, and both 
on
entrate on revision. We show that the

extension of the proposal of Darwi
he and Pearl to various forms of withdrawal 
asts

some doubt on the desirability of some of the restri
tions they impose, and we measure

a re
ently proposed version of revision [Papini, 1998, 1999℄ against these frameworks.

Inspired by the semanti
 approa
h of Darwi
he and Pearl, as well as by the work of

Nayak [1994b℄, Nayak et al. [1996℄ and Liberatore and S
haerf [1998℄, we regard the

merging of epistemi
 states as a fruitful area for future resear
h.

Chapter 8 is an attempt at solving a problem that has not re
eived its fair share

of attention in the belief 
hange literature; determining how an agent arrives at a

parti
ular epistemi
 state. Our proposal is to represent the information obtained by

an agent as ordered sequen
es of senten
es, with ea
h one being seen as a pie
e of

information (or an observation) obtained from an independent sour
e. Su
h a sequen
e

of senten
es is referred to as an infobase. The stru
ture of infobases is used to indu
e

the semanti
 stru
tures ne
essary for performing belief 
hange. This pro
ess determines

the appropriate belief set resulting from a 
hange operation, thereby operating on the

knowledge level. A se
ond phase then determines the infobase resulting from the 
hange

operation by weakening the senten
es 
ontained in the original infobase. While infobase


hange 
an be 
ompared with traditional approa
hes to base 
hange [Fuhrmann, 1991,

Hansson, 1989, 1992b, 1993
, 1996℄, it has more in 
ommon with the pseudo-
ontra
tion

operations [Hansson, 1999,p. 334℄ of Nebel [1989, 1990, 1991, 1992℄.

Finally, 
hapter 9 summarises the results presented and points to open problems

and future resear
h. As the title suggests, the main thesis defended in this dissertation

is that semanti
 approa
hes to belief 
hange have proved to be most fruitful in the

past, and will 
ontinue to play su
h a role in future.

1.3 Formal preliminaries

In our investigation of belief 
hange we assume a formal obje
t language L in whi
h the

beliefs of an agent are expressed. We take L to be 
losed under the usual propositional


onne
tives :, ^, _, !, $, and to 
ontain the symbols > and ?. The well-formed

formulas (w�s) of L will be denoted by lower-
ase Greek letters. Furthermore, we

assume L to be equipped with a two-valued model-theoreti
 semanti
s de�ning truth
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and falsity. A (possible-worlds) semanti
s for L is thus an ordered pair (U;
), where U

is a (non-empty) set of interpretations of L, and 
 is a satisfa
tion relation for L. That

is, for the relation 
 from U to L, u 
 � means that � is true in u, or that u satis�es �.

Elements of U will be denoted by lower-
ase Latin letters. The satisfa
tion relation 


is required to behave 
lassi
ally with respe
t to the propositional 
onne
tives. We use

> and ? as 
anoni
al representatives for the logi
ally valid and logi
ally invalid w�s

respe
tively. The set of models M(A) of any set of w�s A is the set of interpretations

satisfying all the w�s in A. That is M(A) = fu 2 U j 8� 2 A, u 
 �g. For � 2 L we

write M(�) instead of M(f�g). We refer to the set U nM(A) as the 
ountermodels of

A.

Su
h a semanti
s allows us to de�ne the notion of semanti
 entailment in the

standard manner. Formally, semanti
 entailment is a binary relation from }L (the

powerset of L) to L, and is de�ned as follows: A � � i� M(A) � M(�). For � 2 L

we write � � � instead of f�g � �, and we abbreviate ; � � as � �. Intuitively,

A � � means that � follows logi
ally from A. The only requirement that we pla
e on

� is that it satis�es 
ompa
tness : A � � i� A

F

� � for some �nite subset A

F

of A.

The entailment relation � is asso
iated with a 
onsequen
e operation Cn. Formally,

Cn is a unary 
onsequen
e operation on }L, and is de�ned in terms of � as follows:

Cn(A) = f� j A � �g. So, intuitively, Cn(A) 
onsists of all the beliefs that follow

logi
ally from A. Whether one uses Cn or � is a matter of preferen
e and 
onvenien
e,

sin
e it is 
lear that � 
an also be de�ned in terms of Cn as follows: A � � i�

� 2 Cn(A).

It should be obvious that the logi
s we 
onsider in
lude all 
lassi
al propositional

logi
s and 
lassi
al �rst-order logi
s (with the �rst-order languages restri
ted to 
losed

w�s). In fa
t, every logi
 we 
onsider 
an be \
onverted" into a propositional logi
,

based on a propositional language PL, in the following sense. De�ne the set of atoms

A

PL

of the propositional language PL in terms of L as A

PL

= L nN

PL

, where

N

PL

=

(

� 2 L

�

�

�

�

�

� = ?, � = >, � = :�, or � = � � 
,

where � 2 f_;^; ;$g and �; 
 2 L

)

.

So A

PL

is the set of w�s of L not having one of the propositional 
onne
tives as its

main 
onne
tive. We refer to A

PL

as the propositional atoms of L. Now, for every

interpretation u 2 U we de�ne a valuation val

u

: A

PL

! fF; Tg as: val

u

(�) = T i�

u 
 �, and we let the set of valuations V of PL be V = fval

u

j u 2 Ug. A satisfa
tion

relation 


V

from V to PL is then obtained re
ursively from V in the standard way:
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1. For every v 2 V , v 


V

> and v 1

V

?.

2. If � 2 A

PL

, then v 


V

� i� v(�) = T .

3. If � = :� then v 


V

� i� v 1

V

�.

4. If � = � _ 
 then v 


V

� i� either v 


V

�, or v 


V


, or both.

5. If � = � ^ 
 then v 


V

� i� both v 


V

� and v 


V


.

6. If � = � ! 
 then v 


V

� i� either v 1

V

�, or v 


V


, or both.

7. If � = � $ 
 then v 


V

� i� either both v 


V

� and v 


V


, or both v 1

V

�

and v 1

V


.

Sin
e the languages PL and L are identi
al, the set of valuations V also provides an

a

eptable semanti
s for L. This is easily veri�ed by observing that the semanti
s

(V;


V

) for L generates exa
tly the same entailment relation � as the semanti
s (U;
)

for L. (A
tually, the in
lusion of 


V

is redundant, sin
e it 
an be obtained from V .)

In fa
t, in any equivalen
e 
lass 
ontaining every semanti
s for L that generates the

same entailment relation �, (V;


V

) o

upies a unique position, sin
e it is the only

semanti
s (up to isomorphism) without elementarily equivalent interpretations. (Two

interpretations x; y are elementarily equivalent i� they satisfy exa
tly the same w�s

of L. That is, x 
 � i� y 
 �, for every � 2 L.) We shall refer to (V;


V

) as the

�-valuation semanti
s for L. In general, we refer to a semanti
s (V;
) for L in whi
h

V is a set of valuations, and in whi
h 
 is obtained from V in the manner des
ribed

above, as a valuation semanti
s for L.

In the belief 
hange literature it is not standard pra
ti
e to start with a semanti


des
ription. Instead, L usually 
omes equipped with an abstra
t 
onsequen
e relation,

denoted by the single turnstile `, in pla
e of the semanti
 entailment relation. The


onsequen
e operation Cn is de�ned in terms of `, and Cn is assumed to satisfy the

following properties:

(In
lusion) A � Cn(A)

(Idempoten
e) Cn(Cn(A)) � Cn(A)

(Monotoni
ity) If A � B then Cn(A) � Cn(B)
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(Supra
lassi
ality) Cn(A) in
ludes every truth-fun
tional tautology and satis�es

Modus Ponens

(Dedu
tion theorem) � 2 Cn(A [ f�g) i� �! � 2 Cn(A)

(Compa
tness) � 2 Cn(A) i� � 2 Cn(A

F

) for some �nite subset A

F

of A

It is easy to show that, with the ex
eption of a single pathologi
al 
ase, the entailment

relations we 
onsider are pre
isely the semanti
 versions of these 
onsequen
e relations.

To see why, note �rstly that the 
onsequen
e operation Cn asso
iated with every en-

tailment relation � we 
onsider, 
learly satis�es the six properties outlined above. And


onversely, from every 
onsequen
e relation ` whose asso
iated 
onsequen
e operation

Cn satis�es these six properties (ex
ept the trivial one for whi
h ` = }L � L), we


an 
onstru
t an appropriate semanti
s for L that will satisfy all the requirements set

out above.

2

Simply take U , the set of interpretations of L, to be the set of maximally


onsistent subsets of L. That is, let

U = fA � L j A 0 ? and 8B � L su
h that A � B, B ` ?g.

The satisfa
tion relation 
 is then de�ned as follows: A 
 � i� � 2 A. It is readily

veri�ed that the semanti
 entailment relation � obtained from 
 behaves exa
tly like

`. Note also that the semanti
s obtained in this way is isomorphi
 to the �-valuation

semanti
s for L.

3

A theory or a belief set is a set K � L 
losed under entailment, i.e. for whi
h

K = Cn(K). A set X � L axiomatises a belief set K i� Cn(X) = K, and X �nitely

axiomatises K i� X is �nite. For every W � U , the theory determined by W is

Th(W ) = f� 2 L j W �M(�)g,

and for u 2 U we write Th(u) instead of Th(fug). A set A � L axiomatises a set

of interpretations W i� M(A) = W . A set A � L is satis�able i� M(A) 6= ;, i�

2

The trivial 
onsequen
e relation ` = }L � L 
an be obtained from a possible-worlds semanti
s

(U;
) with U = ;.

3

The single 
onsequen
e relation ` for whi
h we 
annot obtain a 
orresponding semanti
s is the

trivial one for whi
h every w� follows from every set of w�s, de�ned as ` = }L�L. It is easily veri�ed

that su
h a ` satis�es the six properties above, but allows for no maximally 
onsistent subsets.

Consequently, the set U of interpretations obtained from ` will be empty, something that is not

permitted by our de�nition of a semanti
s.
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Cn(A) 6= Cn(?). For every satis�able subset A of L, � 2 L is A-established (or A-

believed) i� A � �, � is A-unde
ided (or A-neutral) i� A 2 � and A 2 :�, and � is

A-refuted (or A-disbelieved) i� A � :�. For an unsatis�able subset A of L, all the w�s

of L are A-established, while none are A-unde
ided or A-refuted.

The use of the following abbreviations will be 
onvenient. By � � � we understand

that � and � are logi
ally equivalent, i.e. � � � and � � �. For every �nite A;B 2 }L

we write A � B as an abbreviation for f� � � j � 2 A and � 2 Bg where � 2 f_;^g,

:A as an abbreviation for f:� j � 2 Ag,

V

A as an abbreviation for the 
onjun
tion

of all elements in A, with

V

; = >, and

W

A as an abbreviation for the disjun
tion of

all elements in A, with

W

; = ?. For a belief set K and a w� � 2 L, the expansion of

K by � is de�ned as K + � = Cn(K [ f�g).

A binary relation R on any set X is 
onne
ted i� xRy or yRx for every x; y 2 X.

A preorder v (i.e. a re
exive and transitive binary relation) on a set X that is also


onne
ted is 
alled a total preorder . For any preorder v on a set X, we write x < y

i� x v y and y 6v x, x �

v

y i� x v y and y v x, x k

v

y i� x 6v y and y 6v x, and we

let [x℄

v

= fy j x �

v

yg. For every non-empty Y; Z � X, we write Y v Z i� y v z for

every y 2 Y and z 2 Z, Y < Z i� y < z for every y 2 Y and z 2 Z, and Y �

v

Z i�

y �

v

z for every y 2 Y and z 2 Z. And as a limiting 
ase, we set ; < Y for every

non-empty Y � X.

Our examples are usually phrased in propositional languages (
ontaining the usual

propositional 
onne
tives) that are generated by at most three atoms. We use the

letters p, q and r to denote these atoms, and interpretations (or rather valuations) of

the languages will be represented by appropriate sequen
es of 0s and 1s, 0 representing

falsity and 1 representing truth. The 
onvention is that the �rst digit in the sequen
e

represents the truth value of p, the se
ond the truth value of q and the third the truth

value of r.

Sometimes it will be 
onvenient to use transparent propositional languages in our

examples. These are restri
ted versions of �rst-order languages 
ontaining no variables

and no quanti�ers. The propositional atoms of su
h a language are then simply the

�rst-order atoms that 
an be formed from the available predi
ate symbols and terms.

For example, suppose that L is a transparent propositional language 
ontaining the

predi
ate symbols b and f and the two 
onstant symbols t and 
. Then L is generated

from the four propositional atoms b(t), b(
), f(t) and f(
).

For the reader's 
onvenien
e, we provide (without proof) the following well-known
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model-theoreti
 results about the kind of semanti
 setup we 
onsider.

Proposition 1.3.1 Let (U;
) be a possible-worlds semanti
s for L.

1. If � � � then M(�) =M(�).

2. M(>) = U .

3. M(?) = ;.

4. u 2M(�) i� u =2M(:�).

5. M(� ^ �) =M(�) \M(�).

6. M(� _ �) =M(�) _M(�).

7. For every W � U , W � M(Th(W )).

Proposition 1.3.2 Let L be a �nitely generated propositional language and let (V;
)

be a valuation semanti
s for L.

1. For every W � V , W =M(Th(W )).

2. For every W � V there is an �

W

2 L su
h that M(�

W

) =W . That is, every set

of valuations 
an be axiomatised by a w� of L.

The following model-theoreti
 results will also prove to be most useful.

Lemma 1.3.3 Suppose that K is a belief set and that W � M(:�). Then

(M(Th(M(K) [W )) nM(K)) �M(:�).

Proof We only 
onsider the 
ase where W 6= ;, and there is thus a w 2 W su
h

that w 2 M(:�). Let X = M(Th(M(K) [ W )) n M(K), suppose that x 2 X

and assume that x 2 M(�). So there is a � 2 K su
h that x =2 M(�), and then

�! � 2 Th(M(K) [W ) (sin
e � ! � 2 K and W � M(:�)). But this means that

x 2M(�! �), 
ontradi
ting the fa
t that x 2M(�) and x =2M(�). 2

Lemma 1.3.4 Suppose that K is a belief set, � 2 K, W �M(:�), and

X =M(Th(M(K) [W )) nM(K).

Then Th(W ) = Th(X).
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Proof Sin
e W � X, it suÆ
es to show that for every � 2 L, if W � M(�) then X �

M(�). So pi
k a � 2 L and suppose thatW �M(�). Then :� ! � 2 Th(M(K)[W ),

sin
e :� ! � 2 K and W �M(�). Therefore X �M(:� ! �), and then X �M(�)

sin
e X �M(:�) by lemma 1.3.3. 2

Lemma 1.3.5 Let K be a belief set, and suppose that X � M(:�) and W � M(�).

Then M(Th(M(K) [X [W )) \M(:�) =M(Th(M(K) [X)) \M(:�).

Proof We only 
onsider the 
ase where 2 �. Assume that the left-to-right in
lusion

does not hold. So there is a u 2 M(Th(M(K) [ X [W )) \M(:�) su
h that u =2

M(Th(M(K) [X)) \M(:�). There is thus a � su
h that (M(K) [X) � M(�), but

u =2 M(�). Now observe that :� ! � 2 Th(M(K) [ X [W ). But this means that

u 2 M(:� ! �), 
ontradi
ting the fa
t that u 2 M(:�) and u 2 M(:�). The proof

for the right-to-left in
lusion is similar. 2



Chapter 2

AGM theory 
hange

But O the heavy 
hange, now thou art gone,

Now thou art gone, and never must return!

John Milton, Ly
idas, 37

One of the most in
uential 
ontributions to the study of belief 
hange is that of Al-


hourr�on, G�ardenfors and Makinson | the so-
alled AGM approa
h to theory 
hange

| developed in a number of papers in the late 1970s and 1980s [see G�ardenfors, 1978,

1982, 1984, Al
hourr�on and Makinson, 1981, 1985, Al
hourr�on et al., 1985℄. Even

though it is mainly 
on
erned with belief sets, it has be
ome a ben
hmark against

whi
h to test and 
ompare (whether dire
tly or indire
tly) a wide variety of belief


hange operations. AGM theory 
hange takes the epistemi
 state of an agent to be a

belief set [G�ardenfors, 1988,p. 47℄, and aims to give a des
ription of the permissible


hanges to a belief set resulting from the revision by, or the removal of, a single wf-

f.

1

This is a

omplished in terms of two sets of rationality postulates. Formally, we

assume a �xed belief set K, de�ning (belief) removal and revision pertaining to K as

fun
tions from L to }L. Where there is no ambiguity, we shall drop the referen
es

to K. (In later 
hapters it will be ne
essary to view 
hange operations di�erently, as

fun
tions from Bel�L to }L, where Bel is the set of all belief sets.) By an �-removal,

�-revision, �-
ontra
tion, and so on, we mean a removal of � from K, revision of K

by �, a 
ontra
tion of K by �, and so forth.

1

Although the original AGM papers are not ex
lusively 
on
erned with belief sets, the major results

in [Al
hourr�on et al., 1985℄ only hold for belief sets.

17
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By now a whole array of methods have been developed for 
onstru
ting AGM

theory 
hange. In this 
hapter we brie
y dis
uss three 
lassi
al ways of doing so.

When removing a w� � from a belief set K, partial meet 
ontra
tion does so using

the maximal subsets of a belief set K not entailing a w� �, safe 
ontra
tion employs

minimal subsets of K that entail �, and epistemi
 entren
hment makes use of an

ordering of relative entren
hment on w�s. Our treatment of AGM theory 
hange in

this 
hapter 
annot be regarded as 
omplete, primarily be
ause it does not 
ontain a

dis
ussion of semanti
 approa
hes to theory 
hange. We regard the latter as important

enough to devote the whole of 
hapter 3 to it.

2.1 Postulates for AGM theory 
hange

AGM theory 
hange is 
on
erned with a whole spe
trum of rational ways to perform

belief 
hange, and does not provide unique de�nitions for revision and removal. Instead,

a number of postulates are provided with whi
h all removals and revisions are required

to 
omply. The idea is that these are the rational 
hoi
es to be made. As we have seen

in 
hapter 1 on page 7, Levi's 
ommensurability thesis views removal as more primitive

than revision, and it is thus appropriate that we start with the AGM postulates for

belief removal.

(K�1) K � � = Cn(K � �)

(K�2) K � � � K

(K�3) If � =2 K then K � � = K

(K�4) If 2 � then � =2 K � �

(K�5) If � � � then K � � = K � �

(K�6) If � 2 K then (K � �) + � = K

De�nition 2.1.1 A removal is a basi
 AGM 
ontra
tion i� it satis�es (K�1) to (K�6).

We refer to these six postulates as the basi
 AGM 
ontra
tion postulates. 2

The �rst �ve 
ontra
tion postulates together 
onstitute little more than an obvious

expression of the intuition that the AGM trio asso
iate with belief removal. (K�1)
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is the requirement that AGM 
ontra
tion operate on belief sets, while (K�2) ensures

that the 
ontra
tion of a belief set a
tually results in a 
ontra
ted belief set. (K�3) is

a straightforward appeal to the prin
iple of Informational E
onomy in the pathologi
al


ase of 
ontra
tion by a w� that is not in the belief set to begin with. (K�4) ensures

that 
ontra
tion by any w� other than a logi
ally valid one is su

essful, and (K�5) is

a formalisation of the prin
iple of the Irrelevan
e of Syntax. This brings us to (K�6),

the postulate also known as Re
overy. It was originally phrased as follows:

(K�6

0

) K � (K � �) + �

but it is easily veri�ed that these two formulations are equivalent in the presen
e of

(K�1), (K�2), and (K�3).

The Re
overy postulate is an expression of the prin
iple of Informational E
onomy.

It requires of a 
ontra
tion of K by a w� � 2 K to retain so mu
h of K, that it is

possible to re
over the whole of K from an �-expansion of the resulting belief set. The

desirability of the Re
overy postulate is a 
ontentious issue and has evoked a vigorous

debate [see Makinson, 1987, 1997, Hansson, 1991, 1993
, 1996, Levi, 1991, Lindstr�om

and Rabinowi
z, 1991, Niederee, 1991℄. We take up the matter in 
hapter 6, where we

dis
uss belief removals that satisfy all the basi
 AGM 
ontra
tion postulates ex
ept

for Re
overy. In a

ordan
e with a suggestion by Makinson [1987℄, we refer to su
h

removals as withdrawals.

De�nition 2.1.2 A removal is a withdrawal i� it satis�es (K�1) to (K�5). 2

With the ex
eption of (K�5), whi
h involves two logi
ally equivalent w�s, the basi


AGM 
ontra
tion postulates all refer to a �xed w� by whi
h to 
ontra
t a belief set.

Basi
 AGM 
ontra
tion 
an thus be seen as a des
ription of how to 
ontra
t a �xed

belief set K by a �xed w� �. The addition of the two supplementary AGM 
ontra
-

tion postulates below, enfor
es a 
onne
tion between the belief sets obtained during a


ontra
tion of a (�xed) belief set by di�erent w�s.

2

(K�7) (K � �) \ (K � �) � K � (� ^ �)

(K�8) If � =2 K � (� ^ �) then K � (� ^ �) � K � �

De�nition 2.1.3 A removal is an AGM 
ontra
tion i� it satis�es (K�1) to (K�8). 2

2

This matter is dis
ussed in more detail in se
tion 2.2.
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The postulates for revision follow the same pattern as for 
ontra
tion. There are six

basi
 AGM revision postulates.

(K�1) K � � = Cn(K � �)

(K�2) K � � � K + �

(K�3) If :� =2 K then K � � = K + �

(K�4) � 2 K � �

(K�5) If � � � then K � � = K � �

(K�6) ? 2 K � � i� � :�

De�nition 2.1.4 A revision is a basi
 AGM revision i� it satis�es (K�1) to (K�6). 2

(K�1) is the requirement that revision operate on belief sets, while (K�2) pla
es an

appropriate upper bound on the belief set obtained from a revision. (K�3) invokes the

prin
iple of Informational E
onomy for the 
ase where the w� with whi
h to revise is


onsistent with the 
urrent belief set. (K�4) ensures that revision is always su

essful,

and (K�5) expresses the prin
iple of the Irrelevan
e of Syntax. Finally, (K�6) highlights

the di�eren
e beween expansion and revision.

Like (basi
 AGM) 
ontra
tion, basi
 AGM revision 
an be seen as a des
ription of

how to revise a �xed belief set by a �xed w�. To ensure that there is a 
onne
tion

between the revision by di�erent w�s of the same belief set, it is ne
essary to add the

supplementary AGM revision postulates.

(K�7) K � (� ^ �) � (K � �) + �

(K�8) If :� =2 K � � then (K � �) + � � K � (� ^ �)

De�nition 2.1.5 A revision is an AGM revision i� it satis�es (K�1) to (K�8). 2

2.1.1 Conne
tions between 
ontra
tion and revision

A qui
k perusal of all the AGM postulates shows that, with the ex
eption of (K�6)

and (K�6), there are obvious similarities between the AGM 
ontra
tion postulates and

their revision 
ounterparts. G�ardenfors [1988℄ shows that AGM 
ontra
tion and AGM

revision are interde�nable by 
ourtesy of the two identities given below.
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(Def � from �) K � � = (K � :�) + �

(Def � from �) K � � = (K � :�) \K

These identities are known respe
tively as the Levi identity and the Harper identity .

Observe that the Levi identity is a formal expression of Levi's 
ommensurability thesis.

Theorem 2.1.6 1. A revision de�ned in terms of a (basi
 AGM) 
ontra
tion using

(Def � from �) is a basi
 AGM revision.

3

2. A removal de�ned in terms of a basi
 AGM revision using (Def � from �) is a

(basi
 AGM) 
ontra
tion.

3. A revision de�ned in terms of an AGM 
ontra
tion using (Def � from �) is an

AGM revision.

4. A removal de�ned in terms of an AGM revision using (Def � from �) is an AGM


ontra
tion.

What is more, these two identities are also inter
hangeable. That is, if we start with a

theory 
hange operation (satisfying either the six basi
 AGM 
ontra
tion postulates or

the six basi
 AGM revision postulates), and then apply one of these identities, followed

by an appli
ation of the other, we'll be ba
k at the theory 
hange operation that we

started with.

Theorem 2.1.7 [G�ardenfors, 1988℄

1. Let � be a (basi
 AGM) 
ontra
tion, let � be obtained from � using (Def � from

�) and let � be obtained from � using (Def � from �). Then � and � are

identi
al.

2. Let � be a basi
 AGM revision, let � be obtained from � using (Def � from �)

and let > be obtained from � using (Def � from �). Then � and > are identi
al.

So the Levi and Harper identities provide us with a strong form of interde�nability

between 
ontra
tion and revision. The signi�
an
e of this result will be
ome apparent

when we dis
uss the methods for 
onstru
ting AGM theory 
hange.

3

The proof of this part of the theorem does not make use of the Re
overy postulate. This is a

signi�
ant result that will be dis
ussed and exploited in 
hapter 6.
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2.2 Partial meet 
ontra
tion

The �rst method proposed for 
onstru
ting 
ontra
tion operations [Al
hourr�on et al.,

1985℄ is known as partial meet 
ontra
tion.

4

In this approa
h, the 
onstru
tion of an

�-
ontra
tion uses as building blo
ks the maximal subsets of K that do not 
ontain �.

De�nition 2.2.1 A belief set K

0

is an �-remainder (of K) i� K

0

� K, � =2 K

0

and

� 2 K

0

+� for every � 2 K nK

0

. The set of �-remainders of K is denoted by K?�. 2

It is easily seen that K?� = fKg i� � =2 K, and that K?� = ; if � �. Compa
tness

further ensures that K?� = ; only if � �. The partial meet 
ontra
tions are obtained

by pi
king out a set of �-remainders, and taking their interse
tion. Intuitively, we pi
k

the best �-remainders, and then retain those w�s that o

ur in every one of them.

De�nition 2.2.2 A sele
tion fun
tion is a fun
tion s

K

: fK?� j � 2 Lg ! }}K su
h

that ; � s

K

(A) � A for every A 6= ;, and s

K

(;) = fKg. 2

Sele
tion fun
tions are used to de�ne the partial meet 
ontra
tions.

(Def � from s

K

) K � � =

T

s

K

(K?�)

De�nition 2.2.3 A removal is a partial meet 
ontra
tion i� it is de�ned in terms of

a sele
tion fun
tion s

K

using (Def � from s

K

). 2

Theorem 2.2.4 [Al
hourr�on et al., 1985℄ Every removal de�ned in terms of a sele
tion

fun
tion using (Def � from s

K

) is a (basi
 AGM) 
ontra
tion. Conversely, every (basi


AGM) 
ontra
tion 
an be de�ned in terms of a sele
tion fun
tion using (Def � from

s

K

).

The two limiting 
ases of partial meet 
ontra
tion, in whi
h s

K

(�) is either taken as the

set of all �-remainders, or as a single �-remainder, are known as full meet 
ontra
tion

andmaxi
hoi
e 
ontra
tion respe
tively. Clearly there is only one full meet 
ontra
tion,

but many maxi
hoi
e 
ontra
tions. In fa
t, it is easily veri�ed that every basi
 AGM


ontra
tion � 
an be de�ned in terms of a setM of maxi
hoi
e 
ontra
tions, as follows:

(Def � from M) K � � =

T

�2M

K � �

4

Partial meet 
ontra
tion is dire
tly 
on
erned with 
ontra
tion, but the 
orresponding revisions


an, of 
ourse, be obtained in terms of (Def � from �).
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and that full meet 
ontra
tion is obtained whenM 
ontains all the maxi
hoi
e 
ontra
-

tions. Full meet 
ontra
tion thus provides a lower bound on basi
 AGM 
ontra
tion

in the sense that, for any basi
 AGM 
ontra
tion, the belief set obtained from the

�-
ontra
tion of a w� � in
ludes the one obtained from the full meet �-
ontra
tion. It

is also easily veri�ed that full meet 
ontra
tion is an AGM 
ontra
tion (satisfying the

supplementary postulates as well), but that not all of the maxi
hoi
e 
ontra
tions are.

For the 
onstru
tion of AGM 
ontra
tion in terms of (Def � from s

K

), a sele
tion

fun
tion has to be more prin
ipled in its 
hoi
e of �-remainders. This is attained by

imposing a suitable binary relation b on the set of remainders

K?L =

[

fA 2 K?� j � 2 L n Cn(>)g

and de�ning a sele
tion fun
tion from it as follows:

(Def s

K

from b) s

K

(K?�) =

(

fA 2 K?� j B b A, 8B 2 K?�g if 2 �,

fKg otherwise

Intuitively, b is used to obtain the maximal or \best" �-remainders (higher up being

better), and these are the ones pi
ked out by the sele
tion fun
tion.

De�nition 2.2.5 A partial meet 
ontra
tion is 
alled relational i� it is de�ned in

terms of a sele
tion fun
tion s

K

(using (Def � from s

K

)), where s

K

is de�ned in terms

of a relation b using (Def s

K

from b). If b is transitive, the partial meet 
ontra
tion

is 
alled transitively relational , and if b is 
onne
ted as well as transitive (whi
h means

that it is a total preorder), it is 
alled 
onne
tively relational . 2

It turns out that all relational partial meet 
ontra
tions satisfy (K�7), and that the

transitively relational partial meet 
ontra
tions, the 
onne
tively relational partial meet


ontra
tions, and the AGM 
ontra
tions 
oin
ide exa
tly.

Theorem 2.2.6 [G�ardenfors, 1988℄ A removal is an AGM 
ontra
tion i� it is a tran-

sitively relational partial meet 
ontra
tion, i� it is a 
onne
tively relational partial meet


ontra
tion.

It is worth noting that not every relation b on K?L 
an su

eed in produ
ing a

sele
tion fun
tion using (Def s

K

from b). By de�nition, a sele
tion fun
tion has to

produ
e non-empty sets of �-remainders for every K?�. So (Def s

K

from b) will yield

a sele
tion fun
tion only if, for every � that is not logi
ally valid, there are elements of
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K?� that are at least as good, in terms ofb, as all the elements ofK?�. And it is easy

to verify that not every relation on K?L, nor even every transitive relation on K?L,

has this property. Any irre
exive relation serves as an obvious 
ounterexample. In

fa
t, not even all the total preorders have this property. In this 
ase, a 
ounterexample

is provided by 
onsidering a total preorder b that 
ontains an in�nitely as
ending


hain of elements of K?�. This restri
tion of the appli
ation of (Def s

K

from b) to

well-behaved relations also explains the (seemingly) surprising result that the set of

transitively relational partial meet 
ontra
tions and the set of 
onne
tively relational

partial meet 
ontra
tions are identi
al. For it is a 
onsequen
e of this result that

the sele
tion fun
tions de�ned in terms of the total preorders using (Def s

K

from

b) 
oin
ide with the sele
tion fun
tions de�ned in terms of the transitive relations

using (Def s

K

from b). And this is the 
ase be
ause both the ill-behaved transitive

relations and the ill-behaved total preorders are simply not taken into 
onsideration in

the de�nition of the sele
tion fun
tions. The obvious question to 
onsider is whether

it is possible to give a dire
t des
ription of a set of transitive relations on K?L that

are well-behaved, in the sense that they indu
e sele
tion fun
tions when using (Def s

K

from b), and 
an be used to 
onstru
t all the AGM 
ontra
tions. Su
h a des
ription

would provide a sharper version of theorem 2.2.6. In se
tion 3.2 we shall see that this


an be done.

2.3 Epistemi
 entren
hment

The basi
 idea behind epistemi
 entren
hment is that some of our beliefs are more

�rmly entren
hed than others, and we would thus be more willing to give up the latter

w�s than the former if we are for
ed to 
hoose. In the view of G�ardenfors and Makinson

[1988℄ and G�ardenfors [1988℄, an epistemi
 entren
hment ordering should be subje
t

to the following set of postulates (with w�s higher up in the ordering being more

entren
hed):

(EE1) v

EE

is transitive.

(EE2) If � � � then � v

EE

�

(EE3) For all �; � 2 K, � v

EE

� ^ � or � v

EE

� ^ �

(EE4) If K 6= Cn(?) then � =2 K i� � v

EE

� for all �
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(EE5) If � v

EE

� for all � then � �

De�nition 2.3.1 A binary relation v

EE

on L is an EE-ordering (an epistemi
 en-

tren
hment ordering) with respe
t to a belief set K i� it satis�es (EE1) to (EE5).

2

(EE1) seems to be a reasonable 
ondition to impose on a relation that quali�es as

an ordering. (EE2) requires that logi
ally weaker w�s be more entren
hed, whi
h

makes perfe
t sense on
e we realise that it is impossible to remove a w� from a belief

set without removing all the logi
ally stronger w�s as well. The inno
ent-looking

postulate (EE3) turns out to be very powerful indeed. It is the 
ornerstone of the


ontroversial property that every EE-ordering is a total preorder. In 
hapter 5 we


onsider entren
hment orderings that are not total preorders. Finally, (EE4) and (EE5)

are minimality and maximality 
onditions respe
tively. (EE4) states that all the w�s

not in K are equally entren
hed, but less entren
hed than the w�s in K. And (EE5)

(together with (EE2)) requires the logi
ally valid w�s to be equally entren
hed, but

more entren
hed than all the other w�s.

From results in [G�ardenfors and Makinson, 1988℄, AGM 
ontra
tion and epistemi


entren
hment are interde�nable by means of the following two identities:

(Def � from v

EE

) K � � =

(

K \ f� j � <

EE

� _ �g if � 2 K, and 2 �,

K otherwise

(Def v

EE

from �) � v

EE

� i� � =2 K � (� ^ �) or � � ^ �

Theorem 2.3.2 1. A removal is an AGM 
ontra
tion i� it is de�ned in terms of

an EE-ordering using (Def � from v

EE

).

2. A binary relation on L is an EE-ordering i� it is de�ned in terms of an AGM


ontra
tion using (Def v

EE

from �).

In fa
t, as we shall see in 
hapter 3, these identities are inter
hangeable in the sense

that moving from an EE-ordering to an AGM 
ontra
tion and ba
k (or vi
e versa),

brings us ba
k to where we started.
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2.3.1 Plausibility orderings

Grove [1988℄ presents a 
lass of plausibility orderings on w�s. The set of postulates he

uses to des
ribe these orderings bears some resemblan
e to that for the EE-orderings.

(GE1) v

GE

is 
onne
ted

(GE2) v

GE

is transitive

(GE3) If � � � _ 
 then � v

GE

� or 
 v

GE

�

(GE4) If K 6= Cn(?) then :� =2 K i� � v

GE

� for all � 2 L

5

(GE5) � :� i� � v

GE

� for all � 2 L

De�nition 2.3.3 A binary relation v

GE

on L is a GE-ordering (with respe
t to a

belief set K) i� it satis�es (GE1) to (GE5). 2

Grove then de�nes AGM revision in terms of the GE-orderings as follows:

6

(Def � from v

GE

) � 2 K � � i�

(

(� ^ �) <

GE

(� ^ :�) if 2 :�,

� 2 L otherwise

Theorem 2.3.4 [Grove, 1988℄ Every GE-ordering de�nes an AGM revision using (Def

� from v

GE

). Conversely, every AGM revision 
an be de�ned in terms of a GE-ordering

using (Def � from v

GE

).

5

Grove [1988℄ does not in
lude the 
ondition that K 6= Cn(?) in (GE4), but without it some of

his results (Theorem 4, p. 164) do not hold for an unsatis�able K. G�ardenfors [1988℄ gives the same

formulation as Grove, but his result about the relation between epistemi
 entren
hment orderings

and the Grove orderings (Lemma 4.27, p. 96) only holds if the above 
ondition is in
luded. The

proposal of Boutilier [1992, 1994℄ to re
tify the formulation of (GE4) is to ex
lude the 
ondition that

K 6= Cn(?), as well as the reverse dire
tion of our version of (GE4). But this is too weak, and it


an be shown that it destroys the desired relationship between the Grove orderings and the epistemi


entren
hment orderings of G�ardenfors and Makinson.

6

Grove's de�nition of revision in [1988℄ in terms of G-orderings does not in
lude the 
ase where

� :�, and neither does the de�nition of G�ardenfors [1988℄, but it is 
learly a ne
essary part of the

de�nition. For if � is logi
ally invalid, then K � � = Cn(?), by (K�6). But, sin
e both � ^ � and

� ^ :� are then also logi
ally invalid for every �, it follows from (GE5) that (� ^ �) 6<

GE

(� ^ :�).
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Grove des
ribes the GE-orderings as measures of relative importan
e, and they have

also been des
ribed as orderings of plausibility [Boutilier, 1992℄. However, (GE4) seems

to be at odds with both these epistemi
 interpretations of the GE-orderings, for in both

these 
ases, one would expe
t the w�s in K to be more important, or more plausible

than, all the w�s not in K. And yet (GE4) requires of every w� whose negation is not

in K to be as important, or as plausible, as the w�s in K. We return to this issue in


hapter 5.

G�ardenfors [1988℄ shows that the resemblan
e between the postulates for the EE-

orderings and the GE-orderings is not just 
oin
idental, and that the GE-orderings are

dual to the EE-orderings in the following sense:

(Def v

E

from v

G

) � v

E

� i� :� v

G

:�

Theorem 2.3.5 [G�ardenfors, 1988℄ A relation on w� is an EE-ordering i� it 
an be

de�ned in terms of a GE-ordering using (Def v

E

from v

G

).

From (GE2) it follows that logi
ally equivalent w�s are equally plausible, and the GE-

orderings 
an thus be de�ned in terms of the EE-orderings in a manner analogous to

that in (Def v

E

from v

G

):

(Def v

G

from v

E

) � v

G

� i� :� v

E

:�

2.4 Safe 
ontra
tion

Safe 
ontra
tion was originally introdu
ed by Al
hourr�on and Makinson [1981, 1985℄.

Intuitively, the idea is to identify w�s in the belief set K that 
annot be blamed for

a w� � being in K. When 
ontra
ting K by �, these w�s should all be retained, i.e.,

they are safe with respe
t to a 
ontra
tion by �. The belief set resulting from an

�-
ontra
tion is then taken to be the belief set generated by the w�s that are safe with

respe
t to �. To determine the w�s that are safe with respe
t to �, we �rst need to


onsider the minimal subsets of K that entail �, dubbed the entailment sets for �.

De�nition 2.4.1 B is an entailment set for � (with respe
t to K) i� B � K and

B � �, but B n f�g 2 � for every � 2 B. We denote the set of entailment sets of � by

K>�. 2
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Note that K>� = ; i� � � or � =2 K. We also need to introdu
e a binary relation on

the w�s in K, subje
t to 
ertain 
onditions.

De�nition 2.4.2 A binary relation<

H

on K is a hierar
hy (over K) i� for every �nite

sequen
e �

1

; : : : :�

n

of w�s in K, if �

i

<

H

�

i+1

for 1 � i < n, then �

n

6<

H

�

1

. 2

A hierar
hy over K 
an be seen as an indi
ation of the reliability of the w�s in K, with

those higher up being more reliable. As su
h, it is not unlike an epistemi
 entren
hment

ordering with respe
t to K. W�s in K that are safe with respe
t to � are taken to be

those that are not minimal elements (with respe
t to <

H

) of any of the entailments

sets for �. In other words, the w�s in K that are not safe with respe
t to �, are those

that o

ur as the least reliable members of some entailment set for �. We denote the

w�s that are safe with respe
t to � (and a hierar
hy <

H

) by K=�. That is:

(Def K=� from <

H

) K=� =

(

� 2 K

�

�

�

�

�

8B 2 K>� su
h that � 2 B;

9
 2 B su
h that 
 <

H

�

)

K=� is then used to de�ne safe 
ontra
tion.

(Def � from <

H

) K � � =

(

Cn(K=�) where K=� is de�ned in terms of <

H

using (Def K=� from <

H

)

De�nition 2.4.3 A removal � is a safe 
ontra
tion i� it is de�ned in terms of a

hierar
hy <

H

using (Def � from <

H

). 2

Al
hourr�on and Makinson [1985℄ show that every safe 
ontra
tion is a (basi
 AGM)


ontra
tion. In [1986℄, they also provide a 
onne
tion with AGM 
ontra
tion for the


ase where K is �nitely axiomatisable. To do so, they impose stri
ter 
onditions on

hierar
hies.

De�nition 2.4.4 A hierar
hy over K

1. 
ontinues up i� the following holds for every �; �; 
 2 K: if � <

H

� and � � 


then � <

H


,

2. 
ontinues down i� the following holds for every �; �; 
 2 K: if � � � and � <

H




then � <

H


,

3. is regular i� it 
ontinues up and down, and
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4. is virtually 
onne
ted i� the following holds for every �; �; 
 2 K: if � <

H

� then

� <

H


 or 
 <

H

�.

2

They show that if K is �nitely axiomatisable, the removals de�ned in terms of the

regular virtually 
onne
ted hierar
hies using (Def � from <

H

) are pre
isely the AGM


ontra
tions. Rott [1992b℄ extends this to the general 
ase as well.

Theorem 2.4.5 A removal � is a safe 
ontra
tion de�ned in terms of a regular vir-

tually 
onne
ted hierar
hy using (Def � from <

H

) i� it is an AGM 
ontra
tion.

In 
hapter 3 we delve deeper into the 
onne
tion between safe 
ontra
tion and other

methods for 
onstru
ting AGM 
ontra
tion.
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Chapter 3

Semanti
 belief 
hange

`When I use a word,' Humpty Dumpty said

in rather a s
ornful tone, `it means just what

I 
hoose it to mean | neither more nor less.'

Lewis Carrol, Ali
e's Adventures in Wonderland

One of the 
entral themes of this dissertation is to emphasise the fundamental role that

semanti
 approa
hes play in belief 
hange. In this 
hapter we take the initial steps in

the justi�
ation of su
h a 
laim. We 
ommen
e with the introdu
tion of a notion

of semanti
 information and its relation to a possible-worlds semanti
s for L. This

is followed by a dis
ussion of semanti
 approa
hes to AGM theory 
hange, in whi
h

the 
entral idea is that of a preorder on the interpretations of L. We point out the

strong links between su
h semanti
 approa
hes and the methods for 
onstru
ting AGM

theory 
hange that were dis
ussed in 
hapter 2. With the aid of our theory of semanti


information, we argue that the preorders on interpretations 
an be transformed into

preorders on the basi
 units of belief of an agent, and that it is appropriate to use these

orderings as representations of the epistemi
 states of an agent. In this and in later


hapters, su
h a representation of epistemi
 states will prove to be most fruitful.

31



32 CHAPTER 3. SEMANTIC BELIEF CHANGE

3.1 Semanti
 
ontent and infatoms

One of the assumptions en
ountered in 
hapter 2 is the representation of an epistemi


state as a belief set. This de
ision has a number of asso
iated problems, one of the

most basi
 obje
tions being that the elements of a belief set are linguisti
 in nature.

In our view, an epistemi
 state ought to 
onsist of non-linguisti
 entities from whi
h

the beliefs asso
iated with the epistemi
 state 
an be determined. And sin
e it is the

semanti
s of the language that determines the meaning of the w�s in the language,

the interpretations of the language (the elements of U) are usually used as the basi


building blo
ks of epistemi
 states. This is the basis for the representations used by

many authors [Harper, 1977, Grove, 1988, Katsuno and Mendelzon, 1991, Morreau,

1992, Peppas and Williams, 1995, Darwi
he and Pearl, 1997℄. Su
h representations

have proved to be very useful in a wide variety of situations, and mu
h of the work

dis
ussed in this and later 
hapters are based on the idea of an epistemi
 state as a

set of interpretations. But if we think of the elements of an epistemi
 state as obje
ts

from whi
h (linguisti
) beliefs are built up, the use of interpretations does not seem to

be quite satisfa
tory. For it is diÆ
ult to see how an interpretation 
an be 
onsidered

as a basi
 part of a belief expressed as a w� in L.

1

It is with this obje
tion in mind that we propose the use of infatoms as the basi


units of an epistemi
 state. Intuitively, infatoms are the basi
 independent pie
es of

information from whi
h the beliefs of an agent (expressed as w�s of L) are built up. In

this view, the information 
ontained in a belief, and in a belief set, is a set of infatoms.

More infatoms thus 
orrespond to a set of beliefs that 
ontains more information and

is logi
ally stronger. Infatoms are independent in the sense that it is only the set of all

infatoms that 
ontains too mu
h information, leading an agent to in
lude all w�s in its

set of beliefs. Any stri
t subset of the set of all infatoms 
orresponds to a satis�able

set of beliefs.

Sin
e the notion of an epistemi
 state is so 
entral to the study of belief 
hange,

it seems more appropriate to use a semanti
s based on infatoms when 
onstru
ting

belief 
hange operations. Although we give a formal des
ription of infatoms and an

infatom semanti
s below, we shall express most of the formal work on semanti
 belief

1

In fa
t, it makes more sense to do it the other way round and think of an interpretation (or rather,

a valuation) as being built up from a set of w�s. As we have seen in se
tion 1.3, this is a standard

way of 
onstru
ting a semanti
s that is isomorphi
 to the �-valuation semanti
s for L.
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hange in this, and indeed in later 
hapters, in terms of a possible-worlds semanti
s.

There are two reasons for this. Firstly, semanti
 des
riptions of belief 
hange have

thus far 
on
entrated on the use of a possible-worlds semanti
s. (In fa
t, with a few

ex
eptions, su
h as [Lindstr�om, 1991℄, the emphasis has been pla
ed on a semanti
s that

is isomorphi
 (or identi
al) to a valuation semanti
s for L.) And se
ondly, we'll show

that there is su
h a 
lose te
hni
al asso
iation between infatoms and interpretations

(and valuations in parti
ular), that a swit
h from interpretations to infatoms is merely

a matter of regarding an interpretation as its asso
iated infatom. In order to formalise

this relationship, we now pro
eed with a formal expli
ation of a semanti
s for L based

on infatoms.

Infatoms are generalised semanti
 versions of the 
ontent elements of Carnap and

Bar-Hillel [1952, 1953℄, and as su
h, are quite di�erent from Keith Devlin's [1991℄

infons, although the latter is also des
ribed as basi
 bits of information. Formally, an

infatom is a fun
tion i from A

PL

, the set of propositional atoms of L (see se
tion 1.3),

to the set fI; Eg. The intuition is that infatoms are independent bits of information

from whi
h the information 
ontained in the w�s of L are built up. An infatom i sends

a propositional atom � to I if i is In
luded in the information 
ontained in �, and i

sends � to E if i is Ex
luded from the information 
ontained in �.

De�nition 3.1.1 Given a set Inf of infatoms, the 
ontent relation Æ from Inf to L is

then de�ned re
ursively as follows:

1. for every i 2 Inf, i 6Æ > and i Æ ?,

2. if � 2 A

PL

, then i Æ � i� i(�) = I,

3. if � = :� then i Æ � i� i 6Æ �,

4. if � = � _ 
 then i Æ � i� i Æ � and i Æ 
,

5. if � = � ^ 
 then i Æ � i� either i 
 � or i Æ 
, or both,

6. if � = � ! 
 then i Æ � i� i 6Æ � and i Æ 
, and

7. if � = � $ 
 then i Æ � i� either both i 6Æ � and i Æ 
, or both i Æ � and

i 6Æ 
.

2



34 CHAPTER 3. SEMANTIC BELIEF CHANGE

The semanti
 
ontent of a set of w�s A, denoted by C(A), is de�ned as

C(A) = fi 2 Inf j 9� 2 A su
h that i Æ �g.

For a w� � 2 L, we write C(�) instead of C(f�g). So the semanti
 
ontent of A


onsists of all the infatoms that are part of the information 
ontained in at least one

of the w�s in A. We shall refer to su
h infatoms as the 
ontent bits of A. Conversely,

for an infatom i, A is said to be i-
ontaining i� i is a 
ontent bit of A. An infatom

semanti
s for L is an ordered pair (Inf;Æ), where Inf is a set of infatoms and Æ is the


ontent relation of de�nition 3.1.1. The theory generated by a set of infatoms I � Inf

is de�ned as Th(I) = f� j C(�) � Ig. That is, Th(I) 
ontains all the w�s whose


ontents bits are in
luded in I. Our �rst result about infatoms is given without proof.

Proposition 3.1.2 Let (Inf;Æ) be an infatom semanti
s for L.

1. C(� ^ �) = C(�) [ C(�).

2. C(� _ �) = C(�) \ C(�).

It turns out that there is a natural way to asso
iate a unique infatom semanti
s with

every possible-worlds semanti
s, and to asso
iate a unique valuation semanti
s with

every infatom semanti
s.

De�nition 3.1.3 1. Given a possible-worlds semanti
s (U;
) for L, the asso
iated

infatom semanti
s for L is de�ned as (Inf;Æ), where Inf = fi

u

j u 2 Ug, Æ is

obtained as in de�nition 3.1.1, and for every u 2 U , the asso
iated infatom i

u

is

de�ned as follows: for every � 2 A

PL

, i

u

(�) = I i� u 1 �.

2. Given an infatom semanti
s (Inf;Æ) for L, the asso
iated valuation semanti
s

(V;
) based on valuations is de�ned as (V;
), where V = fv

i

j i 2 Infg, 


is obtained in the standard way (see se
tion 1.3), and for every i 2 Inf, the

asso
iated valuation v

i

is de�ned as follows: for every � 2 A

PL

, v

i

(�) = T i�

i 6Æ �.

2

De�nition 3.1.3 is justi�ed by propositions 3.1.5 and 3.1.6 below. They, in turn, rely

heavily on the following lemma.
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Lemma 3.1.4 1. Let (U;
) be a possible-worlds semanti
s and let (Inf;Æ) be the

asso
iated infatom semanti
s for L. For every � 2 L and every u 2 U , i

u

2 C(�)

i� u =2M(�).

2. Let (Inf;Æ) be an infatom semanti
s and let (V;
) be the valuation semanti
s

asso
iated with (Inf;Æ). For every � 2 L and every i 2 Inf, v

i

2 M(�) i�

i =2 C(�).

Proof Both proofs follow by indu
tion on the stru
ture of the w�s of L, and appli
a-

tions of de�nition 3.1.3. 2

Proposition 3.1.5 establishes some 
onne
tions between interpretations and infatoms.

Proposition 3.1.5 Let (U;
) be a possible-worlds semanti
s and let (Inf;Æ) be the

asso
iated infatom semanti
s for L.

1. A � � i� M(A) � M(�) i� C(A) � C(�).

2. Th(C(A)) = Th(M(A)).

3. � � i� M(�) = U i� C(�) = ;.

4. C(A) = Inf n fi

u

j u 2M(A)g.

5. If W � U and I = fi

w

j w 2 Wg then Th(W ) = Th(Inf n I).

6. Th(M(A) [ fug) = Th(C(A) n fi

u

g).

7. If u 2 U then

Th(M(A) n fw j is elementarily equivalent to ug) = Th(C(A) [ fi

u

g).

Proof 1. Suppose that M(A) � M(�) and pi
k any i

u

2 C(�). Now assume that

i

u

=2 C(A). That is, for every � 2 A, i

u

=2 C(�). Then, by lemma 3.1.4, u 2M(�)

for every � 2 A, and therefore u 2 M(A). But by supposition, u 2M(�), and by

lemma 3.1.4, i

u

=2 C(�); a 
ontradi
tion. Conversely, suppose that C(�) � C(A)

and pi
k any u 2M(A). Now assume that u =2 M(�). By lemma 3.1.4, i

u

2 C(�).

So i

u

2 C(A), and there is thus an � 2 A su
h that i

u

2 C(�). But by lemma

3.1.4, u =2M(�), 
ontradi
ting the supposition that u 2M(A).
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2. � 2 Th(C(A)) i� C(�) � C(A) i� M(A) � M(�) (by part (1) above) i� � 2

Th(M(A)).

3. It follows easily from the de�nitions of M(�) and C(�) that M(�) = U i� � �

and that C(�) = ; i� � �.

4. Pi
k an i

u

2 C(A). So, there is an � 2 A su
h that i

u

2 C(�). By lemma 3.1.4,

u =2 M(�). So u =2 M(A), and thus i

u

2 Inf n fi

v

j v 2 M(A)g. Conversely,

suppose that i

u

2 Inf n fi

v

j v 2 M(A)g. Then u =2 M(A), and there is thus

an � 2 A su
h that u =2 M(�). Hen
e, by lemma 3.1.4, i

u

2 C(�). Therefore

i 2 C(A).

5. Suppose that W � U and I = fi

w

j w 2 Wg, and pi
k an � 2 Th(W ). So

W � M(�). Now assume that � =2 Th(Inf n I). That is, C(�) * Inf n I. In

other words, there is an i

u

2 C(�) su
h that i

u

2 I. So u 2 W and by lemma

3.1.4, u =2 M(�), 
ontradi
ting the fa
t that W � M(�). Conversely, suppose

that � 2 Th(Inf n I). So C(�) � Inf n I. Now assume that � =2 Th(W ). Then

W * M(�), and there is thus a w 2 W su
h that w =2 M(�). So i

w

2 I, and by

lemma 3.1.4, i

w

2 C(�), thus 
ontradi
ting the fa
t that C(�) � Inf n I.

6. Pi
k any � 2 Th(M(A)[fug). That is, M(A)[fug �M(�). It suÆ
es to show

that C(�) � C(A) n fi

u

g. So pi
k any i

v

2 C(�). By lemma 3.1.4, v =2 M(�),

and this means that v =2M(A) [ fug. So u 6= v (and hen
e i

u

6= i

v

) and there is

an � 2 A su
h that v =2 M(�). By lemma 3.1.4 it then follows that i

v

2 C(�),

and thus that i

v

2 C(A). The required result then follows from the fa
t that

i

u

6= i

v

. Conversely, pi
k any � 2 Th(C(A) n fi

u

g). That is C(�) � C(A) n fi

u

g.

It suÆ
es to show thatM(A)[fug � M(�). So pi
k any v 2M(A)[fug. Then

either v = u (and hen
e i

u

= i

v

), or v 2 M(�) for every � 2 A. In the former


ase i

v

=2 C(�), and in the latter 
ase, it follows by lemma 3.1.4 that i

v

=2 C(�)

for every � 2 A, and thus that i

v

=2 C(A). So either way, i

v

=2 C(�), and hen
e,

by lemma 3.1.4, v 2M(�).

7. Pi
k any � 2 Th(M(A) n fw j w is elementarily equivalent to ug). That is,

M(A) n fw j w is elementarily equivalent to ug �M(�). It suÆ
es to show that

C(�) � C(A) [ fi

u

g. So pi
k any i

v

2 C(�). By lemma 3.1.4, v =2 M(�). And

this means that v =2 M(A) n fw j w is elementarily equivalent to ug. So either
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v is elementarily equivalent to u (and hen
e i

u

= i

v

), or there is an � 2 A su
h

that v =2M(�). In the former 
ase it obviously follows that i

v

2 C(A)[fi

u

g, and

in the latter 
ase it follows by lemma 3.1.4 that i

v

2 C(�). But then i

v

2 C(A),

whi
h means we are done. Conversely, pi
k any � 2 Th(C(A) [ fi

u

g). That is,

C(�) � C(A) [ fi

u

g. It suÆ
es to show that

M(A) n fw j w is elementarily equivalent to ug �M(�).

So pi
k any v 2 M(A) n fw j w is elementarily equivalent to ug. Then v 2M(�)

for every � 2 A. By lemma 3.1.4, i

v

=2 C(�) for every � 2 A. Therefore

i

v

=2 C(A). Furthermore i

v

6= i

u

, for if i

v

= i

u

, it would have meant that v is

elementarily equivalent to u, 
ontradi
ting the fa
t that v 2 M(A) n fw j w is

elementarily equivalent to ug. And thus i

v

=2 C(�), whi
h means, by lemma 3.1.4,

that v 2M(�).

2

Part (1) of proposition 3.1.5 shows us that semanti
 entailment 
an also be de�ned in

terms of infatoms. A w� � is semanti
ally entailed by a set of w�s A i� the 
ontent

bits of A in
ludes all the 
ontent bits of �. This enables us to de�ne a notion of

axiomatisability for sets of infatoms. A set of w�s A axiomatises a set of infatoms I

i� C(A) = I. The intuition is along the same lines as the axiomatisability of sets of

interpretations; both provide synta
ti
 des
riptions of a semanti
 
on
ept.

Of parti
ular interest in the proposition above are the last two parts. Part (6)

shows that adding an interpretation to the models of a set of w�s A is the same as

removing its asso
iated infatom from the semanti
 
ontent of A. Part (7) shows that the

removal, from the models of A, of all interpretations that are elementarily equivalent

to an interpretation u is the same as adding u's asso
iated infatom to the semanti



ontent of A.

The next proposition draws parallels between valuations and infatoms.

Proposition 3.1.6 Let (Inf;Æ) be an infatom semanti
s and let (V;
) be the valua-

tion semanti
s asso
iated with (Inf;Æ).

1. M(A) = V n fv

i

j i 2 C(A)g.

2. If I � Inf and W = fw

i

j i 2 Ig then Th(I) = Th(V nW ).



38 CHAPTER 3. SEMANTIC BELIEF CHANGE

3. Th(C(A) [ fig) = Th(M(A) n fv

i

g).

4. Th(C(A) n fig) = Th(M(A) [ fv

i

g).

Proof 1. v

i

2 M(A) i� v

i

2 M(�) for every � 2 A, i� i =2 C(�) for every � 2 A

(by lemma 3.1.4), i� i =2 C(A), i� v

i

2 V n fw

i

j i 2 C(A)g.

2. Suppose that I � Inf and W = fw

i

j i 2 Ig. Now pi
k any � 2 Th(I). That

is, C(�) � I. It suÆ
es to show that V nW � M(�). So pi
k any w

i

2 V nW .

By the de�nition of W it follows that i =2 I. But this means that i =2 C(�), and

by lemma 3.1.4, that w

i

2 M(�). Conversely, pi
k any � 2 Th(V nW ). That

is, V nW � M(�). It suÆ
es to show that C(�) � I. So pi
k an i =2 I. By the

de�nition of W it follows that w

i

2 V nW . But then w

i

2 M(�), and by lemma

3.1.4, i =2 C(�).

3. The proof is very similar to the proof of part (7) of proposition 3.1.5 and is

omitted.

4. The proof is very similar to the proof of part (6) of proposition 3.1.5 and is

omitted.

2

These results 
learly show that there is a strong 
onne
tion between interpretations

and valuations on the one hand, and infatoms on the other.

The 
onne
tion between infatoms and the 
ontents elements of Carnap and Bar-

Hillel [1952, 1953℄ is easily established as follows. Let L be the language of a �nitely

generated propositional logi
, generated by the atoms p

1;

: : : ; p

n

and let (V;


V

) be the


lassi
al valuation semanti
s for L (i.e., V 
ontains all possible valuations). Now, let

(Inf;Æ) be the asso
iated infatom semanti
s for L. It is well known that a valuation

v 2 V 
an be axiomatised by a 
onjun
tion of literals

V

n

i=1

l

i

, where l

i

2 fp

i

;:p

i

g.

That is, M (

V

n

i=1

l

i

) = fvg. These 
onjun
tions are 
alled state des
riptions. From

part (4) of proposition 3.1.5 it then follows that C(: (

V

n

i=1

l

i

) = fi

v

g). That is, the

negation of the state des
ription of v axiomatises the infatom asso
iated with v. And

it is pre
isely these negations of the state des
riptions that are the 
ontent elements of

Carnap and Bar-Hillel.
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From the dis
ussion above it is 
lear that every entailment relation � for L 
an

be obtained from a unique valuation semanti
s (V;
) and a unique infatom seman-

ti
s (Inf;Æ), and that (V;
) is the valuation semanti
s asso
iated with (Inf;Æ) and

(Inf;Æ) is the infatom semanti
s asso
iated with (V;
). It is therefore appropriate to


onsider (V;
) and (Inf;Æ) as dual to ea
h other. It is also 
lear that, like valuations

and unlike interpretations, there 
an never be two distin
t infatoms i and j that are

elementarily equivalent in the sense that they are 
ontent bits of exa
tly the same

w�s (i.e. Th(i) = Th(j)). So valuations and infatoms have the same grainsize, with

interpretations (possibly) being �ner grained than either valuations or infatoms. From

an information-theoreti
 point of view, it seems reasonable to appeal to the Prin
iple

of the Identity of Indis
ernibles, thereby disallowing the elementarily equivalen
e of

distin
t infatoms:

(Identity of Indis
ernibles) Obje
ts that 
annot be distinguished from one another

should be regarded as identi
al.

Given the 
lose 
onne
tion between interpretations and valuations on the one hand, and

infatoms on the other, we shall frequently �nd it 
onvenient to refer to interpretations

as infatoms. In parti
ular, when referring to an interpretation u 2 U as an infatom,

we a
tually have in mind the infatom i

u

asso
iated with u. While this 
onvention

introdu
es some ambiguity, it should 
ause no 
onfusion, and will aid in brevity.

3.2 A semanti
s for theory 
hange

The 
onstru
tion of basi
 AGM 
ontra
tion in terms of partial meet 
ontra
tion 
an

easily be 
onverted into a semanti
 des
ription of basi
 AGM theory 
hange. Grove

[1988℄ pointed out that it is just a matter of realising that the �-remainders are obtained

by adding single models of :� to the models of K.

Proposition 3.2.1 Let 2 � and � 2 K.

1. If u 2M(:�) then Th(M(K) [ fug) 2 K?�.

2. If A 2 K?� then A = Th(M(K) [ fug) for some u 2M(:�).

Proof For (1) pi
k any u 2M(:�). Clearly, Th(M(K) [ fug) � K and Th(M(K) [

fxg) 2 �. Now pi
k any � 2 K su
h that Th(M(K) [ fug) 2 �, and thus u =2 M(�).
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By lemma 1.3.3, Th(M(K) [ fug) + � = Th(M(K) \M(�)) = K, and so � 2 K =

Th(M(K) [ fug) + �.

For (2) pi
k any A 2 K?�. Be
ause A 2 �, there is a u 2 M(A) su
h that

u 2 M(:�), and there is thus a W � U su
h that W \ M(K) = ;, u 2 W and

A = Th(M(K) [ W ) � Th(M(K) [ fug). If A � Th(M(K) [ fug) then there is

a � 2 Th(M(K) [ fug), and therefore � 2 K, su
h that � =2 A. But then A +

� = Th(M(K) [ W ) + � � Th(M(K) [ fug) + � = Th(M(K) [ fug). And sin
e

� =2 Th(M(K) [ fug), it also follows that � =2 A + �, 
ontradi
ting the fa
t that

A 2 K?�. 2

If L has a valuation semanti
s, then there is a one-to-one 
orresponden
e between the

elements of M(:�) and the elements of K?�. In general however, di�erent elements

of M(:�) may determine the same element of K?�. From an information-theoreti


viewpoint, an �-remainder is obtained by removing one of the 
ontent bits of � from

the semanti
 
ontent of K.

Proposition 3.2.1 gives us a way to 
hara
terise the partial meet 
ontra
tions seman-

ti
ally. Instead of a fun
tion sele
ting a subset of the remainders of K after removing

�, we have a fun
tion sele
ting a subset of the models of :� to be added to the models

of K. We 
all su
h a fun
tion a semanti
 sele
tion fun
tion.

De�nition 3.2.2 A fun
tion sm

K

: L ! }U is a semanti
 sele
tion fun
tion i� the

following holds:

1. If � � � then sm

K

(�) = sm

K

(�) and

2. if � =2 K or � � then sm

K

(�) = ;, otherwise ; � sm

K

(�) �M(:�).

2

Basi
 AGM theory 
hange 
an then be de�ned in terms of semanti
 sele
tion fun
tions

as follows:

(Def � from sm

K

) K � � = Th(M(K) [ sm

K

(�))

(Def � from sm

K

) K � � =

(

Th(sm

K

(:�)) if :� 2 K and 2 :�,

K + � otherwise
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Theorem 3.2.3 1. A removal de�ned in terms of a semanti
 sele
tion fun
tion

using (Def � from sm

K

) is a basi
 AGM 
ontra
tion. Conversely, every basi


AGM 
ontra
tion 
an be de�ned in terms of a semanti
 sele
tion fun
tion using

(Def � from sm

K

).

2. A revision de�ned in terms of a semanti
 sele
tion fun
tion using (Def � from

sm

K

) is a basi
 AGM revision. Conversely, every basi
 AGM revision 
an be

de�ned in terms of a semanti
 sele
tion fun
tion using (Def � from sm

K

).

Proof The proof 
an be found in appendix A. 2

Information-theoreti
ally, theorem 3.2.3 tells us that if the semanti
 
ontent of K


ontains all the 
ontent bits of � and � is not logi
ally valid, then �-
ontra
tion is

obtained by removing some of the 
ontent bits of � from the semanti
 
ontent of K.

Similarly, if the semanti
 
ontent of K 
ontains all the 
ontent bits of :�, and :� is

not logi
ally valid, then an �-revision is obtained by adding all 
ontent bits of � to

the semanti
 
ontent of K, and removing some of 
ontent bits of :�. So basi
 AGM


ontra
tion involves the removal of 
ontent bits of �, while basi
 AGM revision means

adding all the 
ontent bits of �, and removing some 
ontent bits of :�.

For a semanti
 
onstru
tion of AGM theory 
hange, it is ne
essary to approa
h

matters in a more systemati
 fashion. It turns out that the use of preorders on the

interpretations of L, subje
t to 
ertain restri
tions, will do the tri
k. The �rst expli
-

itly semanti
 method for 
onstru
ting AGM revision (satisfying all eight of the AGM

revision postulates) is due to Grove [1988℄, who uses a generalised version of Lewis'

[1973℄ sphere-semanti
s for 
ounterfa
tuals. Grove's systems of spheres are based on

the maximally satis�able subsets of L. By 
onsidering these sets as interpretations of

L, we obtain a (possible-worlds) semanti
s for L that is isomorphi
 to the �-valuation

semanti
s for L. Let us denote by [A℄ the set of maximally satis�able extensions of a set

of w�s A � L, and that of a single w� � 2 L by [�℄. When viewed as interpretations,

the elements of [A℄ are thus the models of A. A system of spheres (
entred on K) is

a 
olle
tion S of subsets of [>℄, the set of all maximally satis�able subsets of L, that

satisfy the following 
onditions:

(S1) S is totally ordered by set-in
lusion

(S2) [K℄ is the �-minimum of S
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(S3) [>℄ 2 S

(S4) If any element of S interse
ts [�℄, then there is a smallest element of S doing so

Letting S

min

(�) be the smallest element of S interse
ting [�℄, AGM revision 
an then

be de�ned in terms of S as follows:

(Def � from S) K � � =

(

T

([�℄ \ S

min

) if [�℄ = ;,

L otherwise

Theorem 3.2.4 [Grove, 1988℄ Every system of spheres de�nes an AGM revision using

(Def � from S). Conversely, every AGM revision 
an be de�ned in terms of a system

of spheres using (Def � from S).

With [>℄ viewed as the set of interpretations of L, it is not diÆ
ult to see that a system

of spheres 
orresponds to a preorder on U , subje
t to a number of 
onditions. (S1)

ensures that the preorder is total, (S2) requires that the models of K all be equally


omparable and stri
tly below the 
ountermodels of K, and (S3) ensures that the

preorder is de�ned on the whole of U . The purpose of (S4) is to retain only those total

preorders for whi
h the set of minimal models of every w� (that is not logi
ally invalid)

is non-empty. From a suggestion by Katsuno and Mendelzon [1991℄, we refer to su
h

preorders as faithful. For reasons that will be
ome 
lear, our de�nition applies to all

the preorders on U and not just the total preorders.

De�nition 3.2.5 Let � be any preorder on U .

1. If W � U then any v 2 W is �-minimal in W i� for every w 2 W , w � v. We

denote the set of �-minimal elements of M(�) by Min

�

(�).

2. For a W � U , � is W -smooth i� for every w 2 W there is a v � w su
h that v

is �-minimal in W .

3. � is smooth i� it is M(�)-smooth for every �.

2

4. A preorder � on U is faithful (with respe
t to a belief set K) i� � is smooth,

x � y for every x 2M(K) and y =2M(K), and x � y for every x; y 2M(K). For

an X � L, we say that � is X-faithful i� � is faithful with respe
t to Cn(X).

2

Smoothness is also known as stopperedness [Makinson, 1989℄ and the limit assumption [Lewis,

1973℄.
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2

Grove regards su
h preorders as measures of the 
ompatibility of an interpretation with

the 
urrent beliefs of an agent, whilst interpretations lower down in the preorder are

regarded as more 
ompatible. Revision is then de�ned in terms of a faithful preorder

by letting the minimal models of a w� � (the models of � that are most 
ompatible

with the 
urrent beliefs of the agent) generate the belief set resulting from a revision

by �.

(Def � from �) K � � = Th(Min

�

(�))

This approa
h is a bit more general than Grove's sphere-semanti
s, sin
e faithful total

preorders 
an be imposed on the interpretations of any (possible-worlds) semanti
s

(U;�) for L, and not just the interpretations obtained from a system of spheres. In

fa
t, Grove's result 
an be seen as the spe
ial 
ase in whi
h elementarily equivalent

interpretations form part of the same equivalen
e 
lass (modulo the faithful total pre-

order). With the aid of (Def � from �) and (Def � from �), obtaining a de�nition of


ontra
tion in terms of faithful preorders is also a straightforward matter:

(Def � from �) K � � = Th(M(K) [Min

�

(:�))

And as expe
ted, the use of faithful total preorders 
hara
terises AGM theory 
hange.

Theorem 3.2.6 1. Every faithful total preorder de�nes an AGM 
ontra
tion using

(Def � from �). Conversely, every AGM 
ontra
tion 
an be de�ned in terms of

a faithful total preorder using (Def � from �).

2. Every faithful total preorder de�nes an AGM revision using (Def � from �).

Conversely, every AGM revision 
an be de�ned in terms of a faithful total preorder

using (Def � from �).

Proof This result is essentially the same as a result of Peppas and Williams [1995℄.

The proof draws heavily on similar results in [G�ardenfors, 1988℄ and [Grove, 1988℄. For

the reader's 
onvenien
e, we provide the 
omplete proof in appendix A. 2

A re
urring theme throughout this dissertation is the advo
ation of orderings on

infatoms as an adequate representation of epistemi
 states in many 
ontexts. One

of the reasons for advan
ing this 
laim is that, in many respe
ts, su
h orderings seem
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to lie at the heart of the 
onstru
tion of belief 
hange operations. Here is the �rst

formal argument in support of su
h a 
laim. We show that the AGM 
ontra
tion and

revision de�ned in terms of the same faithful total preorder 
an also be de�ned in terms

of ea
h other using the Levi and Harper identities.

De�nition 3.2.7 An AGM 
ontra
tion � and an AGM revision � are semanti
ally

related i� they 
an de�ned in terms of the same faithul total preorder using (Def �

from �) and (Def � from �). 2

The notion of semanti
 relatedness will be extended, as we pro
eed, to various 
on-

stru
tions involving faithful preorders.

Proposition 3.2.8 Let � be an AGM 
ontra
tion and � an AGM revision that are

semanti
ally related.

1. � 
an also be de�ned in terms of � using (Def � from �).

2. � 
an also be de�ned in terms of � using (Def � from �).

Proof Let � be a faithful total preorder in terms of whi
h � and � 
an be de�ned

using (Def � from �) and (Def � from �). The proof of (1) is trivial and is omitted.

For the proof of (2), it suÆ
es to show that Th(Min

�

(�)) = Th(M(K)[Min

�

(�))+�.

If :� 2 K, it follows from lemma 1.3.4, and if :� =2 K, it follows from the fa
t that

Min

�

(�) �M(K). 2

When viewed as orderings on infatoms, a faithful total preorder 
an be seen as a

way of ordering the basi
 units of information a

ording to their entren
hment (or

importan
e, or 
redibility), with an infatom higher up in the ordering 
onsidered as

more entren
hed. Re
all from part (1) of proposition 3.1.6 that the models of K


orrespond to the infatoms that do not form part of the semanti
 
ontent of K, and

from part (4) of proposition 3.1.5 that the 
ountermodels of K 
orrespond exa
tly

to the 
ontent bits of K. So a faithful total preorder pla
es the 
ontent bits of K

stri
tly above the remaining infatoms, whi
h are all pla
ed on the same level. The

a

ompanying intuition is 
lear. The 
ontent bits of K are more entren
hed than the

infatoms not forming part of the semanti
 
ontent of K.
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3.2.1 The propositional �nite 
ase

In the 
ontext of theory 
hange, Katsuno and Mendelzon [1991℄ seem to have been the

�rst to make the transition from Grove's sphere-semanti
s to faithful total preorders.

They investigate theory revision for the simpli�ed 
ase of the �nitely generated 
las-

si
al propositional logi
s (for whi
h (U;�) is the �-valuation semanti
s for L). This

simpli�
ation ensures that all belief sets 
an be axiomatised by single w�s, and a

ord-

ingly, this is the way they 
hoose to represent belief sets. That is, a belief set K is

represented by any w� � su
h that Cn(�) = K. For them, a revision is thus a fun
tion

from L to L. They provide four basi
 revision postulates, and two supplementary ones.

(KM�1) � 2 Cn(� � �)

(KM�2) If :� =2 Cn(�) then Cn(� � �) = Cn(� ^ �)

(KM�3) If Cn(�) = Cn( ) and � � � then Cn(� � �) = Cn( � �)

(KM�4) If 2 :� then ? =2 Cn(� � �)

(KM�5) Cn(� � (� ^ �)) � Cn((� � �) ^ �)

(KM�6) If :� =2 Cn(� � �) then Cn((� � �) ^ �) � Cn(� � (� ^ �))

It is easy to see that these postulates are just the AGM revision postulates phrased to

�t in with their representation of belief sets. (KM�1) 
orresponds to (K�2), (KM�2)

is a 
ombination of (K�3) and (K�4), (KM�3) 
orresponds to (K�5), and (KM�4)


ombined with (KM�1) give (K�6). Furthermore, (KM�5) and (KM�6) respe
tively


orrespond to (K�7) and (K�8).

The method that Katsuno and Mendelzon employ to 
onstru
t revisions involves

the faithful total preorders on U . They use the term faithful to refer to an assignment

of total preorders to every w� � (representing the belief set Cn(�)), with �

�

satisfying

the following three 
onditions:

1. If u; v 2M(�) then u �

�

v.

2. If u 2M(�) and v =2M(�) then u �

�

v.

3. If � �  then �

�

= �

 

.
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We shall refer to these as the KM-faithful total preorders. Sin
e U is �nite, every total

preorder on U is smooth, and so �

�

is 
learly a faithful total preorder (with respe
t to

Cn(�)). In their view, a KM-faithful total preorder is an indi
ation of minimal 
hange

(of some sort) on interpretations, a suggestion that is more or less in line with Grove's

idea of a measure of 
ompatability. They pro
eed to show that the postulates (KM�1)

to (KM�6) 
hara
terise AGM revision.

Theorem 3.2.9 [Katsuno and Mendelzon, 1991℄ A revision satis�es the postulates

(KM�1) to (KM�6) i� there is a KM-faithful total preorder �

�

su
h that M(� � �) =

Min

�

�

(�).

3.2.2 Semanti
 AGM revision without smoothness

The reason for in
luding smoothness as one of the properties of the faithful preorders

is that the la
k thereof opens the door for the possibility that a w� � (whi
h is not

logi
ally invalid) need not have any minimal models. In su
h 
ases, the use of (Def �

from �) to de�ne revision will result in the violation of (K�2) and (K�6). Apparently

Boutilier [1990, 1994℄ �rst noti
ed that it is possible to do away with smoothness.

His idea 
an be explained as follows. When dealing with total preorders, a la
k of

smoothness only 
auses problems for an �-revision if � is not logi
ally invalid and �

doesn't have minimal models. And this 
an only o

ur if there is an in�nite des
ending


hain of models of �. In su
h situations it makes sense to obtain the belief set resulting

from an �-revision by a simple extension of minimality. Instead of taking a w� � to

be in K � � i� � is true in all the minimal models of �, we allow � into K � � i� there

is some level in the total preorder, below whi
h all models of � are also models of �.

Boutilier's setup di�ers from ours in a number of aspe
ts. He 
asts L, the language

in whi
h an agent expresses his beliefs, into a propositional modal framework, and his


onstru
tion for de�ning revision is phrased in terms of modal operators. But it easy

to see that, in e�e
t, he 
onsiders the same logi
s as we do, and that his de�nition of

revision 
orresponds to (Def � from B) below. Let us refer to a preorder on U (with

respe
t to a belief set K) as B-faithful i� the following two 
onditions hold:

1. If u; v 2M(K) then u � v.

2. If u 2M(K) and v =2M(K) then u � v.
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So a preorder is faithful i� it is B-faithful and smooth. Boutilier's de�nition of revision

in terms of a B-faithful total preorder � then looks as follows:

(Def � from B) � 2 K�� i�

 

8w 2M(�), 9v � w su
h that v 2M(�) \M(�),

and 8u 2M(�) su
h that u � v, u 2M(�)

!

Boutilier shows that this 
onstru
tion 
an be used to de�ne AGM revision.

Theorem 3.2.10 [Boutilier, 1994℄ Every B-faithful total preorder de�nes an AGM

revision using (Def � from B). Conversely, every AGM revision 
an be de�ned in terms

of a B-faithful total preorder using (Def � from B).

It is easily veri�ed that, for the faithful total preorders, the identities (Def � from

�) and (Def � from B) are equivalent, and Boutilier's 
onstru
tion is thus 
learly an

extension of the minimal model semanti
s for revision.

3.3 Orderings as epistemi
 states

Re
all from 
hapter 1 that the epistemi
 state of an agent has to be represented in a

way that, at the very least, ensures the extra
tion of the beliefs of the agent, as well

as the information needed to perform reasoning in a 
oherent fashion. In the 
ontext

of AGM theory 
hange, the latter in
ludes the information to de
ide whi
h of the

permissible AGM theory 
hange operations to use. Semanti
ally, it is thus suÆ
ient to

represent an epistemi
 state as an ordered pair (K;�), where K is a belief set and � is

a faithful total preorder. We shall see that su
h a representation be
omes parti
ularly

apt when we adopt an information-theoreti
 view of the faithful preorders, where an

infatom higher up in the ordering is regarded as more entren
hed. For the moment

though, we 
on
entrate on matters more formal, and dis
uss the 
onne
tion between

semanti
 AGM theory 
hange and the three 
onstru
tion methods dis
ussed in 
hapter

2. It turns out that the use of faithful total preorders is already impli
itly 
ontained

in transitively (and 
onne
tively) relational partial meet 
ontra
tion, safe 
ontra
tion

and epistemi
 entren
hment. In fa
t, there is a very strong 
onne
tion between the

faithful total preorders, the orderings used for the 
onstru
tion of the transitively

(and 
onne
tively) relational partial meet 
ontra
tions, the epistemi
 entren
hment

orderings, and the hierar
hies used by safe 
ontra
tion. Coupled with the prin
iple

of Redu
tionism, these results provide support for the proposal to represent epistemi


states semanti
ally.
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3.3.1 Semanti
 epistemi
 entren
hment

From an information-theoreti
 point of view it seems natural to be able to extend

the faithful total preorders to orderings on the w�s of L. The basi
 idea is simply

to lift a faithful total preorder (on infatoms) in a sensible way to a power order (an

ordering on sets of infatoms). Be
ause every w� is asso
iated with a parti
ular set

of infatoms | its semanti
 
ontent | we 
an view the ordering on sets of infatoms

as an ordering on w�s. The question of de
iding what 
onstitutes a sensible way of

lifting a faithful total preorder is, of 
ourse, largely dependent on the stated purpose

of su
h an ordering on w�s. Re
all from se
tion 2.3 that the intuition asso
iated with

an epistemi
 entren
hment ordering is that w�s lower down are less entren
hed, and

should be given up more easily. So epistemi
 entren
hment pla
es the emphasis on

what should be dis
arded rather than on what should be retained. We 
an thus think

of the level of entren
hment of a w� as being determined by its least entren
hed 
ontent

bits. A

ordingly, it seems reasonable to regard � as at least as entren
hed as � i�

every 
ontent bit of � is at least as entren
hed as some 
ontent bit of �. It is in this

spirit that we de�ne the power order v in terms of a preorder � on the infatoms of L

as follows:

� v � i� for every j 2 C(�) there is an i 2 C(�) su
h that i � j.

It turns out that the model-theoreti
 version of this de�nition applied to the faithful

total preorders yields pre
isely the EE-orderings of se
tion 2.3.

(Def v

E

from �) � v

E

� i� 8y 2M(:�) 9x 2M(:�) su
h that x � y

This follows from the relationship between the GE-orderings and the EE-orderings

dis
ussed in se
tion 2.3.1, and results in [Grove, 1988, G�ardenfors, 1988, Boutilier,

1992, 1994℄, showing that the GE-orderings 
an be de�ned in terms of the faithful

total preorders as follows:

(Def v

G

from �) � v

G

� i� 8y 2M(�) 9x 2M(�) su
h that x � y

Theorem 3.3.1 1. Every faithful total preorder de�nes a GE-ordering using (Def

v

G

from �). Conversely, every GE-ordering 
an be de�ned in terms of a faithful

total preorder using (Def v

G

from �).
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2. Every faithful total preorder de�nes an EE-ordering using (Def v

E

from �).

Conversely, every EE-ordering 
an be de�ned in terms of a faithful total preorder

using (Def v

E

from �).

Proof 1. The proof draws heavily on results of Grove [1988℄, G�ardenfors [1988℄,

Boutilier [1992, 1994℄. For the reader's 
onvenien
e, we provide a 
omplete proof

in appendix A.

2. Follows from part (1) and theorem 2.3.5.

2

With the help of part (1) of theorem 3.3.1, the GE-orderings 
an be de�ned in terms

of AGM revision as follows:

(Def v

GE

from �) � v

GE

� i� :� =2 K � (� _ �) or :� =2 K or � :�

Proposition 3.3.2 Let � be an AGM revision. The relation de�ned in terms of �

using (Def v

GE

from �) is a GE-ordering.

Proof Let � be a faithful total preorder from whi
h � is obtained using (Def � from

�), and 
onsider the GE-ordering v

GE

de�ned in terms of � using (Def v

G

from �).

We show that � v

GE

� i� :� =2 K � (� _ �) or :� =2 K or � :�. We only 
onsider

the 
ase where :� 2 K and 2 �. Suppose that � v

GE

�. So, for every y 2 M(�)

there is an x 2 M(�) su
h that x � y. And hen
e, for every y 2 Min

�

(�) there is

an x 2 Min

�

(�) su
h that x � y. It thus follows that Min

�

(�) � Min

�

(� _ �). So

Min

�

(� _ �) * M(:�) and therefore :� =2 K � (� _ �). Conversely, suppose that

:� =2 K � (� _ �). Then there is an x 2 Min

�

(� _ �) su
h that x 2M(�). So, x � y

for every y 2M(�) and therefore � v

GE

�. 2

A reasonable interpretation of part (2) of theorem 3.3.1 is that one should think of

the EE-orderings as being derived from the faithful total preorders. This view is also

supported by an appeal to the prin
iple of Redu
tionism, sin
e every EE-ordering is

built up from an ordering on infatoms in mu
h the same way that the entailment

relation � is built up from the interpretations of L (or from the infatoms of L). And

it is in line with the 
laim that orderings on infatoms are adequate representations of

the epistemi
 states of an agent. What is more, there is a strong 
onne
tion between

the AGM 
ontra
tion and the EE-ordering de�ned in terms of the same faithful total

preorder, mu
h along the lines of proposition 3.2.8.



50 CHAPTER 3. SEMANTIC BELIEF CHANGE

De�nition 3.3.3 An AGM 
ontra
tion and an EE-ordering are semanti
ally related

i� they 
an de�ned in terms of the same faithul total preorder using (Def � from �)

and (Def v

E

from �). 2

Proposition 3.3.4 Let � be an AGM 
ontra
tion and v

EE

an EE-ordering that are

semanti
ally related.

1. � 
an also be de�ned in terms of v

EE

using (Def � from v

EE

).

2. v

EE


an also be de�ned in terms of � using (Def v

EE

from �).

Proof Let � be a faithful total preorder in terms of whi
h � and v

EE

are de�ned

using (Def � from �) and (Def v

E

from �).

1. We need to show that if � 2 K n Cn(>) then � 2 K � � i� � 2 K and � <

EE

(�_�) (the remaining 
ase is trivial). It suÆ
es to show thatMin

�

(:�) �M(�)

i� � <

EE

�_�. Now, Min

�

(:�) �M(�) i� y 2 M(�) for every y 2 Min

�

(:�),

i� there is a y 2M(:�) su
h that x 2M(�_�) for every x � y, i� �_� 6v

EE

�,

i� � <

EE

� _ �.

2. We need to show that if 2 � then � v

EE

� i� � =2 K � (� ^ �) (the remaining


ase is trivial). Suppose that � v

EE

�. So, for every y 2 M(:�) there is an

x 2 M(:�) su
h that x � y. In parti
ular, for every y 2 Min

�

(:�) there is

an x 2 M(:�) su
h that x � y. So Min

�

(:�) � Min

�

(:(� ^ �)) and thus

� =2 K � (� ^ �). Conversely, suppose that � =2 K � (� ^ �). Then there is a

z 2 M(K) [Min

�

(:(� ^ �)) su
h that z 2 M(:�). And sin
e z � y for every

y 2M(:�), it follows that � v

EE

�.

2

3.3.2 The 
onne
tion with relational partial meet 
ontra
tion

With proposition 3.2.1 at our disposal, it be
omes 
lear that the use of faithful total

preorders 
an be tra
ed ba
k to the 
onstru
tion of relational partial meet 
ontra
tions

(see se
tion 2.2). Re
all that the relational partial meet 
ontra
tions are 
onstru
ted

with the aid of a binary relation b on the set of all remainders

K?L = fA 2 K?� j � 2 L n Cn(>)g.
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Intuitively, b is seen as an ordering, with elements \higher up" in the relation being

regarded as \better". To obtain a related ordering on interpretations, we reinterpret

b as (the inverse of) a relation, not on remainders, but on the 
orresponding inter-

pretations, in the sense of proposition 3.2.1. Sin
e proposition 3.2.1 just applies to

�-remainders where � 2 K nCn(>), we use b restri
ted to (K?L)nfKg. (Re
all that

K?� = fKg i� � =2 K.) It is easily veri�ed from proposition 3.2.1 that the interpreta-

tions 
orresponding to the elements of (K?L) n fKg are pre
isely the 
ountermodels

of K. The 
orresponding relation � on U is then de�ned as follows:

(Def � from b) u� v i�

8

>

<

>

:

Th(M(K) [ fvg) b Th(M(K) [ fug)

if u; v =2 M(K),

u 2M(K) otherwise.

So � orders the 
ountermodels of K inversely to the way b orders the 
orresponding

elements of K?L, puts the models of K stri
tly below the 
ountermodels of K, and

pla
es all the models of K equally low down in the ordering. Now de�ne a removal �

in terms of � as follows:

(Def � from �) K � � = Th(M(K) [ fu 2M(:�) j u� v 8v 2M(:�)g)

That is, instead of taking the interse
tion of the \best" �-remainders (in terms of b)

to obtain an �-
ontra
tion, we add the \best" models of :� (in terms of �) to M(K)

and take K�� to be the 
orresponding theory. Under the proviso that the fun
tion s

K

de�ned in terms of b using (Def s

K

from b) is indeed a sele
tion fun
tion, it is easily

veri�ed that � is identi
al to the partial meet 
ontra
tion de�ned in terms of s

K

using

(Def � from s

K

). Furthermore, the set of faithful total preorders is 
learly a stri
t

subset of the transitive relations (and indeed of the total preorders) on U de�ned in

terms of the transitive relations (and the total preorders respe
tively) on K?L using

(Def� from b). And most importantly, every faithful total preorder � is well-behaved

in the sense that the removal de�ned in terms of � using (Def � from �) is an AGM


ontra
tion. This observation enables us to answer a question posed in se
tion 2.2. To

obtain a set of relations on K?L that are well-behaved in the sense that the fun
tions

they indu
e using (Def s

K

from b) are sele
tion fun
tions, and for whi
h these sele
tion

fun
tions de�ne all the AGM 
ontra
tions when using (Def � from s

K

), we simply need

to obtain the relations on K?L 
orresponding to the faithful total preorders. They are

obtained as follows. First we 
onsider the set 
ontaining every faithful total preorder �
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in whi
h all elementarily equivalent interpretations form part of the same equivalen
e


lass (modulo �). Then we show how to obtain the appropriate 
orresponding relation

b on K?L from su
h a faithful total preorder �:

(Def b from �) A b B i�

8

>

>

>

>

<

>

>

>

>

:

w � v 8v; w =2M(K) su
h that

Th(M(K) [ fvg) = A and Th(M(K) [ fwg) = B

if A;B 6= K,

B = K otherwise.

It is easily veri�ed that b is a total preorder, and that the fun
tion s

K

de�ned in terms

ofb using (Def s

K

fromb) is a sele
tion fun
tion. So the 
ontra
tion� de�ned in terms

of s

K

using (Def � from s

K

) is an AGM 
ontra
tion. In fa
t, it is easily veri�ed that

� is the same 
ontra
tion as the one de�ned in terms of � using (Def � from �). So

this set of total preorders on K?L is the set of well-behaved relations on K?L referred

to in se
tion 2.2. They are all well-behaved in the sense that the fun
tions indu
ed

from them using (Def s

K

from b) are all sele
tion fun
tions. Furthermore, it follows

indire
tly from theorem 3.2.4 that all the AGM 
ontra
tions 
an be de�ned in terms

of these sele
tion fun
tions using (Def � from s

K

). And analogous to the situation

with the faithful total preorders and the EE-orderings, an appeal to the prin
iple of

Redu
tionism provides support for the 
laim that the faithful total preorders are more

fundamental than the 
orresponding total preorders on K?L.

We 
on
lude with a semanti
 view of full meet 
ontra
tion and maxi
hoi
e 
ontra
-

tion, the two limiting 
ases of partial meet 
ontra
tion mentioned in se
tion 2.2. From

the dis
ussion above it is 
lear that full meet 
ontra
tion is obtained semanti
ally (using

(Def � from �)) from the faithful total preorder on interpretations in whi
h the 
oun-

termodels of K are all equally 
omparable. Intuitively, this 
orresponds to the most


autious form of 
ontra
tion in whi
h all 
ontent bits of K are equally entren
hed.

On the other hand, those maxi
hoi
e 
ontra
tions that are also AGM 
ontra
tions,

are obtained from the faithful total preorders in whi
h the ordering restri
ted to the


ountermodels of K is linear. The intuitive reading of these orderings 
orresponds

to the boldest forms of 
ontra
tion, in that we are able to distinguish between the

entren
hment of all the 
ontent bits of K.
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3.3.3 Safe 
ontra
tion

Rott [1992b℄ des
ribes a very strong 
onne
tion between the EE-orderings and the

regular virtually 
onne
ted hierar
hies (see de�nition 2.4.4). Re
all from theorem 2.4.5

that the AGM 
ontra
tions 
an be de�ned in terms of the regular virtually 
onne
ted

hierar
hies (over K) using (Def � from <

H

). A 
loser look at virtual 
onne
tivity

shows that when it is applied to a hierar
hy, it yields the stri
t version of a total

preorder on K. So the stri
t version of every EE-ordering, restri
ted to K, is thus

a virtually 
onne
ted hierar
hy. What is more, it is easily veri�ed that every stri
t

version of an EE-ordering restri
ted to K is also regular. So every stri
t version of an

EE-ordering 
an also be used as a regular virtually 
onne
ted hierar
hy to de�ne an

AGM 
ontra
tion using (Def � from <

H

). In a slight abuse of notation we sometimes

use the term EE-ordering to refer to the stri
t version <

EE

of an EE-ordering v

EE

.

Of 
ourse, v

EE


an easily be obtained from <

EE

as follows:

v

EE

= <

EE

[ f(�; �) j � 6<

EE

� and � 6<

EE

�g.

Rott shows the following remarkable 
onne
tion between the EE-orderings, the reg-

ular virtually 
onne
ted hierar
hies, and AGM 
ontra
tion. Every regular virtually


onne
ted hierar
hy <

H

de�nes an EE-ordering as follows:

(Def <

EE

from <

H

) � <

EE

� i� there is a B � K su
h that B � �, and for every

A � K su
h that A � �, it is the 
ase that A 6= ;, and for every Æ 2 B there is a


 2 A su
h that 
 <

H

Æ

Furthermore, the regular virtually 
onne
ted hierar
hies de�ning the same EE-ordering

<

EE

in
ludes <

EE

itself, and are pre
isely those that de�ne the same AGM 
ontra
tion

as well. And �nally, every EE-ordering yields the same AGM 
ontra
tion, whether used

as an EE-ordering, or as a regular virtually 
onne
ted hierar
hy. These results from

Rott [1992b℄ are summarised in the following theorem.

Theorem 3.3.5 1. Let <

H

be a regular virtually 
onne
ted hierar
hy. The relation

de�ned in terms of <

H

using (Def <

EE

from <

H

) is the stri
t version of an

EE-ordering.

2. Two regular virtually 
onne
ted hierar
hies de�ne the same AGM 
ontra
tion

using (Def � from <

H

) i� they also de�ne the same stri
t version of an EE-

ordering using (Def <

EE

from <

H

).
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3. Let <

EE

be the stri
t version of an EE-ordering v

EE

. If the regular virtually


onne
ted hierar
hy, obtained by restri
ting <

EE

to K, is applied to (Def <

EE

from <

H

), the resulting relation is identi
al to <

EE

.

4. Let <

H

be a regular virtually 
onne
ted hierar
hy, and let <

EE

be the stri
t version

of the EE-ordering v

EE

, where the former is de�ned in terms of <

H

using (Def

<

EE

from <

H

). Then the AGM 
ontra
tions de�ned in terms of <

H

using (Def

� from <

H

) is identi
al to the AGM 
ontra
tion de�ned in terms of v

EE

using

(Def � from v

EE

).

So every AGM 
ontra
tion � 
an be de�ned in terms of an equivalen
e 
lass H of

regular virtually 
onne
ted hierar
hies using (Def � from <

H

), with H 
ontaining a

unique EE-ordering <

EE

. Given these results, it seems reasonable to regard <

EE

as

the 
anoni
al hierar
hy from whi
h � is obtained, espe
ially sin
e <

EE

is also the

EE-ordering de�ned in terms of every element of H using (Def <

EE

from <

H

).

3.3.4 Summary

We 
on
lude this dis
ussion with a summary of the semanti
 
onne
tions between AGM


ontra
tion and revision, the EE-orderings, the GE-orderings and the regular virtually


onne
ted hierar
hies.

3

Centre stage is o

upied by the faithful total preorders, from

whi
h all these belief 
hange related operations and orderings 
an be obtained. To be

able to draw the 
onne
tions properly, it is ne
essary to work with equivalen
e 
lasses

of faithful total preorders.

De�nition 3.3.6 Two faithful preorders � and 4 are said to be minimal-equivalent

i� Th(Min

�

(�)) = Th(Min

4

(�)) for every � 2 L. 2

For the �nitely generated propositional logi
s, no two di�erent faithful total preorders

will be minimal-equivalent, but as the next example shows, this is not so in the general


ase.

Example 3.3.7 Let L be the propositional language generated by the set of proposi-

tional atoms fp

i

j i � 0g, and with the standard valuation semanti
s (V;
) in whi
h

V 
ontains all possible valuations. Furthermore, let

3

The orderings on remainders en
ountered in se
tion 3.3.2 are too 
losely related to the faithful

total preorders to be mentioned separately.
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u 1111 : : : u 1111 : : :

V n fu; v; wg

w 01111 : : :

6

6

6

v 0000 : : :

v 0000 : : :

V n fu; v; wg

w 01111 : : :

6

6

6

The faithful total preorder � The faithful total preorder 4

Figure 3.1: The faithful total preorders used in example 3.3.7. The faithful total

preorders � and 4 are obtained from the re
exive transitive 
losures of the relations

determined by the arrows.

1. u denote the valuation that assigns the value T to all atoms, i.e. u(p

i

) = T for

every i � 0,

2. v denote the valuation that assigns the value F to all atoms, i.e. v(p

i

) = F for

every i � 0,

3. w denote the valuation that assigns the value T to all atoms ex
ept p

0

, i.e.

w(p

i

) = T for every i > 0, and w(p

0

) = F .

Now let � be the total preorder that pla
es u on its own on the lowest level, followed

by all the remaining valuations, ex
ept v and w, on the next level, followed by v on the

next level, and followed by w on the highest level. Also, let 4 be the total preorder

that is identi
al to �, ex
ept that v and w ex
hange positions. Figure 3.1 
ontains

a graphi
al representation of these two total preorders. Clearly, both � and 4 are

K-faithful total preorders, where K = Cn(fp

i

j i � 0g). Furthermore, it is also easily
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veri�ed that neither v nor w are minimal models of any w� � 2 L. And it thus follows

that � and 4 are minimal-equivalent. 2

Although an equivalen
e 
lass of minimal-equivalent faithful total preorders may 
on-

tain a large number of di�erent total preorders, they all have the same relative ordering

of the minimal models of every w� in L. For if the minimal models of a w� � are at

least as low as the minimal models of � in terms of one member � of su
h an equiv-

alen
e 
lass, but not in terms of some other member 4 of the same equivalen
e 
lass,

the minimal models of �^� 
annot be the same in terms of both � and 4. It is there-

fore easy to see that any two minimal-equivalent faithful total preorders de�ne the same

8

>

>

>

>

<

>

>

>

>

:

AGM 
ontra
tion

AGM revision

EE-ordering

GE-ordering

9

>

>

>

>

=

>

>

>

>

;

in terms of

8

>

>

>

>

<

>

>

>

>

:

(Def � from � )

(Def � from � )

(Def v

E

from � )

(Def v

G

from � )

9

>

>

>

>

=

>

>

>

>

;

.

In view of these results, it makes sense to generalise de�nitions 3.2.7 and 3.3.3, and

extend the notion of semanti
 relatedness as follows.

De�nition 3.3.8 An AGM 
ontra
tion, an AGM revision, an EE-ordering and a GE-

ordering are semanti
ally related i� they 
an be de�ned in terms of the same faithful

total preorder using (Def � from �), (Def � from �), (Def v

E

from �), and (Def v

G

from �). 2

It follows, either dire
tly or indire
tly, from theorems 2.3.5, 3.2.6, and 3.3.1, as well as

propositions 3.2.8 and 3.3.4, that an
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Figure 3.2 
ontains a summary of these results, together with the results of theorem

3.3.5.
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Figure 3.2: The relationship between minimal-equivalent faithful total preorders, and

semanti
ally related AGM 
ontra
tions, AGM revisions, EE-orderings, GE-orderings,

as well as safe 
ontra
tions de�ned in terms of regular virtually 
onne
ted hierar
hies.



Chapter 4

Nonmonotoni
 reasoning

We demand guaranteed rigidly de�ned areas of doubt and un
ertainty.

Douglas Adams

The phrase \logi
al reasoning" is usually asso
iated with the kind of arguments found

in mathemati
al proofs. Perhaps the most essential ingredient of su
h arguments is

truth preservation, whi
h ensures that the truth of the 
on
lusions drawn from a set

of assumptions are guaranteed by the truth of the assumptions. Although useful in

many areas, an agent equipped solely with reasoning abilities of this kind will soon �nd

itself paralysed and unable to draw almost any 
on
lusion. For, as Benjamin Franklin

is so aptly quoted by Matthew Ginsberg [1987℄ in his introdu
tion to nonmonotoni


reasoning, \Nothing is 
ertain but death and taxes.". To be able to operate at all

in a world �lled with un
ertainties, it is frequently ne
essary to be able to jump to


on
lusions of whi
h the truth is not san
tioned by the eviden
e at our disposal. Of


ourse, for this to be seen as some kind of reasoning, it will have to be a rational and

systemati
 method of determing what is plausible, and not just an arbitrary drawing

of inferen
es in a seemingly random fashion.

Nonmonotoni
 reasoning is part of the study of su
h forms of defeasible reasoning.

A logi
 is said to be nonmonotoni
 if its asso
iated entailment relation j� need not

always satisfy the following monotoni
ity property: if Aj�� then A [ f�gj��. With

j� seen as a relation of plausible 
onsequen
e, there are many examples to show that

monotoni
ity is an undesirable property. Perhaps the one most deeply entren
hed in

the nonmonotoni
 reasoning literature is the Tweety example. Given that Tweety is a

59
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bird, it seems plausible to infer that Tweety 
an 
y. But given the additional eviden
e

that Tweety is an ostri
h, we should abandon our 
on
lusion about Tweety's 
ying


apabilities.

To be able to draw plausible 
on
lusions, nonmonotoni
 reasoning formalisms are

usually 
on
erned (whether impli
itly or expli
itly) with three types of information.

Firstly, we have �xed information. This in
ludes information su
h as \ostri
hes are

birds". Se
ondly, we have default information whi
h 
onsists of information su
h as

\birds normally 
y", and \ostri
hes normally don't 
y". Together the �xed and default

information provide a ba
kground 
ontext [Ge�ner, 1992,p. 25℄. And thirdly, we have

eviden
e su
h as \Tweety is a bird" and \Chirpy is an ostri
h", 
ontaining information

spe
i�
 to the situation at hand. The di�eren
e between �xed and default information

is that the 
on
lusions drawn from the system may defeat default information, but

not �xed information. For example, any nonmonotoni
 reasoning system worth its

salt should be able to 
on
lude from the ba
kground 
ontext and the eviden
e given

above that \Chirpy doesn't 
y", thus defeating the information that \birds normally


y" (
ombined with the information that ostri
hes are birds). But adding the eviden
e

that \Chirpy is an ostri
h but not a bird" should render the system in
onsistent, sin
e

the eviden
e now 
on
i
ts with the �xed information.

A 
ursory 
omparison of belief 
hange and nonmonotoni
 reasoning might 
reate

the impression that they have very little in 
ommon. After all, the former is 
on
erned

with the dynami
 pro
ess of 
hanging one's beliefs, while the latter deals with the

seemingly stati
 pro
ess of jumping to 
on
lusions on the basis of new eviden
e. As we

shall see however, these two �elds of resear
h just provide di�erent views of what are

essentially identi
al pro
esses of reasoning. The suggestion of identifying nonmonotoni


reasoning with theory 
hange 
an already be found in [Glymour and Thomason, 1984℄,

but it was only with the subsequent development of general frameworks for both theory


hange and nonmonotoni
 reasoning that su
h a suggestion was properly investigated.

In the 
ase of theory 
hange, the relevant framework is that of AGM theory 
hange.

For nonmonotoni
 reasoning the appropriate setting is provided by the nonmonotoni



onsequen
e relations of Kraus et al. [1990℄, and the subsequent extensions proposed by

Lehmann and Magidor [1992℄, and G�ardenfors and Makinson [1994℄. We shall therefore

fo
us our attention on these approa
hes to nonmonotoni
 reasoning.
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4.1 KLM nonmonotoni
 reasoning

During the 1980s a host of nonmonotoni
 logi
s made their appearan
e, of whi
h the

modal systems of M
Dermott and Doyle [1980, 1982℄, Moore's [1984, 1985℄ autoepis-

temi
 logi
, Reiter's [1980℄ default logi
, M
Carthy's [1980, 1986℄ 
ir
ums
ription [Lif-

s
hitz, 1986, 1987℄, and Poole's [1988℄ system for default reasoning are probably the

best known. While these systems all have interesting properties when looked at indi-

vidually, the la
k of a general framework for nonmonotoni
 reasoning made it diÆ
ult

to 
ompare and evaluate them.

One of the most in
uential attempts to establish su
h a general nonmonotoni


setting is the KLM approa
h, named after its three originators Sarit Kraus, Daniel

Lehmann and Mena
hem Magidor [1990℄. The su

ess of their approa
h is largely

attributable to their de
ision to fo
us on the 
onsequen
e relations asso
iated with

nonmonotoni
 logi
s, an idea that seems to have originated with Gabbay [1985℄. From

a semanti
 point of view, the work of the KLM trio is an extension of Shoham's

[1987a, 1987b℄ proposed model theory for nonmonotoni
 reasoning. As a formal study

of 
onsequen
e relations, it grew out of the work of Gabbay [1985℄, and has mu
h in


ommon with Makinson's [1989℄ theory of 
umulative inferen
e, whi
h was developed

independently and more or less at the same time. Kraus et al. 
on
ern themselves

with binary relations, denoted by j�, on a propositional language L 
losed under the

usual propositional 
onne
tives. The semanti
s for L is assumed to be a valuation

semanti
s (V;
) as de�ned in se
tion 1.3, with � denoting the standard notion of

semanti
 entailment asso
iated with it. As we have shown in se
tion 1.3, every one

of the logi
s we 
onsider 
an be \
onverted" into su
h a propositional logi
, whi
h

means that the logi
s permitted by Kraus et al. are pre
isely those that we 
onsider

as well. One of their primary aims is to demar
ate those binary relations on L that

are deserving of the name \nonmonotoni
 
onsequen
e relation". Elements of su
h

relations are denoted by expressions of the form �j�� (where � and � are w�s of L),

and should be read as \� is a plausible 
onsequen
e of �", or \if � holds then I am

willing to (defeasibly) jump to the 
on
lusion that � holds".

Of the three types of information used in nonmonotoni
 reasoning systems, only

the eviden
e is expli
itly represented in the KLM setup. In an expression su
h as �j��,

� is the available eviden
e from whi
h the plausible 
on
lusion � is drawn. The �xed

information is 
oded into the semanti
s for L, and is represented on the obje
t level
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by the logi
ally valid w�s. Default information, on the other hand, should be seen as

somehow being en
oded into the 
onsequen
e relation j�. For example, let b(t) and

f(t) be atoms of a transparent propositional language L (see se
tion 1.3), with b(t)

representing the assertion that Tweety is a bird, and f(t) representing the 
laim that

Tweety 
an 
y. Then b(t)j�f(t) is read as \I am willing to jump to the 
on
lusion

that Tweety 
an 
y, given that Tweety is a bird". The fa
t that su
h a 
on
lusion

seems reasonable 
an be attributed to the existen
e of a default rule stating that birds

normally 
y. But it would be a mistake to think that b(t)j�f(t) is, or forms part of,

su
h a default rule. Rather, it is the fa
t that su
h a default rule is built into j� that

allows us to plausibly 
on
lude that Tweety 
an 
y from the eviden
e that Tweety is

a bird. In se
tion 4.6 we dis
uss these matters in more detail.

4.2 Preferential 
onsequen
e relations

Formally, the KLM approa
h to nonmonotoni
 reasoning mirrors the AGM approa
h

to theory 
hange in many ways. The KLM nonmonotoni
 
onsequen
e relations are

de�ned in terms of sets of postulates. This is followed by a des
ription of semanti


methods for 
onstru
ting these relations, and the statement of representation theorems,

proving that the 
onstru
tion methods do indeed yield pre
isely the set of 
onsequen
e

relations des
ribed by the appropriate set of postulates. Four families of 
onsequen
e

relations are studied by Kraus et al. [1990℄ and Lehmann and Magidor [1992℄: 
umula-

tive 
onsequen
e relations, loop-
umulative 
onsequen
e relations, preferential 
onse-

quen
e relations and rational 
onsequen
e relations. We shall restri
t our attention to

the preferential 
onsequen
e relations in this se
tion and to the rational 
onsequen
e

relations in se
tion 4.3.

De�nition 4.2.1 A preferential 
onsequen
e relation j� is a binary relation on L

satisfying the postulates Ref, LLE, RW, And, Or and CM given below.

1

2

(Ref) For every � 2 L, �j�� (Re
exivity)

(LLE) If � � � and �j�
 then �j�
 (Left Logi
al Equivalen
e)

(RW) If � j= 
 and �j�� then �j�
 (Right Weakening)

1

This des
ription of the preferential 
onsequen
e relations is given by Lehmann and Magidor [1992℄.
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(And) If �j�� and �j�
 then �j�� ^ 


(Or) If �j�
 and �j�
 then � _ �j�


(CM) If �j�� and �j�
 then � ^ �j�
 (Cautious Monotoni
ity)

Re
exivity ensures that � itself is a plausible 
onsequen
e of �, while Left Logi
al

Equivalen
e requires di�erent bits of eviden
e, whi
h happen to be logi
ally equivalent,

to have the same plausible 
onsequen
es. Right Weakening expresses the intuition

that anything logi
ally weaker than some plausible 
onsequen
e of � should also be a

plausible 
onsequen
e of �. The And postulate requires the 
onjun
tion of two plausible


onsequen
es to be a plausible 
onsequen
e, while Or stipulates that the same plausible


onsequen
e of two di�erent pie
es of eviden
e should also be a plausible 
onsequen
e

of their disjun
tion. As the name suggests, Cautious Monotoni
ity is a weakened form

of the monotoni
ity property. In the 
ontext of binary 
onsequen
e relations, the latter


an be phrased as follows:

(Mon) If �j�
 then � ^ �j�
 (Monotono
ity)

While Monotoni
ity ensures that a 
onsequen
e 
 of � will also be a 
onsequen
e of a

w� obtained by adding any w� � to �, Cautious Monotoni
ity requires that the w� �

added to � has to be a plausible 
onsequen
e of �. In other words, all the plausible


onsequen
es of � are also plausible 
onsequen
es of � ^ �, as long as � is a plausible


onsequen
e of �. Kraus et al. mention a number of other properties satis�ed by the

preferential 
onsequen
e relations, and it is not that diÆ
ult to 
ome up with even

more. We limit ourselves below to some intuitively desirable ones, mainly to give the

reader a 
avour of the 
hara
teristi
s of these 
onsequen
e relations.

(SC) If � � � then �j�� (Supra
lassi
ality)

(Cut) If � ^ �j�
 and �j�� then �j�


(Cum) If �j�� then �j�
 i� � ^ �j�
 (Cumulativity)

(Re
) If �j�� and �j�� then �j�
 i� �j�
 (Re
ipro
ity)

(Cond) If � ^ �j�
 then �j�� ! 
 (Conditionalisation)
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Supra
lassi
ality is the very natural 
ondition that anything logi
ally weaker than �

should also be a plausible 
onsequen
e of �. Under the assumption that �j��, Cut


an be seen as the 
onverse of Cautious Monotoni
ity. It ensures that in the pro
ess

of 
he
king whether 
 is a plausible 
onsequen
e of �, it is suÆ
ient to show that


 is a plausible 
onsequen
e of � together with any plausible 
onsequen
e � of �.

Cumulativity is just Cut and Cautious Monotoni
ity thrown together, but is in
luded

here be
ause it is an important nontrivial property of nonmonotoni
 reasoning systems.

Together with Re
exivity, Left Logi
al Equivalen
e and Right Weakening, it provides

a guarantee that adding to � any plausible 
onsequen
es of �, will not in any way alter

the plausible 
onsequen
es obtained. It is thus markedly di�erent from probabilisti
ally

motivated 
onsequen
e relations in whi
h the expression �j�� is taken to mean that the


onditional probability of � given � is above some threshold value. Re
ipro
ity (referred

to by Kraus et al. [1990℄ as Equivalen
e) shows that if � and � are \equivalent" under

j�, then the plausible 
onsequen
es of � and � are exa
tly the same. Conditionalisation

(referred to by Kraus et al. [1990℄ as rule S) is reminis
ent of one part of the dedu
tion

theorem for 
lassi
al propositional logi
.

4.2.1 A semanti
s for preferential 
onsequen
e relations

The method for 
onstru
ting preferential 
onsequen
e relations provided by Kraus et

al. is semanti
 in nature and makes use of, what is 
alled, preferential models. The

idea is to pla
e an ordering on a set of \states", with the states lower down in the

ordering being more \normal", in some sense. A w� � is then taken to be a plausible


onsequen
e of � if � holds in the most normal states in whi
h � holds. Intuitively, it

has mu
h in 
ommon with Shoham's [1987a, 1987b℄ preferential models whi
h, in turn,

is a generalisation of the semanti
s for M
Carthy's 
ir
ums
ription [Lifs
hitz, 1987℄.

Te
hni
ally, it generalises Shoham's 
onstru
tion in two aspe
ts. Firstly, it draws a


lear distin
tion between the valuations of L and the set of \states", and pla
es an

ordering on the states, not the valuations. A labelling fun
tion is used to asso
iate

every state with a parti
ular valuation. States are thus more general than valuations,

sin
e di�erent states may be asso
iated with the same valuation. Se
ondly, it relaxes

Shoham's requirement that the ordering on interpretations be well-founded (i.e. that

there are no in�nite des
ending 
hains). This generality is needed in the representation

theorem that links the preferential 
onsequen
e relations to the preferential models.
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De�nition 4.2.2 Let S be any set. We refer to the elements of S as states.

1. A labelling fun
tion for S is a fun
tion from S to V , the set of valuations of L.

2. Given a labelling fun
tion l for S, the l-models of a w� � 2 L, denoted by b�, is

de�ned as b� = fs 2 S j l(s) 
 �g.

3. A preferential model P is an ordered triple (S; l;�), where l is a labelling fun
tion

for S, � is a stri
t partial order on S, and for every � 2 L, � is b�-smooth (see

de�nition 3.2.5).

2

Given a preferential model P , the P -indu
ed 
onsequen
e relation j�

P

is de�ned in

terms of P as follows:

(Def j�

P

from P ) �j�

P

� i� for every s 2 S that is �-minimal in �̂, s 2

^

�

Kraus et al. then show that the binary relations on L de�ned in terms of the preferential

models using (Def j�

P

from P ) are pre
isely the preferential 
onsequen
e relations.

Theorem 4.2.3 [Kraus et al., 1990℄ Every binary relation on L de�ned in terms of

a preferential model P using (Def j�

P

from P ) is a preferential 
onsequen
e relation.

Conversely, every preferential 
onsequen
e relation 
an be de�ned in terms of some

preferential model P using (Def j�

P

from P ).

The insisten
e on the b�-smoothness, in the set of l-models, of the stri
t partial order

�, for every w� �, is ne
essary for the satisfa
tion of Cautious Monotoni
ity, and it is a

mu
h weaker 
ondition than Shoham's requirement that the ordering be well-founded.

In fa
t, if � is required to be well-founded, the 
onverse part of theorem 4.2.3 does

not hold [Lehmann and Magidor, 1992℄. The use of states instead of valuations is also

ne
essary for the 
onverse part of theorem 4.2.3 to hold, as the following example of

Kraus et al. [1990℄ shows.

Example 4.2.4 Let L be the propositional language generated by the atoms p and q,

and let (V;
) be the valuation semanti
s for L with V = f11; 10; 00g. Let P = (S; l;�)

be a preferential model, with S = fs

1

; s

2

; s

3

; s

4

g, � = f(s

1

; s

3

); (s

2

; s

4

)g, and with l

de�ned as follows:

l(s

1

) = 00, l(s

2

) = 10, l(s

3

) = 11, l(s

4

) = 11.
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Figure 4.1: The preferential model P = (S; l;�) used in example 4.2.4. The stri
t

partial order � is determined by the arrows.

Figure 4.1 
ontains a graphi
al representation of the preferential model P . We show

that the preferential 
onsequen
e relation j�

P

de�ned in terms of P using (Def j�

P

from

P ) 
annot be de�ned in terms of any preferential model whose labelling fun
tion is the

identity fun
tion. Assume, to the 
ontrary, that there is a preferential model P

0

=

(S

0

; l

0

;�

0

) for whi
h l

0

is the identity fun
tion, su
h that the preferential 
onsequen
e

relation j�

P

0

de�ned in terms of P

0

using (Def j�

P

from P ) is identi
al to j�

P

. It is

easily veri�ed that :p ^ :q 6j�

P

0

?, p ^ :q 6j�

P

0

?, p ^ q 6j�

P

0

?, but :p ^ qj�

P

0

?, from

whi
h it follows that S

0

= fs

0

1

; s

0

2

; s

0

3

g, with l

0

(s

0

1

) = 00, l

0

(s

0

2

) = 10 and l

0

(s

0

3

) = 11.

Furthermore, (p^ q)_:qj�

P

0

:q, but (p^ q)_:q 6j�

P

0

:p^:q and (p^ q)_:q 6j�

P

0

p^:q,

whi
h means that the �-minimal elements of

\

(p ^ q) _ :q are the states s

0

1

and s

0

2

. So

either s

0

1

� s

0

3

or s

0

2

� s

0

3

, or both. But from p $ q 6j�

P

0

:p ^ :q and p 6j�

P

0

p ^ :q it

follows respe
tively that s

0

1

� s

0

3

and s

0

2

� s

0

3

; a 
ontradi
tion. 2

It is worth noting at this stage that Kraus et al. see preferential models only as te
hni
al

tools to aid in the study of the preferential 
onsequen
e relations, and do not regard

the former as suitable representations of the part of an epistemi
 state pertaining to

nonmonotoni
 reasoning [see Kraus et al., 1990,p. 170℄.

4.3 Rational 
onsequen
e relations

There seems to be a fair amount of agreement that any reasonable nonmonotoni



onsequen
e relation should at least be a preferential 
onsequen
e relation. A more
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ontroversial question is whether one should 
ut down any further by pi
king out some

stri
t subset of the preferential 
onsequen
e relations, and if so, how to go about it.

A parti
ularly attra
tive proposal in this regard is the one advan
ed by Lehmann and

Magidor [1992℄, in whi
h they propose the addition of the following three postulates:

(NR) If �j�� then either � ^ 
j�� or � ^ :
j�� (Negation Rationality)

(DR) If � _ �j�
 then either �j�
 or �j�
 (Disjun
tive Rationality)

(RM) If �j�
 then either � ^ �j�
 or �j�:� (Rational Monotoni
ity)

Kraus et al. [1990℄ already 
onsidered these postulates, and des
ribed them as ne
essary

properties for a rational reasoner. Negation Rationality stipulates that if we regard �

as a plausible 
onsequen
e of �, we must have some reason for doing so. Sin
e exa
tly

one of 
 or :
 holds, it has to be the 
ase that � is a plausible 
onsequen
e when adding

either 
 or :
 to �. Disjun
tive Rationality is a slightly generalised version of the same

idea. If 
 is a plausible 
onsequen
e of � _ � then, sin
e one of � or � has to hold, 


should be a plausible 
onsequen
e of either � or �. Rational Monotoni
ity requires of a

reasoner to 
omply with Monotoni
ity unless there is a very good reason not to. If 
 is

a plausible 
onsequen
e of � then 
 should also be a plausible 
onsequen
e when adding

� to �, unless :� is a plausible 
onsequen
e of �. It is easily veri�ed that, for ea
h of

these three postulates, there is a preferential 
onsequen
e relation in whi
h it does not

hold. In fa
t, in the presen
e of the postulates for preferential 
onsequen
e relations,

Rational Monotoni
ity is stri
tly stronger than Disjun
tive Rationality whi
h, in turn,

is stri
tly stronger than Negation Rationality [Lehmann and Magidor, 1992℄.

De�nition 4.3.1 A rational 
onsequen
e relation is a preferential 
onsequen
e rela-

tion that also satis�es Rational Monotoni
ity. 2

To obtain a semanti
 
hara
terisation of the rational 
onsequen
e relations, we restri
t

ourselves to those preferential models in whi
h the stri
t partial orders on states are

also modular.

De�nition 4.3.2 A stri
t partial order � on a set X is 
alled modular i� for every

x; y; z 2 X, if x � y, y � x and z � x then z � y. 2

The modular stri
t partial orders are the stri
t versions of the total preorders on X.
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De�nition 4.3.3 A ranked model is a preferential model R = (S; l;�) in whi
h the

stri
t partial order � is modular as well. 2

Every modular stri
t partial order � partitions the states into levels, with 
omparable

states being on di�erent levels, and in
omparable states 
onsidered to be on the same

level. We 
an thus think of � as being obtained from a ranking fun
tion that ranks

states a

ording to normality | the lower the rank of a state, the more normal it is.

Theorem 4.3.4 [Lehmann and Magidor, 1992℄ Every binary relation on L de�ned in

terms of a ranked model R using (Def j�

P

from P ) is a rational 
onsequen
e relation.

Conversely, every rational 
onsequen
e relation 
an be de�ned in terms of some ranked

model R using (Def j�

P

from P ).

Lehmann and Magidor regard Rational Monotoni
ity as a natural 
ondition that should

be satis�ed by all nonmonotoni
 
onsequen
e relations, and they thus tend to favour

the rational 
onsequen
e relations as the set of nonmonotoni
 
onsequen
e relations.

This is not a view shared by everyone. For example, Makinson [1994℄ regards Rational

Monotoni
ity as too strong a 
ondition to insist upon. He argues as follows: If 
 is a

plausible 
onsequen
e of � then, even if :� does not follow plausibly from �, � may

still suggest the possibility of :� strongly enough to undermine the plausibility of 


given � ^ �. Makinson is in favour of removing some of the preferential 
onsequen
e

relations, though. He seems to be of the opinion that all nonmonotoni
 
onsequen
e

relations should satisfy Disjun
tive Rationality. In se
tion 4.4.2 we present an argument

supporting the viewpoint of Lehmann and Magidor.

We now 
ome to properties that are not satis�ed by all rational 
onsequen
e rela-

tions. As expe
ted, it is easily shown that some rational 
onsequen
e relations do not

satisfy Monotoni
ity. What is perhaps surprising is that some rational 
onsequen
e

relations do satisfy Monotoni
ity. For example, it is easily veri�ed that the entailment

relation � obtained from any valuation semanti
s (V;
) for L is a rational 
onsequen
e

relation. One simply needs to examine the ranked model (S; l;�) where S = V , l(s) = s

for every s 2 S, and � is the empty relation. So the 
lassi
al entailment relations of

the logi
s we 
onsider are all instan
es of the rational 
onsequen
e relations! While

it might seem strange to in
lude 
onsequen
e relations that satisfy Monotoni
ity in a

family of nonmonotoni
 
onsequen
e relations, it 
an be justi�ed as follows. As ex-

plained on page 59, the intuition that we are trying to formalise is one of jumping to


on
lusions in a systemati
 fashion. And it seems reasonable to in
lude, as a s
epti
al
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extreme, the 
ase where an agent refuses to jump to any 
on
lusions other than those

san
tioned by 
lassi
al logi
. So perhaps it is not the in
lusion of these monotoni



onsequen
e relations that should be 
alled into question, but rather the 
hoi
e of the

name \nonmonotoni
 reasoning" for this �eld of study.

Kraus et al. also 
onsider the following three properties.

(EHD) If �j�� ! 
 then � ^ �j�


(Trans) If �j�� and �j�
 then �j�
 (Transitivity)

(Cont) If �j�� then :�j�:� (Contraposition)

EHD is reminis
ent of one part of the dedu
tion theorem for 
lassi
al propositional

logi
; hen
e the a
ronym \EHD" whi
h stands for the \Easy Half of the Dedu
tion

theorem". Kraus et al. show that for the preferential 
onsequen
e relations, EHD,

Transitivity and Monotoni
ity are equivalent, and Contraposition is stronger than

Monotoni
ity. It is thus 
lear that these are not suitable properties for nonmonotoni


reasoning.

Two properties whi
h are worth 
onsidering are given below.

(DP) If �j�
 then either � ^ �j�
 or � ^ �j�:
 (Determina
y Preservation)

(CP) If �j�? then � :� (Consisten
y Preservation)

Like Rational Monotoni
ity, Determina
y Preservation (whi
h was �rst suggested by

Makinson [see 1994,p. 93℄) requires Monotoni
ity to hold unless there is a very good

reason not to. If 
 is a plausible 
onsequen
e of �, then it must also be a plausible


onsequen
e obtained when adding � to �, unless the addition of � to � has :


as a plausible 
onsequen
e. It is easily veri�ed that for the preferential 
onsequen
e

relations, Determina
y Preservation is stri
tly stronger than Rational Monotoni
ity,

and its a

eptan
e would thus amount to a restri
tion to a stri
t subset of the rational


onsequen
e relations. It is a desirable property in many instan
es sin
e it promotes


onsiderations of irrelevan
e. The notion of irrelevan
e involves the idea that irrelevant

additional eviden
e should not in
uen
e our plausible 
onsequen
es. So, given the

default information that birds normally 
y, we should 
on
lude that Tweety 
an 
y

from the eviden
e that Tweety is a red bird, sin
e being red is irrelevant to Tweety's


ying abilities. In general then, an irrelevan
e postulate will usually have the following
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form: If 
 is a plausible 
onsequen
e of �, and � is irrelevant in terms of 
's plausibility

when presented with � as eviden
e, then 
 is a plausible 
onsequen
e of � ^ �. Of


ourse, the question is how to formalise the intuition that � is irrelevant in terms of 
's

plausibility when � is given as eviden
e. In the 
ase of Determina
y Preservation, the

formalisation 
omes down to the requirement that :
 should not be plausible when

presented with � ^ � as eviden
e, i.e., that � ^ � 6j�:
.

In the 
ontext of our red bird example above, Determina
y Preservation 
an be

explained as follows. Sin
e we are willing to 
on
lude that Tweety 
an 
y on learning

that it is a bird, and sin
e the additional eviden
e that Tweety is red does not lead us to


on
lude that Tweety 
an't 
y, we have to 
on
lude that Tweety 
an 
y when presented

with the eviden
e that Tweety is a red bird. Although Determina
y Preservation is

appropriate in this example, it is too strong a 
ondition to impose in all situations. For

example, from the eviden
e that Tweety is a bird, it is, as we have argued, reasonable

to 
on
lude that Tweety 
an 
y. But when retra
ting this 
on
lusion on learning that

Tweety was spotted in Oudtshoorn | an area in South Afri
a where ostri
hes are not

un
ommon|we do not ne
essarily want to be for
ed into 
on
luding that Tweety 
an't


y. After all, the information about Tweety's whereabouts might raise the possibility

that Tweety is an ostri
h without rendering it so plausible that one would be willing

to a
t on su
h a 
laim.

Consisten
y Preservation stipulates that logi
ally invalid w�s may only be plausible


onsequen
es of logi
ally invalid w�s. It seems to be a reasonable 
ondition, and it is

therefore surprising that it is not satis�ed by all rational 
onsequen
e relations. As the

next example shows, the failure of Consisten
y Preservation 
an be attributed to the

fa
t that the labelling fun
tions of ranked models need not be surje
tive.

Example 4.3.5 Let L be the propositional language generated by the two atoms p

and q, and let (V;
) be the �-valuation semanti
s for L where V = f11; 10; 01; 00g.

Let R = (S; l;�) be the ranked model where S = fsg, l(s) = 00 and � = ;, and let j�

R

be the 
onsequen
e relation de�ned in terms of R using (Def j�

P

from P ). It is easily

veri�ed that pj�

R

?, even though 2 :p, and j�

R

therefore does not satisfy Consisten
y

Preservation. 2

In the next se
tion we shall have more to say about those rational 
onsequen
e relations

that satisfy Consisten
y Preservation.
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4.4 Nonmonotoni
 reasoning as theory revision

From the results above it should be obvious that there are 
lose similarities between the

ranked models that 
hara
terise the rational 
onsequen
e relations and the semanti



hara
terisation of AGM theory revision. Both employ orderings to de�ne some kind of

minimal model semanti
s, although the elements on whi
h the orderings are pla
ed, are

not quite the same. Based on these similarities, we 
an move from theory revision to

nonmonotoni
 reasoning and ba
k as follows [Makinson and G�ardenfors, 1991℄: Given

a belief set K and a theory revision operation, de�ne a nonmonotoni
 
onsequen
e

relation by letting the set of plausible 
onsequen
es of � 
oin
ide with the new belief

set obtained from an �-revision of K. Conversely, given a nonmonotoni
 
onsequen
e

relation, �x a belief set K in some appropriate fashion and then de�ne an �-revision

of K by letting the resulting belief set be equal to the set of plausible 
onsequen
es of

�.

This translation s
heme provides a ni
e way of 
omparing postulates for theory

revision with postulates for nonmonotoni
 reasoning and vi
e versa, as is done by

Makinson and G�ardenfors [1991℄ and G�ardenfors and Rott [1995℄. One 
an also use

the translation method as the basis for an investigation aimed at dis
overing the extent

to whi
h the two �elds of resear
h overlap. The results of G�ardenfors and Makinson

[1994℄, whi
h we des
ribe below, are eviden
e of the su

ess of su
h an approa
h.

4.4.1 Expe
tation based 
onsequen
e relations

The fa
t that the semanti
 stru
tures used in AGM theory revision and KLM non-

monotoni
 reasoning are similar, should not be too surprising. The idea of an ordering

on worlds or states, with elements lower down (or higher up, as the 
ase may be) in the

ordering as somehow being \better", 
an be tra
ed ba
k to work done in the 1960s and

1970s on 
onditional logi
 and 
ounterfa
tual reasoning [Lewis, 1973, Adams, 1975,

Burgess, 1981, Stalnaker et al., 1981, van Benthem, 1984, Ginsberg, 1986℄. Makinson

[1993℄ also provides a survey of resear
h areas employing some kind of minimal model

semanti
s. What is perhaps surprising is how easily the stru
tures used in AGM theory

revison and KLM nonmonotoni
 reasoning 
an be made identi
al. The two di�eren
es

to be eliminated are that AGM theory revision uses total preorders, not modular stri
t

partial orders, and pla
es them on the interpretations of L, not on a set of states. From

results by G�ardenfors and Makinson [1994℄ it follows indire
tly that these di�eren
es
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an easily be done away with. We show that those rational 
onsequen
e relations sat-

isfying Consisten
y Preservation 
an be de�ned in terms of the faithful total preorders

as follows:

2

(Def j� from �) �j�� i� Min

�

(�) �M(�)

De�nition 4.4.1 An expe
tation based 
onsequen
e relation is a rational 
onsequen
e

relation that also satis�es Consisten
y Preservation. 2

The underlying intuition provided by G�ardenfors and Makinson is that the reasoning

of an agent is guided, not just by its �rm beliefs, but also by its expe
tations. Every

expe
tation based 
onsequen
e relation j� is based on a set of expe
tations E, playing

a role that is analogous to that of a belief set K in theory 
hange. In fa
t, every

expe
tation set E is, te
hni
ally speaking, a belief set, as we shall see below. Intuitively,

E is the \
urrent" set of expe
tations of the agent, and the plausible 
onsequen
es of

a w� � (i.e., every w� � for whi
h �j�� holds) are those w�s that follow logi
ally

from � together with \as many as possible" of the elements of E that are 
ompatible

with �. The set of expe
tations E is not expli
itly mentioned in the de�nition of an

expe
tation based 
onsequen
e relation j�, but a suitable E 
an be re
overed from j�

as follows.

(Def E from j�) E = f� j >j��g

That is, E is taken as the set of plausible 
onsequen
es of any logi
ally valid w�. This

pro
ess of re
overy is justi�ed by noting that the plausible 
onsequen
es of a w� � 
an

be seen as the \new" set of expe
tations that an agent would be willing to embra
e

whenever it is willing to a

ept � as a new pie
e of eviden
e. Now, o�ering a logi
ally

valid w� as a new pie
e of eviden
e is just a roundabout way of saying that we are

in a situation in whi
h no new eviden
e has been obtained. And when an agent is

not presented with any new eviden
e, it is reasonable to require that its 
urrent set of

expe
tations should not 
hange. Hen
e the de�nition of E as in (Def E from j�).

2

In fa
t, the rational 
onsequen
e relations 
an be de�ned in terms of total preorders on interpre-

tations of L, but it in
ludes total preorders on stri
t subsets of the interpretations of L as well. The

in
lusion of Consisten
y Preservation is thus ne
essary solely for the purpose of ensuring that we only


onsider the total preorders on all the interpretations of L.
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Theorem 4.4.2 Given any belief set K, every binary relation j� on L de�ned in terms

of a K-faithful total preorder using (Def j� from �) is an expe
tation based 
onsequen
e

relation. Conversely, every expe
tation based 
onsequen
e relation j� 
an be de�ned

in terms of a K-faithful total preorder � using (Def j� from �), where K is some

satis�able belief set.

Proof Pi
k any belief set K and any K-faithful total preorder �, and let j� be the

binary relation on L de�ned in terms of � using (Def j� from �). To show that j�

satis�es Re
exivity, Left Logi
al Equivalen
e, RightWeakening, and And, is trivial. For

Or, suppose that �j�
 and �j�
. That is, Min

�

(�) � M(
) and Min

�

(�) � M(
).

In the 
ase where at least one of � or � is logi
ally invalid, it follows trivially that

� _ �j�
. So we suppose that this is not the 
ase. If the �-minimal models of �

are stri
tly below the �-minimal models of �, then Min

�

(� _ �) = Min

�

(�), and so

� _ �j�
. A similar argument holds if the � -minimal models of � are stri
tly below

the �-minimal models of �. In the remaining 
ase, it follows from the properties of

a K-faithful total preorder that Min

�

(� _ �) = Min

�

(�) [ Min

�

(�), from whi
h

it also follows that � _ �j�
. For Cautious Monotoni
ity, suppose that �j�� and

�j�
. That is, Min

�

(�) � M(�) and Min

�

(�) � M(
). If � is logi
ally invalid

then 
learly � ^ �j�
. So we suppose that this is not the 
ase. From the M(�)-

smoothness of � it then follows that Min

�

(� ^ �) = Min

�

(�), and so � ^ �j�
.

For Rational Monotoni
ity, suppose that �j�
 and that � 6j�:�. So Min

�

(�) � M(
)

and Min

�

(�) \M(�) 6= ;. From the properties of a K-faithful total preorder it then

follows thatMin

�

(�^�) =Min

�

(�)\M(�), and so �^�j�
. Finally, for Consisten
y

Preservation, suppose that �j�?. That is, Min

�

(�) = ;. By the smoothness of � it

then has to be the 
ase that M(�) = ;, and so � :�.

Conversely, let j� be any expe
tation based 
onsequen
e relation. Now 
onsider the

following de�nition of a binary relation j� on L in terms of the sele
tion fun
tions of

de�nition 2.2.2.

(Def j� from s

K

) �j�� i� � 2

T

fK

0

+ � j K

0

2 s

K

(K?:�)g

A binary relation on L is 
alled transitively relational i� it is de�ned in terms of

a sele
tion fun
tion s

K

using (Def j� from s

K

), where s

K

is de�ned in terms of a

transitive relation b on K?L using (Def s

K

from b) (see page 23), and K is some

satis�able belief set. G�ardenfors and Makinson [1994℄ prove that the expe
tation based


onsequen
e relations are pre
isely the transitively relational binary relations on L. So
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there is a satis�able belief set K, and a transitive relation b on K?L that de�nes a

sele
tion fun
tion s

K

using (Def s

K

from b), and j� 
an be de�ned in terms of s

K

using (Def j�

K

from s

K

). But by theorem 2.2.6, the K-removal de�ned in terms of s

K

using (Def � from s

K

) is an AGM K-
ontra
tion. By theorem 2.1.6 it then follows

that the K-revision � de�ned as

K � � =

\

fK

0

+ � j K

0

2 s

K

(K?:�)g for every � 2 L

is an AGM K-revision. And by theorem 3.2.6 it follows that there is a K-faithful total

preorder � su
h that � is de�ned in terms of � using (Def � from �). Sin
e j� 
an

be de�ned in terms of s

K

using (Def j� from s

K

), j� 
an also be de�ned in terms of �

using (Def j� from �). 2

With the aid of theorem 4.4.2 we 
an show that, te
hni
ally at least, it makes sense to

regard every expe
tation based 
onsequen
e relation j� as being based, not just on the

set of plausible 
onsequen
es of any logi
ally valid w�, but also on the unsatis�able

belief set. The idea is that whenever an expe
tation based 
onsequen
e relation j� 
an

be de�ned in terms of a K-faithful total preorder from using (Def j� from �), then K

is the expe
tation set on whi
h j� is based. The question of whether it is appropriate

to view an unsatis�able belief set as an expe
tation set will be dis
ussed in se
tion

4.4.2.

Lemma 4.4.3 Let j� be an expe
tation based 
onsequen
e relation and let K be the

set of w�s de�ned in terms of j� using (Def K from j�). Then K is a satis�able belief

set, and j� 
an be de�ned in terms of at least one K-faithful total preorder, and at

least one Cn(?)-faithful total preorder using (Def j� from �). Furthermore, j� 
annot

be de�ned in terms of any K

0

-faithful total preorder, using (Def j� from �), for any

satis�able belief set K

0

that is not equal to K.

Proof From theorem 4.4.2 it follows that j� 
an be de�ned in terms of a K

00

-faithful

total preorder � where K

00

is a satis�able belief set. So

K = f� j >j��g = Th(Min

�

(>)),

and sin
e it follows from K

00

-faithfulness that Min

�

(>) = M(K

00

), we thus have that

K

00

= K. So we have shown that K is a satis�able belief set and that j� 
an be de�ned

in terms of at least one K-faithful total preorder using (Def j� from �). By noting that
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� is also a Cn(?)-faithful total preorder, we immediately get that j� 
an be de�ned in

terms of at least one Cn(?)-faithful total preorder using (Def j� from �). And �nally,

pi
k any satis�able belief set K

0

6= K, any K

0

-faithful total preorder �

0

, and let j�

0

be

the expe
tation based 
onsequen
e relation de�ned in terms of �

0

using (Def j� from

�). So

f� j >j�

0

�g = Th(Min

�

0

(>)) = Th(M(K

0

)) = K

0

.

For at least one w� �, either >j�� but >6j�

0

�, or >6j�� but >j�

0

�, and so j�

0

is not

identi
al to j�. 2

Lemma 4.4.3 is the justi�
ation for the following de�nition. It allows us to asso
iate

expe
tation sets with expe
tation based 
onsequen
e relations in the same way that

belief sets are asso
iated with theory 
hange operations.

De�nition 4.4.4 An expe
tation based 
onsequen
e relation j� is said to be based on

E i� either E = Cn(?), or E is de�ned in terms of j� using (Def E from j�). For

brevity we shall refer to an expe
tation based 
onsequen
e relation based on E as an

E-based 
onsequen
e relation. 2

From lemma 4.4.3 it follows that the expe
tation based 
onsequen
e relations 
an be

partitioned into equivalen
e 
lasses a

ording to the satis�able belief sets on whi
h they

are based, and that all the expe
tation based 
onsequen
e relations are based on the

unsatis�able belief set. This enables us to asso
iate, for every belief set K, the K-based


onsequen
e relations with the AGM K-revisions, using the following two de�nitions,

whi
h 
an be seen as a formalisation of the pro
edure for translating between theory

revision and nonmonotoni
 reasoning, and vi
e versa.

(Def j� from �) �j�� i� � 2 K � �

(Def � from j�) K � � = f� j �j��g

Corollary 4.4.5 Let K be any belief set and let � be any K-faithful total preorder.

The AGM K-revision � de�ned in terms of � using (Def � from �), and the K-based


onsequen
e relation j� de�ned in terms of � using (Def j� from �), 
an also be de�ned

in terms of ea
h other using (Def j� from �) and (Def � from j�).

Proof The proofs follow easily from theorems 3.2.6 and 4.4.2, and lemma 4.4.3, and

are omitted. 2
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4.4.2 Expe
tations, beliefs and epistemi
 states

The semanti
 
onstru
tion of the expe
tation based 
onsequen
e relations suggests that

the nonmonotoni
 reasoning abilities of agents 
an be modelled by ordered pairs of the

form (E;�), where E is a belief set representing the expe
tations of the agent, and

� is an E-faithful total preorder on the interpretations of L. We shall refer to these

stru
tures as expe
tation states. An expe
tation state is thus a part of an epistemi


state involved with nonmonotoni
 reasoning abilities. An information-theoreti
 view,

with � seen as a total preorder on infatoms instead of on interpretations, suggests

the following interpretation of expe
tation states. Think of the expe
tations of an

agent as being built up from infatoms. For a given expe
tation state (E;�), E is,

of 
ourse, built up from Cont(E), the 
ontent bits of E. Sin
e � is an E-faithful

total preorder, the lowest infatoms in � are pre
isely those that do not form part of

Cont(E). The total preorder � should thus be seen as a representation of the extent

to whi
h infatoms form part of the 
urrent expe
tations (the 
ontent of E). Infatoms

higher up in � are less easily dislodged from Cont(E), with the lowest infatoms in

the ordering representing the limiting 
ase of those that do not form part of Cont(E)

to begin with. The plausible 
onsequen
es of a w� � are then taken to be all the

w�s whose 
ontent are in
luded in the set of infatoms, obtained by augmenting the


ontent of � with \as many as possible" of the 
ontent bits of E. All that remains

is to give a pre
ise des
ription of the phrase \as many as possible". Now, the only

set 
ontaining too many infatoms is the set of all infatoms, sin
e it is the only set of

infatoms 
orresponding to an unsatis�able set of w�s. So, when adding 
ontent bits of

E to the 
ontent of �, the main 
onsideration is to avoid ending up with the set of all

infatoms, something that 
an only o

ur if the 
ontent of E 
ontains all the 
ontent

bits of :�. It thus boils down to the question of determining whi
h 
ontent bits of :�

should not be added to the 
ontent of �. With the help of the total preorder � and

the prin
iple of Indi�eren
e, the de
ision is an easy one. The 
ontent bits of :� not to

in
lude, are the ones that are most easily dislodged from Cont(E), i.e. the �-minimal


ontent bits of :�.

The expe
tation states and the way they are used to de�ne nonmonotoni
 reasoning

thus 
oin
ide exa
tly with the modelling of theory revision as proposed in se
tion 3.3.

So the reasoning pro
ess employed in nonmonotoni
 reasoning and theory revision is

identi
al. Does it then follow that nonmonotoni
 reasoning is theory revision (and vi
e



4.4. NONMONOTONIC REASONING AS THEORY REVISION 77

versa)? G�ardenfors and Makinson argue that this is not the 
ase. Their argument is

based on the fa
t that there is a di�eren
e between beliefs and expe
tations. Fuhrmann

and Levi [1994℄ use this di�eren
e as an argument in favour of the 
laim that there is a

di�eren
e in the pro
esses of reasoning involved in theory revision and nonmonotoni


reasoning. They do not question the appropriateness of AGM revision, but 
ast doubt

on the desirability of Rational Monotoni
ity for nonmonotoni
 reasoning. Rabinowi
z

[1995℄ provides yet another perspe
tive. He takes issue with the use of \mere expe
ta-

tions" (whi
h he regards as being too weak) when interpreting nonmonotoni
 reasoning

as belief 
hange, and suggests the use of \assumptions", whi
h are taken to provide a

basis for both reasoning and a
tion. But in doing so, he reje
ts AGM revision as an

appropriate framework for dealing with assumptions.

In our opinion, the 
rux of the matter is to determine what a parti
ular reasoning

pro
ess is intended to produ
e. For belief revision it is not an issue. The set of w�s

obtained when an agent revises its 
urrent set of beliefs, is 
learly intended to be the

new set of beliefs of the agent. For expe
tation based nonmonotoni
 reasoning, though,

matters are not so 
lear. How should we interpret the set of plausible 
onsequen
es

of a w� �? It is our 
ontention that it 
annot be interpreted as anything other than

the new set of expe
tations that an agent is willing to embra
e when presented with

the eviden
e �. In other words, expe
tation based nonmonotoni
 reasoning is the

pro
ess of moving from one expe
tation set to another when 
onfronted with new

eviden
e. The main motivation for this 
laim 
entres around the identi�
ation of the


urrent set of expe
tations with the plausible 
onsequen
es of a logi
ally valid w�,

and 
an be explained as follows. Sin
e the expression �j�� is understood to mean

that � is a plausible 
onsequen
e of the new eviden
e � at my disposal, it seems

reasonable to interpret the situation in whi
h � is a logi
ally valid w� as one in whi
h

no new eviden
e has be
ome available. So my 
urrent set of expe
tations 
onsists of the

plausible 
onsequen
es of the 
urrently available eviden
e. And it therefore stands to

reason that if I am willing to a

ept � as new eviden
e, my new set of expe
tations will

be the plausible 
onsequen
es of �. We shall have more to say about su
h a dynami


view of nonmonotoni
 reasoning in se
tion 4.5.

The a

eptan
e of this viewpoint has some interesting 
onsequen
es for the rela-

tion between nonmonotoni
 reasoning and belief revision. Firstly, it requires the new

belief set obtained when revising by a parti
ular w� �, to be a subset of the plausible


onsequen
es of �, be
ause the latter is pre
isely the set of w�s making up the expe
-
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tation set obtained when a

epting � as new eviden
e. Se
ondly, it requires of us to

asso
iate a reasoning pro
ess with nonmonotoni
 reasoning that is at least as strong as

the pro
ess of reasoning used in belief revision. A phrase su
h as \a stronger reasoning

pro
ess" is, of 
ourse, highly ambiguous, but at least one sensible interpretation would

be to insist that the postulates satis�ed by belief revision should also be satis�ed by

nonmonotoni
 reasoning. The a

eptan
e of AGM revision as an appropriate mod-

elling for belief revision then for
es us to a

ept Rational Monotoni
ity as a desirable

postulate for nonmonotoni
 reasoning.

Our justi�
ation of the dynami
 view of nonmonotoni
 reasoning presented above

is, to a large extent, based on the premise that the 
urrent set of expe
tations of an

agent 
an be identi�ed with the plausible 
onsequen
es of any logi
ally w�. However,

su
h an identi�
ation is slightly at odds with the idea, expressed in lemma 4.4.3, of

obtaining the expe
tation set of an agent from a K-faithful total preorder, sin
e this

lemma shows that every expe
tation based 
onsequen
e relation is not just based on

some satis�able belief set K, but also on the unsatis�able belief set. Now, the latter


ertainly does not 
orrespond to the set of plausible 
onsequen
es of any logi
ally valid

w� (nor, for that matter, does it 
orrespond to the plausible 
onsequen
es of any

w� other than one of the logi
ally invalid ones). This presents us with the following

dilemma. Should the unsatis�able set be seen as an expe
tation set? A negative

answer is not unlike the assumption frequently made in the theory 
hange literature,

where the 
urrent set of beliefs of an agent is assumed to be satis�able. Indeed, in the

representation results of G�ardenfors and Makinson [1994℄ that apply to this dis
ussion,

they restri
t themselves to satis�able expe
tation sets. But there are at least two

reasons to 
onsider unsatis�able expe
tation sets as well. Firstly, in the 
ontext of

the dynami
 
hara
ter that we attribute to nonmonotoni
 reasoning, the unsatis�able

belief set is a legitimate expe
tation set | the one obtained when a

epting a logi
ally

invalid w� as eviden
e. And se
ondly, a broader view of the reasoning abilities of an

agent might well in
lude other forms of defeasible reasoning in whi
h the a

eptan
e

of eviden
e, represented by w�s other than logi
ally invalid ones, will give rise to an

unsatis�able belief set.

3

On the other hand, if we a

ept the unsatis�able belief set as

3

A 
ase in point is that of base 
hange in whi
h the beliefs of an agent are represented by a base,

whi
h is taken to be a set of w�s that is not 
losed under 
lassi
al entailment. In su
h 
ases, the

theory generated by a base may be unsatis�able, but the base itself might 
ontain enough stru
ture

to enable us to de�ne appropriate 
hange operations. See, for example, [Fuhrmann, 1991,p. 186℄,
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a legitimate expe
tation set, how are we to explain the asso
iation of every expe
tation

based 
onsequen
e relation with two expe
tation sets, one of whi
h is the unsatis�able

belief? The solution, we believe, is a simple one. It is just a matter of realising that

the notion of an expe
tation state is more fundamental than that of a nonmonotoni



onsequen
e relation. An expe
tation set is thus obtained from an expe
tation state,

not from the derived notion of an expe
tation based 
onsequen
e relation. Viewed

information-theoreti
ally, an expe
tation state (E;�) with E = Cn(?) should simply

be seen as an ordering on infatoms in whi
h the lowest level, 
ontaining the infatoms

that do not form part of Cont(E), is empty.

In 
on
lusion, there is a di�eren
e between theory revision and expe
tation based

nonmonotoni
 reasoning, although the reasoning pro
ess involved in both might very

well be identi
al. As a 
onsequen
e, our representation of an epistemi
 state ought

to be modi�ed su
h that both forms of reasoning 
an be re
overed from it. That is,

an epistemi
 state should 
ontain, not just the information ne
essary for performing

theory 
hange; it should also in
orporate the information in an expe
tation state so as

to be able to perform expe
tation based nonmonotoni
 reasoning. In se
tion 4.7 we

present one method for doing so.

4.5 A dynami
 view of nonmonotoni
 reasoning

As dis
ussed on page 59, the role of the set of nonmonotoni
 
onsequen
e relations

is to provide a framework in whi
h legitimate forms of nonmonotoni
 reasoning 
an

be expressed. It is usually motivated in terms of examples su
h as the following.

Consider a transparent propositional language 
ontaining the atoms b(t), f(t) and

o(t), respe
tively representing the assertion that Tweety is a bird, Tweety 
an 
y,

and Tweety is an ostri
h. Given the �xed information that ostri
hes are birds and

the default information that birds normally 
y, but that ostri
hes usually don't, it

is reasonable to 
on
lude that Tweety 
an 
y when learning that Tweety is a bird,

but that Tweety 
an't 
y when obtaining the additional eviden
e that Tweety is an

ostri
h. One should thus be able to �nd at least one nonmonotoni
 
onsequen
e relation

j� 
ontaining both b(t)j�f(t) and b(t) ^ o(t)j�:f(t).

Examples su
h as the one above have a de�nite dynami
 
avour to them. It involves

the adjustment of the 
urrent set of plausible 
onsequen
es when obtaining the initial

[Hansson, 1993b,p. 641℄, and 
hapter 8 of this dissertation.
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eviden
e (that Tweety is a bird), only to be followed by a readjustment when presented

with the additional eviden
e (that Tweety is an ostri
h). Given the dynami
 nature

of su
h examples, the formalisation presented above o�ers a 
uriously stati
 view of

nonmonotoni
 reasoning. The idea of additional eviden
e (that Tweety is an ostri
h)

being added to the initial eviden
e (that Tweety is a bird) somehow gets lost in the

formalisation of the example. So, although b(t) ^ o(t)j�:f(t) is intended to signify

that the addition of the new eviden
e o(t) to the initial eviden
e b(t) will result in

:f(t) as a plausible 
onsequen
e, the given interpretation of j� simply takes it to mean

that :f(t) is a plausible 
onsequen
e of b(t) ^ o(t), and nothing more. There are

only two ways to explain this seemingly anomolous behaviour. We 
an adopt a view

of nonmonotoni
 reasoning as a kind of suppositional reasoning, in whi
h eviden
e is

put forward \for the sake of argument", only to be dis
arded again when it has been

determined what its plausible 
onsequen
es would be. Su
h an interpretation seems to

be in line with the aims of 
onditional logi
 [Adams, 1975, van Benthem, 1984℄, but it

does not provide an a

urate re
e
tion of what nonmonotoni
 reasoning ought to be.

Alternatively, we 
an atta
h both a stati
 and a dynami
 interpretation to expressions

su
h as b(t) ^ o(t)j�:f(t). In general then, we would take the expression � ^ �j�
 to

mean that 
 is a plausible 
onsequen
e of �^�, as well as to 
onvey the intuition that,

when presented with � as initial eviden
e, followed by � as additional eviden
e, we will

be able to draw the plausible 
on
lusion 
. The dynami
 interpretation des
ribes a

pro
ess in whi
h eviden
e is being a

umulated systemati
ally, and 
an be seen as a kind

of iterated version of nonmonotoni
 reasoning. In fa
t, it ties up ni
ely with the view

of expe
tation based nonmonotoni
 reasoning, presented in se
tion 4.4.2, as a pro
ess

of moving from one expe
tation set to another when fa
ed with new eviden
e. Let E

be our 
urrent set of expe
tations, i.e. the w�s that we 
urrently regard as plausible,

and let j�

E

be the E-based 
onsequen
e relation des
ribing our 
urrent nonmonotoni


reasoning pro
ess. When 
onfronted with eviden
e in the form of a w� �, our new

set of expe
tations E

0


onsists of all the plausible 
onsequen
es of �. But having

a

epted the eviden
e � (at least for the moment), there is every reason to believe

that modi�
ations will be made, not just to our expe
tation set E, but also to the very

pro
ess of nonmonotoni
 reasoning that we employ. In other words, we don't just move

to a new expe
tation set E

0

, but also to a new (E

0

-based) 
onsequen
e relation j�

�

E

0

,

and any additional eviden
e � will now be evaluated in terms of j�

�

E

0

. The de
ision to

atta
h both a stati
 and a dynami
 interpretation to expressions of the form � ^ �j�
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an thus be formalised as the following property:

If � � :� then � ^ �j�

E


 i� �j�

�

E

0




where j�

E

is an E-based 
onsequen
e relation, E

0

= fÆ j �j�

E

Æg, and where j�

�

E

0

is

the E

0

-based 
onsequen
e relation adopted when presented with the eviden
e �. In

se
tion 7.5.1 we re
onsider this property in the 
ontext of iterated belief 
hange, and

show that, when slightly modi�ed, it has an interesting model-theoreti
 interpretation.

4.6 Representing default information

Although our des
ription of the three types of information used by nonmonotoni
 rea-

soning systems (see page 60) has, for the most part, been of an informal nature thus

far, it is 
lear that both the �xed information and the eviden
e 
an be represented ade-

quately by sets of w�s of the language L. (In fa
t, the approa
h we have followed only

makes provision for single w�s to represent eviden
e.) When it 
omes to the represen-

tation of default information, however, the situation is not so 
lear. One solution is to

be satis�ed with an impli
it representation of default rules. For example, suppose L is

a transparent propositional language 
ontaining the predi
ate symbols b and f , with b

representing the property of being a bird and f the property of being able to 
y. Then

any expe
tation based 
onsequen
e relation j� 
ontaining all the elements of the form

b(x)j�f(x), with x being repla
ed by all the terms in L, 
ontains an impli
it represen-

tation of the default rule that \birds normally 
y". This is the viewpoint advan
ed by

G�ardenfors and Makinson [1994,p. 224℄, at least when it 
omes to expe
tation based

nonmonotoni
 reasoning. Of 
ourse, su
h an approa
h still leaves unanswered the ques-

tion of how an agent 
hooses a parti
ular expe
tation based 
onsequen
e relation, or

equivalently, how it arrives at a parti
ular expe
tation state.

In many instan
es though, of whi
h the Tweety example is a 
ase in point, it seems

more natural to have an expli
it way of representing default information. The question

then be
omes one of de
iding on the most appropriate form of expli
it representation.

A �rst attempt might involve the expansion of the language L to introdu
e another

obje
t level 
onne
tive  , whi
h is used to en
ode default information. Thus, the

default rule asserting that birds normally 
y might be represented as the set of w�s of

the form b(x) f(x), with x being repla
ed by all the terms in L. But this approa
h is

bound to 
ompli
ate matters enormously, sin
e su
h default w�s 
an then also o

ur as
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�xed information, as eviden
e and as plausible 
onsequen
es of the eviden
e at hand.

In fa
t, it is tantamount to the introdu
tion of a 
onditional 
onne
tive into L, and 
an

easily lead to a variant of G�ardenfors' triviality result [G�ardenfors, 1988,pp. 156{166℄.

A more realisti
 initial approa
h, and one that avoids the 
ompli
ated issue of an agent

reasoning about its own reasoning, is to view  as a meta-
onne
tive. The language

L thus remains un
hanged, but in spe
ifying default information we use expressions

of the form �  �, where � and � are w�s of L. This is the method of representing

default information in quite a number of re
ently developed nonmonotoni
 reasoning

systems, [Kraus et al., 1990, Pearl, 1990, Lehmann and Magidor, 1992, Ge�ner and

Pearl, 1992, Goldszmidt and Pearl, 1993, 1996℄. These systems are all based on notions

independently developed by Lehmann and Magidor [1992℄ on the one hand, and Pearl

[1990℄ on the other hand, whi
h we brie
y dis
uss below.

Lehmann and Magidor [1992℄ present three nonmonotoni
 reasoning systems, all

of whi
h involve the spe
i�
ation of a 
onditional knowledge base. In our terminology,

a 
onditional knowledge base CK is a set of default rules of the form �  �, with

�; � 2 L. They refer to su
h default rules as 
onditional assertions. The idea is that one

should be able to derive a set of 
onditional assertions from any 
onditional knowledge

base. When viewed as a binary relation on L, su
h a derived set of 
onditional assertions


an then be seen as a nonmonotoni
 
onsequen
e relation. So, for example, if we are

able to derive the 
onditional assertion �  � from CK, we would take � to be a

plausible 
onsequen
e of � in the presen
e of CK. The question is then to determine

whi
h 
onditional assertions we should be able to derive from a parti
ular 
onditional

knowledge base.

Lehmann and Magidor's �rst proposal is based on the preferential 
onsequen
e

relations (see de�nition se
tion 4.2.1), and is termed preferential entailment.

De�nition 4.6.1 A 
onditional knowledge base CK preferentially entails a 
ondition-

al assertion � � i� for every preferential 
onsequen
e relation j� 
ontaining CK (in

the sense that 
j�Æ for every 
  Æ 2 CK), �j�� holds. 2

So preferential entailment only permits us to draw those plausible 
on
lusions that we

will be able to draw from every preferential 
onsequen
e relation respe
ting the default

information 
ontained in CK. This is one of the reasons that it has been advo
ated

by Pearl [1989℄ as the 
onservative 
ore that should be 
ontained in any nonmonotoni


reasoning system.
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Clearly the set of 
onditional assertions preferentially entailed by a 
onditional

knowledge base CK also 
ontains CK, and preferential entailment 
an thus be seen

as a 
losure operation of some kind. When viewed as a binary relation on L, it turns

out that every set of 
onditional assertions preferentially entailed by some 
onditional

knowledge base is itself a preferential 
onsequen
e relation. Preferential entailment is

thus seen as too weak, sin
e it 
annot be des
ribed as a set of rational 
onsequen
e

relations.

For Lehmann and Magidor's se
ond proposal of what a 
onditional knowledge base

should entail, they apply the 
onstru
tion used above to the rational 
onsequen
e

relations (see de�nition 4.3.1).

De�nition 4.6.2 A 
onditional knowledge base CK rationally entails a 
onditional

assertion �  � i� for every rational 
onsequen
e relation j� 
ontaining CK (in the

sense that 
j�Æ for every 
  Æ 2 CK), �j�� holds. 2

Remarkably, it turns out that rational entailment is equivalent to preferential entail-

ment. To be more pre
ise, Lehmann and Magidor show that a 
onditional knowledge

base CK rationally entails a 
onditional assertion � � i� CK preferentially entails

�  �. Even more remarkable, perhaps, is the fa
t that for �nitely generated propo-

sitional languages, Pearl's �-entailment [1988℄, whi
h is a proposal to deal with default

information on qualitative probabilisti
 grounds, is also equivalent to preferential en-

tailment [Ge�ner and Pearl, 1992℄.

Sin
e rational entailment is equivalent to preferential entailment, the former is

thus also regarded as too weak. Lehmann and Magidor [Lehmann, 1989, Lehmann

and Magidor, 1992℄ propose to re
tify the situation as follows. Consider the set of


onditional assertions rationally entailed by a 
onditional knowledge base CK. Viewed

as a binary relation on L, this set is a preferential 
onsequen
e relation. The idea is to

�nd a sensible way to extend the preferential 
onsequen
e relation to obtain a rational


onsequen
e relation. This rational 
onsequen
e relation, termed the rational 
losure

of CK, seems to be a genuine improvement on rational and preferential entailment,

sin
e it is able to handle a

ounts of irrelevan
e as well as spe
i�
ity.

4

The interested

4

Spe
i�
ity refers to the ability to give priority to more \spe
i�
" default information. For example,

if we know that birds normally 
y, but that ostri
hes normally don't 
y, the latter rule should have

priority over the former when dealing with a bird that also happens to be an ostri
h. See se
tion 4.3

for a des
ription of irrelevan
e.
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reader is invited to 
onsult [Lehmann, 1989℄ and [Lehmann and Magidor, 1992℄ for

more details. Interestingly enough, Goldszmidt and Pearl [1990℄ have shown that, for

the �nitely generated propositional languages, rational 
losure is quivalent to system-Z

[Pearl, 1990℄, another of Pearl's nonmonotoni
 reasoning systems based on qualitative

probabilities.

4.7 Unifying 
autious and bold reasoning

We have seen (see se
tion 4.4.2) that G�ardenfors and Makinson [1994℄ use the ex-

pe
tation based 
onsequen
e relations as the basis for a uni�ed treatment of theory

revision and nonmonotoni
 reasoning, arguing that they 
an be seen as the same pro-


ess, although used for two di�erent purposes. In this se
tion we show that a 
loser

examination of the G�ardenfors-Makinson 
laim is the gateway to a theory of 
autious

and bold reasoning, en
ompassing both AGM theory revision and nonmonotoni
 rea-

soning (in the form of the expe
tation based 
onsequen
e relations) as spe
ial 
ases.

Su
h a theory thus provides a truly uni�ed pi
ture of the two areas.

Let us �rst 
onsider the 
laim that theory revision and nonmonotoni
 reasoning


an be seen as the same pro
ess. With AGM revision and the expe
tation based


onsequen
e relations in mind, the interpretation to atta
h to this assertion is straight-

forward. If the belief set K of an agent in a parti
ular situation, and the expe
tation set

E of the same agent in a (possibly) di�erent situation are identi
al, then the reasoning

pro
ess involved when revising K by a w� � should be the same as when trying to

in
orporate the eviden
e � into E. In other words, the permissible ways of revising K

by � should be exa
tly the same as the permissible ways of obtaining the plausible 
on-

sequen
es of �, given the expe
tation set E. What then, about the statement that this

pro
ess is used for two di�erent purposes? A

ording to G�ardenfors and Makinson, it

boils down to the di�eren
e between beliefs and expe
tations. For them, expe
tations

in
lude not only our beliefs as a limiting 
ase, but also other w�s that are regarded

as plausible enough to be used as a basis for inferen
e. The set of expe
tations of an

agent will thus always in
lude its set of beliefs. If we take seriously this relationship

between expe
tations and beliefs, we are one step 
loser to a uni�ed view of theory

revision and nonmonotoni
 reasoning. For, su
h a relationship does not just involve

the 
urrent belief set K and the 
urrent set of expe
tations E. It also requires the

belief set obtained when revising K by � to be a subset of the plausible 
onsequen
es
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of �, given the expe
tation set E. In other words, we should have both K � E and

K � � � f� j �j��g for any AGM K-revision � and any E-based 
onsequen
e relation

j�. In fa
t, we might as well use AGM revisions to represent expe
tation based rea-

soning, as long as we keep in mind that when doing so, the belief sets used are to be

interpreted as expe
tation sets. This is the route we shall take in the remainder of this

se
tion.

G�ardenfors and Makinson have 
hosen to di�erentiate between beliefs and expe
-

tations, but there is nothing preventing us from introdu
ing even further distin
tions

between sets of 
on
lusions. Rabinowi
z [1995℄, for example, proposes the use of a set

of assumptions, whi
h is intended to be in
luded in the set of expe
tations, and also

to in
lude the set of beliefs. Formally, there is, of 
ourse, no problem with drawing

su
h distin
tions. In fa
t, we might as well 
ontinue in this fashion, and make room

for an arbitrary �nite sequen
e of sets of w�s, ea
h one in
luding its prede
essor and

being in
luded in its su

essor. But what would we be gaining epistemologi
ally? One

answer to this question 
on
erns the a
tions to be taken by agents under various 
ir-


umstan
es. For example, Rabinowi
z's reason for introdu
ing sets of assumptions is

related to his dissatisfa
tion with the use of \mere expe
tations" when identifying the

pro
ess of theory revision with nonmonotoni
 reasoning. He argues that expe
tations,

as understood by G�ardenfors and Makinson, are too provisional to be used for purposes

of deliberation and a
tion, and suggests the use of assumptions instead. It is our view

that the qualitative di�eren
e between beliefs, assumptions, expe
tations and the like,


an perhaps best be expressed, not in terms of whether an agent is willing to a
t on

them, as Rabinowi
z 
ontends, but rather in terms of how it is willing to a
t on them.

For example, a dete
tive investigating a murder 
ase may be willing to draw tentative


on
lusions in order to get his investigation going. He may even be willing to a
t on

su
h 
on
lusions by, for example, following up 
ertain leads. But he may not have

suÆ
ient faith in these 
on
lusions to bring suspe
ts in for questioning, or to obtain a

warrant for sear
hing the house of the main suspe
t. And even when the eviden
e at

his disposal provides, in his opinion, suÆ
ient grounds for assuming the main suspe
t

to be guilty, he may not be willing to hand the 
ase over for prose
ution. In this ex-

ample then, his expe
tations might determine his a
tions related to initial investigative

work, his assumptions might determine when to take a
tions with possible negative

rami�
ations, and his beliefs might determine when to 
lose the investigation.

Intuitively, su
h a sequen
e of sets of w�s thus 
orresponds to various degrees of
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beliefs, with a set of w�s earlier in the sequen
e being asso
iated with the out
ome

of a more 
autious form of reasoning, and one later in the sequen
e representing the

out
ome of a bolder form of reasoning. In the spirit of G�ardenfors and Makinson we

take all these di�erent forms of reasoning to be driven by the same reasoning pro
ess,

and we represent them as a sequen
e of AGM revisions.

De�nition 4.7.1 An n-reasoning 
ontext is a sequen
e of of ordered pairs

h(K

1

; �

1

); : : : ; (K

n

; �

n

)i

where, for every i from 1 to n, �

i

is an AGM K

i

-revision, and for every i from 1 to

n� 1, and every � 2 L, K

i

� K

i+1

and K

i

�

i

� � K

i+1

�

i+1

�. 2

We 
an then, for example, represent a setup involving beliefs, assumptions and expe
-

tations as a 3-reasoning 
ontext in whi
h K

1


orresponds to the set of beliefs, K

2

to

the set of assumptions, and K

3

to the expe
tation set.

It turns out that in the �nitely generated propositional 
ase, at least, the n-

reasoning 
ontexts 
an be 
onstru
ted elegantly in terms of sequen
es of su

essively

re�ned ordered pairs, ea
h 
onsisting of a belief set and a faithful total preorder.

De�nition 4.7.2 For any n > 0, an n-re�ned epistemi
 state is an n-tuple of epistemi


states h�

1

; : : :�

n

i (with every �

i

being an ordered pair (K

i

;�

i

), where K

i

is a belief

set, and �

i

is K

i

-faithful total preorder) su
h that, for every i from 1 to n� 1:

1. K

i

� K

i+1

,

2. for every x; y 2 U (the set of interpretations of L), if x �

�

i+1

y then x �

�

i

y,

and

3. for every x; y 2 U , if x �

i

y then x �

i+1

y.

2

Intuitively, �ner grained total preorders represent more adventurous forms of reasoning.

From an information-theoreti
 point of view, it ensures that an agent is better able

to dis
riminate between infatoms, and will therefore remove fewer infatoms during a

revision pro
ess.

Theorem 4.7.3 Pi
k any positive integer n.
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1. Every n-re�ned epistemi
 state h�

1

; : : :�

n

i de�nes an n-reasoning 
ontext

h(K

1

; �

1

); : : : ; (K

n

; �

n

)i

by letting every �

i

be the AGM K

i

-revision de�ned in terms of �

i

using (Def �

from �).

2. If L is a �nitely generated propositional language, then every n-reasoning 
ontext

h(K

1

; �

1

); : : : ; (K

n

; �

n

)i 
an be de�ned in terms of some n-re�ned epistemi
 state

h�

1

; : : :�

n

i for whi
h every �

i

is de�ned in terms of �

i

using (Def � from �).

Proof 1. Pi
k any i su
h that 1 � i < n and any � 2 L. It suÆ
es to show that

Min

�

i+1

(�) � Min

�

i

(�). So pi
k any y 2 Min

�

i+1

(�). For every x 2 M(�),

x �

i+1

y, and so x �

i

y. That is, y 2Min

�

i

(�).

2. From theorem 3.2.6 it follows that every �

i


an be de�ned in terms of some K

i

-

faithful total preorder �

i

using (Def � from �). Pi
k any i su
h that 1 � i < n,

and any x; y 2 U , and let � be a w� that axiomatises the set fx; yg. We need

to show that x �

�

i+1

y implies x �

�

i

y, and x �

i

y implies x �

i+1

y. Suppose

�rstly that x �

�

i+1

y but that x 6�

�

i

y. Without loss of generality we 
an assume

that x �

i

y. It then follows thatMin

�

i

(�) = fxg andMin

�

i+1

(�) = fx; yg. But

then M(K

i

�

i

�) �M(K

i+1

�

i+1

�), 
ontradi
ting the supposition that K

i

�

i

� �

K

i+1

�

i+1

�. Next, suppose that x �

i

y but that x �

i+1

y, i.e. y �

i+1

x. Then

Min

�

i

(�) = fxg and either Min

�

i+1

(�) = fx; yg or Min

�

i+1

(�) = fyg. Either

way,Min

�

i+1

(�) *Min

�

i

(�), and soM(K

i+1

�

i+1

�) *M(K

i

�

i

�), 
ontradi
ting

the supposition that K

i

�

i

� � K

i+1

�

i+1

�.

2

So the n-re�ned epistemi
 states provide a suitable abstra
t framework for a uni�ed

view of 
autious and bold reasoning, in
luding both AGM theory revision and expe
-

tation based inferen
e.

4.8 Con
lusion

Although sometimes viewed as two distin
t albeit related �elds, theory revision and

nonmonotoni
 reasoning seem to be two sides of the same 
oin. In re
ent years, the
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resear
h 
ondu
ted in these two areas have be
ome more and more entwined, with fre-

quent attempts at attaining a kind of synergy on various levels [Makinson, 1989, 1993,

Katsuno and Mendelzon, 1991, Katsuno and Satoh, 1991, Lindstr�om, 1991, G�ardenfors

and Makinson, 1994, Boutilier, 1994, Goldszmidt and Pearl, 1996℄.

One of the reasons for the view that theory revision and nonmonotoni
 reasoning

are motivated by di�erent ideas, is that theory revision is usually seen as a des
ription

of the dynami
 pro
ess of an agent modifying its set of beliefs, while nonmonotoni


reasoning is viewed as the study of the seemingly stati
 notion of jumping to 
on
lusions

in the fa
e of un
ertainty.

5

But, as we have seen in se
tions 4.4.2 and 4.5, a 
loser look

at the intuition underlying nonmonotoni
 reasoning reveals it to be of a dynami
 nature

as well. In fa
t, the word \nonmonotoni
" 
an be seen as a referen
e to the willingness

of an agent to modify its 
urrent set of plausible 
on
lusions in the fa
e of additional


on
i
ting eviden
e. The prevalen
e of the stati
 view of nonmonotoni
 reasoning is

perhaps attributable to the fa
t that many of the nonmonotoni
 reasoning formalisms

are �rmly rooted in work originally done in the area of 
onditional logi
 [Adams, 1975,

Stalnaker et al., 1981, van Benthem, 1984℄.

As we have shown in se
tion 4.5 the a

ommodation of the dynami
 nature of

nonmonotoni
 reasoning in these formalisms is made possible by making 
ertain impli
it

assumptions. In se
tion 7.5.1 we show how these assumptions 
an be translated into a

property of iterated theory revision, thus providing another example of nonmonotoni


reasoning as theory revision.

In 
on
lusion, it is 
lear that resear
h involving both nonmonotoni
 reasoning and

theory 
hange will bene�t both areas. As a 
ontribution along these lines, we have

presented a general theory of bold and 
autious reasoning, with AGM theory revision

and expe
tation based reasoning as spe
ial 
ases. From our perspe
tive, though, the

important advantage resulting from the 
omparison of theory revision and nonmono-

toni
 reasoning presented in this 
hapter, is that it provides more support for the use

of faithful total preorders as an appropriate way to represent parts of the epistemi


states of agents.

5

See Veltman [1996℄ for a di�erent view.



Chapter 5

Epistemi
 entren
hment

Good order is the foundation of all things.

Edmund Burke (1729-97), Irish-born British politi
ian

As indi
ated in 
hapter 1, belief 
hange is 
on
erned with the ability of an agent to

modify its 
urrent view of the world in a 
oherent fashion when 
onfronted with new

information. To be able to e�e
t su
h modi�
ations, it is ne
essary to �nd a way to

represent the epistemi
 states of agents. In our view, an appropriate representation

of an epistemi
 state, at least in the 
ase of theory 
ontra
tion and revision, is as an

ordered pair of the form (K;�), where K is a belief set and � is a faithful preorder.

But this is not the only possibility. Other proposals in
lude a representation as a set of

\
onditional assertions" (see se
tion 4.6 and Darwi
he and Pearl [1997,p. 2℄), and as

an ordering of entren
hment among the w�s of L, [Nayak, 1994b, Nayak et al., 1996℄.

Our fo
us in this 
hapter is on the latter proposal.

The best-known version of su
h entren
hment orderings is the EE-orderings of

G�ardenfors and Makinson [G�ardenfors, 1988, G�ardenfors and Makinson, 1988℄, dis-


ussed in se
tion 2.3 and again in se
tion 3.3.1. In this 
hapter we 
onsider them

yet again. We show how to formalise the intuition underlying the de�nition of AGM


ontra
tion in terms of the EE-orderings. Then we fo
us on new results regarding the

relationship between the EE-orderings and the faithful total preorders. This leads to

a surprising 
onne
tion between the EE-orderings and the orderings on w�s obtained

from Spohn's ordinal 
onditional fun
tions [1988℄.

Se
tion 5.5 of this 
hapter is an expanded version of the paper by Meyer et al. [1999b℄.

89
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The EE-orderings provide an adequate formalisation of the intuitive notion of the

entren
hment of beliefs in most respe
ts, but they also have some undesirable prop-

erties. We take a look at other approa
hes to entren
hment and dis
uss the extent

to whi
h they 
ir
umvent the problems asso
iated with the EE-orderings. This in-


ludes a presentation of our own proposal for entren
hment, a re�ned version of the

EE-orderings that is, perhaps not surprisingly, motivated by semanti
 
onsiderations.

This 
hapter 
ontains referen
es to virtually every variation on entren
hment that

has been put forward in the belief 
hange literature. Remarkably, ea
h and every one

of these 
an, in some way or another, be 
onstru
ted semanti
ally in terms of some

ordering on interpretations or infatoms; a result that is, in part, summarised in �gure

5.6 on page 136.

5.1 AGM 
ontra
tion via the EE-orderings

The intuition as
ribed to the EE-orderings is that w�s higher up in the ordering are

more entren
hed in the belief set K. When for
ed to 
hoose, we should thus rather

dis
ard the less entren
hed w�s. This is G�ardenfors' intuitive des
ription of 
ontra
tion

via epistemi
 entren
hment [1988,p. 89℄; an intuition that is not in exa
t a

ordan
e

with (Def � from v

EE

), the formal de�nition of AGM 
ontra
tion in terms of the

EE-orderings. (We dis
uss this matter in more detail in 
hapter 6.) In this se
tion we

show that it is possible to formalise the intuition above, by spe
ifying exa
tly what it

means to say that we are \for
ed to 
hoose". We des
ribe AGM 
ontra
tion in terms

of the EE-orderings in a way that di�ers from (Def � from v

EE

). In doing so, we make

use of the following identities:

(Def s


v

) s


v

(�) = f� j � < �g

(Def r

�

) r

�

(�) = fx j 9y 2 Min

�

(�), su
h that x � yg

De�nition 5.1.1 1. Given a preorder v on L, and a w� �, we de�ne s


v

(�), the

stri
t 
ut of �, in terms of v using (Def s


v

).

2. For a faithful preorder � (whi
h need not be total), we de�ne r

�

(�), the downset

of a w� � in terms of � using (Def r

�

).

2
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A stri
t 
ut of a w� � 
ontains all the w�s that are more entren
hed than � in v.

Stri
t 
uts 
an be seen as the stri
t versions of the fallba
ks of Lindstr�om and Rabi-

nowi
z [1991℄. On the other hand, for the faithful total preorders, r

�

(�) is the set

of interpretations that are not stri
tly above the minimal models of �. We show that

there is a 
lose 
onne
tion between stri
t 
uts and downsets.

Proposition 5.1.2 Let � be a faithful total preorder, and let v

EE

be the EE-ordering

de�ned in terms of � using (Def v

E

from �). If 2 � then Th(r

�

(:�)) = s


v

EE

(�).

Proof Suppose that 2 � and pi
k any � 2 Th(r

�

(:�)). It suÆ
es to show that

� 6v

EE

�. Be
ause Min

�

(:�) � r

�

(:�), there is a y 2 Min

�

(:�) su
h that x 2

M(�) for every x � y, and thus � 6v

EE

�. Conversely, pi
k a � 2 s


v

EE

(�), and pi
k

any y 2 Min

�

(:�). Sin
e � 6v

EE

�, x 2 M(�) for every x � y, from whi
h it follows

that r

�

(:�) �M(�). 2

Proposition 5.1.2 enables us to show that the w�s that are stri
tly more entren
hed

than � form the 
ore of the w�s to be retained during an �-
ontra
tion of K.

Proposition 5.1.3 Let � be a faithful total preorder, let v

EE

be the EE-ordering

de�ned in terms of � using (Def v

E

from �), and let � be the AGM 
ontra
tion

de�ned in terms of � using (Def � from �). If 2 � then s


v

EE

(�) � K � �.

Proof Follows easily from proposition 5.1.2. 2

The remaining question is thus to determine whi
h of the w�s that are at most as

entren
hed as � will be retained, and whi
h will be dis
arded during an �-
ontra
tion

of K. The intuition di
tates that we only remove those w�s that we are for
ed to

remove. Given proposition 5.1.3, it is 
lear that a w� � in K will have to dis
arded if

� is entailed by � together with s


v

EE

(�).

Proposition 5.1.4 Let � be a faithful total preorder, let v

EE

be the EE-ordering

de�ned in terms of � using (Def v

E

from �), and let � be the AGM 
ontra
tion

de�ned in terms of � using (Def � from �). If 2 � and � 2 s


v

EE

(�) + � then

� =2 K � �.

Proof Suppose that 2 � and � 2 s


v

EE

(�)+�. By proposition 5.1.3, s


v

EE

(�) � K��

and so, if � 2 K � �, then � 2 K � �, 
ontradi
ting (K�4). 2
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Furthermore, if the addition of any two w�s � and 
 to s


v

EE

(�) yields �, then both

will have to be removed from K, even when adding either of them on their own to

s


v

EE

(�) does not entail �.

Proposition 5.1.5 Let � be a faithful total preorder, let v

EE

be the EE-ordering

de�ned in terms of � using (Def v

E

from �), and let � be the AGM 
ontra
tion

de�ned in terms of � using (Def � from �). Now suppose that � =2 s


v

EE

(�) + � and

� =2 s


v

EE

(�) + 
, but � 2 s


v

EE

(�) + � ^ 
. Then � =2 K � � and 
 =2 K � �.

Proof Be
ause � =2 s


v

EE

(�) + 
, we have that 2 �, and by proposition 5.1.2 there

is an x 2 M(Th(r

�

(:�))) su
h that x 2 M(:�) \M(
). Furthermore, sin
e � 2

s


v

EE

(�) + � ^ 
, x 2 M(:�). Sin
e M(K) � r

�

(:�), it then follows from lemma

1.3.5 that x 2M(Th(M(K)[Min

�

(:�))) and so � =2 K��. The proof for 
 =2 K��

is similar. 2

And �nally, we get a result that pla
es an upper bound on the w�s to be removed

from K. The next proposition ensures that there is a good reason for dis
arding a w�

� 2 K during an �-
ontra
tion of K: We'll always be able to �nd a w� that is at least

as entren
hed as �, and whi
h, together with � and the 
ore, entail �.

Proposition 5.1.6 Let � be a faithful total preorder, let v

EE

be the EE-ordering

de�ned in terms of � using (Def v

E

from �), and let � be the AGM 
ontra
tion

de�ned in terms of � using (Def � from �). For every � 2 K nK�� there is a 
 2 K

su
h that � =2 s


v

EE

(�) + 
 and � v

EE


, but � 2 s


v

EE

(�) + � ^ 
.

Proof Pi
k any � 2 K n K � �. We show that � ! � has the desired properties.

Sin
e � 2 K nK ��, it follows that � 2 K, and so � ! � 2 K. Furthermore, be
ause

� 2 K nK � �, there is an x 2Min

�

(:�) � r

�

(:�) su
h that x 2M(:�) \M(:�).

So x 2 M(� ! �) \ r

�

(:�) � M(s


v

EE

(�) + � ! �) by proposition 5.1.2, and

thus � =2 s


v

EE

(�) + � ! �. To show that � v

EE

� ! � it is enough to point out

that x � y for every y 2 M(:(� ! �)), and to re
all that x 2 M(:�). Finally,

� 2 s


v

EE

(�) + � ^ (� ! �) be
ause f�; � ! �g � �. 2

Combining the results above, we obtain the following representation theorem.
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Theorem 5.1.7 Let � be a faithful total preorder, let v

EE

be the EE-ordering de�ned

in terms of � using (Def v

E

from �), and let � be the AGM 
ontra
tion de�ned in

terms of � using (Def � from �). For every �; � 2 L,

� =2 K � � i�

8

>

>

>

>

<

>

>

>

>

:

� =2 K, or

2 � and � 2 s


v

EE

(�) + �, or

2 � and 9
 2 K su
h that � =2 s


v

EE

(�) + �, � v

EE


,

and � 2 s


v

EE

(�) + � ^ 
.

Proof Suppose that � =2 K ��, that � 2 K and that either � � or � =2 s


v

EE

(�)+ �.

� � 
ontradi
ts (K�6) and the fa
t that � 2 K nK � �, so we suppose that 2 � and

� =2 s


v

EE

(�)+�. Then the required result follows from proposition 5.1.6. Conversely,

if � =2 K then by (K�2), � =2 K � �. If 2 � and � 2 s


v

EE

(�) + � then � =2 K � �

by proposition 5.1.4. So suppose that � 2 K, 2 �, � =2 s


v

EE

(�) + � and that there

is a 
 2 K su
h that � =2 s


v

EE

(�) + 
, � v

EE


, and � 2 s


v

EE

(�) + � ^ 
. Then

� =2 K � � by proposition 5.1.5. 2

Theorem 5.1.7 shows that a w� � 2 K will be dis
arded during an �-
ontra
tion of K

for pre
isely one of the following two reasons:

� If � is entailed by � together with s


v

EE

(�).

� If � is entailed by � together with s


v

EE

(�) and some w� 
 that is at least as

entren
hed as �.

So, during an �-
ontra
tion of K, we say that we are \for
ed to 
hoose" between two

w�s � and 
 i� the 
ore of w�s to be retained (the set s


v

EE

(�)) entails � when both

� and 
 are added to it.

5.2 EE-orderings and minimality

Impli
it in the semanti
 des
ription of the EE-orderings in se
tion 3.3.1, is the idea

that the entren
hment of w�s is a derived notion, based on orderings of interpretations,

or perhaps more aptly, orderings of infatoms. Of 
ourse, theorem 3.3.1 also guarantees

the 
onstru
tion of faithful total preorders in terms of some kind of 
onverse of (Def

v

E

from �), leaving the door open for a view of the EE-orderings as at least as

basi
, epistemologi
ally, as the faithful total preorders. Nevertheless, a number of
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other fa
tors make it diÆ
ult to es
ape the 
on
lusion that the latter is the more

fundamental of the two. In the �rst pla
e, an appeal to the prin
iple of Redu
tionism

be
omes appropriate in this 
ontext if we adopt the view that the EE-orderings are

built up from orderings on infatoms, in mu
h the same way that 
lassi
al entailment

relations are built up from the interpretations (or infatoms) of L. In addition, there

is also the fa
t that di�erent minimal-equivalent faithful total preorders (see de�nition

3.3.6) may de�ne the same EE-ordering using (Def v

E

from �). This last realisation

is, in fa
t, the key to some important results about the 
onne
tion between the EE-

orderings and the minimal models of the w�s of L. The veri�
ation of these results is

based on the following useful observations 
on
erning the relationship between power

orders on L, in the sense of (Def v

E

from �), and the preorders from whi
h they

are obtained. These te
hni
al results will again prove to be most useful in se
tion 5.5,

where we shall have o

asion to make extensive use of them without expli
itly referring

to lemma 5.2.1.

Lemma 5.2.1 Let � be any preorder (not ne
essarily total), and let v be the ordering

on L de�ned in tems of (Def v

E

from �).

1. � v � i� for every y 2Min

�

(:�) there is an x 2 Min

�

(:�) su
h that x � y.

2. � 6v � i� there is a y 2Min

�

(:�) su
h that x 2M(�) for every x � y.

Proof 1. Suppose that � v � and pi
k any y 2 Min

�

(:�). From (Def v

E

from

�) it follows that there is a z 2 M(:�) su
h that x � y. By the smoothness

of �, there is an x 2 Min

�

(:�) su
h that x � z, and the required result then

follows from transitivity. Conversely, suppose that for every y 2 Min

�

(:�)

there is an x 2 Min

�

(:�) su
h that x � y, and pi
k any v 2 M(:�). By the

smoothness of � there is a v

0

2Min

�

(:�) su
h that v

0

� v, and by supposition

there is a u 2Min

�

(:�) su
h that u � v

0

. The required result then follows from

transitivity.

2. Suppose that � 6v �. That is, there is a v 2M(:�) su
h that x 2M(�) for every

x � v. The required result then follows from smoothness and transitivity. The


onverse follows immediately from the supposition that there is a y 2Min

�

(:�)

su
h that x 2M(�) for every x � y.

2
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For any faithful total preorder, the set of minimal models of any w� is parti
ularly

well-behaved in the sense that they are all on the same level. As a 
onsequen
e, the

appli
ation of lemma 5.2.1 to the faithful total preorders and the EE-orderings obtained

from them, using (Def v

E

from �), leads to some interesting results. It shows that the

EE-orderings 
an be 
ompletely determined by the minimal models of the w�s of L. In

the non-trivial 
ase of two w�s � and � that are both not logi
ally valid, � is at most

as entren
hed as � i� the minimal models of :� are at least as high up as the minimal

models of :�, and � will be stri
tly more entren
hed than � if and only if the minimal

models of :� are stri
tly below the minimal models of :�. Moreover, any two w�s �

and � are equally entren
hed if and only if the minimal models of :� and :� are on

the same level. In the next se
tion we show that these results provide an interesting


onne
tion between the GE-orderings of Grove (see se
tion 2.3.1), the EE-orderings,

and the orderings on w�s obtained from Spohn's ordinal 
onditional fun
tions [1988℄.

Corollary 5.2.2 Let � be a faithful total preorder, let v

EE

be the EE-ordering de�ned

in terms of � using (Def v

E

from �), and let v

GE

be the GE-ordering de�ned in terms

of � using (Def v

G

from �).

1

1. If 2 � and 2 � then � v

EE

� i� Min

�

(:�) � Min

�

(:�).

2. If 2 � and 2 � then � <

EE

� i� Min

�

(:�) � Min

�

(:�).

3. � �

v

EE

� i� Min

�

(:�) �

�

Min

�

(:�).

2

4. If 2 :� and 2 :� then � v

GE

� i� Min

�

(�) � Min

�

(�).

5. If 2 :� and 2 :� then � <

GE

� i� Min

�

(�) � Min

�

(�).

6. � �

v

GE

� i� Min

�

(�) �

�

Min

�

(�).

Proof Follows easily from lemma 5.2.1 and theorem 2.3.5. 2

From an information-theoreti
 point of view, the results 
on
erning the EE-orderings

are parti
ularly illuminating. Re
all that a faithful total preorder 
an be seen as an

1

See se
tion 1.3 for an explanation of the 
onvention of applying �, � and �

�

to sets of interpre-

tations.

2

This is a well-known result in the 
ontext of Grove's systems of spheres [see G�ardenfors, 1988,p.

95℄.
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ordering in whi
h infatoms lower down are regarded as less entren
hed. The entren
h-

ment of a w� is thus 
ompletely determined by its least entren
hed 
ontent bits, a view

that is reminis
ent of the saying that a 
hain is only as strong as its weakest link. It 
an

be seen as a generalisation of a result by G�ardenfors and Makinson [1988℄, that when

a belief set K is �nite modulo Cn, an EE-ordering with respe
t to K is 
ompletely

determined by the 
o-atoms of K, where the 
o-atoms of K are the logi
ally weakest

elements of K n Cn(>).

5.3 Ordinal 
onditional fun
tions

Spohn [1988℄ presents a representation of epistemi
 states inspired by probability the-

ory. Let us restri
t ourselves to a valuation semanti
s (V;
) for L. Spohn de�nes an

ordinal 
onditional fun
tion (OCF) � to be a fun
tion from V , the set of valuations of

L, into the 
lass of ordinals, su
h that �(v) = 0 for at least one v 2 V . Intuitively,

valuations with a smaller ordinal assigned to them are 
onsidered to be more plausible.

The valuations assigned the ordinal 0 are thus seen as the most plausible, and 
onse-

quently the 
urrent belief set is de�ned as K

�

= Th(fv j �(v) = 0g). Sin
e � has to

assign the ordinal 0 to at least one element of V , K

�

will always be satis�able.

Clearly any OCF � indu
es a total preorder � on V as follows:

(Def � from �) v � w i� �(v) � �(w)

In fa
t, sin
e every subset of V has a smallest ordinal asso
iated with it, � is a well-

order, whi
h means it will also be smooth (see de�nition 3.2.5). Also, � will be a

K

�

-faithful total preorder, provided that fv j �(v) = 0g = M(K

�

).

3

Some K

�

-faithful

total preorders, however, are not well-orders, and they 
an thus not be de�ned in

terms of any OCF � using (Def � from �). In this sense ordinal 
onditional fun
tions

are less general than faithful total preorders. On the other hand, the referen
e to

ordinals ensures that OCFs allow for a representation of degrees of belief that is more

sophisti
ated than any su
h notion de�ned in terms of faithful total preorders.

Spohn extends the ordinal 
onditional fun
tions to fun
tions from }V n f;g into

the 
lass of ordinals by asso
iating every non-empty subset W of V with the smallest

ordinal assigned to any of the valuations in W . That is, for any OCF �, he de�nes

3

The requirement that fv j �(v) = 0g = M(K

�

) is a te
hni
al restri
tion that 
an be tra
ed ba
k

to the non-axiomatisability of in�nitely generated propositional languages.
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�(W ) = minf�(w) j w 2 Wg, and the extended � thus de�nes a total preorder on

}V nf;g. It is easily veri�ed that for every OCF � and every W 2 }V nfV g, �(w) = 0

for every w 2 W i� �(V nW ) > 0. As a 
onsequen
e, K

�


an also be des
ribed as the

set of all w�s � su
h that �(M(:�)) > 0.

Sin
e every w� of L is asso
iated with a parti
ular set of valuations | its set of

models | every OCF � de�nes a total preorder on L as follows:

4

(Def v

�

from �) � v

�

� i�

(

�(M(�)) � �(M(�)) if 2 :� and 2 :�,

� :� otherwise

Remarkably, it turns out that these orderings on w�s are instan
es of the GE-orderings

of Grove.

Proposition 5.3.1 Let � be an OCF, let � be the total preorder on V de�ned in terms

of � using (Def � from �), and let v

�

be the total preorder on L, de�ned in terms of

� using (Def v

�

from �).

1. v

�


an also be de�ned in terms of � using (Def v

G

from �), where � is the

total preorder on V obtained from �.

2. v

�

is a GE-ordering.

Proof 1. The non-trivial 
ases, i.e. for satis�able w�s that are not logi
aly valid,

follow from the de�nition of the extended � and part (4) of 
orollary 5.2.2.

2. If � is a K

�

-faithful total preorder, the result follows from part (1) and theorem

3.3.1. The 
ase where � is not K

�

-faithful 
orresponds to a violation of the

te
hni
al restri
tion that the lowest level of � has to 
ontain all the models of

K

�

. It is easily veri�ed that in su
h a 
ase, � also de�nes a GE-ordering. From

part (1) we then get the required result.

2

We now 
ome to Spohn's de�nition of the plausibility of w�s. He takes a w� � to be

less plausible than a w� � i� �(M(:�)) < �(M(:�)) or �(M(�)) < �(M(�)). Sin
e �

only assigns ordinals to non-empty sets of valuations, we let this de�nition apply only

to satis�able w�s that are not logi
ally valid. In order to a

ommodate all the w�s of

4

The OCF determines the relationship between all satis�able w�s. For 
ompleteness, we in
lude

the logi
ally invalid w�s by pla
ing them stri
tly below the satis�able ones.
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L, we extend the de�nition by letting the logi
ally valid w�s be more plausible than

all the other w�s, and letting the logi
ally invalid w�s be less plausible than all the

others. The plausibility ordering <

P

is then de�ned in terms of an OCF � as follows:

(Def <

P

from �) � <

P

� i�

8

>

<

>

:

�(M(:�)) < �(M(:�)) or �(M(�)) < �(M(�))

if 2 �, 2 :�, 2 �, and 2 :�,

� :� and 2 :�, or 2 � and � �, otherwise

Spohn justi�es his de�nition of plausibility in terms of the �rmness with whi
h a w� is

believed or disbelieved. The basi
 idea is that if � is K

�

-established (i.e. �(M(:�)) >

0) then � is believed with a �rmness of �(M(:�)), if :� is K

�

-refuted (i.e. �(M(�)) >

0), then � is disbelieved with a �rmness of �(M(�)), and if � is K

�

-unde
ided (i.e.

�(M(�)) = �(M(:�)) = 0), then � and :� are both believed and disbelieved, with a

�rmness of 0. A w� � will thus be less plausible than a w� � for one of the following

reasons (where both � and � are satis�able but not logi
ally valid):

1. � is K

�

-established and � is K

�

-established. That is, � is disbelieved and � is

believed. Then �(M(:�)) < �(M(:�)) and �(M(�)) < �(M(�)).

2. � is K

�

-unde
ided and � is K

�

-established. That is, � is less �rmly believed than

�. Then �(M(:�)) < �(M(:�)).

3. Both � and � are K

�

-established and � is less �rmly believed than �. Then

�(M(:�)) < �(M(:�)).

4. � is K

�

-refuted and � is K

�

-unde
ided. So � is more �rmly disbelieved than �.

Then �(M(�)) < �(M(�)).

5. Both � and � are K

�

-refuted and � is more �rmly disbelieved than �. Then

�(M(�)) < �(M(�)).

There is another way to justify (Def <

P

from �) as a suitable proposal for obtaining

plausibility orderings as well; one that involves the 
onne
tion between the ordinal


onditional fun
tions and the GE-orderings. Re
all that one of the primary purposes

of an EE-ordering (with respe
t to K) is to 
ompare the w�s in K. It regards all w�s

that are not in K as equally entren
hed. Similarly (see se
tion 2.3.1), a GE-ordering

distinguishes between w�s that are K-refuted, but regards all the w�s in K, together

with all the K-unde
ided w�s, as equally plausible. Now suppose that we want to
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obtain an entren
hment ordering that 
ombines the best of the EE-orderings and the

GE-orderings.

5

We need to 
onsider three 
ases. Firstly, w�s not in K need to be

pla
ed stri
tly below w�s in K. Se
ondly, when 
omparing w�s in K we need to use an

EE-ordering. And thirdly, when 
omparing w�s not in K, we need to use the inverse

of a GE-ordering (sin
e GE-orderings regard w�s lower down as more plausible). We

therefore de�ne a re�ned ordering, an R-orderingv

R

in terms of a faithful total preorder

� as follows:

(Def v

R

from �) � v

R

� i�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

8y 2M(:�), 9x 2M(:�) su
h that x � y

if �; � 2 K,

8y 2M(�), 9x 2M(�) su
h that x � y

if �; � =2 K,

� =2 K and � 2 K otherwise

It is easily shown that (Def v

R

from �) is a formalisation of the verbal des
ription

given above.

Proposition 5.3.2 Let � be a faithful total preorder, let v

EE

be the EE-ordering

de�ned in terms of � using (Def v

E

from �), let v

GE

be the GE-ordering de�ned in

terms of � using (Def v

G

from �), and let v

R

be the R-ordering de�ned in terms of

� using (Def v

R

from �). Then

� v

R

� i�

8

>

<

>

:

� v

EE

� if �; � 2 K,

� v

GE

� if �; � =2 K,

� =2 K and � 2 K otherwise.

Proof Follows from theorem 2.3.5. 2

It turns out that Spohn's plausibility orderings are instan
es of the stri
t versions of

the R-orderings.

Theorem 5.3.3 Let � be an OCF, let � be the K

�

-faithful total preorder obtained in

terms of � using (Def � from �), let <

P

be the plausibility ordering obtained in terms

of � using (Def <

P

from �), and let v

R

be the R-ordering obtained in terms of � using

(Def v

R

from �). Then � <

P

� i� � <

R

� for every �; � 2 L.

5

This is a suggestion due to Rabinowi
z [1995℄.
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Proof We only 
onsider the 
ase where 2 �, 2 :�, 2 � and 2 :�. Firstly, note that

it follows readily from proposition 5.3.2 that the stri
t version of v

R


an be des
ribed

as follows:

� <

R

� i�

8

>

<

>

:

� <

EE

� if �; � 2 K

�

,

� <

GE

� if �; � =2 K

�

,

� =2 K

�

and � 2 K

�

otherwise.

Now suppose that � <

P

�. That is, �(M(:�)) < �(M(:�)) or �(M(�)) < �(M(�)).

If �; � 2 K

�

, then �(M(�)) = �(M(�)) = 0, and therefore �(M(:�)) < �(M(:�)).

But this means that Min

�

(:�) � Min

�

(:�). By proposition 5.3.2 it then follows

that � <

EE

�, and so � <

R

�. If �; � =2 K

�

, then �(M(:�)) = �(M(:�)) = 0,

and therefore �(M(�)) < �(M(�)). But this means that Min

�

(�) � Min

�

(�). By

proposition 5.3.2 it then follows that � <

GE

�, and so � <

R

�. Then the only remaining

possibility is for � not to be in K

�

and for � to be in K

�

. For if � 2 K

�

and � =2 K

�

then �(M(�)) = 0 and �(M(:�)) = 0, 
ontradi
ting the supposition that � <

P

�. So

we again have that � <

R

�.

Conversely, suppose that � <

R

�. If �; � 2 K

�

then � <

EE

�, and so, by 
orollary

5.2.2, Min

�

(:�) � Min

�

(:�). But this means that �(M(:�)) < �(M(:�)), and so

� <

P

�. If �; � =2 K

�

then � <

GE

�, and by 
orollary 5.2.2, Min

�

(�) � Min

�

(�).

But then �(M(�)) < �(M(�)), and so � <

P

�. So we are left with the 
ase where

� =2 K

�

and � 2 K

�

, whi
h means that �(M(:�)) = 0 and �(M(:�)) > 0. So

�(M(:�)) < �(M(:�)) and therefore � <

P

�. 2

We shall en
ounter the ordinal 
onditional fun
tions again in se
tion 7.1 in the 
ontext

of iterated belief 
hange.

5.4 Generalised epistemi
 entren
hment

The EE-orderings of G�ardenfors and Makinson provide a satisfa
tory formalisation of

the intuition of the entren
hment of w�s in many ways, but they have drawn 
riti
ism

from various quarters, mainly for being too restri
tive in three aspe
ts [Lindstr�om and

Rabinowi
z, 1991, Rott, 1992
, G�ardenfors and Makinson, 1994, Rabinowi
z, 1995℄.

The �rst, and most serious obje
tion, is that every EE-ordering is a total preorder.

This has the unfortunate 
onsequen
e of ruling out any kind of formal representation

of the idea that some w�s are not 
omparable in terms of entren
hment. A se
ond
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obje
tion 
on
erns the minimality 
ondition, imposed on the EE-orderings in the guise

of the postulate (EE4). It ensures that the EE-orderings do not distinguish between

w�s that are not in K, and are thus unable to give a proper a

ount of entren
hment

among w�s that are not in the 
urrent belief set of an agent. That this is undesirable

is highlighted by the realisation that an agent 
annot regard a w� � as being more

entren
hed than its negation :� without a

epting � into its 
urrent set of beliefs. And

thirdly, there is resistan
e to the maximality 
ondition, imposed on the EE-orderings

in terms of the postulate (EE5), whi
h requires the most entren
hed w�s to be nothing

other than the logi
ally valid w�s. In this se
tion we 
onsider proposals intended to

re
tify these short
omings by providing entren
hment orderings that generalise the

EE-orderings in one way or another.

5.4.1 LR-entren
hment

Lindstr�om and Rabinowi
z [1991℄ propose a generalised version of the EE-orderings

aimed at re
tifying the �rst obje
tion mentioned above, subje
t to the following set of

postulates:

(LR1) v

LR

is transitive.

(LR2) If � � � then � v

LR

�

(LR3) If � v

LR

� and � v

LR


 then � v

LR

� ^ 


(LR4) If K 6= Cn(?) then � =2 K i� � v

LR

� for all �

(LR5) If > v

LR

� then � �

De�nition 5.4.1 A binary relation v

LR

on L is an LR-ordering (with respe
t to a

belief set K) i� it satis�es (LR1) to (LR5). 2

With the ex
eption of (LR3), whi
h repla
es the postulate (EE3), and (LR5), whi
h is

equivalent to (EE5) in the presen
e of (LR1) and (LR2), the LR-postulates are identi
al

to the postulates for the EE-orderings. (LR3) is a weakened version of (EE3), and its

adoption in the pla
e of (EE3) ensures the possibility that w�s in K need not all be


omparable. In fa
t, it is easy to see that if we only 
onsider those LR-orderings in

whi
h all w� are 
omparable, we end up with pre
isely the EE-orderings. To see why,
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?; p ^ q;:p ^ q; p ^ :q:p ^ :q; p; q; p$ q; p _ :q;:p _ q

:(p$ q)

3

:p _ :q

Y
*

k

p _ q

6

>

Figure 5.1: A graphi
al representation of the LR-ordering used in example 5.4.2. The

ordering is obtained from the re
exive transitive 
losure of the relation determined by

the arrows. Every w� in the �gure is a 
anoni
al representative of the set of w�s that

are logi
ally equivalent to it.

note that it follows from (LR3) that if � v

LR

� then � v

LR

�^ �. Now, if all w�s are


omparable, then we have either � v

LR

� or � v

LR

�, from whi
h we immediately get

that � v

LR

� ^ � or � v

LR

� ^ �.

LR-entren
hment is thus a generalisation of the EE-orderings, but is it a proper

generalisation? That is, are there any LR-orderings for whi
h some w�s are indeed not


omparable? The answer to this question is provided by the following simple example.

Example 5.4.2 Let L be the propositional language generated by the two atoms p

and q, and let (V;
) be the valuation semanti
s for L where V = f11; 10; 01; 00g. Now

let K = Cn(:(p$ q)), and de�ne the LR-ordering v

LR

as follows: � v

LR

� i� � � �

or � =2 K. It is easily veri�ed that v

LR

is indeed an LR-ordering. Figure 5.1 
ontains

a graphi
al representation of v

LR

, from whi
h it is easily seen that :p _ q and p _ q

are in
omparable. 2
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Lindstr�om and Rabinowi
z provide a method for 
onstru
ting the LR-orderings in

terms of fallba
k families and prove an appropriate representation theorem. More

interesting, from our perspe
tive, is their se
ond 
onstru
tion method. They show that

the LR-orderings 
an also be obtained as the interse
tions of families of EE-orderings.

Theorem 5.4.3 [Lindstr�om and Rabinowi
z, 1991℄

1. The interse
tion of every family of EE-orderings is an LR-ordering.

2. For every LR-ordering v

LR

there is a family E of EE-orderings su
h that v

LR

=

\E :

In this view of the LR-orderings, the epistemi
 state of an agent is taken to be a 
lass of

EE-orderings. An appeal to the prin
iple of Indi�eren
e then results in the 
onstru
tion

of an entren
hment ordering in whi
h a w� � is seen as at most as entren
hed as a wf

� i� every EE-ordering in E regards � as at most as entren
hed as �.

5.4.2 GEE-entren
hment

Rott [1992
℄ takes the view that it is more natural to 
onsider stri
t relations on

w�s and argues that the EE-orderings should be seen as 
onverse 
omplements of

su
h stri
t relations (or equivalently, that these stri
t relations be obtained as the


onverse 
omplements of the EE-orderings).

6

He de�nes a set of generalised epistemi


entren
hment orderings in terms of the following set of postulates:

(GEE1) > 6< >

(GEE2") If � < � and � � 
 then � < 


(GEE2#) If � < � and 
 � � then 
 < �

(GEE3") If � < � and � < 
 then � < � ^ 


(GEE3#) If � ^ � < � then � < �

De�nition 5.4.4 A binary relation <

GEE

on L is a GEE-ordering (with respe
t to a

belief set K) i� it satis�es (GEE1) to (GEE3#). 2

6

A relation S is the 
onverse 
omplement of a binary relation R on a set X i� for every x; y 2 X ,

(x; y) 2 S i� (y; x) =2 R.
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Rott is of the opinion that the EE-orderings should be seen as 
onverse 
omplements of

the GEE-orderings. Sin
e the EE-orderings are total preorders, taking the stri
t version

of an EE-ordering is the same as taking its 
onverse 
omplement. He shows that the

stri
t versions of the EE-orderings form a stri
t subset of the set of all GEE-orderings.

The GEE-orderings are not subje
t to analogues of the minimality and maximality


onditions imposed on the EE-orderings. The following four supplementary postulates

for generalised epistemi
 entren
hment are intended to serve as su
h analogues.

(GEE4) If K 6= L then ? < � i� � 2 K

(GEE4

0

) If � =2 K and � 2 K then � < �

(GEE5) If 2 � then � < >

(GEE5

0

) If � < > and � 6< > then � < �

It is easily veri�ed that the stri
t versions of the EE-orderings satisfy these four pos-

tulates as well.

It turns out that the GEE-orderings 
an be de�ned in terms of families of stri
t

versions of the EE-orderings. With a small modi�
ation, the following results are

obtained from [Rott, 1992
℄.

Theorem 5.4.5 1. The interse
tion of every family of stri
t EE-orderings is a

GEE-ordering that satis�es the four supplementary postulates as well.

2. For every GEE-ordering <

GEE

that satis�es the four supplementary postulates as

well, there is a family E of stri
t EE-orderings su
h that <

GEE

= \E :

Theorem 5.4.5 is remarkably similar to theorem 5.4.3, the representation theorem for

the LR-orderings in terms of families of EE-orderings, and might lead one to suspe
t

that the GEE-orderings (satisfying the four supplementary postulates) are pre
isely

the stri
t versions of the LR-orderings. But as the next example shows, this is not the


ase.

Example 5.4.6 Consider the propositional language L generated by the two atoms

p and q with the valuation semanti
s (V;
), where V = f11; 10; 01; 00g. Let K =
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p ^ :q;:q;:(p$ q);?;:p ^ :q;:p _ :q;:p ^ q;:p

p$ q; p ^ q

:p _ q; q p; p _ :q

p _ q

>

6

k 3

3
k

6

Figure 5.2: A graphi
al representation of the LR-ordering used in example 5.4.6. The

ordering is obtained from the re
exive transitive 
losure of the relation determined by

the arrows. Every w� in the �gure is a 
anoni
al representative of the set of w�s that

are logi
ally equivalent to it.

Cn(p ^ q), and 
onsider the LR-ordering v

LR

de�ned as follows:

� v

LR

� i�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

� 2 L if � =2 K,

p ^ q � � if � � p ^ q or � � p$ q,

q � � if � � q or � � :p _ q,

p � � if � � p or � � p _ :q,

p _ q � � if � � p _ q,

� 2 L if � �.

Figure 5.2 
ontains a graphi
al representation of the LR-ordering v

LR

. An inspe
tion

of �gure 5.2 shows that v

LR

is indeed an LR-ordering, but that the stri
t version <

LR

of v

LR

violates (GEE3"), by taking � as p $ q, � as p, and 
 as q, and violates

(GEE3#) by taking � as p and � as q. 2
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5.5 Re�ned entren
hment

Although the faithful total preorders are suÆ
ient for a 
omplete 
hara
terisation of

AGM theory 
hange, it is possible to a
hieve the same e�e
t with other preorders as

well. We have a parti
ular interest in a set of faithful preorders that are very 
losely

related to the faithful total preorders.

De�nition 5.5.1 A weak partial order � on a set X is 
alled modular i� for every

x; y; z 2 X, if x k

�

y and z � x, then z � y. 2

The modular weak partial orders are the re
exive versions of the modular partial

orders of Ginsberg [1986℄ and Lehmann and Magidor [1992℄, whi
h in turn, 
an also be

des
ribed as the relations on a set X satisfying transitivity and virtual 
onne
tivity (see

de�nition 2.4.4). Intuitively, a modular weak partial order ensures that the elements

of X are arranged in levels, with in
omparable elements being regarded as on the same

level. Using this intuition, it is 
lear that the following two identities provide a natural


onne
tion between the total preorders and the modular weak partial orders.

(Def � from �) � = � n f(x; y) 2 X �X j x 6= y and x �

�

yg

(Def � from �) � = � [ f(x; y) 2 X �X j x k

�

yg

De�nition 5.5.2 A faithful modular weak partial order and a faithful total preorder

are semanti
ally related i� they 
an be de�ned in terms of ea
h other using (Def �

from �) and (Def � from �) respe
tively. 2

It is easily seen that a faithful total preorder and its semanti
ally related modular

weak partial order are minimal-equivalent (see de�nition 3.3.6), and as a result, the set

of faithful modular weak partial orders 
an also be used to 
hara
terise AGM theory


hange.

7

So if we are only interested in minimality, as in the 
ase of AGM theory


hange, a move from the faithful total preorders to the faithful modular weak partial

orders is an inessential te
hni
al modi�
ation. But as we shall see below, other 
on-

stru
tions involving orderings on interpretations are more sensitive to su
h a shift. (See

also 
hapter 6.) From an information-theoreti
 point of view, there is also an impor-

tant di�eren
e. In a faithful total preorder, infatoms on the same level are regarded as

equally important or entren
hed, while the semanti
ally related faithful modular weak

7

These results are spe
ial 
ases of proposition 5.7.3 and 
orollary 5.7.4.
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partial order will regard them as in
omparable. As we shall see in 
hapter 6, this 
an

have important e�e
ts on basi
 prin
iples su
h as the prin
iple of Indi�eren
e and the

prin
iple of Preferen
e.

In this se
tion we use the faithful modular weak partial orders as the basis for

the presentation and investigation of sets of re�ned versions of the EE-orderings that

allow for the possibility of w�s being in
omparable. These orderings are obtained by

applying (Def v

E

from � ), not to the faithful total preorders, but to the faithful

modular weak partial orders.

De�nition 5.5.3 An RE-ordering v

RE

(re�ned entren
hment ordering) is a binary

relation on L de�ned in terms of a faithful modular weak partial order using (Def v

E

from �). We say that an EE-ordering and an RE-ordering, de�ned respe
tively in

terms of a faithful total preorder and its semanti
ally related faithful modular weak

partial order, using (Def v

E

from �), are semanti
ally related . 2

The next proposition provides a preliminary list of properties of the RE-orderings.

Proposition 5.5.4 Let v

RE

be the RE-ordering de�ned in terms of the faithful mod-

ular weak partial order � using (Def v

E

from �). Then v

RE

satis�es the following

properties.

1. v

RE

is a preorder (that need not be total).

2. Suppose that the EE-ordering v

EE

is semanti
ally related to v

RE

. If � v

RE

�

then � v

EE

�.

3. If � � � then � v

RE

�.

4. � v

RE

� for all �, i� � �.

5. If � � � then � v

RE


 i� � v

RE


, and 
 v

RE

� i� 
 v

RE

�.

6. If K is satis�able then f� j :� 2 Kg = [?℄

v

RE

.

7. If � =2 K and � 2 K then � <

RE

�.

8. If :� 2 K and :
 =2 K then � <

RE


.

9. If � =2 K then K [ f�g � � i� � v

RE

�.
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10. If � �

v

RE

� then � ^ �; � _ � 2 [�℄

v

RE

= [�℄

v

RE

.

11. � v

RE

� ^ �, or � v

RE

� ^ �, or both �! � 6v

RE

� and � ! � 6v

RE

�.

Proof Many of these results follow from proposition 5.7.6. We only prove the re-

maining parts. For part (6), we need to show that if K is satis�able, then [?℄

v

RE

�

f� j :� 2 Kg. So suppose that K is satis�able, pi
k any � 2 [?℄

v

RE

and assume

that :� =2 K. Then there is at least one model x of K that satis�es �, and thus

� 6v

RE

?, 
ontradi
ting the supposition that � 2 [?℄

v

RE

. For part (8), we need

to show that if :� 2 K and :
 =2 K then 
 6v

RE

�. So suppose that :� 2 K

and :
 =2 K. Sin
e M(K) \M(
) 6= ;, it follows from faithfulness that there is a

y 2 M(
) \M(K) � M(:�), su
h that x 2 M(
) for every x � y, i.e. 
 6v

RE

�. For

part (9), we need to show that if � =2 K and � v

RE

� then K [f�g � �. So let � =2 K

and suppose that K [f�g 2 �. So there is a y 2M(K)\M(�) su
h that y 2M(:�).

That is, y 2 M(:�) and for every x � y, x 2 M(�), whi
h means that � 6v

RE

�. For

part (10), we need to show that if � �

v

RE

� then � _ � 2 [�℄

v

RE

= [�℄

v

RE

. From part

(3) of this proposition it follows that � v

RE

�_�. To show that �_� v

RE

�, assume

that it is not the 
ase. Then there is a y 2Min

�

(:�) su
h that x 2M(�_�) for every

x � y. Therefore y 2 M(:�) \M(�). But sin
e � v

RE

�, there is a z 2 Min

�

(:�)

su
h that z < y whi
h, together with the minimality of y in M(:�), 
ontradi
ts the

fa
t that � v

RE

�. 2

An inspe
tion of the properties set out in proposition 5.5.4 reveals something of the

stru
ture of the RE-orderings. They are re�ned versions of the EE-orderings that

need not be total. Furthermore, every RE-ordering partitions the set of w�s into four

disjoint sets. The logi
ally valid w�s are all equally entren
hed and stri
tly more

entren
hed than all other w�s. Next 
omes the remaining w�s in K. While stri
tly

more entren
hed than the w�s not in K, they need not all be 
omparable. The third

partitition 
onsists of the K-unde
ided w�s, whi
h are all stri
tly less entren
hed than

the w�s in K and more entren
hed than the K-refuted w�s. (If K is unsatis�able,

there are not any K-unde
ided w�s or K-refuted w�s.) So the RE-orderings are able

to distinguish between w�s not in K. In fa
t, the part of an RE-ordering restri
ted

to the w�s that are not in K, 
orresponds to 
lassi
al entailment relative to K. This


ertainly has more intuitive appeal than regarding all the w�s that are not in K as

equally entren
hed, su
h as the EE-orderings do. For example, it makes mu
h more
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sense to regard a w� that is K-refuted as less entren
hed than a w� that is merely

K-unde
ided, than to regard them both as equally entren
hed.

The last two parts of proposition 5.5.4 are worth singling out. Note that part (10)

does not hold for the EE-orderings. An interesting example is the 
ase of a w� � and its

negation. In an EE-ordering v

EE

, it is perfe
tly a

eptable to have :� �

v

EE

� as long

as � is not logi
ally valid or logi
ally invalid. However, if this were the 
ase in an RE-

ordering v

RE

, part (10) of proposition 5.5.4 would require that � _ :� 2 [�℄

v

RE

, thus


ontradi
ting part (4) of the same proposition. Part (11) bears a vague resemblan
e

to the postulate (EE3), and will be used in our 
hara
terisation of the RE-orderings in

terms of postulates. In fa
t, so will the properties 
ontained in the lemma below.

Lemma 5.5.5 Let v

RE

be an RE-ordering:

1. If �! 
 v

RE

� then �! � v

RE

� or � ! 
 v

RE

�.

2. If �! 
 v

RE

� then � 6v

RE

� or � ! 
 v

RE

�.

3. If �! 
 v

RE

� then � 6v

RE


 or �! � v

RE

�.

Proof Let � be a faithful modular weak partial order from whi
h v

RE

is de�ned using

(Def v

E

from �).

1. Suppose that � ! � 6v

RE

� and � ! 
 6v

RE

�. By � ! � 6v

RE

� there is a

y 2 Min

�

(:�) su
h x 2 M(� ! �) for every x � y. And by the minimality of

y in M(:�), x 2M(�) \M(�) for every x < y. Similarly, � ! 
 6v

RE

� implies

that there is a v 2Min

�

(:�) su
h that u 2M(�)\M(
) for every u < v. Sin
e

� is a modular weak partial order, it has to be the 
ase that v � y. And this

means that z 2M(�)\M(
) for every z < y. So y 2 M(:�) and x 2M(�! 
)

for every x � y. That is, �! 
 6v

RE

�.

2. Suppose that � v

RE

� and � ! 
 6v

RE

�. As in part (1), � ! 
 6v

RE

� means

there is a v 2 Min

�

(:�) su
h that u 2 M(�) \M(
) for every u < v. So by

� v

RE

� there is a w � v su
h that w 2Min

�

(:�). And sin
e w � v, it follows

that u 2 M(�) \M(
) for every u < w. So u 2 M(� ! 
) for every u � w.

That is, �! 
 6v

RE

�.

3. Suppose that � v

RE


 and � ! � 6v

RE

�. As in part (1), � ! � 6v

RE

� means

there is a y 2 Min

�

(:�)su
h that x 2 M(�) \M(�) for every x < y. So by
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� v

RE


, z � y for every z 2 M(:
). And therefore x 2 M(
) for every x < y.

So y 2M(:�) and x 2M(�! 
) for every x � y. That is, �! 
 6v

RE

�.

2

5.5.1 Re�ned entren
hment and the EE-orderings

The appli
ation of lemma 5.2.1 to the faithful modular weak partial orders and the

RE-orderings obtained in terms of them, using (Def v

E

from �), yields a useful result.

It shows that two w�s are equally entren
hed if and only if their negations have the

same minimal models, and for any two w�s � and �, both of whom are not logi
ally

valid, � is stri
tly more entren
hed than � if and only if the minimal models of :� are

either stri
tly above the minimal models of :�, or form a stri
t subset of the minimal

models of :�. As a 
onsequen
e, two w�s � and � are in
omparable i� the minimal

models of the negations of the two w�s are on the same level, the minimal models of

:� in
lude a model of �, and the minimal models of :� in
lude a model of �.

Corollary 5.5.6 Let � be a faithful modular weak partial order, and let v

RE

be the

RE-ordering de�ned in terms of � using (Def v

E

from �).

1. � �

v

RE

� i� Min

�

(:�) =Min

�

(:�).

2. If 2 � and 2 � then � <

RE

� i� Min

�

(:�) � Min

�

(:�) or Min

�

(:�) <

Min

�

(:�).

3. � k

v

RE

� i� Min

�

(:�) * M(:�), Min

�

(:�) * M(:�), and x k

�

y or x = y

for every y 2Min

�

(:�) and every x 2Min

�

(:�).

Proof 1. Follows easily from lemma 5.2.1.

2. Suppose that 2 �, 2 �, and � <

RE

�, and suppose there is a y 2Min

�

(:�) and

an x 2 Min

�

(:�), su
h that x � y. From � 6v

RE

� there is a v 2 Min

�

(:�)

su
h that u 2 M(�) for every u � v. So, for every s 2 Min

�

(:�) and every

t 2 Min

�

(:�), s � t. Therefore the minimal models of :� and :� lie on

the same level. Now pi
k any u 2 Min

�

(:�). By � v

RE

�, u 2 Min

�

(:�).

Furthermore v is a minimal model of :� that is not a minimal model of :� and

so Min

�

(:�) �Min

�

(:�). The 
onverse follows easily, and is omitted.
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Figure 5.3: A graphi
al 
omparison of the EE-orderings and the RE-orderings

3. Suppose � k

v

RE

�. So there is a v 2 Min

�

(:�) su
h that u 2 M(�) for every

u � v, and there is a y 2 Min

�

(:�) su
h that x 2 M(�) for every x � y. The

required result then follows from the fa
t that v k

�

y and that � is a modular

weak partial order. The 
onverse follows easily.

2

A 
onsequen
e of 
orollaries 5.2.2 and 5.5.6 is that the RE-ordering whi
h is semanti
al-

ly related to an EE-ordering v

EE

maintains the ordering between the equivalen
e 
lass-

es of w�s modulo v

EE

but o�ers an exploded view of ea
h of these equivalen
e 
lasses.

Figure 5.3 gives a graphi
al representation of this situation. From an information-

theoreti
 point of view, the results of 
orollary 5.5.6 are quite interesting. They show

that the RE-orderings have more of the underlying entailment relation � built into

them than their semanti
ally related EE-orderings. Thus, two w�s are equally en-

tren
hed when they have exa
tly the same set of least entren
hed 
ontents bits, not

when their least entren
hed 
ontent bits are merely on the same level, as is the 
ase

for the EE-orderings. Similarly, a w� � will be more entren
hed than a w� �, not

only when the least entren
hed 
ontent bits of � are more entren
hed than the least

entren
hed 
ontents bits of �, but also when the least entren
hed 
ontent bits of �

stri
tly in
ludes the least entren
hed 
ontent bits of �. And 
ontinuing in the same

vein, the in
omparability of two w�s � and �, in terms of re�ned entren
hment, then

o

urs when their least entren
hed 
ontent bits are on the same level, but neither set

is in
luded in the other.
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The strong link with the entailment relation � is evident when we 
onsider the

faithful modular weak partial order � in whi
h the 
ountermodels of K are all on the

same level. In su
h a 
ase, the RE-ordering de�ned in terms of � using (Def v

E

from

�) 
orresponds exa
tly to entailment relative to K. In fa
t, an even stronger link exists

in the limiting 
ase where K just 
ontains the logi
ally valid w�s. In this 
ase, there

is only one RE-ordering and one EE-ordering with respe
t to K. And whereas the

RE-ordering is exa
tly the entailment relation �, the semanti
ally related EE-ordering

regards all w�s, ex
ept for the logi
ally valid ones, as equally entren
hed. An elegant

explanation for this di�eren
e 
an be found by looking at � and the semanti
ally

related faithful total preorder �. It is easily veri�ed that � is the identity relation on

U , while � is the Cartesian produ
t U � U . So � represents the epistemi
 state of an

agent for whom all infatoms are in
omparable. In the absen
e of any preferen
e for


ertain bits of information, it has no 
hoi
e but to revert ba
k to the logi
al 
ontent

of w�s as a measure of the entren
hment. Hen
e the use of the 
lassi
al entailment

relation � as the asso
iated entren
hment ordering. On the other hand, the faithful

total preorder � represents the epistemi
 state of an agent who regards all infatoms as

equally entren
hed. Hen
e all w�s, ex
ept the logi
ally valid w�s, are seen as equally

entren
hed.

In light of the similarity between the methods of 
onstru
ting the RE-orderings and

the EE-orderings, it is natural to wonder whether they 
an be de�ned in terms of one

another. The next theorem shows that this 
an be a

omplished by the following two

identities:

(Def v

RE

from v

EE

) � v

RE

� i� � � or � <

EE

� or � <

EE

�! �

(Def v

EE

from v

RE

) � v

EE

� i� � v

RE

� or �! � 6v

RE

�

Theorem 5.5.7 Let the RE-ordering v

RE

and the EE-ordering v

EE

be semanti
ally

related.

1. v

RE


an also be de�ned in terms of v

EE

using (Def v

RE

from v

EE

)

2. v

EE


an also be de�ned in terms of v

RE

using (Def v

EE

from v

RE

)

Proof Let � be a faithful modular weak partial order in terms of whi
h v

RE

is de�ned

using (Def v

E

from �), and let � be the semanti
ally related faithful total preorder

in terms of whi
h v

EE

is de�ned using (Def v

E

from �).
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1. Suppose that � v

RE

�. By part (2) of proposition 5.5.4, � v

EE

�. Suppose

further that � 6<

EE

�, i.e. � v

EE

�, and that 2 �. Then 2 � (by part (4) of

proposition 5.5.4), and by 
orollary 5.2.2 it follows that for every y 2Min

�

(:�)

and every x 2 Min

�

(:�), x �

�

y. Be
ause 2 � there is thus a v 2 Min

�

(:�)

su
h that for every u � v, u 2 M(�) \M(�). Combined with � v

RE

� this

means that for every w �

�

v, w 2 M(:�) \M(:�) or w 2 M(�). Therefore

z 2 M(� ! �) for every z � v, and so � ! � 6v

EE

�, i.e. � <

EE

� ! �.

Conversely, if � � then � v

RE

� follows va
uously. If � <

EE

�, i.e. � 6v

EE

�,

there is a y 2Min

�

(:�) su
h that x 2M(�) for every x � y. So y < u for every

u 2 Min

�

(:�) and therefore � v

RE

�. Finally, suppose that � <

EE

�! �, i.e.

�! � 6v

EE

�. Then there is a y 2Min

�

(:�) su
h that x 2M(�! �) for every

x � y, and soMin

�

(:�) =Min

�

(:�) �M(:�). So for every v 2M(:�), there

is a u 2M(:�) su
h that u � v, i.e. � v

RE

�.

2. Suppose that � v

EE

� and that � 6v

RE

�. By � 6v

RE

� there is a y 2Min

�

(:�)

su
h that x 2 M(�) for every x � y. So z 2 M(�) \M(�) for every z < y, and

from � v

EE

� it thus follows that there is a v �

�

y su
h that v 2 M(:�). So

u 2 M(� ! �) for every u � v and thus �! � 6v

RE

�. Conversely, if � v

RE

�

then � v

EE

� by part (2) of proposition 5.5.4. And if � ! � 6v

RE

� then

there is a y 2 Min

�

(:�) su
h that x 2 M(� ! �) for every x � y. Therefore

z 2 M(�) \M(�) for every z < y. So u � y for every u 2 M(:�), from whi
h

� v

EE

� follows easily.

2

Theorem 5.5.7 also shows that the identities (Def v

EE

from v

RE

) and (Def v

RE

from v

EE

) are inter
hangeable. That is, if we start with either an RE-ordering or an

EE-ordering, and then apply (Def v

EE

from v

RE

) and (Def v

RE

from v

EE

) in the

appropriate order, we end up with the same ordering that we started with. It is thus

appropriate to think of re�ned entren
hment as an alternative to the EE-orderings.

Indeed, in view of theorem 5.5.7, there is a one-to-one 
orresponden
e between the

RE-orderings and the EE-orderings, obtained by applying the two identities (Def v

EE

from v

RE

) and (Def v

RE

from v

EE

).

The 
lose relationship between the RE-orderings and the EE-orderings raises the

question of whether the two notions ever 
oin
ide. One part of the answer to this



114 CHAPTER 5. EPISTEMIC ENTRENCHMENT

question is easy. Whenever a faithful preorder � is both a total preorder and a modular

weak partial order, the EE-ordering and the RE-ordering de�ned in terms of � using

(Def v

E

from �) are, by de�nition, identi
al. Now, it is easy to see that this is the


ase only when �, restri
ted to the 
ountermodels of K, is a linear order.

De�nition 5.5.8 For a belief set K, a K-linear order � is a faithful total preorder

su
h that � \ ((U nM(K))� (U nM(K))) is a linear order. 2

Proposition 5.5.9 Let � be any K-linear order. The binary relation de�ned in terms

of � using (Def v

E

from �) is an EE-ordering and an RE-ordering.

Proof Follows immediately from the fa
t that � is both a faithful total preorder and

a faithful modular weak partial order. 2

In general, there may be instan
es of faithful total preorders, or faithful modular weak

partial orders, as the 
ase may be, that are not K-linear orders, but that nevertheless

de�ne the same EE-orderings (or RE-orderings) as some K-linear order. More inter-

esting, no doubt, is that, at least in the �nitely generated propositional 
ase, if an

EE-ordering 
annot be de�ned in terms of a K-linear order using (Def v

E

from �),

then it is not an RE-ordering, and vi
e versa.

Proposition 5.5.10 Let L be a �nitely generated propositional language with a valu-

ation semanti
s (V;
).

1. Let v

RE

be an RE-ordering that 
annot be de�ned in terms of a K-linear order

using (Def v

E

from �). Then v

RE

is not an EE-ordering.

2. Let v

EE

be an EE-ordering that 
annot be de�ned in terms of a K-linear order

using (Def v

E

from �). Then v

EE

is not an RE-ordering.

Proof 1. By de�nition, v

RE


an be de�ned in terms of a faithful modular weak

partial order �, that is not a K-linear order, using (Def v

E

from �). That means

there are at least two distin
t 
ountermodels x and y of K su
h that x k

�

y. Let

�

x

be a w� that axiomatises x and let �

y

be a w� that axiomatises y. (By our


hoi
e of L, there are su
h w�s.) So Min

�

(�

x

) = fxg and Min

�

(�

y

) = fyg, and

thus Min

�

(�

x

) * M(�

y

), Min

�

(�

y

) * M(�

x

), and Min

�

(�

x

) k

�

Min

�

(�

y

).

By part (iii) of 
orollary 5.5.6 it then follows that :�

x

k

v

RE

:�

y

, and so v

RE


annot be an EE-ordering.
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2. Assume that v

EE

is an RE-ordering. Then it follows, as in part (i), that v

EE


annot be an EE-ordering; a 
ontradi
tion.

2

5.5.2 Postulates for re�ned entren
hment

In this se
tion we present a des
ription of the RE-orderings in terms of postulates,

and give a representation theorem to prove that the postulates do indeed provide a


hara
terisation of the RE-orderings. The postulates are given below.

(RE1) v

RE

is transitive

(RE2) If � � � then � v

RE

�

(RE3a) If �; � 2 K then � v

RE

� ^ �, or � v

RE

� ^ �,

or both �! � 6v

RE

� and � ! � 6v

RE

�

(RE3b) If �! 
 v

RE

� then �! � v

RE

� or � ! 
 v

RE

�

(RE3
) If �! 
 v

RE

� then � 6v

RE

� or � ! 
 v

RE

�

(RE3d) If �! 
 v

RE

� then � 6v

RE


 or �! � v

RE

�

(RE4a) If � =2 K and � 2 K, then � <

RE

�

(RE4b) If �; � =2 K, then � v

RE

� i� K [ f�g � �

(RE5) If � v

RE

� for all �, then � �

To a 
ertain extent, the postulates for re�ned entren
hment follow the same pattern as

the postulates for the EE-orderings, and this is re
e
ted in the labelling s
heme we use.

(RE1), (RE2) and (RE5) are identi
al to (EE1), (EE2), and (EE5) respe
tively. And

while (RE3a) bears a vague resemblan
e to (EE3), it is a bit more diÆ
ult to des
ribe

the intuition asso
iated with (RE3b), (RE3
) and (RE3d). Te
hni
ally though, they

seem to be ne
essary for a 
omplete des
ription of the relationship between the w�s

in K. (EE4) gives a 
omplete des
ription of how an EE-ordering treats the w�s that

are not in K, while the handling of su
h w�s by the RE-orderings are des
ribed by the

two independent postulates, (RE4a) and (RE4b). (RE4a) des
ribes the relationship

between w�s inK and w�s not inK, while (RE4b) is a pres
ription for the treatment of
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any two w�s, neither of whi
h are in K. To obtain the desired representation theorem,

we need the following two lemmas.

Lemma 5.5.11 If v is a relation on L that satis�es (RE1) to (RE5) then the relation

v

EE

de�ned as: � v

EE

� i� � v � or �! � 6v �, satis�es (EE1) to (EE5).

Proof For (EE1), suppose that � v

EE

� and � v

EE


. That is, � v � or �! � 6v �,

and � v 
 or � ! 
 6v �. This 
an be divided into four 
ases: (i) � v � and � v 
,

(ii) � v � and � ! 
 6v �, (iii) � v 
 and � ! � 6v �, and (iv) � ! � 6v � and

� ! 
 6v �. For (i), � v 
 follows from (RE1). For (ii), (iii), and (iv), � ! 
 6v �

follows from (RE3
), (RE3d), and (RE3b) respe
tively. So in all four 
ases, either

� v 
 or �! 
 6v �. That is, � v

EE


. (EE2) follows from (RE2) and (EE3) follows

from (RE3a). For (EE4), suppose that K 6= L, and let � =2 K. Assume there is a �

su
h that � 6v

EE

�. That is, � 6v � and � ! � v �. By (RE4a) � =2 K, and so,

by (RE4b), K [ f� ! �g � �. But this means � 2 K; a 
ontradi
tion. Conversely,

suppose that � 2 K. So :� =2 K, and :� < � by (RE4a). And sin
e � ! :� � :�,

we have that � 6v :� and �! :� v �. That is, � 6v

EE

:�. For (EE5), suppose that

2 �. By (RE5), > 6v � and by (RE2), > ! � v >. That is, > 6v

EE

�. 2

Lemma 5.5.12 Let v be a relation on L that satis�es (RE1) to (RE5). If v

EE

is

de�ned as: � v

EE

� i� � v � or � ! � 6v �, and v

RE

is de�ned as as: � v

RE

� i�

� � or � <

EE

� or � <

EE

�! �, then v = v

RE

.

Proof By lemma 5.5.11, v

EE

is an EE-ordering, and thus a total preorder. By keeping

in mind that � <

EE

� i� � 6v

EE

�, noting that (�! �)! � � � _ �, and 
ombining

the de�nitions of v

EE

and v

RE

, it suÆ
es to show that

� v � i�

8

>

<

>

:

� �, or

� 6v � and � ! � v �, or

�! � 6v � and � _ � v �! �.

So suppose that � v �, 2 �, and either � v � or � ! � 6v �. We have to show that

� ! � 6v � and � _ � v � ! �. Assume that � ! � v �. There are two 
ases.

Either � v � or � ! � 6v �. In the former 
ase, � ! � v � v �. By (RE3
) it thus

follows that � 6v � or � ! � v �, 
ontradi
ting � v � and 2 � 
ombined with (RE5).

In the latter 
ase, note that � v � v � ! � by (RE2), and sin
e (� ! �) ! � � �,

(� ! �) ! � v � ! �. By (RE3
) we then have that � ! � 6v �, or � ! � v �; a
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ontradi
tion. So we have shown that �! � 6v �. Now assume that � _ � 6v �! �.

By (RE2), � v � v � ! �. And sin
e � � (� ! �) ! �, (� ! �) ! � v � ! �.

By (RE3b) it then follows that (� ! �) ! � v � ! �, or � ! � v �. And sin
e

(� ! �) ! � � � _ �, it has to be the 
ase that � ! � v �. But sin
e we have, by

supposition, that � v � or � ! � 6v �, this means that � v �. From � ! � v � it

also follows by (RE3
) that � 6v � or �! � v �. So �! � v �, and by (RE5), � �.

But this 
ontradi
ts 2 �, � v �, and (RE5). 2

We are now in a position to prove that the postulates given above provide a 
hara
-

terisation of the RE-orderings.

Theorem 5.5.13 Every binary relation on L de�ned in terms of a faithful modular

weak partial order using (Def v

E

from �) satis�es (RE1) to (RE5). Conversely, every

binary relation on L that satis�es (RE1) to (RE5) 
an be de�ned in terms of a faithful

modular weak partial order using (Def v

E

from �).

Proof Let v

RE

be a binary relation on L de�ned in terms of a faithful modular weak

partial order using (Def v

E

from �). The required result follows from proposition 5.5.4

and lemma 5.5.5. For the 
onverse, let v be a relation on L that satis�es (RE1) to

(RE5). Now de�ne a relation v

EE

on L as follows: � v

EE

� i� � v � or �! � 6v �.

By lemma 5.5.11, v

EE

is an EE-ordering, and by theorem 3.3.1, there is thus a faithful

total preorder � from whi
h v

EE


an be obtained using (Def v

E

from �). By theorem

5.5.7, the faithful modular weak partial order semanti
ally related to � de�nes the

RE-ordering v

RE

using (Def v

RE

from v

EE

). And by lemma 5.5.12, v and v

RE

are

identi
al. 2

5.5.3 Re�ned entren
hment and AGM 
ontra
tion

Just as in the 
ase of the EE-orderings and AGM 
ontra
tion, the RE-orderings and

AGM 
ontra
tion are interde�nable; in this 
ase using the following two identities:

(Def v

RE

from �) � v

RE

� i� �! � 2 K � � ^ �

(Def � from v

RE

) � 2 K � � i� � 2 K and

(

� 6<

RE

� ! �, or

� =2 K
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De�nition 5.5.14 An RE-ordering and an AGM 
ontra
tion are semanti
ally related

i� they 
an be de�ned in terms of the same faithful modular weak partial order using

(Def v

E

from �) and (Def � from �). 2

Theorem 5.5.15 Suppose that the RE-ordering v

RE

and the AGM 
ontra
tion � are

semanti
ally related.

1. v

RE


an also be de�ned in terms of � using (Def v

RE

from �).

2. � 
an also be de�ned in terms of v

RE

using (Def � from v

RE

).

Proof 1. Let � be a faithful modular weak partial order in terms of whi
h v

RE

and � are de�ned using (Def v

E

from �) and (Def � from �). Now suppose

that � ! � =2 K � � ^ �. So there is a y 2 M(K) [Min

�

(:(� ^ �)) su
h that

y 2 M(� ^ :�). If y 2 M(K) then x 2 M(�) for every x � y and so � 6v

R

�.

And similarly, if y 2 Min

�

(:(� ^ �)) then x 2 M(�) for every x � y and so

� 6v

RE

�. Conversely, suppose that � 6v

RE

�. Then there is a y 2 Min

�

(:�)

su
h that x 2 M(�) for every x � y. So y 2 M(�) and y 2 Min

�

(:(� ^ �)),

and thus �! � =2 K � � ^ �.

2. Follows from theorems 3.3.4 and 5.5.7.

2

And as in similar 
ases dis
ussed before, the identities (Def v

RE

from �) and (Def �

from v

RE

) are inter
hangeable. That is, if we start with either an AGM 
ontra
tion or

an RE-ordering, and apply (Def v

RE

from �) and (Def � fromv

RE

) in the appropriate

order, we end up with the same AGM 
ontra
tion or RE-ordering. In fa
t, we 
an

extend the inter
hangeability of identities further by noting that the identity (Def �

from v

EE

), when applied to the EE-ordering v

EE

, and the identity (Def � from v

RE

),

when applied to the RE-ordering v

RE

whi
h is semanti
ally related to v

EE

, both yield

exa
tly the same AGM 
ontra
tion �.

Corollary 5.5.16 Let the RE-ordering v

RE

, the EE-ordering v

EE

, and the AGM


ontra
tion � be semanti
ally related. Then � 
an also be de�ned in terms of v

RE

using (Def � from v

RE

), as well as in terms of v

EE

using (Def � from v

EE

).

Proof Follows easily from proposition 3.3.4, and theorems 5.5.15 and 5.5.7. 2
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In the 
ase of a �nitely generated propositional language, the de�nition of AGM 
on-

tra
tion in terms of the RE-orderings 
an be simpli�ed 
onsiderably. Consider a faithful

modular weak partial order � on the interpretations of su
h a �nite L, and let v

RE

be the RE-ordering de�ned in terms of � using (Def v

E

from �). From part (10) of

proposition 5.5.4, it follows that for every �, there is a � 2 [�℄

v

RE

su
h that 
 � � for

every 
 2 [�℄

v

RE

. That is, every equivalen
e 
lass [�℄

v

RE


ontains a logi
ally weakest

w�. We use p�q

RE

to denote a 
anoni
al representative of the logi
ally weakest w�s

in [�℄

v

RE

, and show below that if �; � 2 K, then � 2 K � � i� � ! � � p�q

RE

. That

is, if � is in K, then 
he
king whether a w� � 2 K is retained in K � � is a matter of


he
king whether � ! � entails a logi
ally weakest w� in [�℄

v

RE

.

Proposition 5.5.17 Let L be a �nitely generated propositional language, � a faithful

modular weak partial order, � the AGM 
ontra
tion de�ned in terms of � using (Def

� from �), and v

RE

the RE-ordering de�ned in terms of � using (Def v

E

from �).

If �; � 2 K then � 2 K � � i� � ! � � p�q

v

RE

(where p�q

RE

is a 
anoni
al

representative of the logi
ally weakest w�s in [�℄

v

RE

).

Proof By theorem 5.5.15, if �; � 2 K, then � 2 K � � i� � 6<

RE

� ! �. Sin
e

� � � ! �, it follows from part (3) of proposition 5.5.4 that � v

RE

� ! �, and this

result 
an thus be rewritten as follows: If �; � 2 K, then � 2 K�� i� � ! � 2 [�℄

v

RE

.

Now suppose that �; � 2 K. If � 2 K � �, then � ! � 2 [�℄

v

RE

, and sin
e p�q

v

RE

is logi
ally weaker than every w� in [�℄

v

RE

, � ! � � p�q

v

RE

. Conversely, if � !

� � p�q

v

RE

then, by part (3) of proposition 5.5.4, � ! � v

RE

p�q

v

RE

. Furthermore,

sin
e p�q

v

RE

2 [�℄

v

RE

, we get that p�q

v

RE

v

RE

�, and so, by the transitivity of v

RE

,

� ! � v

RE

�. And be
ause � � � ! �, it follows from part (3) of proposition 5.5.4

that � v

RE

� ! �. Thus � ! � 2 [�℄

v

RE

, and it follows from the result above that

� 2 K � �. 2

5.5.4 A 
omparison with generalised entren
hment

Sin
e the EE-orderings are all instan
es of the LR-orderings of Lindstr�om and Rabi-

nowi
z, the one-to-one 
orresponden
e between the EE-orderings and the RE-orderings

provide an indire
t relationship between RE-entren
hment and 
ertain instan
es of

LR-entren
hment. But we 
an also obtain a di�erent 
onne
tion by noting that the

RE-orderings all satisfy the postulate (LR3).



120 CHAPTER 5. EPISTEMIC ENTRENCHMENT

Proposition 5.5.18 Every RE-ordering v

RE

satis�es (LR3).

Proof Suppose � v

RE

� and � v

RE


, let � be a faithful modular weak partial order

from whi
h v

RE

is de�ned, using (Def v

E

from �), and pi
k a y 2 M(:(� ^ 
)). So

y 2 M(:�) or y 2 M(:
). In the former 
ase it follows from � v

RE

� that there is

an x 2 M(:�) su
h that x � y. And in the latter 
ase it follows from � v

RE


 that

there is an x 2M(:�) su
h that x � y. So � v

RE

� ^ 
. 2

Sin
e the LR-orderings require that all the w�s not inK be equally entren
hed, the RE-

orderings do not qualify as instan
es of the LR-orderings. However, the RE-orderings


onform to the 
onditions imposed by the LR-orderings on the w�s in K. In this sense,

there is an LR-ordering 
orresponding to every RE-ordering. On the other hand, the

following example shows that some LR-orderings do not 
orrespond to any RE-ordering,

even when we restri
t ourselves to just the w�s in K.

Example 5.5.19 Consider the propositional language L generated by the two atoms

p and q with the valuation semanti
s (V;
), where V = f11; 10; 01; 00g. Now, let

K = Cn(p ^ q), and 
onsider the LR-ordering v

LR

de�ned as follows:

� v

LR

� i�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

� 2 L if � =2 K,

p ^ q � � if � � p ^ q or � � p$ q or � � p or

� � q or � � :p _ q,

p _ q � � if � � p _ q,

p _ :q � � if � � p _ :q,

� 2 L if � �.

Figure 5.4 
ontains a graphi
al representation of v

LR

. An inspe
tion of �gure 5.4

reveals that v

LR

is indeed an LR-ordering, but it 
an be veri�ed that the part of v

LR

restri
ted to the elements ofK does not 
oin
ide with the restri
tion of any RE-ordering

v

RE

to K. 2

We now turn to a 
omparison of Rott's GEE-orderings (see se
tion 5.4.2) and the RE-

orderings. Observe �rstly that, sin
e the EE-orderings are total preorders, taking the


onverse 
omplement of an EE-ordering v

EE

is the same as taking its stri
t version

<

EE

. In the 
ase of the RE-orderings, this is not the 
ase, though. One way to obtain

a 
omparison of the RE-orderings with the GEE-orderings is to 
he
k whether the

RE-orderings satisfy the following translations of the GEE postulates into assertions

about the 
onverse 
omplements of the GEE-orderings:
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?;:p ^ q; p ^ :q;:p ^ :q;:(p$ q);:p _ :q

p ^ q; p$ q; p; q;:p _ q

p _ q p _ :q

3

6

k

>

>

}

Figure 5.4: A graphi
al representation of the LR-ordering used in example 5.5.19. The

ordering is obtained from the re
exive transitive 
losure of the relation determined by

the arrows. Every w� in the �gure is a 
anoni
al representative of the set of w�s that

are logi
ally equivalent to it.

(CGEE1) > v >

(CGEE2") If 
 v � and � � 
 then � v �

(CGEE2#) If � v 
 and 
 � � then � v �

(CGEE3") If � ^ 
 v � then � v � or 
 v �

(CGEE3#) If � v � then � v � ^ �

(CGEE4) If K 6= Cn(?) then � v ? i� � =2 K

(CGEE4

0

) If � 2 K and � v � then � 2 K

(CGEE5) If > v � then � �

(CGEE5

0

) If > v � and � v � then > v �

It is easily veri�ed that the RE-orderings satisfy (CGEE1), (CGEE2") and (CGEE2#),

the three postulates regarded by Rott as minimal 
onditions of rationality for every

relation designed to formalise the 
on
ept of epistemi
 entren
hment. Furthermore,
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they also satisfy (CGEE3#), (CGEE4

0

), (CGEE5) and (CGEE5

0

), but do not satis-

fy (CGEE3") or (CGEE4). They do satisfy the left-to-right dire
tion of (CGEE4),

though.

Proposition 5.5.20 The RE-orderings satisfy the postulates (CGEE1), (CGEE2"),

(CGEE2#), (CGEE3#), (CGEE4

0

), (CGEE5) and (CGEE5

0

). Furthermore, they do

not ne
essarily satisfy (CGEE3") or (CGEE4), but they do satisfy the left-to-right

dire
tion of (CGEE4).

Proof Let � be a faithful modular weak partial order in terms of whi
h v

RE


an be

de�ned using (Def v

E

from �). (CGEE1) follows from (RE2), and (CGEE2") and

(CGEE2#) both from (RE1) and (RE2). For (CGEE3#), suppose that � v

RE

� and

pi
k any y 2M(:(� ^ �)). So y 2M(:�) or y 2M(:�). We have to show that there

is an x � y su
h that x 2 M(:�). If y 2 M(:�), this follows from the re
exivity of

�, and if y 2 M(:�), it follows from the fa
t that � v

RE

�. (CGEE4

0

) follows from

(RE4a), (CGEE5) from (RE2) and (RE5), and (CGEE5

0

) follows from (RE1).

To show that the RE-orderings do not always satisfy (CGEE3"), let K = Cn(fp$

qg) and 
onsider the RE-ordering v

RE

, with respe
t to K, whi
h is de�ned as follows:

� v

RE

� i�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

� 2 L if � =2 K,

� 2 K if � � p$ q,

p! q � � if � � p! q,

q ! p � � if � � q ! p,

� � if � �.

It is readily veri�ed that v

RE

is indeed an RE-ordering. By letting � = p $ q,

� = q  q, 
 = p  q, and observing that � ^ 
 � �, we see that v

RE

violates

(CGEE3").

To show that the RE-orderings do not always satisfy (CGEE4), it is suÆ
ient to

observe that the entailment relation � is an RE-ordering with respe
t to the belief set

Cn(>). Finally, that every RE-ordering satis�es the left-to-right dire
tion of (CGEE4)

follows from (RE4a). 2

As observed above, the 
onverse 
omplement of an EE-ordering is the same as its

stri
t version. It might therefore be instru
tive to determine whether or not the stri
t

versions of the RE-orderings are instan
es of the GEE-orderings. It turns out that the
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stri
t RE-orderings satisfy (GEE1), (GEE2"), and (GEE2#), but do not always satisfy

(GEE3") and (GEE3#).

Proposition 5.5.21 Let <

RE

be the stri
t version of an RE-ordering. Then <

RE

sat-

is�es (GEE1), (GEE2") and (GEE2#), but does not, in general, satisfy either (GEE3")

or (GEE3#).

Proof (GEE1) is trivial. (GEE2") and (GEE2#) both follow from (RE1) and (RE2).

To show that (GEE3") and (GEE3#) do not always hold, 
onsider the LR-ordering

v

LR

in example 5.5.19. It is easily veri�ed that v

LR

is also an RE-ordering, de�ned in

terms of the faithful modular weak partial order � using (Def v

E

from �), where �

is de�ned as follows:

� = f(x; x) j x 2 Ug [ f(11; y) j y 2 Ug [ f(10; 00); (01; 00)g.

Figure 5.5 
ontains a graphi
al representation of � and the RE-ordering v

RE

de�ned

in terms of � using (Def v

E

from �). Note that the LR-ordering in example 5.5.19

is identi
al to v

RE

. As noted in example 5.5.19, <

LR

violates both (GEE3") and

(GEE3#). 2

With regard to the supplementary postulates, the stri
t RE-orderings satisfy all but

the left-to-right dire
tion of (GEE4).

Proposition 5.5.22 The stri
t version <

RE

of an RE-ordering satis�es the right-

to-left dire
tion of (GEE4) (but not the left-to-right dire
tion), as well as (GEE4

0

),

(GEE5) and (GEE5

0

).

Proof (RE4b) ensures that the left-to-right dire
tion of (GEE4) does not always hold,

and (RE4a) ensures that the right-to-left dire
tion holds. (GEE4

0

) follows from (RE4a),

and both (GEE5) and (GEE5

0

) follow from (RE2) and (RE5). 2

The results above seem to suggest that the GEE-orderings and the RE-orderings have

quite di�erent intuitions asso
iated with them. Whereas the GEE-orderings 
onsitute

a proper generalisation of the EE-orderings, the RE-orderings should be seen as al-

ternatives to the EE-orderings. This is highlighted when the link with 
ontra
tion is

investigated. Rott applies (Def � from v

EE

) to the GEE-orderings to obtain a set of


ontra
tions that is a stri
t superset of AGM 
ontra
tion. In 
ontrast, (Def � from

v

RE

) applied to the RE-orderings yields pre
isely the set of AGM 
ontra
tions.
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11

10 01

00

}
>

�

I

p ^ :q;:q;:(p$ q);?;:p ^ :q;:p _ :q;:p ^ q;:p

p$ q; p ^ q

:p _ q; q p; p _ :q

p _ q

>

6

k
3

�

I

6

Figure 5.5: A graphi
al representation of the faithful modular weak partial order �

used in in proposition 5.5.21, as well as the RE-ordering de�ned in terms of � using

(Def v

E

from �). Both orderings are obtained from the re
exive transitive 
losure

of the respe
tive relations determined by the arrows. Every w� in the representation

of the RE-ordering is a 
anoni
al representative of the set of w�s that are logi
ally

equivalent to it.

5.5.5 Re�ned G-plausibility

We have seen in theorem 3.3.1 that the duals of the EE-orderings (the GE-orderings

of Grove) 
an be de�ned in terms of the faithful total preorders using (Def v

G

from

�). In a similar manner, by applying (Def v

G

from �) to the faithful modular weak

partial orders, we 
an obtain a set of orderings that are dual to the RE-orderings. We

shall refer to them as the RG-orderings.

De�nition 5.5.23 An RG-ordering is a binary relation on L obtained in terms of

a faithful modular weak partial order using (Def v

G

from �). We say that a GE-

ordering and an RG-ordering, de�ned respe
tively in terms of a faithful total preorder

and its semanti
ally related modular weak partial order, using (Def v

G

from �), are

semanti
ally related . 2
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From the de�nitions of the RE-orderings and the RG-orderings it is 
lear that they 
an

be de�ned in terms of one another using (Def v

E

from v

G

) and (Def v

G

from v

E

). By

virtue of (Def v

G

from v

E

), the results about the RE-orderings 
an thus be translated

into results about the RG-orderings. While su
h an exer
ise would serve little purpose

in most 
ases, it is our intention to 
on
entrate on two aspe
ts pertaining to the use of

the RG-orderings. The �rst is a 
omparison of the suitability of the RG-orderings and

the GE-orderings as orderings of plausibility. The se
ond aspe
t involves the de�nition

of AGM revision in terms of the RG-orderings. The results provided in the proposition

below will be used in the dis
ussion of these two aspe
ts.

Proposition 5.5.24 Let v

RG

be the RG-ordering de�ned in terms of the faithful mod-

ular weak partial order � using (Def v

G

from �). Then v

RG

satis�es the following

properties.

1. v

RG

is a preorder (that need not be total).

2. Suppose that the GE-ordering v

GE

and the v

RG

are semanti
ally related. If

� v

RG

� then � v

GE

�.

3. If � � � then � v

RG

�.

4. � :� i� for all � 2 L, � v

RG

�.

5. If K is satis�able then K = [>℄

v

RG

.

6. If K � � and K 2 � then � <

RG

�.

7. If K 2 :� and K � :
 then � <

RG


.

8. If K [ f�g 2 ? then K [ f�g � � i� � v

RG

�.

Proof The proofs are similar to that of proposition 5.5.4 and are omitted. 2

These properties reveal that the RG-orderings are �ner grained versions of the GE-

orderings. They are preorders like the GE-orderings, but they need not be total. For

every satis�able belief set K, they partition the set of w�s into four disjoint sets, and

not three, as the GE-orderings do. The logi
ally invalid w�s are all equivalent and

stri
tly above all other w�s, followed by the rest of the K-refuted w�s, just as with

the GE-orderings. However, whereas the GE-orderings lump the K-established w�s
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together with the w�s that are K-unde
ided, the RG-orderings distinguish between

these two sets. In parti
ular, the w�s in K are all equivalent and stri
tly lower than all

other w�s, while the K-unde
ided w�s are stri
tly below all K-refuted w�s. Finally,

the K-unde
ided w�s are not all 
omparable. Instead, any RG-ordering restri
ted to

the K-unde
ided w�s (or, in fa
t, restri
ted to all w�s ex
ept those that are K-refuted)

is exa
tly the inverse of entailment relative to K. So the only part of any RG-ordering

that is not 
ompletely spe
i�ed by K itself, is the ordering restri
ted to the w�s that

are not logi
ally invalid, but are nevertheless K-refuted.

In view of these results, the RG-orderings seem to be more suitable as plausibility

orderings than the GE-orderings. This is due mainly to the fa
t that they are �ner

grained versions of the GE-orderings. Unlike the GE-orderings, an RG-ordering (with

respe
t to K) does not regard the w�s in K and the K-unde
ided w�s as equally

plausible, or equally 
lose to the belief set K. Instead, all the w�s in K are seen as

more plausible than the K-unde
ided w�s, a result that surely is more in line with the

intuition of plausibility. More important, perhaps, is that the added stru
ture of the

RG-orderings also extends to the K-refuted w�s, enabling us to give a de�nition of

revision that is both simpler and more intuitively appealing than (Def � from v

GE

).

The intuition underlying the use of the RG-orderings to de�ne AGM revision 
an

be des
ribed as follows. When revising a belief set K with a w� �, K �� should 
onsist

of a set of w�s that entails �, while still being satis�able. Now, the set 
onsisting of

the w�s that are pre
isely as plausible as �, 
ertainly entails � (sin
e it in
ludes �).

So if this set is satis�able, all the w�s in it should be in
luded in K ��. As a result, we

should 
hoose K �� to 
onsist of all the w�s entailed by the set of w�s that is pre
isely

as plausible as �. That is, AGM revision 
an be de�ned in terms of the RG-orderings

as follows:

(Def � from v

RG

) K � � = Cn([�℄

v

RG

)

Theorem 5.5.25 Let � be a faithful modular weak partial order and let v

RG

be the

RG-ordering de�ned in terms of � using (Def v

G

from �). The revision de�ned in

terms of � using (Def � from �) 
an also be de�ned in terms of v

RG

using (Def �

from v

RG

).

Proof It suÆ
es to show that for all �; � 2 L, [�℄

v

RG

� � i� � 2 Th(Min

�

(�)). So

suppose that [�℄

v

RG

� �. That is, � 2 Th(

T

fM(
) j 
 2 [�℄

v

RG

g). By 
orollary
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5.5.6 and theorem 2.3.5, Min

�

(�) = Min

�

(
) for every 
 2 [�℄

v

RG

. So Min

�

(�) �

T

fM(
) j 
 2 [�℄

v

RG

g, and thus � 2 Th(Min

�

(�)). Conversely, suppose that � 2

Th(Min

�

(�)). Clearly, we also have that � ^ � 2 Th(Min

�

(�)). So, for every y 2

M(�) there is an x 2 M(� ^ �) su
h that x � y, whi
h means that � ^ � v

RG

�.

Furthermore, be
ause � ^ � � �, it follows from part (3) of proposition 5.5.24 that

� v

RG

� ^ �. So � ^ � �

v

RG

� and thus [�℄

v

RG

� �. 2

For the sake of 
ompleteness, we in
lude two identities that 
an be used to de�ne the

GE-orderings and the RG-orderings in terms of ea
h other. That these two identities


an indeed be used for this purpose follows easily by applying (Def v

G

from v

E

), (Def

v

EE

from v

RE

), (Def v

RE

from v

RG

), (Def v

RE

from v

EE

) and (Def v

E

from v

G

).

(Def v

GE

from v

RG

) � v

GE

� i� � v

RG

� or :� ^ � 6v

RG

�

(Def v

RG

from v

GE

) � v

RG

� i� � :� or � <

GE

� or � v

GE

:� ^ �

5.6 Other alternatives

In this se
tion we take a brief look at ways to remove the minimality and maximality


onditions on the EE-orderings (see se
tion 2.3). Two proposals in whi
h both these


onditions do not feature are the GEE-orderings of Rott, 
onsidered in se
tion 5.4.2,

and the expe
tation orderings of G�ardenfors and Makinson [1994℄. The expe
tation

orderings are required to satisfy the postulates (EE1), (EE2) and (EE3), but not (EE4)

and (EE5), and 
an thus be seen as the EE-orderings without the minimality and

maximality 
onditions imposed on them. They are used to de�ne the expe
tation

based 
onsequen
e relations, dis
ussed in se
tion 4.4.1, as follows:

(Def j� from v) �j�� i� � 2 Cn(f�g [ f
 j :� < 
g)

Interestingly enough, G�ardenfors and Makinson point out that the expe
tation based


onsequen
e relations 
an also be de�ned in terms of the EE-orderings using (Def j�

from v). So if the interest in the expe
tation orderings is motivated solely on their

relationship with the expe
tation based 
onsequen
e relations, we might as well sti
k

to the EE-orderings.

Let us now take a 
loser look at these two 
onditions individually. We �rst 
onsider

the maximality 
ondition | the requirement that the most entren
hed w�s are nothing
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but the logi
ally valid w�s. The most obvious way to remove this requirement is

to remove the 
orresponding postulate (or postulates). Thus, for the EE-orderings

it is a matter of removing (EE4), for the LR-orderings the removal of (LR5), and

for the GEE-orderings the removal of (GEE5) and (GEE5

0

). But there is also an

elegant semanti
 way in whi
h to 
onsider this issue. Intuitively, the obje
tion to this

maximality 
ondition is that some of the beliefs of an agent might be so entren
hed as

to be on the same level as the logi
ally valid w�s. It is reasonable to regard these w�s

as being entren
hed to su
h an extent that they 
annot be dislodged from the belief set

of the agent. As su
h, they should rather be seen as part of the knowledge of the agent.

We 
an a
hieve the desired e�e
t by moving to a new semanti
s for L in whi
h these

w�s are logi
ally valid. This new semanti
s is obtained from the 
urrent one by taking

the new set of interpretations as the set of models of these w�s. That is, if B is the

set of beliefs that should be regarded as knowledge, we repla
e the 
urrent semanti
s

(U;
) by the new semanti
s (M(B);


B

), where 


B

is just the satisfa
tion relation 


with the �rst 
oordinates restri
ted to M(B).

We now turn to the minimality 
ondition | that all w�s not in K should be

equally entren
hed and stri
tly less entren
hed than the w�s in K. The obje
tion to

this requirement is, of 
ourse, 
on
erned with the insisten
e that all w�s not in K

be equally entren
hed, and not with the de
ision to pla
e the w�s that are not in K

stri
tly below the w�s in K. In fa
t, it seems reasonable to require that all versions of

entren
hment should satisfy (RE4a) on page 115.

8

This is the 
ondition termed stability

by Rabinowi
z [1995℄, and is 
learly satis�ed by all the versions of entren
hment that

we have 
onsidered so far.

With regard to the issue of the 
omparability of the w�s not inK, we 
an distinguish

between three approa
hes. The �rst is to apply the same 
onditions that are being

pla
ed on the 
omparability of w�s in K. Thus, for the EE-orderings it is a matter of

applying (EE3) to the w�s not in K as well, and repla
ing (EE4) by (RE4a), while su
h

a suggestion applied to the LR-orderings merely involves the repla
ement of (LR4) by

(RE4a).

8

If there is no expli
it mention of a belief set, the extra
tion of a suitable one from the entren
hment

ordering should be performed in su
h a way as to ensure the satisfa
tion of (RE4a). For example,

Rott's basi
 GEE-orderings do not refer to a belief set, but the belief set obtained from a GEE-ordering

<

GEE

is taken as the set f� j ? <

GEE

�g.
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A di�erent suggestion due to Rabinowi
z [1995℄, and one that relates spe
i�
ally to

the EE-orderings, is to use their semanti
ally related GE-orderings (obtained using (Def

v

G

from v

E

)) to distinguish between the w�s not in K. As we have seen in se
tion 5.3,

this 
orresponds to Spohn's R-orderings. For a satis�able belief set K, an R-ordering

v

R

partitions the w�s of L into three 
lasses: Those that are K-believed (the w�s in

K), those that are K-disbelieved (the K-refuted w�s), and those that are K-neutral

(the K-unde
ided w�s). The K-neutral w�s are all equally entren
hed, stri
tly less

entren
hed than those w�s that are K-believed, but stri
tly more entren
hed than the

K-disbelieved w�s. Note, however, that the relative ordering of the K-believed w�s

is a mirror image of the relative ordering of the K-disbelieved w�s, and vi
e versa.

That is, if � and � are both K-believed, or if both are K-disbelieved, then � v

R

� i�

:� v

R

:�. The R-orderings thus involve the imposition of a kind of symmetry between

the ordering of the belief set and the disbelief set of an agent that seems diÆ
ult to

justify.

As a result, we propose to generalise this idea as follows. Instead of 
ombining

an EE-ordering v

EE

and the parti
ular GE-ordering obtained in terms of v

EE

using

(Def v

G

from v

E

), we 
ombine v

EE

and any GE-ordering (with respe
t to the same

belief set K). To be more spe
i�
, given any EE-ordering v

EE

and any GE-ordering

v

GE

, both with respe
t to the same belief set K, we de�ne a 
ombined entren
hment

ordering v

C

in terms of v

EE

and v

GE

as follows:

(Def v

C

from v

EE

and v

GE

) � v

C

� i�

8

>

<

>

:

� v

EE

� if �; � 2 K,

� v

GE

� if �; � =2 K,

� =2 K and � 2 K otherwise

The 
ombined entren
hment orderings retain the partitioning of the R-orderings, as well

as the property that all K-neutral w�s are equally entren
hed, but have the advantage

of not being subje
t to the requirements of symmetry between the belief set and the

disbelief set of an agent.

We 
on
lude this se
tion with some thoughts on the way re�ned entren
hment

handles the 
omparability of w�s not in K. Although the RE-orderings are able to

distinguish between the entren
hment of w�s not in K, this ability is little more than a

re
e
tion of the underlying entailment relation � and does not seem to express a genuine

di�eren
e in the entren
hment of su
h w�s. For a more satisfa
tory des
ription of the

relative entren
hment of su
h w�s, we have a 
hoi
e between the two proposals related

to the minimality 
ondition, applied to the RE-orderings. The appli
ation of the �rst
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proposal involves doing away with (RE4b), and applying (RE3a) to all w�s, and not

just those in K. The se
ond proposal involves the RE-orderings and the RG-orderings.

Given any RE-ordering v

RE

and any RG-ordering v

RG

, both with respe
t to the same

belief set K, we de�ne a CR-ordering v

CR

in terms of v

RE

and v

RG

using (Def v

C

from v

EE

and v

GE

).

De�nition 5.6.1 A binary relation on L is a CR-ordering , with respe
t to a belief set

K, i� it is de�ned in terms of an RE-ordering with respe
t to K, and an RG-ordering

with respe
t to K, using (Def v

C

from v

EE

and v

GE

). 2

From the properties of the RE-orderings and the RG-orderings, it follows that for a

satis�able belief set K, every CR-ordering v

CR

partitions the w�s of L into �ve 
lasses:

1. The logi
ally valid w�s are all equally entren
hed, and more entren
hed than all

other w�s.

2. The w�s that are K-believed, but not logi
ally valid, are stri
tly less entren
hed

than the logi
ally valid w�s, and more entren
hed than all other w�s.

3. The K-neutral w�s are less entren
hed than the K-believed w�s and more en-

tren
hed than the K-disbelieved w�s. Moreover, the CR-ordering restri
ted to

the K-neutral w�s 
orresponds to entailment relative to K.

4. The K-disbelieved w�s that are not logi
ally invalid are less entren
ed than the

K-believed and theK-neutral w�s, but more entren
hed than the logi
ally invalid

w�s.

5. And �nally, the logi
ally invalid w�s are all equally entren
hed, and less en-

tren
hed than all other w�s.

5.7 Unifying epistemi
 and re�ned entren
hment

From the dis
ussion on re�ned entren
hment it is 
lear that the RE-orderings are in-

tended as alternatives to the EE-orderings. This view is supported by the results

about the 
onne
tion between the RE-orderings, the EE-orderings and AGM 
ontra
-

tion. The main di�eren
e between the RE-orderings and the EE-orderings is that the

RE-orderings are not all total preorders. And while this renders the RE-orderings
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more appropriate in 
ertain respe
ts, it has its downside as well. For in embra
ing

the RE-orderings at the expense of the EE-orderings, we also dis
ard the property of

being able to 
ompare all w�s in all but some limiting 
ases. The question that arises

is thus whether it is possible to obtain a uni�ed view of entren
hment, en
ompassing

both re�ned entren
hment and epistemi
 entren
hment. From a semanti
 viewpoint,

there is a positive answer to this question. It involves the use of a set of faithful pre-

orders whi
h stri
tly in
ludes the faithful total preorders and the faithful modular weak

partial orders.

De�nition 5.7.1 A preorder � on a set V is 
alled layered i� for every x; y; z 2 V , if

z � x and either x �

�

y or x k

�

y, then z � y. 2

Layered preorders appeal to the same intuition that underlies the total preorders,

the modular weak partial orders and the modular (stri
t) partial orders. The idea is

that the elements of V are arranged in levels, with elements in di�erent layers being


omparable. The di�eren
e between all these types of orderings 
on
erns the way in

whi
h elements in the same layer are treated. So, while the total preorders regard all

elements in the same layer as 
omparable, and the modular weak partial orders take

all distin
t elements in the same layer as in
omparable, the layered preorders provide

a 
ompromise between these two extremes: they allow for both the 
omparability and

the in
omparability of elements in the same layer. Using this intuition, it is 
lear that

every layered preorder is uniquely asso
iated with a modular weak partial order and a

total preorder. (And in fa
t, every total preorder and every modular weak partial is a

layered preorder.)

De�nition 5.7.2 A modular weak partial order � on a set X, a total preorder � on

X, and a layered preorder 4 on X are semanti
ally related i� � 
an be de�ned in

terms of 4 using (Def � from �) and � 
an be de�ned in terms of 4 using (Def �

from �). 2

It is easily veri�ed that a faithful layered preorder and its semanti
ally related faithful

total preorder and faithful modular weak partial order are minimal-equivalent (see

de�nition 3.3.6).

Proposition 5.7.3 A removal and a revision de�ned in terms of a faithful layered

preorder - using (Def � from �) and (Def � from �), 
an also be de�ned in terms
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of its semanti
ally related faithful total preorder �, and its semanti
ally related faithful

modular weak partial order �, using (Def � from �) and (Def � from �).

Proof Follows from the fa
t that Min

.

(�) = Min

�

(�) = Min

�

(�) for every � 2 L.

2

As a result we 
an use either the faithful layered preorders, or the faithful modular

weak partial orders, or the faithful total preorders to 
hara
terise AGM theory 
hange.

Corollary 5.7.4 Let - be a faithful layered preorder, let � be the faithful modular

weak partial order obtained in terms of - using (Def � from �), and let � be the

faithful total preorder obtained in terms of - using (Def � from �).

1. The AGM revisions de�ned in terms of �, -, and � using (Def � from �) are

identi
al.

2. The AGM 
ontra
tions de�ned in terms of �, -, and � using (Def � from �)

are identi
al.

Proof Follows from theorem 3.2.6 and proposition 5.7.3. 2

From an information-theoreti
 point of view, the faithful layered preorders provide us

with a degree of freedom that is la
king in both the faithful total preorders and the

faithful modular weak partial orders. It allows us to regard some infatoms as being

in
omparable with respe
t to entren
hment, and others to be equally entren
hed. As

a result, the faithful layered preorders 
an be used to de�ne a 
lass of entren
hment

orderings that generalises both the RE-orderings and the EE-orderings.

De�nition 5.7.5 A binary relation v

GRE

is a GRE-ordering i� it is de�ned in terms

of a faithful layered preorder � using (Def v

E

from �). We say that a GRE-ordering,

an RE-ordering, and an EE-ordering de�ned respe
tively in terms of a faithful layered

preorder, its semanti
ally related total preorder, and its semanti
ally related modular

weak partial order, using (Def v

E

from �), are semanti
ally related . 2

From theorem 3.3.1, de�nitions 5.5.3 and 5.7.5, and the fa
t that the faithful total

preorders and the faithful modular weak partial orders are instan
es of the faithful

layered preorders, it immediately follows that the EE-orderings and the RE-orderings

are all instan
es of the GRE-orderings. We 
on
lude with a list of properties of the
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GRE-orderings. The obvious question, whether there is a set of postulates that gives

a pre
ise des
ription of the GRE-orderings, seems to be a non-trivial one. We leave

a proper investigation of this issue, and the quest for an appropriate representation

theorem, for future resear
h.

Proposition 5.7.6 Let � be a faithful layered preorder, and let v

GRE

be the GRE-

ordering de�ned in terms of � using (Def v

E

from �). Then v

GRE

satis�es the

following properties.

1. v

GRE

is a preorder (that need not be total).

2. Suppose that v

GRE

and an EE-ordering v

EE

are semanti
ally related. If � v

GRE

� then � v

EE

�.

3. Suppose that v

GRE

and an RE-ordering v

RE

are semanti
ally related. If � v

RE

�

then � v

GRE

�.

4. If � � � then � v

GRE

�.

5. � v

GRE

� for all � i� � �.

6. If � � � then � v

GRE


 i� � v

GRE


, and 
 v

GRE

� i� 
 v

GRE

�.

7. If K is satis�able then f� j :� 2 Kg � [?℄

v

RE

.

8. If � =2 K and � 2 K then � <

GRE

�.

9. If :� 2 K and :
 =2 K then � v

GRE


.

10. If � =2 K and K [ f�g � � then � v

GRE

�.

11. If � �

v

GRE

� then � ^ � 2 [�℄

v

GRE

= [�℄

v

GRE

.

12. � v

GRE

� ^ �, or � v

GRE

� ^ �, or both �! � 6v

GRE

� and � ! � 6v

GRE

�.

Proof The re
exivity and transitivity of v

GRE

are trivial. To show that v

GRE

need

not be a total preorder, 
onsider the example of a propositional language generated by

two atoms, p and q. Now let K = Cn(p) and 
onsider the faithful layered preorder

f(x; x) j x 2 Ug [ f(x; y) j x 2M(K) and y =2M(K)g.
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It is easily veri�ed that q 6v

GRE

:q and :q 6v

GRE

q. For (2) and (3), let 4 be a faithful

layered preorder in terms of whi
h v

GRE


an be de�ned using (Def v

E

from �), let �

be the faithful modular weak partial order that is semanti
ally related to 4, and let �

be the faithful total preorder that is semanti
ally related to 4. Then (2) follows from

the fa
t that if x 4 y then x � y, and (3) from the fa
t that if x � y then x 4 y. (4)

is trivial. For (5), suppose that � v

GRE

� for all �. So in parti
ular > v

GRE

�, whi
h


an only be if M(:�) = ;. Therefore � �. Conversely, if � � then M(:�) = ;, from

whi
h it follows va
uously that � v

GRE

� for all �. (6) is trivial. For (7), suppose

that K is satis�able and pi
k any � su
h that :� 2 K. ? v

GRE

� follows from

? � � and part (4), and � v

GRE

? from the faithfulness of 4. For (8), suppose that

� =2 K and � 2 K. So M(K) \M(:�) = ;, and sin
e K has a model that satis�es

:�, it follows from faithfulness that for every y 2 M(:�) there is an x 2 M(:�)

su
h that x 4 y. That is, � v

GRE

�. On the other hand, sin
e K has a model y

that satis�es :�, and sin
e all models of K satisfy �, it follows from faithfulness that

x 2 M(�) for every x 4 y, and thus � 6v

GRE

�. For (9), suppose that :� 2 K and

:
 =2 K. � v

GRE


 follows from faithfulness. For the proof of (10), let � =2 K and

suppose that K [ f�g � �. Now pi
k any y 2 M(:�). If y =2 M(K) then, be
ause

M(K)\M(:�) 6= ;, there is an x 2M(K)\M(:�) su
h that x 4 y. And if y 2M(K)

then, be
auseM(K)\M(�) �M(�), y =2M(�), and there is thus an x 2M(:�) su
h

that x � y. So � v

GRE

�. For the proof of (11), suppose that � �

v

GRE

�. By part (4),

� ^ � v

GRE

�. To show that � v

GRE

� ^ �, pi
k a y 2 M(:� _ :�). If y 2 M(:�)

then � v

GRE

� guarantees that there is an x 2 M(:�) su
h that x 4 y, and the 
ase

where y 2 M(:�) is trivial. For the proof of (12), suppose that � 6v

GRE

� ^ � and

� 6v

GRE

� ^ �. Then there is a y 2 Min

4

(:� _ :�) su
h that x 2 M(�) for every

x 4 y, and there is a v 2 Min

4

(:� _ :�) su
h that u 2 M(�) for every u 4 v. So

y 2M(�)\M(:�) and x 2 M(�)\M(�) for every x � y. Similarly, v 2M(:�)\M(�)

and u 2 M(�) \M(�) for every u � v. Sin
e 4 is a layered preorder, it therefore has

to be the 
ase that y k

4

v. So y 2 M(:�) and x 2 M(� ! �) for every x 4 y. That

is, � ! � 6v

GRE

�. And similarly for v, �! � 6v

GRE

�. 2

5.8 Summary

Entren
hment orderings play an important role in belief 
hange. They are regarded

as more fundamental than theory 
hange operations su
h as revision and 
ontra
tion
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[G�ardenfors, 1988,p. 88℄, and are seen as suitable representations of the epistemi
 states

of an agent [Nayak, 1994a,b, Nayak et al., 1996℄, at least for the part pertaining to belief


hange. While we are in agreement with the idea of entren
hment being more basi


than theory 
hange operations, it should 
ome as no surprise that our view 
on
erning

the representation of epistemi
 states is rather di�erent. We regard the faithful layered

preorders as more fundamental than entren
hment, a view that is supported by the

results in this 
hapter. In parti
ular, we saw that the di�erent kinds of entren
hment

orderings dis
ussed all turn out to be have a semanti
 basis, and more spe
i�
ally, are

rooted in (some subset of) the faithful layered preorders. This prompts the following

generalisation of de�nitions 3.3.8, 5.5.3 and 5.5.14.

De�nition 5.8.1 An AGM 
ontra
tion �, an AGM revision �, an EE-ordering v

EE

,

a GE-ordering v

GE

, an RE-ordering v

RE

, and an RG-ordering v

RG

are semanti
ally

related i� there is a faithful total preorder � and a semanti
ally related faithful modular

weak partial order � su
h that

1. � 
an be de�ned in terms of � (and �) using (Def � from �),

2. � 
an be de�ned in terms of � (and �) using (Def � from �),

3. v

EE


an be de�ned in terms of � using (Def v

E

from �),

4. v

GE


an be de�ned in terms of � using (Def v

G

from �),

5. v

RE


an be de�ned in terms of � using (Def v

E

from �), and

6. v

RG


an be de�ned in terms of � using (Def v

G

from �).

2

Figure 5.6 
ontains a summary of some the results related to faithful layered pre-

orders, and extends the results in �gure 3.2 on page 58. G�ardenfors and Makinson

[1994,p. 244℄ advan
e the view that entren
hment orderings su
h as their expe
tation

orderings, are more fundamental than stru
tures su
h as the faithful layered preorders.

Their argument is that pla
ing an ordering on sets of states (or worlds or infatoms)

is epistemologi
ally more advan
ed than pla
ing an ordering on beliefs in the form

of w�s of L. A

ordingly, they see the former as being derived from the latter, and

leave the question of how an agent obtains su
h an ordering on w�s to the �eld of
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Figure 5.6: The relationship between minimal-equivalent faithful layered preorder-

s, AGM 
ontra
tion, AGM revision, the EE-orderings, the RE-orderings, the GE-

orderings, the RG-orderings, and safe 
ontra
tion in terms of regular virtually 
on-

ne
ted hierar
hies.
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ognitive s
ien
e. While we agree that some kinds of orderings on w�s 
an be regarded

as more fundamental than orderings on worlds, it is diÆ
ult to see that su
h a view


an be applied to orderings on w�s that are as highly stru
tured as the entren
hment

orderings en
ountered in this 
hapter. In parti
ular, it is diÆ
ult to es
ape the 
on-


lusion that the faithful layered preorders are used to derive orderings on w�s (in the

form of the GRE-orderings), espe
ially when adopting an information-theoreti
 point

of view. Of 
ourse, this still leaves open the question of how to obtain su
h orderings

on infatoms. One way to a
hieve this might indeed be in terms of priority orderings

on w�s, in the spirit of Nebel's epistemi
 relevan
e orderings [1990, 1991, 1992℄. But

su
h orderings have a 
ompletely di�erent 
hara
ter than orderings of entren
hment,

sin
e they disregard the logi
al relationship between w�s.

Finally, in this 
hapter we have 
on
entrated on suitable properties for entren
h-

ment orderings, but we have paid little attention to how these entren
hment orderings

ought to be used. In the next 
hapter, our attention will be shifted to the latter ques-

tion. More spe
i�
ally, we show how the EE-orderings and the RE-orderings 
an be

used to de�ne withdrawals whi
h di�er from AGM 
ontra
tion.
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Chapter 6

Withdrawal

Believe it or not.

R.L. Ripley

Title of newspaper 
olumn

Although AGM theory 
ontra
tion o

upies a 
entral position in the literature on be-

lief 
hange, there is one aspe
t about it that has 
reated a fair amount of 
ontroversy.

It involves the in
lusion of (K-6), the postulate known as Re
overy. The Re
overy

postulate is part of the AGM trio's formal expression of the prin
iple of Information-

al E
onomy, the idea that an agent should try to keep the loss of information to a

minimum.

In this 
hapter we undertake a detailed investigation of withdrawals, the removals

obtained when Re
overy is dropped from the basi
 AGM 
ontra
tion postulates (see

se
tion 2.1). We 
ommen
e with a motivation for the move from 
ontra
tion to with-

drawal by reviewing the main obje
tions levelled at re
overy, and then pro
eed with

a des
ription of the withdrawal operations found in [Levi, 1991, 1998, Hansson and

Olsson, 1995, Rott and Pagnu

o, 1999, Ferm�e, 1998, Ferm�e and Rodriguez, 1998℄.

Along the way, we also present a new addition to the family of withdrawal operations;

systemati
 withdrawal. We de�ne systemati
 withdrawal semanti
ally, in terms of the

faithful modular weak partial orders (see de�nition 5.5.1), and show that it 
an be


hara
terised by a set of postulates.

In a 
omparison of withdrawal operations we show that AGM 
ontra
tion, system-

ati
 withdrawal and the severe withdrawal of Rott and Pagnu

o [1999℄ are intimately

139
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onne
ted by virtue of their de�nition in terms of sets of layered faithful preorders.

These semanti
 
onstru
tions, together with similar semanti
 de�nitions of the EE-

orderings (see theorem 3.3.1) and the RE-orderings (see de�nition 5.5.3), are then used

to show that AGM 
ontra
tion, systemati
 withdrawal, severe withdrawal, the EE-

orderings, and the RE-orderings are all interde�nable; indeed inter
hangeable. The


lose 
onne
tion between these 
onstru
tions 
an be tra
ed ba
k to a shared feature.

They are all de�ned in terms of faithful layered preorders; a result that is summarised

in �gure 6.7 on page 199.

6.1 To re
over or not to re
over

At a �rst glan
e, the Re
overy postulate seems to be a reasonable requirement to

impose on theory removal. It requires the 
hanges to a belief set K resulting from an

�-
ontra
tion to be small enough so that an �-expansion will be suÆ
ient to re
over all

the dis
arded information. In other words, information is a valuable 
ommodity, and it

makes good sense to e�e
t as little 
hange as possible when 
ir
umstan
es di
tate that

our set of beliefs should be modi�ed. Viewed as su
h, re
overy is a formalisation of the

prin
iple of Informational E
onomy. And while this is 
learly a useful prin
iple, it 
an

have undesirable 
onsequen
es if it is allowed to be
ome the overriding 
on
ern. This

is the ba
kground against whi
h the obje
tions levelled at re
overy should be seen.

The Re
overy postulate has been 
riti
ised by various authors, and for several

di�erent reasons.

1

One of the reasons most frequently 
ited stems from the extension

of theory 
hange to base 
hange. In base 
hange, the set of w�s on whi
h 
ontra
tions

and revisions are performed, termed the base, need not be a belief set. A base is taken

to 
ontain the \basi
" beliefs of an agent, with the w�s logi
ally entailed by the base

being seen as \derived" beliefs. Under the assumption that only w�s in the 
urrent base

are allowed to be retained after a (base) 
ontra
tion | an assumption whi
h underlies

most approa
hes to base 
hange | it is easy to �nd 
ounterexamples to Re
overy.

Example 6.1.1 Let L be the propositional language generated by the two atoms p

and q with the valuation semanti
s (V;
), where V = f00; 01; 10; 11g. Contra
ting the

base fp; qg by p_ q 
learly has to result in the empty base. Expanding with p_ q now

1

Those obje
tions to the Re
overy postulate raised by Tennant [1994, 1997℄ whi
h are valid, are

restatements of those in the referen
es 
ited below.
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yields the new base fp _ qg, and it is thus not the 
ase that fp; qg � Cn(;) + p _ q,

as (K�6

0

), applied to bases, would have it. (Re
all from se
tion 2.1, that (K�6

0

) is an

alternative formulation of the Re
overy postulate.) 2

The retention of Re
overy on the knowledge level (see page 3) is thus regarded as an

obsta
le to the a

eptan
e of base 
hange operations.

2

This argument, found in [Makin-

son, 1987, Fuhrmann, 1991, Hansson, 1992a, 1993
, 1996, Niederee, 1991℄, is 
ertainly


ompelling if one a

epts the requirement that a base 
ontra
tion operation may only

result in a new base that is a subset of the original one. But a number of resear
hers

have de�ned base 
ontra
tion operations that aren't bound by this restri
tion, and

as a result, the theory 
ontra
tion operations asso
iated with these base 
ontra
tion

operations do satisfy Re
overy ([Nebel, 1989, 1990, 1991, 1992, Nayak, 1994a, Meyer

et al., 1999a℄, and 
hapter 8).

3

The reje
tion of Re
overy on these grounds thus boils

down to a question of the kind of base 
ontra
tion one is willing to a

ept.

A di�erent argument against Re
overy, one that operates purely on the theory


hange level, 
an be found in [Hansson, 1991, 1992a, 1996, Lindstr�om and Rabinowi
z,

1991℄, and to a 
ertain extent, in [Niederee, 1991℄ as well. A general formulation of

this argument is presented by Lindstr�om and Rabinowi
z [1991℄. They point out that

the following is a derived property of any removal that satis�es the six basi
 AGM

postulates:

If � 2 K and � � � then � 2 (K � �) + �.

That is, it is impossible to get rid of a w� � in K by �rst 
ontra
ting and then

expanding with a w� that is logi
ally weaker than �. This argument is made 
on
rete

by the following two 
onvin
ing 
ounterexamples to Re
overy, due to Hansson [1991,

1992a℄, and also o

urring in [Hansson, 1996, 1999℄.

Example 6.1.2 I read a book about Cleopatra, in whi
h the 
laim is made that she

had a son and a daughter. I subsequently dis
over that the book is �
tional, whi
h

leads me to remove my belief that Cleopatra had a 
hild. However, on 
onsulting a

history book I dis
over that Cleopatra indeed had a 
hild, and I thus expand my belief

set with this assertion.

2

Indeed, in [Al
hourr�on et al., 1985℄, where the AGM postulates are phrased so as not to deal

ex
lusively with belief sets, the Re
overy postulate, in the form of (K�6

0

), is taken to hold only for

belief sets.

3

A theory 
ontra
tion operation � is asso
iated with a base 
ontra
tion operation � i� Cn(B �

�) = Cn(B)� �.
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Let L be a propositional language generated by the two atoms p and q. Let p denote

the assertion that Cleopatra had a son, and q the assertion that she had a daughter.

Then K = Cn(p; q). The removal of the belief that she had a 
hild is formalised as

K � (p _ q). Sin
e p; q 2 K, Re
overy requires that K � (p _ q) + (p _ q) = K. So

expanding my belief set with the assertion that Cleopatra did, after all, have a 
hild,

will ensure that I again entertain the belief that she had a son and the belief that she

had a daughter; a 
on
lusion whi
h seems unreasonable in this 
ontext. 2

Example 6.1.3 I have reason to believe that George is a mass murderer, and therefore

a 
riminal. Then I re
eive information whi
h leads me to give up my belief that George

is a 
riminal. Sin
e all mass murderers are 
riminals, I also have to give up my belief

that George is a mass murderer. Then I re
eive new information whi
h leads me to

a

ept the belief that George is a shoplifter.

To formalise this example, let L be a propositional language generated by the three

atoms p, q and r. Let p denote the assertion that George is a mass murderer, q the

assertion that George is a 
riminal, and r the assertion that George is a shoplifter.

Clearly, it is appropriate to use a semanti
s for L in whi
h p � q and r � q. Letting

K denote my initial set of beliefs, we have that q 2 K. Now, giving up my belief that

George is a 
riminal results in the new set of beliefs K � q. By Re
overy we then have

that (K � q) + q = K, and sin
e r � q, K = (K � q) + q � (K � q) + r.

So, sin
e I previously believed George to be a mass murderer, I 
an't regard him as

a shoplifter without again believing that he is a mass murderer as well. 2

These 
ounterexamples strongly suggest that 
on
erns other than the retention of in-

formation should also play a role during the removal of beliefs. Su
h 
onsiderations

also form the gist of Levi's 
riti
ism of Re
overy [1991℄. He argues that anything other

than the use of maxi
hoi
e 
ontra
tion (see se
tion 2.2) already 
onstitutes a radi
al

departure from the requirement that as mu
h information as possible be retained, and

takes issue with AGM's restri
tion of the permissible withdrawals to those that 
an be

de�ned in terms of the interse
tion of maxi
hoi
e 
ontra
tions using (Def � from M)

(see se
tion 2.2). We dis
uss these matters in more detail in se
tion 6.3.6.

Niederee [1991℄ 
onsiders a third reason for reje
ting the Re
overy postulate. This

involves an extension to multiple withdrawal , in whi
h a withdrawal from a belief set

by a set of w�s, instead of just a single w�, is performed. He provides some plausi-

ble postulates for multiple withdrawal, and shows that multiple withdrawal operations
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satisfying these postulates 
annot be regarded as \extensions" of (single w�) with-

drawal operations that satisfy Re
overy (where \extension" is given a pre
isely de�ned

meaning).

Despite the obje
tions against Re
overy, its in
lusion yields some desirable proper-

ties as well. Firstly, the prin
ipal argument against re
overy is that removal operations

satisfying it, sometimes retain too mu
h information. Yet, as Makinson points out

[1987℄, full meet 
ontra
tion (see se
tion 2.2), whi
h is a parti
ularly 
autious form of

withdrawal, satis�es Re
overy. In 
ontrast, if Re
overy is simply dis
arded, it permits

removals that 
learly remove too mu
h information. Witness, for example, the spe
i�


withdrawal in whi
h withdrawing any w� � 2 K, ex
ept a logi
ally valid �, yields

the set of logi
ally valid w�s. And observe also that it is the in
lusion of Re
overy

whi
h ensures that the attempted removal of a logi
ally valid w� from K results in

retaining all of K. Furthermore, although Hansson's 
ounterexamples show that there

are 
ir
umstan
es under whi
h Re
overy ought not to hold, it does not address the

question of whether there is any situation in whi
h Re
overy should hold. But su
h

examples do exist, as shown by Nayak [1994a℄. Finally, Makinson [1997℄ points out that


ounterexamples to Re
overy are presented with an impli
it assumption of a parti
ular

pattern of justi�
ation among the beliefs held. He argues that su
h 
ounterexamples

show that Re
overy is indeed inappropriate for belief sets augmented with additional

stru
ture of some kind, but that Re
overy seems to be free of intuitive 
ounterexamples

in the idealised situation where a belief set is taken as a \naked" theory, without any

extra-logi
al stru
ture.

In summary then, it seems ex
essive to insist that every withdrawal should satisfy

Re
overy in order for it to be regarded as rational. Moreover, the advantages of Re
ov-

ery dis
ussed above are not so mu
h arguments for its retention as they are arguments

against its 
omplete dismissal. It thus seems reasonable to investigate withdrawal op-

erations that do not always satisfy Re
overy, but that, nevertheless, retain its desirable

features. It is to this task that we now turn.

6.2 Basi
 withdrawal

In 
hapter 2 we saw that there is a distin
tion to be drawn between basi
 AGM theory


ontra
tion and AGM theory 
ontra
tion (whi
h satis�es the supplementary postulates

as well). The latter, whi
h also satis�es the supplementary AGM 
ontra
tion postu-



144 CHAPTER 6. WITHDRAWAL

lates, is more prin
ipled in the sense that it imposes restri
tions on the relationship

between belief sets resulting from the 
ontra
tion by di�erent w�s (of a �xed belief set

K). And from a semanti
 point of view, we saw in 
hapters 3 and 5 that (prin
ipled)

AGM 
ontra
tion involves the use of the faithful layered preorders.

We shall see below that a similar distin
tion holds for withdrawal. We 
onsider

two versions of withdrawal that 
an be 
onsidered as basi
, at least in the sense that

they do not satisfy (K�7) and (K�8). In se
tion 6.3 we swit
h our attention to more

prin
ipled forms of withdrawal.

6.2.1 Saturatable withdrawal

For the purposes of 
onstru
ting appropriate withdrawal operations, it is useful to start

with a method for 
onstru
ting all those withdrawals for whi
h the withdrawal of every

logi
ally valid w� leaves the 
urrent belief set unaltered. That is, those belief removals

satisfying (K�1) to (K�5), together with the following postulate:

(Failure) If � � then K � � = K

De�nition 6.2.1 A withdrawal is 
alled proper i� it satis�es Failure. 2

Proper withdrawal 
an be 
hara
terised with the aid of Levi's saturatable 
ontra
tions

[1991℄.

De�nition 6.2.2 A belief set K

0

is a saturatable 
ontra
tion with respe
t to K and �

i� K

0

� K and Cn(K

0

[ f:�g) 2 L?�. We denote the set of saturatable 
ontra
tions

with respe
t to K and � by s
(K;�). 2

Re
all from de�nition 2.2.1, that L?� is the set of maximal subsets of L that do not

entail �. So every element K

0

of L?� 
orresponds to an interpretation u, in the sense

that Th(u) = K

0

. (But, in general, the same element of L?� might be determined

by more than one interpretation | interpretations whi
h are elementarily equivalent,

but whi
h might be non-isomorphi
.) Note further that there are no saturatable 
on-

tra
tions with respe
t to K and � if � �, and if � =2 K, there will only be saturatable


ontra
tions in some 
ases.

To get a feel for the intuition underlying the use of the saturatable 
ontra
tions,

it is instru
tive to view them semanti
ally. The set of saturatable 
ontra
tions with

respe
t to a belief set K and a w� � is obtained by adding single models of :�, together
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with any subset of models of �, to the models of K, and then taking the 
orresponding

theory.

Proposition 6.2.3 Suppose � 2 K and 2 �.

1. If x 2M(:�) and W �M(�), then Th(M(K) [W [ fxg) 2 s
(K;�).

2. If K

0

2 s
(K;�), then there is an x 2 M(:�) and a W � M(�) su
h that

K

0

= Th(M(K) [W [ fxg).

Proof For the proof of (1), suppose that x 2 M(:�) and W � M(�). It suÆ
es to

show that Cn(Th(M(K) [W [ fxg) [ f:�g) 2 L?�. Sin
e M(K) [W �M(�) and

x 2M(:�), it follows by lemma 1.3.5 that

M(Th(M(K) [W [ fxg)) \M(:�) =M(Th(M(K) [ fxg)) \M(:�).

Sin
e � 2 K, it follows from lemma 1.3.4 that Th(x) = Th(M(K)[fxg))\M(:�). And

by proposition 3.2.1, there is an X 2 L?� su
h that Th(x) = X. So Cn(Th(M(K) [

W [ fxg) [ f:�g) = Th(x) 2 L?�.

For the proof of (2), suppose that K

0

2 s
(K;�). So Cn(K

0

[ f:�g) 2 L?�. By

proposition 3.2.1 there is an x 2M(:�) su
h that

Th(fxg) = Cn(K

0

[ f:�g) = Th(M(K

0

) \M(:�)).

Now letW =M(K

0

)\M(�). We show thatK

0

= Th(M(K)[W[fxg). For the left-to-

right in
lusion, note that M(K) �M(K

0

) and x 2M(K

0

), and so M(K)[W [fxg �

M(K

0

). For the right-to-left in
lusion, pi
k any � 2 Th(M(K) [ W [ fxg). So

M(K) [W [ fxg �M(�), and it suÆ
es to show that M(K

0

) n (M(K) [W [ fxg) �

M(�). Pi
k any y 2 M(K

0

) n (M(K) [W [ fxg). By the 
hoi
e of W , y 2 M(:�),

and thus y 2 M(K

0

[ f:�g). And sin
e Th(fxg) = Cn(K

0

[ f:�g), it follows that

y 2 M(�). 2

The removals permitted by Levi are those obtained by taking the interse
tion of any

subset of the saturatable 
ontra
tions with respe
t to K and �, where � 2 K nCn(>).

(Hansson and Olsson [1995℄ refer to these removals as partial meet Levi-
ontra
tion

operators.) Semanti
ally, this 
an be a

omplished by using the saturatable sele
tion

fun
tions.
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De�nition 6.2.4 A fun
tion ss

K

: L ! }U is a saturatable sele
tion fun
tion i� the

following holds:

1. If � � � then ss

K

(�) = ss

K

(�),

2. if � � then ss

K

(�) = ;,

3. if � =2 K then ss

K

(�) �M(K), and

4. if 2 � and � 2 K then ss

K

(�) \M(:�) 6= ;.

2

There is a 
lose 
orresponden
e between the semanti
 sele
tion fun
tions of de�nition

3.2.2, and the saturatable sele
tion fun
tions. As is the 
ase with the semanti
 sele
tion

fun
tions, we add the elements of ss

K

(�) to the models of K to obtain the models of

K � �. The di�ereren
e is that the saturatable sele
tion fun
tions, unlike the semanti


sele
tion fun
tions, allow us to in
lude, as models of K � �, some 
ountermodels of K

that are also models of �.

De�nition 6.2.5 A removal is a saturatable withdrawal i� it 
an be de�ned in terms

of a saturatable sele
tion fun
tion ss

K

using (Def � from sm

K

) (see se
tion 3.2). 2

Hansson and Olsson [1995℄ show that the proper withdrawals are pre
isely the satu-

ratable withdrawals.

4

Theorem 6.2.6 A removal � is a proper withdrawal i� it is a saturatable withdrawal.

6.2.2 Sensible withdrawal

It is generally a
knowledged that the set of all withdrawals (and even the set of all

proper withdrawals) allows for too mu
h generality. And from the dis
ussion in se
tion

6.1, it seems reasonable to 
ut down on the set of all proper withdrawals by trying

to weaken the Re
overy postulate in some appropriate fashion. However, attempts

to do so have proved to be quite diÆ
ult. For example, Hansson [1991℄ proposes the

following two properties:

4

Hansson and Olsson's 
onstru
tions are phrased dire
tly in terms of Levi's saturatable 
ontra
-

tions, and not in terms of the saturatable sele
tion fun
tions, but by virtue of proposition 6.2.3, the

required 
orresponden
e is easily established.
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(Relevan
e) If � 2 K nK � �, then there is an X � K su
h that K � � � X and

� =2 Cn(X), but � 2 Cn(X) + �

(Core-retainment) If � 2 K nK��, then there is an X � K su
h that � =2 Cn(X),

but � 2 Cn(X) + �

Core-retainment is 
learly weaker than Relevan
e, and intuitively, it might seem as if

Core-retainment, and perhaps Relevan
e as well, are weaker than Re
overy. However,

Hansson shows that they both imply Re
overy in the presen
e of (K�1) to (K�5).

Based on these results, Hansson 
onje
tures that \a reasonable 
ontra
tion operator

without the Re
overy property does not seem possible". Indeed, the diÆ
ulty in 
on-

stru
ting plausible withdrawal operations on belief sets that do not satisfy Re
overy

has led some resear
hers to view Re
overy not ne
essarily as a fundamental postulate

of theory 
ontra
tion, but rather as an emerging property [Hansson and Rott, 1995℄.

Re
ently, Ferm�e and Rodriguez [1998℄ have su

eeded in the provision of a weaker

version of Re
overy.

(Proxy Re
overy) If K 6= K � � then there is a � 2 K su
h that � =2 K � � and

K � (K � �) + �

It is easily established that Proxy Re
overy is a weaker version of Re
overy. If Re
overy

is satis�ed, Proxy Re
overy holds by taking � = �.

De�nition 6.2.7 A withdrawal is 
alled sensible i� it satis�es Failure and Proxy Re-


overy. 2

It is easily veri�ed that the basi
 AGM 
ontra
tions form a stri
t subset of the sensible

withdrawals, whi
h in turn, form a stri
t subset of the proper withdrawals. (Ferm�e

[1998℄ provides an example proving the se
ond stri
t in
lusion.)

Ferm�e and Rodriguez 
hara
terise sensible withdrawal in terms of Ferm�e's semi-


ontra
tion [1998℄. The 
onstru
tion of semi-
ontra
tions is justi�ed as follows. It is

well-known, and easily veri�ed, that if � is a basi
 AGM 
ontra
tion, then � ! � 2

K�� for every � 2 K nK��. But in some 
ounterexamples to Re
overy, this proves

to be undesirable. Consider, for instan
e, example 6.1.2 again. One way of stating the

problem with this example is that the w�s (p_ q)! p and (p_ q)! q are required to

be in K � (p _ q). Ferm�e's basi
 idea is to remove undesirable w�s su
h as these from

the resulting belief set. This is done with the aid of semi-sele
tion fun
tions.
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De�nition 6.2.8 A semi-sele
tion fun
tion is a fun
tion s from }L to L su
h that

s(X) 2 X if X 6= ;, and s(;) = >. 2

For any basi
 AGM 
ontra
tion �, a semi-sele
tion fun
tion pi
ks out, for every K n

K � �, the 
onsequent � of a w� �! � in K � �, su
h that � 2 K nK � �. This is

equivalent to pi
king out the 
onjun
tion of a �nite number of 
onsequents �

i

of w�s

of the form �! �

i

in K ��, where every �

i

is in K nK ��. Semi-
ontra
tion is then

de�ned as follows:

(Def � from � and s) K � � = (K � �) \ (K � (�! s(K nK � �)))

De�nition 6.2.9 A removal fun
tion is a semi-
ontra
tion i� it 
an be de�ned in

terms of a basi
 AGM 
ontra
tion and a semi-sele
tion fun
tion using (Def � from �

and s). 2

The following representation theorem of Ferm�e and Rodriguez [1998℄ establishes the

relationship between sensible withdrawal and semi-
ontra
tion.

Theorem 6.2.10 A removal is a sensible withdrawal i� it is a semi-
ontra
tion.

While sensible withdrawal does indeed provide us with a withdrawal operation that is

more permissive than basi
 AGM 
ontra
tion, but not as permissive as proper with-

drawal, there are indi
ations that it is not prin
ipled enough to be regarded as an

appropriate form of withdrawal. The following example shows that sensible withdraw-

al does not always satisfy the supplementary postulates, (K�7) and (K�8); not even

when we restri
t ourselves to the sensible withdrawals de�ned in terms of AGM 
on-

tra
tions (whi
h do satisfy the supplementary postulates).

Example 6.2.11 Let L be the propositional language generated by the three atoms

p, q and r, and let (V;
) be the valuation semanti
s for L where

V = f000; 001; 010; 011; 100; 101; 110; 111g.

Let K = Cnfp; q; rg and let � be the faithful total preorder de�ned as follows:

x � y i�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

y 2 V if x = 111,

y 2 f000; 001; 010; 011; 100; 101; 110g if x 2 f011; 101g,

y 2 f000; 001; 010; 100; 110g if x = 110,

y 2 f000; 001; 010; 100g if x = 100, and

y 2 f000; 001; 010g if x 2 f000; 001; 010g.
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111

011 101

110

k

3

>

}

100

�

000 010001

6

k

>

�

6

-

- -�

Figure 6.1: A graphi
al representation of the faithful total preorder � used in example

6.2.11. The ordering is obtained from the re
exive transitive 
losure of the relation

determined by the arrows.

Figure 6.1 
ontains a graphi
al representation of �. Let � be the AGM 
ontra
tion

de�ned in terms of � using (Def � from �), and let s be any semi-sele
tion fun
tion

su
h that

s(K nK � (q _ r)) = q _ r,

s(K nK � (:q _ r)) = :q _ r,

s(K nK � r) = q $ r,

s(K nK � (p! q)) = p ^ q, and

s(K nK � q) = q.

It is readily veri�ed that su
h an s exists. Now, let � be the semi-
ontra
tion de�ned

in terms of � and s using (Def � from � and s). By theorem 6.2.10, � is a sensible

withdrawal.

To show that � violates (K�7), take q _ r as �, :q _ r as �, and observe that

K � (q _ r) = Cn(p ^ (q $ r)), K � (:q _ r) = Cn(p ^ q), and K � ((q _

r) ^ (:q _ r)) = K � r = Cn(p ^ (q _ r)). To show that � violates (K�8), take

q as �, p ! q as �, and observe that K � (p ! q) = Cn((p _ q) ^ r), and that
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K � (q ^ (p! q)) = K � q = Cn(p ^ r). 2

The failure of (K�7) and (K�8) 
an be tra
ed ba
k to the semi-sele
tion fun
tions

and the undesirable amount of freedom they allow in 
hoosing a w� in K nK � �.

6.3 Prin
ipled withdrawal

In the light of the failure of sensible withdrawal to satisfy (K�7) and (K�8), the


hallenge before us is to de�ne a type of withdrawal that is truly prin
ipled in nature,

like AGM 
ontra
tion, but without the requirement that Re
overy should hold. To

obtain su
h an approa
h to withdrawal, it is ne
essary to take a 
loser look at the

intuition asso
iated with AGM 
ontra
tion.

As we have seen, the in
lusion of the Re
overy postulate in the AGM framework

is justi�ed by an appeal to the prin
iple of Informational E
onomy [G�ardenfors, 1988℄.

When epistemi
 states are viewed as belief sets, this view di
tates that informational

e
onomy should be measured in terms of set-in
lusion, thus providing a restatement

of the prin
iple of Conservatism. If the prin
iple of Informational E
onomy had been

the overriding 
on
ern, it would have implied that the belief set resulting from an �-


ontra
tion of K should be a maximal subset of K that does not imply �; that is, an

�-remainder (see de�nition 2.2.1). But it is easily seen that this involves a restri
tion

to maxi
hoi
e 
ontra
tion (see page 22), a spe
ial 
ase of AGM 
ontra
tion whi
h

Al
hourr�on and Makinson [1982℄ have shown to be too strong for a general a

ount of

theory 
ontra
tion.

Sin
e AGM 
ontra
tion is more than just maxi
hoi
e 
ontra
tion, it follows that the

prin
iple of Informational E
onomy is not the only requirement in question, but rather

one of several equally important guidelines. In parti
ular, as Rott and Pagnu

o [1999℄

argue in their ex
ellent survey of withdrawal, the respe
tive roles of the prin
iples of

Indi�eren
e and Preferen
e in the 
onstru
tion of AGM 
ontra
tions are as important

as that of the prin
iple of Informational E
onomy. We shall see below that in de�ning

AGM 
ontra
tion, the prin
iple of Informational E
onomy has, to some degree, already

given way to the prin
iple of Indi�eren
e. It is our 
ontention that, for a des
ription of

prin
ipled withdrawal, it is ne
essary for this pro
ess to take its full 
ourse. That is,

we propose that both the prin
iples of Indi�eren
e and Preferen
e should take stri
t

pre
eden
e over the prin
iple of Informational E
onomy. We adopt an information-

theoreti
 point of view, and use the faithful layered preorders on the infatoms of L as
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the ma
hinery for 
onstru
ting withdrawal operations. The prin
iples of Indi�eren
e,

Preferen
e, and Informational E
onomy are then applied, in a 
onsistent manner, to

di�erent subsets of the faithful layered preorders, yielding di�erent forms of prin
ipled

withdrawal.

Let us �rst 
onsider, in detail, the way in whi
h these three prin
iples are 
ombined

to obtain AGM 
ontra
tion. In this 
ase, the appli
ation of the prin
iple of Informa-

tional E
onomy is twofold. Its in
uen
e is felt in the requirement that some me
hanism

should be used for distinguishing between the level of entren
hment of infatoms. This

requirement is implemented by the use of a faithful total preorder. Se
ondly, the prin
i-

ple of Informational E
onomy restri
ts the appli
ation of the remaining two prin
iples

to 
ontent bits of � during an �-
ontra
tion. (This is where it still takes pre
eden
e

over the prin
iple of Preferen
e and, to some extent, over the prin
iple of Indi�eren
e.)

The prin
iple of Preferen
e then ensures that any 
ontent bit i of � whi
h is regarded

as at most as entren
hed as a 
ontent bit j of �, will re
eive at most as mu
h 
onsid-

eration for removal from K as j. Consequently, only the worst 
ontent bits of � are


onsidered for removal. And �nally, sin
e the worst 
ontent bits of � are all seen as

equally entren
hed, the prin
iple of Indi�eren
e ensures that they will all be removed

from K. So, in this sense at least, the prin
iple of Indi�eren
e holds sway over the

prin
iple of Informational E
onomy.

It is our view that the role of the prin
iple of Informational E
onomy should be

reviewed in order for both the prin
iples of Indi�eren
e and Preferen
e to take 
omplete

pre
eden
e over it. In this view, its appli
ation only results in the use of the faithful

layered preorders to distinguish between the level of entren
hment of infatoms. Guided

by the two remaining prin
iples, the set of infatoms removed from K then 
ontains all

the infatoms that are at most as entren
hed as the worst 
ontent bits of �. We shall

see that the appli
ation of these three prin
iples in the manner des
ribed above, leads

to the development of a number of di�erent forms of prin
ipled withdrawal.

6.3.1 Severe withdrawal

Rott and Pagnu

o [1999℄ use the faithful total preorders to de�ne the set of severe

withdrawals.

5

Re
all from se
tion 5.1 that the downset of a w� � is de�ned in terms

5

A
tually, they use Grove's systems of spheres, but it is easily extendable to the slightly more

general 
ase that we 
onsider.
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of a faithful preorder using (Def r

�

from �). The downset of � 
ontains all the

interpretations that are at least as low down in the ordering as the minimal models of

�. Downsets are used to de�ne severe withdrawal as follows:

(Def � from r

�

) K � � = Th(M(K) [r

�

(:�))

De�nition 6.3.1 A removal is a severe withdrawal i� it is de�ned in terms of a faithful

total preorder using (Def � from r

�

). 2

Viewed information-theoreti
ally, it should be apparent that (Def � from r

�

) is an

appli
ation, in terms of the faithful total preorders, of the prin
iples of Indi�eren
e,

Preferen
e, and Informational E
onomy in the manner des
ribed above.

Rott and Pagnu

o show that severe withdrawal is 
hara
terised by the following

set of postulates.

6

(K

�

�1) K

�

�� = Cn(K

�

��)

(K

�

�2) K

�

�� � K

(K

�

�3) If � =2 K then K

�

�� = K

(K

�

�4) If 2 � then � =2 K

�

��

(K

�

�5) If � � � then K

�

�� = K

�

��

(K

�

�6) If � � then K

�

�� = K

(K

�

�7) If 2 � then K

�

�� � K

�

�(� ^ �)

(K

�

�8) If � =2 K

�

�(� ^ �) then K

�

�(� ^ �) � K

�

��

Theorem 6.3.2 [Rott and Pagnu

o, 1999℄ A removal

�

� is a severe withdrawal i� it

satis�es (K

�

�1) to (K

�

�8).

The postulates for severe withdrawal di�er from those for AGM 
ontra
tion only on the

sixth and seventh postulates; the remaining ones are identi
al to their AGM 
ontra
-

tion 
ounterparts. (K

�

�6), whi
h repla
es Re
overy, is the postulate we have referred

to as Failure. (K

�

�7) is a mu
h stronger requirement than the 
orresponding AGM

6

Pagnu

o [1996℄ originally gave a di�erent 
hara
terisation of severe withdrawal.
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ontra
tion postulate (K�7). It is a kind of monotoni
ity property, requiring that the

removal of weaker w�s should always result in smaller belief sets. Rott and Pagnu

o

regard this as an intuitively plausible postulate whi
h follows from the appli
ation of

the prin
iples of Indi�eren
e and Preferen
e. In se
tion 6.3.5, we argue against the

in
lusion of this postulate, showing that it has some undesirable 
onsequen
es, and

that (K

�

�7) is a 
onsequen
e of the prin
iples of Indi�eren
e and Preferen
e only when

they are applied to the faithful total preorders.

6.3.2 Systemati
 withdrawal

In this se
tion we introdu
e a set of withdrawals that are 
losely related to the severe

withdrawals. Their 
onstru
tion is based on an appli
ation of the prin
iples of Indif-

feren
e, Preferen
e and Informational E
onomy in a manner identi
al to that used in

the 
onstru
tion of severe withdrawal. The only di�eren
e is that they are obtained

using the faithful modular weak partial orders, instead of the faithful total preorders.

De�nition 6.3.3 A belief removal � is a systemati
 withdrawal i� it is de�ned in

terms of a faithful modular weak partial order using (Def � from r

�

). 2

The di�eren
e between systemati
 withdrawal and severe withdrawal lies in the dif-

feren
e between the downset (see de�nition 5.1.1) of a w� � obtained from a total

preorder and that obtained from a modular weak partial order. In the latter 
ase, the

downset 
onsists of the minimal models of � as well as all the interpretations stri
tly

below them (whi
h are all, of 
ourse, 
ountermodels of �). The former 
ase in
ludes

all the interpretations mentioned above, as well as the 
ountermodels of � on the same

level as the minimal models of �. In se
tion 6.3.5 we shall see that this seemingly minor

te
hni
al di�eren
e a

ounts for some fundamental di�eren
es between these two forms

of prin
ipled withdrawal. For the moment, we provide a 
hara
terisation of systemati


withdrawal in terms of a set of postulates.

(K�1) K � � = Cn(K � �)

(K�2) K � � � K

(K�3) If � =2 K then K � � = K

(K�4) If 2 � then � =2 K � �
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(K�5) If � � � then K � � = K � �

(K�6) If � � then K � � = K

(K�7) If 
 2 K � (� ^ 
) then 
 2 K � (� ^ � ^ 
)

(K�8) If � =2 K � (� ^ �) then K � (� ^ �) � K � �

(K�9) If � 2 K, � _ � 2 K � � and � =2 K � � then � 2 K � (� ^ �)

(K�10) If 2 � and � 2 K � � then � =2 K � (� ^ �)

Theorem 6.3.4 A removal � is a systemati
 withdrawal i� it satis�es (K�1) to

(K�10).

Proof The left-to-right dire
tion follows from proposition B.1.2 in appendix B. For the


onverse, suppose that � satis�es (K�1) to (K�10). Now de�ne

�

� in terms of � using

(Def

�

� from �) on page 160. By lemma B.1.4 in appendix B,

�

� is a severe withdrawal.

So there is a faithful total preorder � from whi
h

�

� 
an be obtained using (Def � from

r

�

). Let � be the faithful modular weak partial order whi
h is semanti
ally related

to �. By proposition 6.3.20, the systemati
 withdrawal � obtained from � using (Def

� from r

�

) 
an also be de�ned in terms of

�

� using (Def � from

�

�) on page 162. And

by lemma B.1.5 in appendix B, � is identi
al to �. 2

The �rst �ve postulates 
oin
ide with the �rst �ve AGM 
ontra
tion postulates, and

the �rst six 
oin
ide with the �rst six postulates for severe withdrawal. (K�7) is a mu
h

weaker version of (K

�

�7). If a w� 
 is entren
hed enough in the belief set K so that it is

retained when at least one of 
 or � has to be dis
arded, then it should also be retained

when at least one of 
 or any w� logi
ally stronger than � has to be dis
arded. (K�8) is

identi
al to (K�8) and (K

�

�8). (K�9) and (K�10) both introdu
e more restri
tions on

the relationship between withdrawals by di�erent w�s. (K�9) gives 
onditions under

whi
h a w� � should be retained and (K�10) gives 
onditions under whi
h � should

be dis
arded.

6.3.3 Revision-equivalen
e

With the de�nition of severe withdrawal and systemati
 withdrawal, we now have,

together with AGM 
ontra
tion, three types of prin
ipled withdrawal at our disposal
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whi
h, as it turns out, are very 
losely related. For a proper 
omparison of this relation-

ship, it is instru
tive to 
ommen
e with the des
ription of a feature whi
h Makinson

[1987℄ refers to as revision-equivalen
e.

De�nition 6.3.5 Two withdrawals � and � are revision-equivalent i� (K � :�) +

� = (K � :�) + �. 2

In other words, two withdrawals are revision-equivalent i� the revisions they de�ne in

terms of the Levi identity (Def � from �), are identi
al. From Makinson [1987℄ we ob-

tain the following results 
on
erning the revision-equivalen
e of basi
 AGM 
ontra
tion

and (basi
) withdrawal.

Theorem 6.3.6 1. A revision-equivalent 
lass of withdrawals 
ontains a unique ba-

si
 AGM 
ontra
tion.

2. The basi
 AGM 
ontra
tion � is the maximal element in the equivalen
e 
lass

[�℄ of withdrawals that are revision-equivalent to �. That is, for every � in [�℄,

K � � � K � � for every � 2 L.

To bring severe withdrawal into the pi
ture, we need to restri
t ourselves to the revision-

equivalent 
lasses whi
h 
ontain the AGM 
ontra
tions.

De�nition 6.3.7 A revision-equivalent 
lass is 
alled prin
ipled i� it 
ontains an AGM


ontra
tion. 2

Note that a withdrawal in a prin
ipled revision-equivalen
e 
lass need not satisfy (K�7)

and (K�8). A 
ase in point is the sensible withdrawal in example 6.2.11.

Rott and Pagnu

o [1999℄ provide the following results.

Theorem 6.3.8 1. Every prin
ipled revision-equivalent 
lass 
ontains a unique se-

vere withdrawal.

2. The severe withdrawal

�

� is the minimal element in the (prin
ipled) equivalen
e


lass [

�

�℄ of withdrawals that are revision-equivalent to

�

� and that satisfy (K�8).

That is, for every � in [

�

�℄ that satis�es (K�8), K

�

�� � K � � for every � 2 L.

7

It should 
ome as no surprise that the revision-equivalen
e of an AGM 
ontra
tion and

a severe withdrawal is 
losely tied to their semanti
 de�nitions in terms of faithful total

preorders.

7

This is a result derived from Observation 7 in [Rott and Pagnu

o, 1999℄.
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De�nition 6.3.9 An AGM 
ontra
tion and a severe withdrawal are semanti
ally re-

lated i� they 
an be de�ned in terms of the same faithful total preorder using (Def �

from �) and (Def � from r

�

) respe
tively. 2

Theorem 6.3.10 An AGM 
ontra
tion and a severe withdrawal are semanti
ally re-

lated i� they are revision-equivalent.

Proof Follows from lemma 1.3.5 and the fa
t that every prin
ipled revision-equivalen
e


lass 
ontains a unique AGM 
ontra
tion and a unique severe withdrawal. 2

In fa
t, it is easily established that the very notion of prin
ipled revision-equivalen
e

hinges on the use of minimal-equivalent faithful layered preorders (see de�nition 3.3.6).

Proposition 6.3.11 Suppose � and � are two withdrawals whi
h are in the same

prin
ipled revision-equivalen
e 
lass, and let � be the AGM revision obtained in terms

of � and � using (Def � from �). Furthermore, let � be any faithful layered preorder

in terms of whi
h � is de�ned using (Def � from �). Then, for every � 2 K nCn(>),

there is a W

�

�

�M(�) and a W

�

�

�M(�) su
h that

K � � = Th(M(K) [Min

�

(:�) [W

�

�

), and

K � � = Th(M(K) [Min

�

(:�) [W

�

�

).

Proof Follows from lemma 1.3.5. 2

The signi�
an
e of proposition 6.3.11 is that it enables us to regard a set of minimal-

equivalent faithful layered preorders as the basis for obtaining a prin
ipled revision-

equivalent 
lass of withdrawals, and allows us to see every withdrawal in a prin
ipled

revision-equivalen
e 
lass as \independent" of the other members in the 
lass. For

example, Rott and Pagnu

o show that the smallest withdrawal

:::

� in a prin
ipled

revision-equivalent 
lass [

:::

�℄ 
an be de�ned in terms of the severe withdrawal in [

:::

�℄ as

follows:

(Def

:::

� from

�

�) K

:::

� � =

(

Cn(�) \K

�

�� if � 2 K n Cn(>),

K otherwise

But

:::

� 
an also be de�ned, \independently" of

�

�, in terms of a faithful total preorder

� as follows:
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(Def

:::

� from �) K

:::

� � =

8

>

<

>

:

Th(M(K) [Min

�

(:�) [M(�))

if � 2 K nCn(>),

K otherwise

Proposition 6.3.12 Let

�

� be the severe withdrawal de�ned in terms of a faithful total

preorder � using (Def � from r

�

). The withdrawal

:::

� de�ned in terms of

�

� using

(Def

:::

� from

�

�) 
an also be de�ned in terms of � using (Def

:::

� from �).

Proof We only 
onsider the 
ase where � 2 K n Cn(>). Then

Cn(�) \K

�

��

= Th(M(K

�

��) [M(�))

= Th(M(K) [r

�

(:�) [M(�)) by (Def � from r

�

)

= Th(M(K) [Min

�

(:�) [M(�)) from (Def r

�

).

2

The withdrawal

:::

� de�ned in terms of a faithful total preorder using (Def

:::

� from�) is in

gross violation of the prin
iples of Indi�eren
e, Preferen
e and Informational E
onomy.

From an information-theoreti
 point of view, it removes all the 
ontent bits of :� from

K during a withdrawal of �, regardless of how entren
hed they are. As su
h, it is not

an appropriate 
andidate for prin
ipled withdrawal. It is most likely examples su
h

as these whi
h prompted Lindstr�om and Rabinowi
z [1991℄ to advan
e the thesis that

any reasonable withdrawal should lie somewhere between AGM 
ontra
tion and severe

withdrawal. To be more pre
ise, in a prin
ipled revision-equivalen
e 
lass 
ontaining

the AGM 
ontra
tion � and the severe withdrawal

�

�, we should regard as reasonable,

only those withdrawals � for whi
h K

�

�� � K � � � K�� for every � 2 L. Following

a suggestion by Rott [1992a, 1995℄, we refer to this proposal as the LR interpolation

thesis.

De�nition 6.3.13 A withdrawal is reasonable i� it satis�es the LR interpolation the-

sis. 2

Note that being a reasonable withdrawal is not a guarantee of prin
ipled behaviour.

Some su
h withdrawals, su
h as the sensible withdrawal in example 6.2.11, do not

even satisfy (K�7) and (K�8).

8

From an information-theoreti
 point of view, the LR

8

It is easily veri�ed that the sensible withdrawal in this example is indeed reasonable.
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interpolation thesis requires an �-withdrawal to be e�e
ted by removing from K, any

subset of the 
ontent bits of :� that are at most as entren
hed as the least entren
hed


ontent bits of �, together with these least entren
hed 
ontent bits of �. So, while

it does not guarantee an adheren
e to the prin
iples of Preferen
e and Indi�eren
e

with regard to C(:�) (the 
ontent bits of :�), it ensures the satisfa
tion of these

two prin
iples in terms of C(�) (the 
ontent bits of �) and it goes some way towards

satisfying these prin
iples when 
omparing elements of C(�) and C(:�).

We are now in a position to bring systemati
 withdrawal into the pi
ture as well.

It is perhaps to be expe
ted that every prin
ipled revision-equivalen
e 
lass 
ontains

a unique systemati
 withdrawal. And this is indeed the 
ase, as the next proposition

shows.

Proposition 6.3.14 Every prin
ipled revision-equivalen
e 
lass 
ontains a unique sys-

temati
 withdrawal.

Proof Pi
k any prin
ipled revision-equivalen
e 
lass. By theorem 6.3.6, it 
ontains

a unique AGM 
ontra
tion � whi
h, by proposition 5.7.3, 
an be de�ned in terms of

a faithful modular weak partial order �. By lemma 1.3.5, the systemati
 withdrawal

�, de�ned in terms of � using (Def � from �), is revision-equivalent to �. Now

assume there is a di�erent systemati
 withdrawal � in this revision-equivalen
e 
lass.

By theorem 6.3.4, it 
an be de�ned in terms of a faithful modular weak partial order

� using (Def � from r

�

), where � is not minimal-equivalent to �. And then �

de�nes an AGM 
ontra
tion

�

� in terms of (Def � from �) whi
h, though revision-

equivalent to �, di�ers from �. But this 
ontradi
ts the uniqueness of � in the given

revision-equivalen
e 
lass. 2

It is easily seen that systemati
 withdrawal is also reasonable (that is, it satis�es the

LR interpolation thesis).

Proposition 6.3.15 Every systemati
 withdrawal belongs to a prin
ipled revision-

equivalen
e 
lass, and is reasonable.

Proof Consider any systemati
 withdrawal �. By de�nition, there is a faithful mod-

ular weak partial order � in terms of whi
h � is de�ned using (Def � from r

�

). By

lemma 1.3.5, the AGM 
ontra
tion de�ned in terms of � using (Def � from �) is

revision-equivalent to �, and it thus follows that � belongs to a prin
ipled revision-

equivalen
e 
lass. Furthermore, from theorem 6.3.6, K � � � K � � for every � 2 L.
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Now 
onsider the faithful total preorder � obtained in terms of � using (Def � from

�), and let

�

� be the severe withdrawal de�ned in terms of � using (Def � from r

�

).

Then K

�

�� � K � � for every � 2 L, and by lemma 1.3.5,

�

� is revision-equivalent to

�. So � satis�es the LR-interpolation thesis; i.e. it is reasonable. 2

In the 
ontext of revision-equivalen
e, the relationship between AGM 
ontra
tion, sys-

temi
 withdrawal, severe withdrawal, and the faithful layered preorders de�ning these

di�erent forms of prin
ipled withdrawal, is summarised in the following 
orollary.

Corollary 6.3.16 Consider a prin
ipled revision-equivalen
e 
lass R of withdrawals.

1. There is a minimal-equivalen
e 
lassM of faithful layered preorders su
h that,

for every faithful layered preorder � inM and every withdrawal � in R, K �

� = Th(M(K) [Min

�

(:�) [W

�

�

), where W

�

�

�M(�).

2. R 
ontains a unique AGM 
ontra
tion �, a unique systemati
 withdrawal � that

is also reasonable, and a unique severe withdrawal

�

�.

3. For every withdrawal � in R, K � � � K � � for every � 2 L.

4. For every withdrawal � in R whi
h satis�es (K�8), K

�

�� � K � � for every

� 2 L.

5. The AGM 
ontra
tion � 
an be de�ned in terms of every faithful layered preorder

� inM, using (Def � from �).

6. The systemati
 withdrawal � 
an be de�ned in terms of every faithful modular

weak partial order � inM, using (Def � from r

�

).

7. The severe withdrawal

�

� 
an be de�ned in terms of every faithful total preorder

� inM, using (Def � from r

�

).

Proof Follows from proposition 6.3.11, theorems 6.3.6 and 6.3.8, propositions 6.3.14,

6.3.15, and 5.7.3, theorem 6.3.4, and theorem 6.3.2. 2
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6.3.4 Reasonable withdrawal

This se
tion is devoted to an investigation of the relationship between various reason-

able withdrawals, with parti
ular emphasis on AGM 
ontra
tion, systemati
 withdraw-

al and severe withdrawal. We have seen that AGM 
ontra
tion and severe withdrawal

both o

upy spe
ial positions in the revision-equivalen
e 
lasses. The former provides

an upper bound for reasonable withdrawal, and the latter a lower bound. As a result

both 
an be de�ned in terms of the remaining reasonable withdrawals. In parti
ular,

� 
an be obtained from any revision-equivalent reasonable withdrawal � as follows

(Def � from �) K � � = K \ ((K � �) + :�)

And

�

� 
an be obtained from any revision-equivalent reasonable withdrawal � in one

of two ways:

9

(Def

�

� from �) � 2 K

�

�� i�

(

� 2 K � (� ^ �) if 2 �,

� 2 K otherwise

(Def

�

� from � (v2)) K

�

�� =

(

T

fK � (� ^ �) j � 2 Lg if 2 �,

K otherwise

Proposition 6.3.17 Let � and

�

� be an AGM 
ontra
tion and a severe withdrawal

respe
tively, that are revision-equivalent. Suppose that � is a reasonable withdrawal

that is revision-equivalent to

�

� (and �). Then

1. � 
an be de�ned in terms of � using (Def � from �),

2.

�

� 
an be de�ned in terms of � using (Def

�

� from �), and

3.

�

� 
an be de�ned in terms of � using (Def

�

� from � (v2)).

Proof Let � be a faithful total preorder in terms of whi
h � is de�ned using (Def

� from �). By 
orollary 6.3.16,

�

� 
an be de�ned in terms of � using (Def � from

r

�

). Sin
e � is reasonable, and therefore revision-equivalent to �, there is, by lemma

1.3.5, a W

�

� M(�) su
h that K � � = Th(M(K) [ W

�

[ Min

�

(:�)), for every

� 2 K n Cn(>). We only 
onsider the 
ases where 2 �.

9

Sin
e (Def

�

� from �) and (Def

�

� from � (v2)) de�ne the same severe withdrawal when applied

to any reasonable withdrawal, any further results involving (Def

�

� from �) should be seen as results

involving (Def

�

� from � (v2)) as well.
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1. Follows from lemma 1.3.5.

2. If � =2 K � (� ^ �) then � =2 K

�

�(� ^ �), sin
e � is reasonable and revision-

equivalent to

�

�. So there is a y 2M(K) [r

�

(:(� ^ �)) su
h that z 2M(:�),

and therefore y 2 Min

�

(:(� ^ �)). Therefore x � y for every x 2 Min

�

(:�),

and thus � =2 K

�

��. Conversely, if � =2 K

�

�� then y 2 M(:�) for some y 2

M(K)[r

�

(:�), and there is thus an x 2Min

�

(:(�^�)) su
h that x 2M(:�).

Therefore � =2 K � (� ^ �).

3. If 
 =2

T

fK � (�^ �) j � 2 Lg then there is a � 2 L su
h that 
 =2 K � (�^ �).

And then 
 =2 K

�

�(� ^ �), sin
e � is reasonable and revision-equivalent to

�

�.

So there is a z 2 M(K) [ r

�

(:(� ^ �)) su
h that M(:
). But then 
 =2 K

�

��,

sin
e y � x for every y 2Min

�

(:�) and every x 2 Min

�

(:(�^�)). Conversely,

if 
 =2 K

�

�� then 
 =2 K

�

�(� ^ 
) by part (2), from whi
h the required result

follows.

2

And as a 
orollary of proposition 6.3.17, the identities (Def � from �) and (Def

�

� from

�) are inter
hangeable when restri
ted to AGM 
ontra
tion and severe withdrawal.

10

That is, starting with an AGM 
ontra
tion or a severe withdrawal, and applying these

two identities in the appropriate sequen
e, brings us ba
k to where we started.

De�nition 6.3.18 An AGM 
ontra
tion �, a systemati
 withdrawal �, and a severe

withdrawal

�

� are semanti
ally related i� there is a faithful total preorder � and a

semanti
ally related faithful modular weak partial order � su
h that

1. � is de�ned in terms of � (and �) using (Def � from �),

2. � is de�ned in terms of � using (Def � from r

�

), and

3.

�

� is de�ned in terms of � using (Def � from r

�

).

2

10

Part (1) of proposition 6.3.17 
an be tra
ed ba
k to [Makinson, 1987℄. Also, proposition 6.3.17,

when restri
ted to AGM 
ontra
tion and severe withdrawal, and 
orollary 6.3.19, albeit in a slightly

di�erent guise, 
an be found in [Rott and Pagnu

o, 1999℄.
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Corollary 6.3.19 If an AGM 
ontra
tion and a severe withdrawal are semanti
ally

related, then they 
an also be de�ned in terms of ea
h other using (Def � from �) and

(Def

�

� from �).

Proof Follows from proposition 6.3.17 and 
orollary 6.3.16. 2

Sin
e systemati
 withdrawal is reasonable, it follows from proposition 6.3.17 that every

systemati
 withdrawal � de�nes a revision-equivalent AGM 
ontra
tion � using (Def

� from �), and a revision-equivalent severe withdrawal

�

� using (Def

�

� from �).

Being reasonable, � lies somehere between � and

�

�, so to speak. (In fa
t, it lies mu
h

\
loser" to severe withdrawal, in terms of set-in
lusion.) Nevertheless, it is possible to

de�ne systemati
 withdrawal in terms of both AGM 
ontra
tion and severe withdrawal.

In parti
ular, � 
an be de�ned in terms of � as follows:

(Def � from �) � 2 K � � i�

8

>

<

>

:

� _ � 2 K � (� ^ �) and � =2 K � (� ^ �)

if 2 �, 2 �, � 2 K,

� 2 K otherwise

And � 
an be de�ned in terms of

�

� as follows:

(Def � from

�

�) � 2 K � � i�

8

>

<

>

:

� _ � 2 K

�

�� and � =2 K

�

��

if 2 �, 2 � and � 2 K,

� 2 K otherwise

Proposition 6.3.20 Let � be an AGM 
ontra
tion, let � be a systemati
 withdrawal,

and let

�

� be a severe withdrawal. Suppose that �, � and

�

� are semanti
ally related.

1. � 
an also be de�ned in terms of � using (Def � from �).

2. � 
an also be de�ned in terms of

�

� using (Def � from

�

�).

Proof Let � be a faithful total preorder in terms of whi
h � and

�

� are de�ned using

(Def � from �) and (Def � from r

�

) respe
tively, and let � be the faithful modular

weak partial order that is semanti
ally related to �. We only 
onsider the 
ase where

2 �, 2 � and � 2 K.

1. Suppose that � 2 K � �. Then r

�

(:�) � M(�) and so Min

�

(:(� ^ �)) �

M(�_�) andMin

�

(:�) =Min

�

(:(�^�)). Therefore �_� 2 K� (�^�) and

� =2 K�(�^�). Conversely, suppose that �_� 2 K�(�^�) and � =2 K�(�^�).

SoMin

�

(:�) � Min

�

(:(�^�)) and thus r

�

(:�) � r

�

(:(�^�)) �M(�_�),

from whi
h it follows that � 2 K � �.
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2. Suppose that � 2 K � �. Then r

�

(:�) � M(�), and so r

�

(:�) � M(� _ �),

and thus � _ � 2 K

�

��. Furthermore, y � x for every x 2 Min

�

(:�) and

every y 2Min

�

(:�), and so � =2 K

�

��. Conversely, suppose that � _ � 2 K

�

��

and � =2 K

�

��. Then r

�

(:�) � M(� _ �), whi
h means Min

�

(:�) � M(�).

Furthermore, r

�

(:�) *M(�), and so y � x for every x 2Min

�

(:�) and every

y 2Min

�

(:�). Therefore r

�

(:�) nMin

�

(:�) �M(�) and thus � 2 K � �.

2

And as a 
orollary of propositions 6.3.17 and 6.3.20, the identities (Def � from �)

and (Def � from �) are inter
hangeable when applied to AGM 
ontra
tion and sys-

temati
 withdrawal. Similarly, the identities (Def

�

� from �) and (Def � from

�

�) are

inter
hangeable when applied to severe withdrawal and systemati
 withdrawal.

Corollary 6.3.21 Let � be an AGM 
ontra
tion, let � be a systemati
 withdrawal,

and let

�

� be a severe withdrawal. Suppose that �, � and

�

� are semanti
ally related.

1. � and � 
an also be de�ned in terms of one another using (Def � from �) and

(Def � from �).

2.

�

� and � 
an also be de�ned in terms of one another using (Def

�

� from �) and

(Def � from

�

�).

6.3.5 Systemati
 withdrawal vs. severe withdrawal

Systemati
 withdrawal and severe withdrawal are motivated by similar 
on
erns. In-

deed, they apply the prin
iples of Indi�eren
e, Preferen
e and Informational E
onomy

in the same manner, and the method of 
onstru
tion used is identi
al; they di�er only

in the 
hoi
e of faithful layered preorders to apply to (Def � from r

�

). As a re-

sult, they have many features in 
ommon. Firstly, both these forms of withdrawal are

spe
ial 
ases of Cantwell's [1999℄ fallba
k-based withdrawal. Moreover, it is easily ver-

i�ed that systemati
 withdrawal and severe withdrawal satisfy (K�7), and that severe

withdrawal, like systemati
 withdrawal, satis�es (K�7) and (K�10).

Proposition 6.3.22 Every systemati
 and every severe withdrawal satis�es (K�7),

and every severe withdrawal satis�es (K�7) and (K�10).
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Figure 6.2: A graphi
al representation of the faithful total preorder � and the seman-

ti
ally related faithful modular weak partial order � used in example 6.3.23. In both

�gures, two interpretations x and y are in the relevant faithful preorder i� (x; y) is in

the re
exive transitive 
losure of the relation determined by the arrows.

Proof For severe withdrawal, note that (K�7) follows easily from (K

�

�7), and that

(K�7) follows easily from (K

�

�7) if 2 �. For the remaining part of (K�7), suppose

that � � and that 
 2 K

�

�� ^ 
. By (K

�

�5), 
 2 K

�

�
 and thus � 
 by (K

�

�4). And

then 
 2 K

�

�� ^ � ^ 
 by (K

�

�1). The proof that severe withdrawal satis�es (K�10)

is identi
al to the proof that systemati
 withdrawal satis�es (K�10). It 
an be found

in appendix B, proposition B.1.2.

Let � be a systemati
 withdrawal de�ned in terms of the faithful modular weak

partial order � using (Def � from r

�

). To prove that � satis�es (K�7), it suÆ
es

to show that M(K) [ r

�

(:(� ^ �)) � M(K) [ r

�

(:�) [ r

�

(�). Pi
k any x 2

M(K)[r

�

(:(�^�)). We only 
onsider the 
ase where x =2M(K). If x 2M(:(�^�))

then, from (Def r

�

), x 2 Min

�

(:(� ^ �)). Therefore either x 2 Min

�

(:�) or

x 2 Min

�

(:�). And sin
e Min

�

(:�) � r

�

(:�) and Min

�

(:�) � r

�

(:�), it

follows that x 2 r

�

(:�)[r

�

(:�). On the other hand, if x 2M(� ^ �) then there is

an y 2Min

�

(:(�^�)) su
h that x � y. Now, either y 2Min

�

(:�) or y 2Min

�

(:�).

In the former 
ase, x 2 r

�

(:�) and in the latter 
ase x 2 r

�

(:�). 2

And at the risk of illustrating the obvious, the next example shows that neither sys-

temati
 withdrawal nor severe withdrawal satis�es the Re
overy postulate.



6.3. PRINCIPLED WITHDRAWAL 165

Example 6.3.23 Let L be the propositional language generated by the two atoms

p and q, and let (V;
) be the valuation semanti
s for L, with V = f00; 01; 10; 11g.

Furthermore, let K = Cn(fp; qg). Now, let � be the faithful total preorder de�ned as

follows:

x � y i�

8

>

<

>

:

y 2 V if x = 11,

y 2 f01; 10; 00g if x 2 f01; 10g, and

y = 00 if x = 00,

and let � be the asso
iated faithful modular weak partial order de�ned in terms of

� using (Def � from �). Figure 6.2 
ontains graphi
al representations of � and �.

Let

�

� be the severe withdrawal de�ned in terms of � using (Def � from r

�

), and

let � be the systemati
 withdrawal de�ned in terms of � using (Def � from r

�

). So

r

�

(:(p_q)) = r

�

(:(p_q)) = V and thus K

�

�(p_q) = K�(p_q) = Th(V ) = Cn(>).

But K

�

�(p _ q) + (p _ q) = (K � (p _ q)) + (p _ q) = Cn(p _ q) � K, thus invalidating

Re
overy. 2

The 
lose relationship between systemati
 and severe withdrawal raises the question

of whether the two notions ever 
oin
ide. Part of the answer to this question is easy.

Whenever a faithful layered preorder � is both a total preorder and a modular weak

partial order, the severe withdrawal and the systemati
 withdrawal de�ned in terms of

� using (Def � from r

�

) are, by de�nition, identi
al. It is easy to see that this is the


ase only when � is a K-linear order (see de�nition 5.5.8).

Proposition 6.3.24 Let � be any K-linear order. The belief removal de�ned in terms

of � using (Def � from r

�

) is a severe withdrawal as well as a systemati
 withdrawal.

Proof Follows immediately from the fa
t that � is both a faithful total preorder and

a faithful modular weak partial order. 2

Furthermore, if a severe withdrawal 
annot be de�ned in terms of a K-linear order

using (Def � from r

�

), then it is not a severe withdrawal, and vi
e versa; at least for

the �nitely generated propositional languages.

Proposition 6.3.25 Let L be a �nitely generated propositional lanaguage with a val-

uation semanti
s (V;
).

1. Let

�

� be a severe withdrawal that 
annot be de�ned in terms of a K-linear order

using (Def � from r

�

). Then

�

� is not a systemati
 withdrawal.
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2. Let � be a systemati
 withdrawal that 
annot be de�ned in terms of a K-linear

order using (Def � from r

�

). Then � is not a severe withdrawal.

Proof 1. Assume that

�

� is a systemati
 withdrawal. Now, let � be a faithful total

preorder in terms of whi
h

�

� is de�ned using (Def � from r

�

), and let � be

the faithful modular weak partial order de�ned in terms of � using (Def � from

r

�

). By 
orollary 6.3.16, the systemati
 withdrawal � de�ned in terms of �

using (Def � from r

�

) is revision-equivalent to

�

�, and it thus follows that � is

equal to

�

�. By supposition, � is not a K-linear order, whi
h means there are at

least two distin
t 
ountermodels, x and y, of K su
h that x �

�

y and x k

�

y.

Now, let � be a w� su
h that M(�) = fxg. (By our 
hoi
e of L, there is su
h an

�.) Then r

�

(�) 6= r

�

(�) and thus K

�

�:� 6= K � :�; a 
ontradi
tion.

2. The proof is similar to that of part (1) and is omitted.

2

Notwithstanding the similarities between systemati
 and severe withdrawal, there are

fundamental di�eren
es between them as well. We now 
ome to a number of prop-

erties that are indi
ative of the major di�eren
es. Interestingly enough, the intuitive

plausibility of all these properties are, in some way or another, related to the following

simple example.

11

Example 6.3.26 While reading about Cleopatra, I have 
ome a
ross one sour
e 
laim-

ing that she had a son, and another 
laiming that she had a daughter. Now 
onsider

the following three situations.

1. If I attend a talk about the life and times of Cleopatra, and the speaker, an

expert on the subje
t, says something whi
h prompts me to retra
t the belief

that Cleopatra had a son, it seems reasonable to retain the belief that she had a

daughter.

2. Similarly, if the speaker leads me to retra
t the belief that Cleopatra had a

daughter, I should retain the belief that she had a son.

3. And �nally, suppose that the speaker relates an in
ident whi
h is spe
i�
 enough

to 
ast doubts on my belief that she had a son and a daughter, but is too vague

11

This is a variant of example 6.1.2.
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to indi
ate whether she didn't have a son, didn't have a daughter, or perhaps,

did not have any 
hildren at all. In these 
ir
umstan
es, intuition di
tates that

I should retain the belief that she had a 
hild, without 
ommitting myself to a

belief about it being a son or a daughter.

To formalise this example, let L be a propositional language generated by the two atoms

p and q. Let p denote the assertion that Cleopatra had a son, and q the assertion that

she had a daughter. Then K = Cn(p; q). The three di�erent situations des
ribed

above are then formalised as follows:

K � p = Cn(q), K � q = Cn(p), and K � (p ^ q) = Cn(p _ q).

It is easily veri�ed that the systemati
 withdrawal in example 6.3.23 is able to a

om-

modate example 6.3.26, but as we shall see below, the adheren
e to (K

�

�7) ensures that

severe withdrawal disallows this type of withdrawal. 2

Let us now 
onsider ea
h of the relevant properties indi
ating the di�eren
es between

systemati
 withdrawal and severe withdrawal. The �rst one is the property expressed

by (K

�

�7). That it is not satis�ed by systemati
 withdrawal, unlike severe withdrawal,

is evident by 
onsidering the systemati
 withdrawal in example 6.3.23, and noting that

q 2 K � p, but that q =2 K � (p ^ q). Rott and Pagnu

o [1999℄ argue in favour of

(K

�

�7) by making an appeal to the prin
iples of Indi�eren
e and Preferen
e. Observe

that an � ^ �-withdrawal for
es us to get rid of at least one of � or �. If � is given

up, they argue, we 
an obtain an �-withdrawal by abandoning the same beliefs as

when withdrawing � ^ �. And if � is given up, we might have to remove even more

beliefs. Information-theoreti
ally, this 
an be justi�ed as follows. If � is given up

during an � ^ �-withdrawal, the worst 
ontent bits of � ^ � is at least as entren
hed

as the worst 
ontent bits of �. But the 
ontent bits of � are also 
ontent bits of �^ �,

and the worst 
ontent bits of � ^ � 
an thus not be more entren
hed than the worst


ontent bits of �. From the prin
iples of Indi�eren
e and Preferen
e it then follows

that an �-withdrawal should result in the removal of exa
tly the same infatoms as an

� ^ �-withdrawal. On the other hand, if � is given up during an � ^ �-withdrawal, it

follows by similar reasoning that the worst 
ontent bits of �^� and of � are all equally

entren
hed, with the worst 
ontent elements of � at least as entren
hed, and possibily

more entren
hed. Consequently, the prin
iples of Indi�eren
e and Preferen
e di
tate

that an �-withdrawal should remove at least as mu
h infatoms as an �^�-withdrawal.
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A 
areful analysis of the argument advan
ed above makes it 
lear that it relies

heavily on the assumption that two infatoms 
an never be in
omparable. In other

words, it assumes the existen
e of a faithful total preorder to measure the relative

entren
hment of infatoms. But the moment this restri
tion is relaxed to, say, a faithful

modular weak partial order, the postulate (K

�

�7) is not san
tioned by the same appeal

to prin
iples of Indi�eren
e and Preferen
e. This 
an, perhaps, best be illustrated by

example 6.3.26. Even though both p and q are given up during a p^ q-withdrawal, we

don't want either a p-withdrawal or a q-withdrawal to remove as mu
h information as

a p ^ q-withdrawal.

The next property we 
onsider is that expressed by the postulate (K�9). Unlike

systemati
 withdrawal, it is not satis�ed by severe withdrawal, a result whi
h 
an

be veri�ed by noting that for the severe withdrawal

�

� in example 6.3.23, p 2 K,

p _ q 2 K

�

�p and q =2 K

�

�p, but p =2 K

�

�(p ^ q). Intuitively, we 
an justify (K�9)

as follows. If � _ �, but not �, is retained after an �-withdrawal, it is an indi
ation

that � is more easily dislodged from K than �. Consequently, we should retain �, and

dis
ard �, when having to withdraw � ^ �.

Rott and Pagnu

o [1999℄ show that severe withdrawal satis�es the following prop-

erties:

(In
lusion) Either K

�

�� � K

�

�� or K

�

�� � K

�

��

(De
omposition) Either K

�

�(� ^ �) = K

�

�� or K

�

�(� ^ �) = K

�

��

(Converse 
onjun
tive in
lusion) If 2 �, 2 �, and K

�

�(� ^ �) � K

�

�� then � =2

K

�

��

(Expulsiveness) If 2 � and 2 � then either � =2 K

�

�� or � =2 K

�

��

Rott and Pagnu

o regard it as regrettable that severe withdrawal satis�es Expulsive-

ness, in parti
ular, and write as follows:

\Expulsiveness is an undesirable property sin
e we do not ne
essarily want

senten
es that intuitively have nothing to do with one another to a�e
t

ea
h other in belief 
ontra
tions. This is the bitter pill we have to swallow

if we want to adhere to the prin
iples of Indi�eren
e and Preferen
e."

We 
ontend that it is the use of the faithful total preorders, and not these two prin-


iples that are the problem. This is made abundantly 
lear by noting that systemati
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withdrawal does not satisfy Expulsiveness. In fa
t, by 
onsidering the systemati
 with-

drawal in example 6.3.23, and taking p as �, and q as � in the four properties above,

we see that systemati
 withdrawal doesn't satisfy any of the four properties above.

Example 6.3.26 is thus eviden
e of the undesirability of these properties.

An analysis of the properties above 
reates the impression that, at least in some

respe
ts, severe withdrawal removes too mu
h information from a belief set. This

impression is strengthened by noting that severe withdrawal, unlike systemati
 with-

drawal, in
ludes the following parti
ularly severe instan
e of proper withdrawal:

(Def

_

�) K

_

�� =

(

Cn(>) if � 2 K n Cn(>),

K otherwise

Proposition 6.3.27 The belief removal

_

� de�ned in (Def

_

�) is a severe withdrawal,

but not a systemati
 withdrawal.

Proof It is easily veri�ed that

_

� is de�ned in terms of the faithful total preorder �

using (Def � from �), where � is de�ned as follows:

x � y i�

(

y 2 U if x 2M(K),

y 2 U nM(K), otherwise

and

_

� is thus a severe withdrawal. Now assume that

_

� is also a systemati
 withdrawal.

Clearly

_

� is revision-equivalent to itself, and by 
orollary 6.3.16 it then follows that

there is no other systemati
 withdrawal that is revision-equivalent to

_

�. Now, let � be

the faithful modular weak partial order that is semanti
ally related to �. Sin
e � is

minimal-equivalent to�, it follows from 
orollary 6.3.16 that the systemati
 withdrawal

� de�ned in terms of � using (Def � from �) is revision-equivalent to

_

�, and it is

easily veri�ed that � is not equal to

_

�; a 
ontradi
tion. 2

At the beginning of this se
tion we saw that systemati
 withdrawal and severe with-

drawal sometimes 
oin
ide. A related question is whether these two forms of with-

drawal ever 
oin
ide with AGM 
ontra
tion. It turns out that full meet 
ontra
tion

(see page 22) is the only 
ase for whi
h systemati
 withdrawal and AGM 
ontra
tion

are identi
al. (See se
tion 3.3.2 for a semanti
 des
ription of full meet 
ontra
tion.)

Proposition 6.3.28 Full meet 
ontra
tion is the only AGM 
ontra
tion that is a sys-

temati
 withdrawal.
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Proof The full meet 
ontra
tion � 
an be de�ned in terms of the following faithful

modular weak partial order using (Def � from �): x � y i� x = y, or x 2 M(K)

and y =2 M(K). It is therefore, by de�nition, a systemati
 withdrawal. Next we show

that � is the only belief removal that is both an AGM 
ontra
tion and a systemati


withdrawal. Pi
k any systemati
 withdrawal � other than �. So K � � 6= K � �

for some � 2 K n Cn(>). If K � � * K � �, then there is a � 2 K � � (and thus

� 2 K) su
h that � =2 K � �. Sin
e K � � = Th(M(K) [M(:�)), there is therefore

an x 2 M(K � �) su
h that x 2 M(� ^ :�). And thus � =2 K � � + �, whi
h is

a violation of Re
overy. So suppose that K � � � K � �. Now let � be a faithful

modular weak partial order in terms of whi
h � is de�ned using (Def � from r

�

).

Sin
e K � � = Th(M(K) [M(:�)), it follows from K � � � K � � that there is a

� 2 Th(M(K) [ r

�

(:�)) su
h that y 2 M(:�) for some y 2 M(:�). So 2 � _ �,

and sin
e Min

�

(:�) � r

�

(:�), Min

�

(:�)\Min

�

(:(�_�)) = ;, whi
h means that

Min

�

(:�) �Min

�

(:(�_�)).

12

By smoothness, Min

�

(:�) 6= ;, and there is thus an

x 2M(:� ^ �) su
h that x � z for every z 2Min

�

(:(� _ �)). So x 2 r

�

(:(� _ �))

and thus � =2 K � (� _ �) + (� _ �). So � does not satisfy Re
overy, and is therefore

not an AGM 
ontra
tion. 2

With the ex
eption of some 
ases involving a few trivial belief sets, though, severe

withdrawal and AGM 
ontra
tion always produ
e di�erent results.

Proposition 6.3.29 Let K be su
h that for some �; � 2 K, 2 �, 2 � and � 6� �.

Then severe withdrawal and AGM 
ontra
tion never 
oin
ide.

Proof Pi
k any severe withdrawal

�

� and let � be a faithful total preorder in terms

of whi
h

�

� 
an be de�ned using (Def � from r

�

). If Min

�

(:(�$ �)) �M(�) then

r

�

(:(� _ :�)) * M(�) and so � =2 K

�

�(� _ :�) + (� _ :�), whi
h is a violation

of Re
overy. The remaining two 
ases, where Min

�

(:(� $ �)) � M(�), and where

Min

�

(:(�$ �)) *M(�) and Min

�

(:(�$ �)) *M(�), are similar. 2

We 
on
lude this se
tion with a suggestion prompted by a remark from Hans Rott

[personal 
ommuni
ation℄ that it seems diÆ
ult to 
ome up with yet more appropriate

forms of prin
ipled withdrawal. It turns out that there is a semanti
 way to des
ribe

another set of reasonable withdrawals, all of whi
h exhibit prin
ipled behaviour. The

12

See se
tion 1.3 for an explanation of the 
onvention of applying �, � and �

�

to sets of interpre-

tations.
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method of 
onstru
ting this set relies on the prin
iples of Indi�eren
e, Preferen
e and

Informational E
onomy, and they are employed in a manner identi
al to that used in the


onstru
tion of severe and systemati
 withdrawal. It di�ers only from the 
onstru
tive

modellings of systemati
 and severe withdrawal in the 
hoi
e of permissible faithful

preorders.

De�nition 6.3.30 A belief removal is a methodi
al withdrawal i� it is de�ned in terms

of a faithful layered preorder using (Def � from r

�

). 2

Sin
e the set of faithful layered preorders in
ludes the faithful modular weak partial

orders and the faithful total preorders, methodi
al withdrawal in
ludes both system-

ati
 and severe withdrawal. However, it ex
ludes the AGM 
ontra
tions whi
h do not


oin
ide with systemati
 withdrawal. It is our 
ontention that methodi
al withdrawal


onstitutes a 
lass of withdrawals that deserve further study. We provide a tenta-

tive �rst step in this dire
tion with a result involving some properties of methodi
al

withdrawal.

Proposition 6.3.31 Methodi
al withdrawal satis�es (K�1) to (K�5), (K�7), (K�8),

(K�7) and (K�10).

Proof The proofs are similar to those for systemati
 and severe withdrawal, and are

omitted. 2

From theorem 6.3.8 it thus follows that methodi
al withdrawal is also reasonable.

6.3.6 Informational value

In se
tion 6.2.1 we saw that proper withdrawal, as 
hara
terised by Levi's saturatable

withdrawals, is too general to be regarded as prin
ipled. In parti
ular, it 
ontains many

removals whi
h do not satisfy (K�7) and (K�8). These, of 
ourse, in
lude the basi


AGM 
ontra
tions that are not AGM 
ontra
tions.

Levi [1991℄ provides two methods for obtaining a more prin
ipled form of proper

withdrawal. The basi
 tenet of the 
onstru
tions is that it is not the loss of information

that should be minimised, but rather the loss of informational value. In order to a
hieve

this, it is ne
essary to provide a measure V on the belief sets that are subsets of the


urrent belief set K. He 
onsiders two monotoni
ity 
onditions of V:
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(Strong monotoni
ity) If X � Y then V(X) < V(Y )

(Weak monotoni
ity) If X � Y then V(X) � V(Y )

Levi sees strong monotoni
ity as too strong a requirement to impose on V, arguing

instead for the imposition of weak monotoni
ity. This is referred to as a measure of

undamped informational value.

13

The intuition is that some information may have

no informational value, and that the addition of su
h information should leave the

informational value of a belief set un
hanged. His �rst method uses undamped infor-

mational value. To determine the belief set resulting from an �-withdrawal of K, he

�nds the saturatable 
ontra
tions with respe
t to K and � that minimises the loss of

informational value, and takes their interse
tion. That is done as follows with the aid

of a measure of undamped informational value V:

(Def � from V) K � � =

8

>

<

>

:

T

fX 2 s
(K;�) j V(X) � V(Y ) 8Y 2 s
(K;�)g

if � 2 K n Cn(>),

K otherwise

De�nition 6.3.32 A withdrawal is 
alled informational valued i� it de�ned in terms

of a measure of undamped informational value V using (Def � from V) 2

As Levi observes, this method is problemati
 from a de
ision-theoreti
 point of view,

sin
e the belief set obtained from an �-withdrawal may not represent a minimal loss

in informational value.

Example 6.3.33 Let L be the propositional language generated by the atoms p and

q, and let (V;
) be the valuation semanti
s for L. Now let K = Cn(p), and let

V(Cn(p)) = 1, V(Cn(p _ q)) = V(Cn(p _ :q)) =

3

4

, and V(Cn(>)) = 0. It is easily

seen that K � p = Cn(>) for the withdrawal � de�ned in terms of V using (Def �

from V). And yet

V(Cn(>)) = 0 < V(Cn(p _ q)) = V(Cn(p _ q)) =

3

4

.

Choosing either Cn(p _ q) or Cn(p _ :q) would thus have resulted in a loss of infor-

mational value of

1

4

, while the 
hoi
e of Cn(>) represents a loss of informational value

of 1. 2

13

A
tually, Levi's measure of undamped informational value, as proposed in [Levi, 1991℄, is required

to be a probability measure. We sti
k to the watered-down version used by Hansson and Olsson [1995℄.
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To re
tify this undesirable behaviour, Levi swit
hes to damped informational value. A

measure V

D

of damped informational value is determined in terms of a measure V of

undamped informational value as follows:

(Def V

D

from V) V

D

(X) = minfV(Y ) 2 s
(K;�) j Y � Xg

In other words, the damped informational value of a belief set X � K is equal to

the minimum undamped informational value of the saturatable 
ontra
tions 
ontained

in X. Levi's se
ond method then de�nes proper withdrawals in terms of damped

informational value using (Def � from V). It is easily established that the proper

withdrawals de�ned in terms of V and V

D

using (Def � from V), where V

D

is obtained

in terms of V using (Def V

D

from V), are identi
al. The advantage in using damped

informational value is that it 
an be motivated from a de
ision-theoreti
 point of view.

Hansson and Olsson [1995℄ show that informational valued withdrawal satis�es (K�7)

and (K�8). In this sense, then, it is a prin
ipled form of withdrawal.

Levi [1998℄ has re
ently expressed some doubts about the appropriateness of infor-

mational valued withdrawal, as it has been presented thus far. He presents an example

whi
h is representative of a 
lass of informational valued withdrawals satisfying Re-


overy, whi
h he sees as 
ounterintuitive [Levi, 1998,p. 37℄. Furthermore, he points

out that the undamped and damped informational value of some belief sets (su
h as

the saturatable 
ontra
tions) are the same, but that it di�ers for others. As a result,

he proposes the use of a se
ond version of damped informational value. The removal-

s de�ned in terms of this version of damped informational value using (Def � from

V) is dubbed mild 
ontra
tion. It turns out that mild 
ontra
tion 
oin
ides exa
tly

with severe withdrawal. This is one of the reasons why Levi favours severe withdrawal

over systemati
 withdrawal. He argues that his 
onstru
tion of severe withdrawal (or

mild 
ontra
tion) in terms of undamped informational value (version 2) provides a

de
ision-theoreti
 motivation; something that systemati
 withdrawal does not appear

to possess.

6.4 Withdrawal and entren
hment

As dis
ussed in 
hapter 5, entren
hment orderings on w�s are intended to provide a

measure of the extent to whi
h a parti
ular belief of an agent is entren
hed in its belief

set. As su
h, these orderings 
an be useful in the 
onstru
tion of withdrawals. In
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this regard, we have already seen how AGM 
ontra
tion 
an be de�ned in terms of

two forms of entren
hment; the EE-orderings of se
tion 2.3, and the RE-orderings of

se
tion 5.5. In fa
t, we saw in se
tion 5.8 that the EE-orderings, the RE-orderings

and AGM 
ontra
tion are inter
hangeable in terms of the relevant identities. In this

se
tion we show that this inter
hangeability 
an be extended to in
lude systemati
 and

severe withdrawal as well. It will be 
onvenient to generalise the notion of semanti


relatedness found in de�nitions 5.8.1 and 6.3.18.

De�nition 6.4.1 An AGM 
ontra
tion �, an AGM revision �, an EE-ordering v

EE

, a

GE-orderingv

GE

, an RE-ordering v

RE

, an RG-ordering v

RG

, a systemati
 withdrawal

�, and a severe withdrawal

�

� are semanti
ally related i� there is a faithful total

preorder � and a semanti
ally related faithful modular weak partial order � su
h that

1. � is de�ned in terms of � (and �) using (Def � from �),

2. � is de�ned in terms of � (and �) using (Def � from �),

3. v

EE

is de�ned in terms of � using (Def v

E

from �),

4. v

GE

is de�ned in terms of � using (Def v

G

from �),

5. v

RE

is de�ned in terms of � using (Def v

E

from �),

6. v

RG

is de�ned in terms of � using (Def v

G

from �),

7. � is de�ned in terms of � using (Def � from r

�

), and

8.

�

� is de�ned in terms of � using (Def � from r

�

).

2

Note that, for the remainder of this 
hapter, we shall fequently make use of lemma

5.2.1 without expli
itly referring to it, as has been the 
onvention in 
hapter 5.

Let us begin with sharper versions of results by Rott and Pagnu

o [1999℄, showing

that severe withdrawal and epistemi
 entren
hment are interde�nable by means of the

following two identities:

(Def

�

� from v

EE

) K

�

�� =

(

K \ f� j � <

EE

�g if � 2 K nCn(>),

K otherwise
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(Def v

EE

from

�

�) � v

EE

� i� � =2 K

�

�� or � �

Proposition 6.4.2 If an EE-ordering v

EE

and a severe withdrawal

�

� are semanti
ally

related, they 
an also be de�ned in terms of one another using (Def v

EE

from

�

�) and

(Def

�

� from v

EE

).

Proof Let � be a faithful preorder in terms of whi
h v

EE

and

�

� are de�ned using (Def

v

EE

from�) and (Def� fromr

�

). We only 
onsider the 
ase where �; � 2 KnCn(>).

Observe that � 2 K

�

�� i� there is a y 2 Min

�

(:�) su
h that x 2 M(�) for every

x � y, i� � 6v

EE

�, i� � <

EE

�. And then observe that � v

EE

� i� for every

y 2 Min

�

(:�) there is an x 2M(:�) su
h that x � y, i� � =2 K

�

��. 2

Proposition 6.4.2 thus also shows that the identities (Def

�

� from v

EE

) and (Def v

EE

from

�

�) are inter
hangeable. Note that (Def v

EE

from

�

�) and (Def

�

� from v

EE

)

provide a very elegant method for moving between severe withdrawal and epistemi


entren
hment. Barring some limiting 
ases, a w� � is in the belief set resulting from a

severe �-withdrawal i� � is more entren
hed than �.

Interestingly enough, Rott and Pagnu

o [1999℄ show that (Def v

EE

from

�

�) and

(Def v

EE

from �) are equivalent when applied to severe withdrawals. This observation

prompts us to show that the appli
ation of (Def v

EE

from �) to any two revision-

equivalent reasonable withdrawals yields the same EE-ordering.

Proposition 6.4.3 Let � and � be two reasonable withdrawals that are revision-

equivalent. The EE-orderings de�ned in terms of � and � using (Def v

EE

from �)

are identi
al.

Proof Let � and

�

� be the unique AGM 
ontra
tion and severe withdrawal respe
tive-

ly, that are revision-equivalent to � and �. It suÆ
es to show that the EE-orderings

de�ned in terms of � and � using (Def v

EE

from �) are identi
al. So let v

�

EE

be

the EE-ordering de�ned in terms of � using (Def v

EE

from �), and let v

�

�

EE

be the

EE-ordering de�ned in terms of

�

� using (Def v

EE

from

�

�). Sin
e (Def v

EE

from

�

�)

and (Def v

EE

from �) yield identi
al EE-orderings when applied to severe withdrawal,

v

�

�

EE


an also be de�ned in terms of

�

� using (Def v

EE

from �).

First we show that v

�

EE

and v

�

�

EE

are identi
al. Let � be a faithful total preorder

in terms of whi
h � and

�

� 
an be de�ned using (Def � from �) and (Def � from r

�

)

respe
tively. By 
orollary 6.3.16 there is su
h a �. By proposition 6.4.2, v

�

�

EE

is the
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EE-ordering de�ned in terms of � using (Def v

E

from �), and by proposition 3.3.4,

v

�

EE

is the EE-ordering de�ned in terms of � using (Def v

E

from �). So v

�

�

EE

and

v

�

EE

are identi
al.

Now, let v

�

EE

be the relation on L de�ned in terms of � using (Def v

EE

from �).

We only 
onsider the 
ase where 2 � ^ �. If � v

�

EE

� then � =2 K � � ^ �. Sin
e

� is reasonable, � =2 K � � ^ � and thus � v

�

EE

�. Furthermore, if � v

�

EE

� then

� =2 K � � ^ �. Sin
e � is reasonable, � =2 K

�

�� ^ � and thus � v

�

�

EE

�. And sin
e

v

�

EE

and v

�

�

EE

are identi
al, the required result follows. 2

When using (Def v

RE

from �), we obtain a result for reasonable withdrawal and

re�ned entren
hment whi
h is similar to proposition 6.4.3.

Proposition 6.4.4 Let � and � be two reasonable withdrawals that are revision-

equivalent. The RE-orderings de�ned in terms of � and � using (Def v

RE

from �)

are identi
al.

Proof Let � be the unique AGM 
ontra
tion and

�

� the unique severe withdrawal

that are both revision-equivalent to � and �. Furthermore, let � be a faithful total

preorder in terms of whi
h � and

�

� 
an be de�ned using (Def � from �) and (Def

� from r

�

) respe
tively. By 
orollary 6.3.16 there is su
h a �. Moreover, let � be

the faithful modular weak partial order that is semanti
ally related to �. By theorem

5.5.15 we know that the RE-ordering v

�

RE

de�ned in terms of � using (Def v

E

from

�) 
an also be de�ned in terms of � using (Def v

RE

from �). Below we show that the

binary relation v

�

�

RE

on L de�ned in terms of

�

� using (Def v

RE

from �) is identi
al

to v

�

RE

. The required result then follows in a manner that is similar to the proof of

proposition 6.4.3.

Suppose that � v

�

RE

�. Then �! � 2 K��^� and soM(K)[Min

�

(:(�^�)) �

M(� ! �). From this it follows that for every x � y, where y 2 Min

�

(:(� ^ �)),

x 2 M(� ! �). That is, r

�

(:(� ^ �)) � M(� ! �

_

), and thus �! � 2 K

�

�(� ^ �),

from whi
h it follows that � v

�

�

RE

�. Conversely, if � v

�

�

RE

� then �! � 2 K

�

�(�^�).

But this means that �! � 2 K � (� ^ �) and so � v

�

RE

�. 2

A result similar to proposition 6.4.2 holds for severe withdrawal and re�ned entren
h-

ment when (Def v

RE

from �) and the identity below are used:

(Def

�

� from v

RE

) K

�

�� =

(

K \ f� j � 6v

RE

� and � ! � v

RE

�g if 2 �,

K otherwise
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Proposition 6.4.5 If an RE-ordering v

RE

and a severe withdrawal

�

� are semanti-


ally related, then they 
an also be de�ned in terms of one another using (Def v

RE

from �) and (Def

�

� from v

RE

).

Proof Let � be a faithful total preorder in terms of whi
h

�

� 
an be de�ned using (Def

�

� from r

�

), and let � be the semanti
ally related faithful modular weak partial order.

The validity of the appli
ation of (Def

�

� from v

RE

) follows easily from proposition

6.4.2 and theorem 5.5.7. For (Def v

RE

from �) we only 
onsider the 
ase where 2 �.

Observe that � v

RE

� i� for every y 2 Min

�

(:�) there is an x 2 Min

�

(:�) su
h

that x � y, i� r

�

(:(� ^ �)) � M(�! �), i� �! � 2 K

�

�(� ^ �). 2

Next is a similar result for systemati
 withdrawal and the EE-orderings, when using

(Def v

EE

from �) and the identity below:

(Def � from v

EE

) � 2 K � � i�

8

>

<

>

:

� <

EE

� _ � and � v

EE

�

if � 2 K n Cn(>),

� 2 K otherwise

Proposition 6.4.6 If the EE-ordering v

EE

and the systemati
 withdrawal � are se-

manti
ally related, then they 
an also be de�ned in terms of one another using (Def �

from v

EE

) and (Def v

EE

from �).

Proof Let � be a faithful total preorder in terms of whi
h v

EE


an be de�ned using

(Def v

E

from �), and let � be the semanti
ally related faithful modular weak partial

order. For (Def � from v

EE

) we only 
onsider the 
ase where � 2 K nCn(>). Suppose

that � 2 K � �. So, there is a y 2 Min

�

(:�) su
h that x 2 M(�) � M(� _ �) for

every x � y. Furthermore, sin
e Min

�

(:�) � M(�), x 2 M(� _ �) for every x su
h

that y � x. So x 2 M(� _ �) for every x � y, whi
h means that � _ � 6v

EE

� and

thus that � <

EE

� _ �. And sin
e x 2 M(�) for every x � y, we have that � v

EE

�.

Conversely, suppose that � =2 K � �. So there is a y 2 M(K) [ r

�

(:�) su
h that

y 2 M(:�). Suppose further that � v

EE

�. Then there is an x 2 M(:�) su
h that

x � y and thus y 2 Min

�

(:�). So y 2 M(:(� _ �)) and y � z for every z 2 M(:�).

That is, � _ � v

EE

�, whi
h means that � 6<

EE

� _ �.

For (Def v

EE

from �), suppose that � 6v

EE

�. So there is a y 2 Min

�

(:�)

su
h that x 2 M(�) for every x � y. Then 2 � ^ �, y 2 Min

�

(:(� ^ �)), and so

M(K) [ r

�

(:(� ^ �)) � M(�). That is � 2 K � (� ^ �). Conversely, suppose that
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� 2 K��^�. We only 
onsider the 
ase where 2 �^�. ThenM(K)[r

�

(:(�^�)) �

M(�), and there is thus a y 2 Min

�

(:(� ^ �)) = Min

�

(:�) su
h that x 2 M(�) for

every x � y. Furthermore, sin
e Min

�

(:(� ^ �)) �M(�), x 2M(�) for every x su
h

that y � x. So x 2M(�) for every x � y and thus � 6v

EE

�. 2

Finally, we obtain a related result for systemati
 withdrawal and re�ned entren
hment

in terms of (Def v

RE

from �) and the identity below.

(Def � from v

RE

) K � � =

8

>

<

>

:

f� j � 6v

RE

� and � ! � v

RE

�g

if � 2 K n Cn(>),

K otherwise

Proposition 6.4.7 If the RE-ordering v

RE

and the systemati
 withdrawal � are se-

manti
ally related, then they 
an also be de�ned in terms of one another using (Def �

from v

RE

) and (Def v

RE

from �).

Proof Let � be a faithful modular weak partial order in terms of whi
h v

RE

and �


an be de�ned using (Def v

E

from �) and (Def � from r

�

). The proof for (Def v

RE

from �) is identi
al to the part of the proof of proposition 6.4.5 
on
erning (Def v

RE

from �). For (Def � from v

RE

), we only 
onsider the 
ase where � 2 K n Cn(>).

Suppose that � 2 K � �. So there is a y 2 Min

�

(:�) su
h that x 2 M(�) for every

x � y. That is, � 6v

RE

�. Note further that for every z 2 Min

�

(:�), z 2 M(�),

and so � ! � v

RE

�. Conversely, suppose that � 6v

RE

� and � ! � v

RE

�. From

� 6v

RE

� there is a y 2 Min

�

(:�) su
h that x 2 M(�) for every x � y, and from

� ! � v

RE

� it follows that y 2 M(�) for every y 2 Min

�

(:�). And therefore,

� 2 K � �. 2

6.5 Systemati
 withdrawal and entren
hment

Se
tion 6.4 
ontains a plethora of results, providing strong links between severe with-

drawal, systemati
 withdrawal, the EE-orderings and the RE-orderings, in terms of

appropriate identities. But with the ex
eption of the 
onne
tion between severe with-

drawal and the EE-orderings, it is diÆ
ult to view these identities as intuitively plau-

sible des
riptions of how these 
onstru
tions relate to ea
h other. This is not unlike

the 
onne
tion between AGM 
ontra
tion and epistemi
 entren
hment provided by the

identities (Def � from v

EE

) and (Def v

EE

from �) in se
tion 2.3. (Def � from v

EE

)
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in parti
ular, has been the subje
t of some s
rutiny in the theory 
hange literature.

With the ex
eption of some limiting 
ases, it shows that a w� � is in the �-
ontra
tion

of K i� � _ � is more entren
hed than �. It is, of 
ourse, the use of � _ �, instead of

� above, that is the sour
e of 
on
ern. Bla
kburn et al. [1997℄, for example, attribute

the use of � _ � to \te
hni
al reasons". G�ardenfors and Makinson [1988℄ provide a

motivation for its use, but it is somewhat diÆ
ult to understand, and depends on the

a

eptan
e of the Re
overy postulate. More re
ently, G�ardenfors has admitted that

the identity is somewhat 
ounterintuitive [1992,p. 19℄.

In se
tion 5.1 we gave a di�erent 
hara
terisation of AGM 
ontra
tion in terms of

the EE-orderings; one that, in our opinion, provides a 
loser mat
h with the G�ardenfors

intuition that 
ontra
tion in terms of epistemi
 entren
hment is based on the idea of

being \for
ed to 
hoose" between the removal of two w�s. In this se
tion we intend to

provide an analogous mat
h between systemati
 withdrawal and re�ned entren
hment.

We start by showing that the EE-orderings have too 
oarse a grainsize to provide a

suitable intuitive des
ription of systemati
 withdrawal. This is followed by another

des
ription of systemati
 withdrawal in terms of the RE-orderings; one whi
h di�ers

from the one given in proposition 6.4.7. Finally, we show that for the �nitely generated

propositional 
ase, there is a graph based pro
edure for de�ning systemati
 withdrawal

in terms of re�ned entren
hment.

6.5.1 Systemati
 withdrawal and the EE-orderings

The reason that (Def � from v

EE

) is seen as a somewhat 
ounterintuitive de�nition

of AGM 
ontra
tion in terms of the EE-orderings is that w�s that are less entren
hed

than a w� � are sometimes retained during an �-
ontra
tion, as the next example

shows.

Example 6.5.1 Let L be the propositional language generated by the two atoms p

and q, and let (V;
), with V = f00; 01; 10; 11g, be the valuation semanti
s for L. Let

K = Cn(p) and de�ne the EE-ordering v

EE

as follows:

� v

EE

� i�

8

>

>

>

>

<

>

>

>

>

:

� 2 L if � =2 K,

p � � if � � p or � � p _ :q,

p _ q � � if � � p _ q, and

� � if � � >.



180 CHAPTER 6. WITHDRAWAL

f� j p 2 �g = L nK

p _ :q, p

p _ q

>

6

6

6

Figure 6.3: A graphi
al representation of the EE-ordering v

EE

with respe
t to the

belief set K = Cn(fpg). This EE-ordering is used in example 6.5.1. For every �; � 2 L,

� v

EE

� i� (�; �) is in the re
exive transitive 
losure of the relation determined by

the arrows. Ea
h w� in this �gure is a 
anoni
al representative of the set of w�s whi
h

are logi
ally equivalent to it.

It is easily veri�ed that v

EE

is indeed an EE-ordering. Figure 6.3 
ontains a graphi
al

representation of v

EE

. It 
an be veri�ed that the AGM 
ontra
tion � de�ned in terms

of v

EE

using (Def � from v

EE

) yields K � (p _ q) = Cn(p _ :q). So K � (p _ q)


ontains the w� p _ :q, a w� that is less entren
hed than p _ q. 2

Our �rst result shows that, unlike AGM 
ontra
tion, none of the w�s that are less

entren
hed than � are in the belief set resulting from a systemati
 �-withdrawal.

Proposition 6.5.2 Suppose that the EE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related. If 2 � and � <

EE

� then � =2 K � �.

Proof Let � be a faithful total preorder in terms of whi
h v

EE


an be de�ned using

(Def v

E

from �) and let � be its semanti
ally related faithful modular weak partial
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order. Suppose that 2 � and � <

EE

�. Then � 6v

EE

� and there is thus a y 2

Min

�

(:�) su
h that x 2 M(�) for every x � y. So y � z for every z 2 Min

�

(:�).

Therefore r

�

(:�) *M(�) and thus � =2 K � �. 2

Proposition 6.5.2 des
ribes the fate of the w�s that are less entren
hed than �, but

it gives no indi
ation of what happens to the remaining w�s. The next result gives a

partial answer to this question.

Proposition 6.5.3 Suppose that the EE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related. If � <

EE

� then � 2 K � �.

Proof Let � be a faithful total preorder in terms of whi
h v

EE


an be de�ned using

(Def v

E

from �), and let � be its semanti
ally related faithful modular weak partial

order. Suppose that � <

EE

�. We only 
onsider the 
ase where 2 �. By (EE2), 2 �,

and from � 6v

EE

� it follows that there is a y 2 Min

�

(:�) su
h that x 2 M(�) for

every x � y. So M(K) [ r

�

(:�) �M(�) and thus � 2 K � �. 2

The w�s that are more entren
hed than � will thus all be retained after a systemati


�-withdrawal. It therefore only remains to be seen what systemati
 withdrawal does

with the w�s that are as entren
hed as �. Unfortunately it seems that the EE-orderings

are too 
oarse to a

ount for a proper des
ription of how to handle these w�s.

Example 6.5.4 Consider the language L generated by the two atoms p and q, and let

(V;
) be the valuation semanti
s for L, with V = f00; 01; 10; 11g. Let K = Cn(fp; qg),

de�ne the faithful total preorder � as follows

x � y i�

8

>

<

>

:

y 2 V if x = 11,

y 2 f00; 01; 10g if x 2 f01; 10g, and

y = 00 if x = 00

and let � be the asso
iated faithful modular weak partial order de�ned in terms of �

using (Def � from �). Now, let v

EE

be the EE-ordering de�ned in terms of � using

(Def v

E

from �) and let � be the systemati
 withdrawal de�ned in terms of � using

(Def � from r

�

). Figure 6.4 
ontains a graphi
al representation of � and v

EE

. An

inspe
tion of v

EE

in �gure 6.4 shows that the status of the w�s whi
h are exa
tly as

entren
hed as the w� we want to withdraw is somewhat ambiguous. To see this, note

that K � p = Cn(fqg). So although the w�s p _ :q, p $ q, p ^ q, :p _ q, and q are

exa
tly as entren
hed as p, some of them are in K � p, while others are not. 2
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11

10 01

00

}
>

�

I

-
�

f� j p ^ q 2 �g = L nK

p; p _ :q; p$ q; p ^ q;:p _ q; q

p _ q

>

6

6

6

Figure 6.4: A graphi
al representation of the EE-ordering v

EE

with respe
t to the

belief set K = Cn(fp; qg), and the faithful total preorder from whi
h it is obtained

using (Def v

E

from �). These orderings are used in example 6.5.4. For every two

interpretations x and y, x � y i� (x; y) is in the re
exive transitive 
losure of the

relation determined by the arrows. Similarly, for every �; � 2 L, � v

EE

� i� (�; �) is

in the re
exive transitive 
losure of the relation determined by the arrows. Ea
h w�

in the graphi
al representation of the EE-ordering is a 
anoni
al representative of the

set of w�s whi
h are logi
ally equivalent to it.

Interestingly enough, this example does not represent a phenomenon that is unique to

systemati
 withdrawal. The next proposition shows that systemati
 withdrawal and

AGM 
ontra
tion di�er only on those w�s that are less entren
hed than the w� � to

be withdrawn. In other words, the type of problem highlighted in example 6.5.4 is one

that has been 
arried over from AGM 
ontra
tion.

Proposition 6.5.5 Suppose that the EE-ordering v

EE

, the systemati
 withdrawal �,

and the AGM 
ontra
tion � are semanti
ally related. If � 6<

EE

� then � 2 K � � i�

� 2 K � �.

Proof Let � be a faithful total preorder in terms of whi
h v

EE

and � 
an be de�ned
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using (Def v

E

from �) and (Def � from �), and let � be its semanti
ally related

faithful modular weak partial order. Suppose that � 6<

EE

�. The right-to-left dire
tion

follows from 
orollary 6.3.16. Now suppose that � 2 K � �. Pi
k any x 2 r

�

(:�).

If x 2 M(K) [Min

�

(:�) then x 2 M(�), so we suppose otherwise. Then x 2 M(�)

and x � y for every y 2 Min

�

(:�). Assume that x =2 M(�). Then x 2 M(� ^ :�),

and sin
e � v

EE

�, there is a z � x su
h that z 2M(:�), 
ontradi
ting the fa
t that

x � y for every y in Min

�

(:�). 2

Example 6.5.4 gives an indi
ation that the EE-orderings have too 
oarse a grainsize to

provide an intuitively satisfa
tory des
ription of systemati
 withdrawal. This undesir-

able behaviour 
an be tra
ed ba
k to the fa
t that the EE-orderings are total preorders;

a feature that has already been dis
ussed at length in 
hapter 5.

6.5.2 Systemati
 withdrawal and the RE-orderings

We now 
ome to an alternative des
ription of systemati
 withdrawal in terms of re�ned

entren
hment. It turns out that re�ned entren
hment retains the intuitively desirable

results of se
tion 6.5.1, and eliminates the 
ounterintuitive results asso
iated with the

EE-orderings des
ribed in that se
tion. First, we show that the result of proposition

6.5.2 
arries over to the RE-orderings.

Proposition 6.5.6 Suppose that the RE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related. If 2 � and � v

RE

� then � =2 K � �.

Proof Let � be a faithful modular weak partial order in terms of whi
h v

RE

and �


an be de�ned using (Def v

E

from �) and (Def � from r

�

). Suppose that 2 � and

� v

RE

�. So, for every y 2 Min

�

(:�) there is an x 2 Min

�

(:�) su
h that x � y.

This means that r

�

(:�) *M(�), and therefore that � =2 K � �. 2

So during an �-withdrawal, systemati
 withdrawal does not just guarantee the removal

of all the w�s that are less entren
hed than �, but also those that are as entren
hed

as �. It remains to be seen what happens to the remaining w�s; those are not at most

as entren
hed as the w� � to be withdrawn. Note �rstly that AGM 
ontra
tion and

systemati
 withdrawal treat these w�s in exa
tly the same manner.

Proposition 6.5.7 Suppose that the RE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related. If � 6v

RE

� then � 2 K � � i� � 2 K � �.
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p; p _ :q

f� j p ^ q 2 �g = L nK

p$ q; p ^ q

p _ q

>

6

6

6

:p _ q; q

k

>

3

}

Figure 6.5: A graphi
al representation of the RE-ordering v

RE

with respe
t to the

belief set K = Cn(fp^qg). This RE-ordering is used in example 6.5.8. For every �; � 2

L, � v

RE

� i� (�; �) is in the re
exive transitive 
losure of the relation determined by

the arrows. Ea
h w� in this �gure is a 
anoni
al representative of the set of w�s whi
h

are logi
ally equivalent to it.

Proof Let � be a faithful modular weak partial order in terms of whi
h v

RE

and � 
an

be de�ned using (Def v

E

from �) and (Def � from r

�

). Suppose that � 6v

RE

�. By


orollary 6.3.16 we already have that K�� � K��. So suppose that � 2 K��. Then

M(K) [Min

�

(:�) �M(�) and it thus suÆ
es to show that r

�

(:�) nMin

�

(:�) �

M(�). Now, sin
e � 6v

RE

�, there is a y 2 Min

�

(:�) su
h that x 2 M(�) for every

x � y. It then follows easily that r

�

(:�) nMin

�

(:�) �M(�). 2

The next example shows that the w�s that are more entren
hed than � are not always

retained after a systemati
 �-withdrawal.
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Example 6.5.8 Let L be the propositional language generated by the two atoms p

and q and let (V;
) be the valuation semanti
s for L, with V = f00; 01; 10; 11g. Now,

let K = Cn(fp; qg), de�ne the faithful modular weak partial order � as follows

x � y i�

8

>

>

>

>

<

>

>

>

>

:

y 2 V if x = 11,

y 2 f01; 00g if x = 01,

y 2 f10; 00g if x = 10, and

y = 00 if x = 00,

and let v

RE

be the RE-ordering de�ned in terms of � using (Def v

E

from �). Fig-

ure 6.2 
ontains a graphi
al representation of �, and �gure 6.5 
ontains a graphi
al

representation of v

RE

.

Now let � be the systemati
 withdrawal de�ned in terms of � using (Def � from

r

�

). It is easily veri�ed that K � (p$ q) = Cn(p_ q). Furthermore, an inspe
tion of

�gure 6.5 shows that p, q, :p_ q and p_:q are all more entren
hed than p$ q. And

yet, none of these w�s are in K � (p$ q). 2

An inspe
tion of the RE-ordering v

RE

in �gure 6.5 gives a 
lue as to why w�s that are

more entren
hed than � are sometimes not retained when performing an �-withdrawal.

Observe in �gure 6.5 that both p and q are more entren
hed than p ^ q. Retaining

both of them in K � (p ^ q) is out of the question (be
ause it would then follow that

p ^ q 2 K � (p ^ q)). Furthermore, v

RE

does not allow us to 
hoose between p and q,

sin
e they are in
omparable in terms of v

RE

. The prudent 
ourse of a
tion is then to

remove both. This argument 
an be formulated as a general prin
iple involving sets of

w�s.

Proposition 6.5.9 Suppose that the RE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related. Now, suppose that � <

RE

�, X [ f�g � �, and both

� <

RE


 and � k

v

RE


 for every 
 2 X. Then � =2 K � �.

Proof Let � be a faithful modular weak partial order in terms of whi
h v

RE

and �


an be de�ned using (Def v

E

from �) and (Def � from r

�

). Assume that � 2 K � �

and pi
k a 
 2 X. Sin
e � <

RE


, there is a y 2 Min

�

(:�) su
h that x 2 M(
) for

every x � y. Furthermore, y 2M(�) be
ause � 2 K��. Now, sin
e X [f�g � � and

y 2M(:� ^ �), there is a Æ 2 X su
h that y =2M(Æ). And be
ause � k

v

RE

Æ, there is

a v 2 Min

�

(:�) su
h that u 2 M(Æ) for every u � v. Therefore y 
 v. Furthermore,
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from � 2 K � � it follows that v 
 y. And be
ause � v

RE

�, there is a w � v su
h

that w 2 M(:�). Sin
e y 2 Min

�

(:�) and y k

�

v, it has to be the 
ase that w = v,

and therefore v 2Min

�

(:�). And sin
e v =2M(�), � =2 K � �; a 
ontradi
tion. 2

Note that proposition 6.5.9 only guarantees that � is not in K ��, and makes no su
h


laim about the w�s in X as well, even though these w�s are all in
omparable with

� and more entren
hed than �, just as � is. This 
an be explained by observing that

the w�s in X need not be in
omparable with one another. In the spe
ial 
ase in whi
h

they are in
omparable, it follows easily from proposition 6.5.9 that none of the w�s in

X are in K � � either.

A related result, and one that is of some importan
e for the results presented in

the rest of this se
tion, holds for the set of w�s that in
ludes not only those that are

more entren
hed than �, but also those that are in
omparable with �. For this result

we need the following lemma.

Lemma 6.5.10 Let � be a faithful modular weak partial order, v

RE

the RE-ordering

de�ned in terms of � using (Def v

E

from �), and � the systemati
 withdrawal de�ned

in terms of � using (Def � from r

�

). If � 2 K, � 6v

RE

� and � =2 K � �, then there

is a y 2 M(:� ^ �) and a z 2 M(:� ^ :�) su
h that x 2 M(� ^ �) for every x < y,

and x 2M(� ^ �) for every x < z.

Proof Suppose that � 2 K, � 6v

RE

� and � =2 K � �. It follows from � 6v

RE

�

that there is a y 2 Min

�

(:�) su
h that x 2 M(�) for every x � y. And therefore

y 2 M(:� ^ �) and x 2M(� ^ �) for every x < y. Furthermore, be
ause � =2 K � �,

there is a z 2 M(K) [ r

�

(:�) su
h that z 2 M(:�). If z =2 Min

�

(:�) then, sin
e

� 2 K, z < y, whi
h violates the result that all interpretations stri
tly below y are

models of �. So z 2Min

�

(:�), and be
ause y is also a minimal model of :� it follows

that z 2M(:� ^ :�), and that x 2M(� ^ �) for every x < z. 2

Proposition 6.5.11 Suppose that the RE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related.

1. If � 2 K, � 6v

RE

� and � =2 K��, then there is a 
 6v

RE

� su
h that f�; 
g � �.

2. If � 6v

RE

�, 
 6v

RE

�, and f�; 
g � �, then � =2 K � � and 
 =2 K � �.
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Proof Let � be a faithful modular weak partial order in terms of whi
h v

RE

and �


an be de�ned using (Def v

E

from �) and (Def � from r

�

). For the proof of (1),

suppose that � 6v

RE

� and � =2 K � �. Now 
onsider the w� � ! �. It is 
lear

that f�; � ! �g � �. Sin
e � 2 K, it follows from lemma 6.5.10 that there is a

y 2 M(:� ^ �) and a z 2 M(:� ^ :�) su
h that x 2 M(� ^ �) for every x < y, and

x 2 M(� ^ �) for every x < z. So z is a model of :� su
h that x 2 M(� ! �) for

every x � z. That is, (� ! �) 6v

RE

�, and we have the desired result.

To prove (2), suppose that � 6v

RE

�, 
 6v

RE

� and f�; 
g � �. Be
ause � 6v

RE

�,

there is a y 2Min

�

(:�) su
h that x 2M(�) for every x � y, and be
ause f�; 
g � �,

y 2 M(:
). Similarly, from 
 6v

RE

� there is a z 2 Min

�

(:�) su
h that x 2 M(
)

for every x � y, and z 2M(:�). It thus follows that 
 =2 K � � and � =2 K � �. 2

So proposition 6.5.11 tells us exa
tly whi
h of the w�s that are not at most as en-

tren
hed as a w� � in K will be retained when withdrawing � from K, and whi
h

of these w�s will be dis
arded. It therefore pla
es us in a position to formalise the

relationship between the systemati
 withdrawals and the RE-orderings.

Theorem 6.5.12 Suppose that the RE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related. Then

� =2 K � � i�

8

>

>

>

>

<

>

>

>

>

:

� =2 K and � �, or

� =2 K and � =2 K, or

� v

RE

� and 2 �, or

� 6v

RE

� and 9
 6v

RE

� su
h that f�; 
g � �,

(6.1)

or equivalently,

� 2 K � � i�

8

>

<

>

:

� 2 K and � �, or

� 2 K and � =2 K, or

� 6v

RE

� and for every 
 6v

RE

�, f�; 
g 2 �.

(6.2)

Proof The proof is mostly a 
ombination of the results in propositions 6.5.11 and

6.5.6. It 
an be found in appendix B. 2

In fa
t, we 
an do better. The next proposition enables us to sharpen the relationship

between systemati
 withdrawal and re�ned entren
hment.

Proposition 6.5.13 Suppose that the RE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related.
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1. If � 2 K, � <

RE

�, and � =2 K � �, then � <

RE


, 
 k

v

RE

�, and f�; 
g � �

for some 
 2 L.

2. If � 2 K, � k

v

RE

�, and � =2 K � �, then � k

v

RE


, 
 k

v

RE

�, and f�; 
g � �

for some 
 2 L.

14

Proof Let � be a faithful modular weak partial order in terms of whi
h v

RE

and � 
an

be de�ned using (Defv

E

from�) and (Def� fromr

�

). The proofs are similar to those

of part (1) of proposition 6.5.11. For the proof of (1), suppose that � 2 K, � <

RE

�,

and � =2 K � �. Now 
onsider the w� � ! �. It is 
lear that f�; � ! �g � �. By

lemma 6.5.10 there is a y 2M(:�^�) and a z 2M(:�^:�) su
h that x 2M(�^�)

for every x < y, and x 2M(�^�) for every x < z. So z 2M(:�) and x 2M(� ! �)

for every x � z. That is, (� ! �) 6v

RE

�. Sin
e M(:(� ! �)) � M(:�), it

also 
learly follows that � v

RE

(� ! �), and so � <

RE

(� ! �). To show that

(� ! �) k

v

RE

�, note �rstly that z 2 M(:�) and x 2 M(� ! �) for every x � z.

That is, (� ! �) 6v

RE

�. And then note that y 2 M(:(� ! �)) and x 2 M(�) for

every x � z. That is, � 6v

RE

(� ! �).

For the proof of (2), suppose that � 2 K, � k

v

RE

�, and � =2 K � �. Now


onsider the w� � $ �. It is 
lear that f�; � $ �g � �. By lemma 6.5.10, there is

a y 2 M(:� ^ �) and a z 2 M(:� ^ :�) su
h that x 2 M(� ^ �) for every x < y

and M(� ^ �) for every x < z. To show that � $ � k

v

RE

�, note �rstly z 2 M(:�)

and x 2 M(� $ �) for every x � z. That is, � $ � 6v

RE

�. And then note that

sin
e � 6v

RE

�, there is a v 2 M(:�) su
h that u 2 M(�) for every u � v. Therefore

v k

�

y, and so u 2 M(� ^ �) for every u < v. So v 2 M(:(� $ �)) and u 2 M(�)

for every u � v. That is, � 6v

RE

� $ �. Then, to show that � $ � k

v

RE

�, note that

z 2 M(:�) and x 2 M(� $ �) for x � z. That is, � $ � 6v

RE

�. And then observe

that y 2M(:(� $ �)) and x 2M(�) for every x � y. That is, � 6v

RE

(� $ �). 2

We are now in a position to state the main result of this se
tion.

14

It 
an also be shown that if � 2 K, � k

v

RE

� and � =2 K � �, then � <

RE


, 
 k

v

RE

�, and

f�; 
g � � for some 
. The proof is essentially the same as for part (1) of the proposition. While

su
h a result does not o�er mu
h insight from an epistemologi
al point of view, it might be useful for


omputational purposes.
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Theorem 6.5.14 Suppose that the RE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related. Then

� =2 K � � i�

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

� =2 K and � �, or

� =2 K and � =2 K, or

� v

RE

� and 2 �, or

� <

RE

� and 9
 2 L su
h that

� <

RE


, � k

v

RE


 and f�; 
g � �, or

� k

v

RE

� and 9
 2 L su
h that

� k

v

RE


, � k

v

RE


 and f�; 
g � �,

(6.3)

or equivalently,

� 2 K � � i�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

� 2 K and � �, or

� 2 K and � =2 K, or

� <

RE

� and 8
 2 L su
h that

� <

RE


 and � k

v

RE


, f�; 
g 2 �, or

� k

v

RE

� and 8
 2 L su
h that

� k

v

RE


 and � k

v

RE


, f�; 
g 2 �.

(6.4)

Proof The proof is mostly a 
ombination of the results in propositions 6.5.11, 6.5.6

and 6.5.13. It 
an be found in appendix B. 2

From theorem 6.5.14 it emerges that, barring the limiting 
ases where � is logi
ally

valid or not in K, a w� � 2 K will only be removed during a systemati
 �-withdrawal

for one of the following reasons:

1. The w� � is at most as entren
hed as �.

2. The w� � is irrelevant with respe
t to � (i.e. � is not 
omparable with �) but

there is another w� 
, whi
h is irrelevant with respe
t to both � and �, and

whose in
lusion in the resulting belief set together with �, will for
e us to in
lude

� as well.

3. The w� � is more entren
hed than � but there is another w� 
, also more en-

tren
hed than �, and irrelevant with respe
t to �, whose in
lusion in the resulting

belief set together with �, will for
e us to in
lude � as well.
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6.5.3 Representing systemati
 withdrawal graphi
ally

Se
tions 6.4 and 6.5.2 provide interesting formal relationships between systemati
 with-

drawal and re�ned entren
hment, but they provide little insight into the possible use of

the RE-orderings to a
tually perform systemati
 withdrawal. In this se
tion we show

that for the spe
ial 
ase of the �nitely generated propositional languages, it is possi-

ble to de�ne a pro
ess for 
onstru
ting systemati
 withdrawal from the RE-orderings.

This is important for 
omputational purposes, but it is also of some epistemologi
al

importan
e.

The �rst result shows that those w�s whi
h happen to be at most as entren
hed as

some dis
arded w� will also be dis
arded.

Proposition 6.5.15 Suppose that the RE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related. If � =2 K � � then 
 =2 K � � for every 
 v

RE

�.

Proof Let � be a faithful modular weak partial order in terms of whi
h v

RE

and �


an be de�ned using (Def v

E

from �) and (Def � from r

�

). Suppose that � =2 K ��

and pi
k any 
 v

RE

�. So there is a y 2 M(K � �) su
h that y 2 M(:�). And sin
e


 v

RE

� there is an x 2 M(:
) su
h that x � y. So x 2 M(K � �) and therefore


 =2 K � �. 2

In se
tion 6.5.2 it was shown that systemati
 withdrawal requires a good reason for

removing a w� from K during an �-withdrawal. The next result is similar, providing

a di�erent kind of justi�
ation for the removal of some of these w�s.

Proposition 6.5.16 Suppose that the RE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related. If � 2 K, 
 k

v

RE

� and 
 =2 K��, then there is a � =2 K��

su
h that � <

RE

� and 
 v

RE

�.

Proof Let � be a faithful modular weak partial order in terms of whi
h v

RE

and �


an be de�ned using (Def v

E

from �) and (Def � from r

�

). Pi
k any � 2 K and any


 su
h that 
 k

v

RE

� and 
 =2 K � �. We show that � <

RE

� _ 
, 
 v

RE

� _ 
 and

�_
 =2 K��. Sin
e M(�) �M(�_
) and M(
) �M(�_
), it immediately follows

that � v

RE

� _ 
 and 
 v

RE

� _ 
. Sin
e 
 k

v

RE

�, there is a y 2 Min

�

(:�) su
h

that x 2 M(
) for every x � y, and there is a v 2 Min

�

(:
) su
h that u 2 M(�) for

every u � v. So y k

�

v, x 2 M(
) for every x < y, and u 2 M(�) for every u < v.

Be
ause 
 =2 K � �, it then follows that there is a z 2 Min

�

(:�) \M(:
). And this
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means that � _ 
 =2 K � �. Finally, note that for every x � y, x 2 M(
) and thus

x 2M(� _ 
). Therefore � _ 
 6v

RE

�, and then � <

RE

� _ 
 (be
ause � v

RE

� _ 
).

2

Our next result relates spe
i�
ally to the w�s that are more entren
hed than a w� �

to be withdrawn, but that are nevertheless removed from K. It shows that, for the

�nitely generated propositional languages, the stru
ture of an RE-ordering 
an be used

in a natural way to �nd these w�s. To do so, we need the notion of a 
losest upper

gate with respe
t to a preorder on w�s.

(Def 
ug

v

) � 2 
ug

v

(�) i�

8

>

>

>

>

<

>

>

>

>

:

1. � < �,

2. 8
 su
h that � < 
, 
 v � or � v 
, and

3. 8
 su
h that � < 
 < �,

9Æ su
h that � < Æ < � and 
 k

v

Æ

De�nition 6.5.17 Let v be a preorder on L. The 
losest upper gate 
ug

v

(�) of a w�

�, with respe
t to v, is de�ned in terms of v using (Def 
ug

v

). 2

Roughly speaking, the 
losest upper gate of a w� � (with respe
t to a preorder v

on w�s) is the �rst equivalen
e 
lass (modulo v) of w�s en
ountered when moving

\upwards" from �, whi
h are not in
omparable with respe
t to any of the w�s \above"

�. We shall also have o

asion to use the upset of a w� bounded by its 
losest upper

gate.

(Def �

v

) �

v

(�) = f
 j � < 
 < � for some � 2 
ug(�)g

De�nition 6.5.18 Let v be a preorder on L The upset �

v

(�) of a w� � bounded by


ug

v

(�) is de�ned in terms of v using (Def �

v

). 2

The next lemma 
ontains useful results about 
losest upper gates for RE-orderings. It

shows that every 
losest upper gate (ex
ept for the empty set) is indeed an equivalen
e


lass modulo the RE-ordering, and that in the �nitely generated propositional 
ase,

every w�, ex
ept for the logi
ally valid ones, has a non-empty 
losest upper gate.

Lemma 6.5.19 Let v

RE

be an RE-ordering.

1. If � 2 
ug

v

RE

(�) then 
ug

v

RE

(�) = [�℄

v

RE

.

15

15

See se
tion 1.3 for an explanation of the meaning of [�℄

v

RE

.
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2. If L is a �nitely generated propositional language, then 
ug

v

RE

(�) = ; i� � �.

Proof For the proof of (1), suppose that � 2 
ug

v

RE

(�), pi
k a 
 2 
ug

v

RE

(�), and

assume that 
 =2 [�℄

v

RE

. From (1) and (2) in (Def 
ug

v

), � v

RE


 or 
 v

RE

�, and

therefore � <

RE


 or 
 <

RE

�. We suppose that 
 <

RE

�. By (3) in (Def 
ug

v

) there

is thus a Æ su
h that � <

RE

Æ and 
 k

v

RE

Æ. But sin
e 
 2 
ug

v

RE

(�) this 
ontradi
ts

(2) in (Def 
ug

v

). A similar argument holds if � <

RE


, and so 
ug

v

RE

(�) � [�℄

v

RE

.

Now pi
k any 
 2 [�℄

v

RE

. It then follows easily from (Def 
ug

v

) that 
 2 
ug

v

RE

(�),

and so [�℄

v

RE

� 
ug

v

RE

(�).

For the proof of (2), note �rstly that if � � then � 6<

RE


 for every 
, and by (1)

in (Def 
ug

v

), 
ug

v

RE

(�) = ;. On the other hand, suppose that 2 � and assume that


ug

v

RE

(�) = ;. We show that for every � satisfying (1) and (2) in (Def 
ug

v

), there

is a 
 <

RE

� also satisfying (1) and (2) in (Def 
ug

v

), thus 
ontradi
ting the fa
t that

L is a �nitely generated language. To do so, note �rstly that every � that satis�es (1)

and (2) in (Def 
ug

v

) does not satisfy (3). That is, for every � that satis�es (1) and

(2) in (Def 
ug

v

), there is a 
 su
h that � <

RE


 <

RE

� and for every Æ for whi
h

� <

RE

Æ <

RE

�, either 
 v

RE

Æ or Æ v

RE


. So, if we 
an show that 
 v

RE

' for

every ' su
h that � <

RE

' but ' 6<

RE

�, we will have shown that 
 satis�es (1) and

(2) in (Def 
ug

v

). Pi
k any ' su
h that � <

RE

' but ' 6<

RE

�. Then either � v

RE

'

or ' k

v

RE

�. But sin
e � <

RE

', and sin
e � satis�es (2) in (Def 
ug

v

), it 
annot be

the 
ase that ' k

v

RE

�. So � v

RE

', and sin
e 
 <

RE

�, it follows that 
 <

RE

',

whi
h means we are done. 2

Before we 
an prove our next result, we need the following te
hni
al lemma.

Lemma 6.5.20 Let L be a �nitely generated propositional language, � a faithful mod-

ular weak partial order and v

RE

the RE-ordering de�ned in terms of � using (Def

v

E

from �) by �. Now let � and � be su
h that M(�) = fx j 8y 2 Min

�

(:�),

y � xg. For every 
 su
h that � <

RE


 <

RE

�, there is a y 2 M(:� ^ � ^ 
) and a

z 2M(:�^� ^:
) su
h that x 2M(�^� ^
) for every x < y, and x 2M(�^� ^
)

for every x < z.

Proof If � � the result holds va
uously, and we thus suppose that 2 �. Pi
k a 


su
h that � <

RE


 <

RE

�. Sin
e 
 6v

RE

� there is a y 2 Min

�

(:�) su
h that

x 2 M(
) for every x � y. Combined with the de�nition of � it thus follows that

y 2M(:�^� ^
) and x 2 M(�^� ^
) for every x < y. Furthermore, sin
e � 6v

RE
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there is a z 2 Min

�

(:
) su
h that x 2 M(�) for every x � z. And sin
e � v

RE




there is a w 2M(:�) su
h that w � z. But then w 2M(�) and so it follows from the

de�nition of � that w 2 Min

�

(:�). Therefore w = z and v 2 M(�) for every v < z.

So z 2 M(:� ^ � ^ :
), and be
ause we have already seen that x 2 M(
) for every

x � y, it follows that x 2M(� ^ � ^ 
) for every x < z. 2

The next result shows that for the �nitely generated propositional languages, the w�s

that are more entren
hed than a w� � to be withdrawn, but that are not in the resulting

belief set, are pre
isely those that lie between � and the 
losest upper gate of �.

Proposition 6.5.21 Let L be a �nitely generated propositional language and suppose

that the RE-ordering v

EE

and the systemati
 withdrawal � are semanti
ally related.

If � <

RE


 then 
 =2 K � � i� 
 2 �

v

RE

(�).

Proof Let � be a faithful modular weak partial order in terms of whi
h v

RE

and �


an be de�ned using (Def v

E

from �) and (Def � from r

�

). If � � the result follows

va
uously and so we suppose that 2 �. It suÆ
es to show that for some � 2 
ug

v

RE

(�)

and every 
 su
h that � <

RE


, 
 =2 K � � i� 
 <

RE

�. Now pi
k any � su
h that

M(�) = fx j 8y 2 Min

�

(:�); y � xg. Sin
e L is a �nitely generated propositional

language, there is indeed su
h a �. We start by showing that � 2 
ug

v

RE

(�).

1. Pi
k any y 2M(:�). By the de�nition of �, z < y for every z 2Min

�

(:�), and

there is thus an x 2 M(:�) su
h that x � y. Therefore � v

RE

�. On the other

hand, pi
k any y 2 Min

�

(:�). By the de�nition of � it follows that x 2 M(�)

for every x � y, and thus � 6v

RE

�.

2. Pi
k any 
 2 L su
h that � <

RE


 and suppose that � 6v

RE


. So there is a

y 2 M(:
) su
h that x 2 M(�) for every x � y. Therefore y 2 M(� ^ :
). By

the de�nition of �, u < v for every v 2 M(:�) and u 2 M(�), and so y < v

for every v 2 M(:�). That is, for every v 2 M(:�) there is a u 2 M(:
) su
h

that u � v, whi
h means that 
 v

RE

�. So for every 
 2 L su
h that � <

RE


,


 v

RE

� or � v

RE


.

3. We show that � <

RE

� $ 
 <

RE

� and 
 k

v

RE

� $ 
 for every 
 su
h that

� <

RE


 <

RE

�. Pi
k any y 2 M(:(� $ 
)). If y 2 M(:�) then 
learly

there is an x 2 M(:�) su
h that x � y. Otherwise y 2 M(:
) and sin
e

� v

RE


 there is an x 2 M(:�) su
h that x � y. So � v

RE

� $ 
. On
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the other hand, by lemma 6.5.20 there is a z 2 M(:� ^ � ^ :
) su
h that

x 2 M(� ^ � ^ 
) for every x < z. So z 2 M(:�) and for every x � z,

x 2 M(� $ 
). That is, � $ 
 6v

RE

�. And therefore � <

RE

� $ �. Pi
k

any w 2 M(:�). By lemma 6.5.20 there is a y 2 M(:� ^ � ^ 
) su
h that

x 2M(�^� ^
) for every x < y. By the de�nition of � it follows that u < w for

every u 2 M(�). So y < w and be
ause y 2 M(:(� $ 
)) it follows that there

is an x 2 M(:(� $ 
)) su
h that x � w. That is, � $ 
 v

RE

�. On the other

hand, y 2M(:(�$ 
)) and for every x � y, x 2M(�). That is, � 6v

RE

�$ 
.

And therefore � $ � <

RE

�. It remains to be shown that 
 k

v

RE

� $ 
. By

lemma 6.5.20 there is a y 2 M(:� ^ � ^ 
) su
h that x 2 M(� ^ � ^ 
) for

every x < y. So y 2 M(:(� $ 
)) and for every x � y, x 2 M(
). That is,


 6v

RE

� $ 
. Furthermore, by lemma 6.5.20 there is a z 2 M(:� ^ � ^ :
)

su
h that x 2 M(� ^ � ^ 
) for every x < z. So z 2 M(:
) and for every

x � y, x 2 M(� $ 
). That is, � $ 
 6v

RE


. So, for every 
 2 L su
h that

� <

RE


 <

RE

�, � <

RE

�$ 
 <

RE

� and 
 k

v

RE

�$ 
.

We have thus shown that � 2 
ug

v

RE

(�). Now we show that for every 
 su
h that

� <

RE


, 
 =2 K � � i� 
 <

RE

�. Pi
k any 
 su
h that � <

RE


. For the left-to-right

dire
tion, suppose that 
 =2 K � �. That is, there is a z 2 M(K � �) su
h that

z 2 M(:
). Sin
e M(K � �) � M(�), it follows that x 2 M(�) for every x � z, and

thus that � 6v

RE


. Now pi
k any y 2M(:�). By the de�nition of �, z < y. And sin
e

z 2M(:
), there is an x 2M(:
) su
h that x � y. So 
 v

RE

�. For the right-to-left

dire
tion, suppose that 
 <

RE

�. Sin
e � 6v

RE


 there is a y 2 M(:
) su
h that

x 2 M(�) for every x � y. So y 2 M(�) and by the de�nition of �, v 2 M(�) for

every v < y. And sin
e � v

RE


, there is a w 2 M(:�) su
h that w � y, from whi
h

it then follows that w = y and thus y 2 M(:�). So y 2 M(:� ^ � ^ :
) and by the

de�nition of �, y 2Min

�

(:�). Therefore 
 =2 K � �. 2

We are now in a position to prove the main result of this se
tion.

Theorem 6.5.22 Let L be a �nitely generated propositional language and suppose that

the RE-ordering v

EE

and the systemati
 withdrawal � are semanti
ally related. Then

� =2 K � � i�

(

� =2 K and either � =2 K or � �, or

there is a 
 2 �

v

RE

(�) [ f�g su
h that � v

RE


.
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Proof Let � be a faithful modular weak partial order in terms of whi
h v

RE

and �


an be de�ned using (Def v

E

from �) and (Def � from r

�

). For the proof in the

left-to-right dire
tion, suppose that � =2 K � �, and assume that either � 2 K, or

� 2 K and 2 �. If � 2 K then K 6= K � � (be
ause � =2 K � �), and it thus follows

from (K�3) and (K�6) that � 2 K and 2 �. So in both 
ases, � 2 K and 2 �. Now, if

� v

RE

� then there is indeed a 
 2 �

v

RE

(�)[ f�g su
h that � v

RE


. So we suppose

that � 6v

RE

�. This means that either � k

v

RE

� or � <

RE

�. In the latter 
ase it

follows from proposition 6.5.21 that � 2 �

v

RE

(�). In the former 
ase it follows from

proposition 6.5.16 that there is a 
 =2 K � � su
h that � <

RE


 and � v

RE


. And by

proposition 6.5.21, 
 2 �

v

RE

(�).

For the proof in the right-to-left dire
tion, note �rstly that if � =2 K and � =2 K then

� =2 K �� by (K�3), and if � � and � =2 K then � =2 K �� by (K�6). So we suppose

that 2 �, � 2 K and that there is a 
 2 �

v

RE

(�)[f�g su
h that � v

RE


. If 
 = �, it

follows from proposition 6.5.6 that � =2 K��. Otherwise � <

RE


 <

RE


ug

v

RE

(�). By

proposition 6.5.21, 
 =2 K �� and by proposition 6.5.15 we then have that � =2 K ��.

2

Theorem 6.5.22 provides us with the following des
ription of systemati
 withdrawal in

terms of re�ned entren
hment. Consider the non-trivial 
ase where � is in K, but is not

logi
ally valid. To obtain the belief set resulting from an �-withdrawal, we partition L

into three sets; those that are at most as entren
hed �, those that are more entren
hed

than �, and those that are in
omparable with �.

1. None of the w�s that are at most as entren
hed as � are in K � �.

2. The w�s that are more entren
hed than �, but that aren't in K�� are pre
isely

those that are between � and the 
losest upper gate of �. These w�s are 
lustered

right above �, and are stri
tly less entren
hed than the w�s above � that are in

K � �.

3. The only w�s that are in
omparable with �, but that are not in K��, are those

that are less entren
hed than one of the w�s whi
h are removed from K even

though it is more entren
hed than �.

A parti
ularly attra
tive feature obtained from this analysis is that the w�s that aren't

in the resulting belief set when withdrawing � from K, are all 
lustered together in
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the re�ned entren
hment ordering. We 
on
lude this se
tion with a brief des
ription

of how the results of theorem 6.5.22 
an be used to de�ne a graph-based pro
edure for


omputing systemati
 withdrawal. The basi
 idea is to view every re�ned entren
hment

ordering v

RE

as a dire
ted a
y
li
 graph (DAG), with the equivalen
e 
lasses of w�s

(modulo v

RE

) as the verti
es of the DAG, and with the ar
s between verti
es obtained

from v

RE

. Consider the non-trivial 
ase where � 2 K nCn(>). The w�s not in K��

are obtained from the DAG asso
iated with v

RE

as follows: Start from the vertex

v 
ontaining � and follow all the paths leading out of v to the �rst vertex w where

these paths all meet. The vertex w 
ontains 
ug

v

RE

(�). Now 
onsider all the verti
es

that were visited before rea
hing w (in
luding v but ex
luding w) and do a ba
kward

traversal of the paths leading into these verti
es. The w�s not in K � � are pre
isely

those 
ontained in the verti
es visited on these ba
kward traversals. This pro
ess is

made 
on
rete in the following example.

Example 6.5.23 Let L be the propositional language generated by the two atoms p

and q, let K = Cn(p ^ q), and let v

RE

be RE-ordering de�ned as follows:

� v

RE

� i�

(

� 2 L if � =2 K, and

� � � if � 2 K.

Figure 6.6 
ontains a graphi
al representation of v

RE

. Let � be the systemati
 with-

drawal de�ned in terms of v

RE

using (Def � from v

RE

). It 
an be veri�ed that

K � (p $ q) = Cn(p _ q). This result 
an also be obtained by viewing �gure 6.6 as

a DAG. We start from the vertex v 
ontaining p $ q and follow all the paths leading

out of v until we rea
h the �rst vertex w where all these paths meet. The vertex w is

the one 
ontaining the w� >, and it also 
ontains all the w�s in 
ug

v

RE

(p $ q). The

verti
es visited before rea
hing w are the vertex v itself and the verti
es 
ontaining the

w�s p _ :q and :p _ q. Now we do a ba
kward traversal of all the paths leading into

these three verti
es. The verti
es visited on these ba
kward traversals are the boxed

ones. The only remaining verti
es are w (whi
h 
ontains the w� >) and the vertex


ontaining p _ q. So the w�s in K � � are pre
isely those that are logi
ally equivalent

to p _ q and to >. 2
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p

f� j p ^ q 2 �g = L nK

p ^ q

p$ q

p _ q

6

6

q

k

>

p _ :q :p _ q


ug

v

RE

(p$ q)

w

>

>}

>

6

}

k

>

Figure 6.6: A graphi
al representation of the RE-ordering v

RE

with respe
t to the

belief set K = Cn(p^ q). This RE-ordering is used in example 6.5.23. For every �; � 2

L, � v

RE

� i� (�; �) is in the re
exive transitive 
losure of the relation determined

by the arrows. Ea
h w� in this �gure is a 
anoni
al representative of the set of w�s

that are logi
ally equivalent to it. This graphi
al representation 
an also be seen as

the dire
ted a
y
li
 graph (DAG) obtained from v

RE

.

6.6 Summary

We 
lose this 
hapter with a graphi
al summary of the 
onne
tions between various

forms of prin
ipled withdrawal and entren
hment orderings. It 
an be found in �gure

6.7. As in previous 
hapters, it is diÆ
ult to es
ape the 
on
lusion that they all have

a semanti
 basis, and more parti
ularly, are rooted in some subset of the faithful lay-

ered preorders. Finally, these semanti
 
onstru
tions bear testimony to two important

prin
iples, one of whi
h was already noted by Rott and Pagnu

o [1999,p. 33℄. The
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underlying semanti
 stru
tures employed to de�ne a parti
ular form of withdrawal or

entren
hment are obviously important. But whether two di�erent stru
tures de�ne

the same 
onstru
tion depends, to some extent, on the way these stru
tures are used.

And 
onversely, the same stru
ture might very well be used in a number of di�erent

ways, depending on the pre
eden
e given to di�erent prin
iples, resulting in distin
tly

di�erent 
onstru
tions.



6.6. SUMMARY 199

�

�

v

RE

v

EE

�

�

�

�

(Def v from �)

(Def v

EE

from v

RE

)

-

-�

6 6

s

6

�

�

-

* Y

� j

(Def v

RE

from �)

?

�

i

?

?

:

o

7

�

U

-�

(Def v from �)

(Def v

EE

from �)

(Def � from v

RE

)

(Def � from v

EE

)

(Def � from �)

(Def v

RE

from �)
(Def v

EE

from �)

(Def � from v

EE

)

(Def

�

� from v

RE

)

(Def v

RE

from �)

(Def

�

� from �)

(Def � from

�

�)

(Def

�

� from �)

(Def � from �)

(Def � from �)

(Def � from �)

(Def � from v

RE

)

(Def v

EE

from �)

(Def � from r

�

)

(Def

�

� from v

EE

)

(Def � from r

�

)

�

(Def v

RE

from v

EE

)

Figure 6.7: The relationship between minimal-equivalent faithful layered preorders,

AGM 
ontra
tion, the EE-orderings, the RE-orderings, systemati
 withdrawal and

severe withdrawal.
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Chapter 7

Iterated belief 
hange

After people have repeated a phrase a great number of times,

they begin to realize it has meaning and may even be true.

H.G. Wells (1866-1946)

AGM theory 
hange has proved to be very useful as an abstra
t a

ount of e�e
ting


hange in the epistemi
 state of an agent. As su
h, it provides a good platform from

whi
h to laun
h investigations into aspe
ts of belief 
hange whi
h are not dealt with

in the AGM framework. Makinson [1997℄ states this viewpoint as follows:

\But it is through su
h simple, idealized representations of belief sets that

we have begun to obtain the insights needed to ta
kle more 
omplex ones

without getting lost in intri
a
ies and overheads. Having a
quired a fairly

good understanding of the former over the de
ade sin
e the AGM a

ount

appeared in 1985, we 
an now pro�tably give more attention to the latter."

In the light of this statement, it should 
ome as no surprise that investigations into

various extensions of AGM theory 
hange have be
ome more frequent in re
ent years.

Iterated belief 
hange, the problem of dealing with a sequen
e of 
hanges to the epis-

temi
 state of an agent, is an aspe
t of belief 
hange whi
h falls into this 
ategory, and

is the fo
us of this 
hapter. Sin
e most re
ent advan
es in this area have fo
used on

�nitely generated propositional languages, we shall, for the rest of this 
hapter, assume

L to be su
h a language with a valuation semanti
s (V;
). We dis
uss the gener-

al frameworks for iterated revision provided by Williams [1994℄, Darwi
he and Pearl

201
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[1994, 1997℄, and Lehmann [1995℄, and take a brief look at a framework for iterated

withdrawal. Furthermore, we 
onsider revision operations proposed by Boutilier [1993,

1996℄, Williams [1994℄ and Papini [1998, 1999℄.

One of the most important lessons to be learnt from the study of iterated belief


hange is that belief 
hange operations are performed on the level of epistemi
 states,

and not belief sets. Inspired by this insight, we dis
uss a generalised version of revision

in whi
h epistemi
 states are merged. We propose some basi
 properties for su
h

merging operations, and 
onsider a few parti
ular merging operations. Amongst those

we 
onsider are Nayak's version of iterated revision [1994b, 1996℄ and the framework

for arbitration proposed by Liberatore and S
haerf [1998℄.

7.1 Transmutation

Re
ent advan
es in iterated belief 
hange have bene�tted substantially from ideas ini-

tially proposed by Spohn [1988, 1991℄, and generalised by Williams [1994℄. It is thus

appropriate that we 
ommen
e with a dis
ussion of these. Williams [1994℄ proposes a

framework for belief 
hange based on Spohn's ordinal 
onditional fun
tions (see se
tion

5.3). It is a generalisation of withdrawal and revision in two respe
ts.

Firstly, the informational inputs are not w�s, but ordered pairs of the form (�; n),

where � 2 L n f� j � � ? or � � >g and n is a natural number. To be more

pre
ise, Williams proposes to use pairs of the form (W;n), where ; � W � V and n

is an ordinal, but sin
e we assume L to be a �nitely generated propositional language,

every su
h a W is axiomatisable by a single w� (whi
h is satis�able but not logi
ally

valid). Furthermore, sin
e V is �nite, we restri
t ourselves to those OCFs with ranges


onsisting of subsets of !, the set of natural numbers.

1

Se
ondly, transmutations are operations on ordinal 
onditional fun
tions (OCFs),

and not on belief sets. Re
all from se
tion 5.3 that, for an OCF �, K

�

denotes the

the set Th(fv j �(v) = 0g), and that K

�


an therefore be regarded as the belief set

asso
iated with �. Furthermore, re
all that an OCF assigns the number 0 to at least

one valuation, from whi
h it follows that K

�

is satis�able. And moreover, re
all that

1

Having made these simpli�
ations, it is tempting to augment the domain of OCFs to in
lude the

empty set as well, and set �(;) = ! for every OCF �. In su
h a 
ase we would be dealing with

Spohn's [1991℄ natural 
onditional fun
tions . However, for the sake of simpli
ity we shall resist this

temptation.
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a w� in K

�

is said to be believed with a �rmness of n i� �(M(:�)) = n.

Williams de�nes a transmutation of the OCF � as any fun
tion

> : (L n (Cn(>) [ f� j � � ?g))� ! ! K,

where K is the set of all OCFs (with ranges 
onsisting of subsets of !) su
h that:

1. (�> (�; n))(M(:�)) = n

2. K

�>(�;n)

=

(

Th(fv 2M(�) j �(v) = �(�)g) if n > 0,

Th(fv j �(v) = 0 or (v 2M(:�) and �(v) = �(:�)g) otherwise

So a transmutation of the 
urrent OCF � by (�; n) yields a new OCF �

0

in whi
h � is

believed with a �rmness of n. Furthermore, if n > 0, we 
an think of a transmutation

as a revision, while it 
an be regarded as a 
ontra
tion if n = 0. This view is justi�ed by

noting that K

�

0

, the belief set asso
iated with �

0

, is generated by the minimal models

of � (with regard to �) if n > 0, and by the minimal models of �, together with the

models of K

�

, if n = 0.

Williams 
onsiders the 
onstru
tion of two transmutations. The �rst one is Wolf-

gang Spohn's [1988℄ 
onditionalisation, whi
h has turned out to be a parti
ularly in-


uential 
ontribution to the enterprise of iterated belief 
hange. Indeed, as mentioned

above, transmutation was proposed as a generalisation of Spohn's 
onditionalisation,

and the latter has also served as inspiration for the general framework of Darwi
he

and Pearl dis
ussed in se
tion 7.3. The OCF � > (�; n), referred to as the (�; n)-


onditionalisation of �, is de�ned as follows:

(Def > from �) �> (�; n)(v) =

(

�(v)� �(M(�)) if v 2M(�),

�(v)� �(M(:�)) + n otherwise

In other words, the models of � are shifted \downwards" without a�e
ting the distan
es

between them, so that the minimal models of � are assigned the number 0, while the

models of :� are shifted \upwards" without a�e
ting the distan
es between them, so

that the minimal models of :� are assigned the number n. It is easily established that

for a �xed OCF � 2 K and a �xed n > 0, the revision � de�ned in terms of � using

(Def � from �) below is an AGM revision:

2

2

As Darwi
he and Pearl [1997,p. 15℄ have noted though, viewing a revision � as a fun
tion from

Bel�L to Bel means that (Def � from �) may yield di�erent results for di�erent OCFs 
orresponding

to the same belief set, thus violating the fun
tionality of �.
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(Def � from �)

2

6

6

6

6

6

6

4

K

�

� � =

8

>

<

>

:

K

�

if � �,

K

�>(�;n)

if � 6� ? and 2 �,

Cn(?) otherwise

Cn(?) � � = K

�

� �

3

7

7

7

7

7

7

5

Similarly, for a �xed OCF � 2 K, the removal � de�ned in terms of � using (Def �

from �) below is an AGM 
ontra
tion:

(Def � from �)

2

6

6

6

6

4

K

�

� � =

(

K

�

if � � or � � ?

K

�>(�;0)

otherwise

and

Cn(?) � � = K

�>(�;1)

3

7

7

7

7

5

The se
ond transmutation that Williams 
onsiders is known as adjustment . The basi


idea is that an (�; n)-adjustment should be the transmutation that leaves the 
urrent

OCF as undisturbed as possible; an appeal to the Prin
iple of Minimal Change. The

(�; n)-adjustment ? of the OCF � is de�ned as follows:

(Def ? from �) � ? (�; n)(v) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0 if n = 0, v 2M(:�), and �(v) = �(:�),

�(v) if n = 0 and (v 2M(�) or �(v) 6= �(:�)),

0 if 0 < n, v 2M(�), and �(v) = �(�),

�(v) if 0 < n, v 2M(�), and �(v) 6= �(�),

n if 0 < n < �(:�), v 2M(:�),

and �(v) = �(:�),

�(v) if 0 < n < �(:�), v 2M(:�),

and �(v) 6= �(:�),

n if 0 < n, n � �(:�), v 2M(:�),

and �(v) � n,

�(v) if 0 < n, n � �(:�), v 2M(:�),

and �(v) > n

This de�nition looks quite 
ompli
ated, but it 
an be broken down into three mutually

ex
lusive 
ases:

1. If n = 0, the only di�eren
e between � and � ? (�; n) is that the minimal models

of :� (with respe
t to �), are all assigned the number 0 in � ? (�; n).
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2. If n > 0 and the number that � assigns to the minimal models of :� (with respe
t

to �) is greater than n, then the only di�eren
e between � and � ? (�; n) is that

the minimal models of :� (with respe
t to �) are all assigned the number n in

� ? (�; n).

3. If n > 0 and the number that � assigns to the minimal models of :� (with respe
t

to �) is less than or equal to n, then the only di�eren
e between � and � ? (�; n)

is that the models of :� for whi
h � assigns numbers less than n are all assigned

the number n in � ? (�; n).

We shall see below that it only takes a small modi�
ation to apply the intuitions

underlying 
onditionalisation and adjustment to iterated belief 
hange based on AGM

revision.

7.2 AGM and iterated belief 
hange

It is by now widely a

epted that AGM theory 
hange is not able to deal with issues

of iterated belief 
hange in an adequate manner [Al
hourr�on and Makinson, 1985,

G�ardenfors, 1988, Levi, 1988, Boutilier, 1993, 1996, Nayak, 1994b, Nayak et al., 1996℄.

This statement 
an be interpreted in at least two ways. In the stati
 view adopted

by Freund and Lehmann [1994℄, theory revision

3

is des
ribed as an operation with two

arguments; a belief set K, and a w� � with whi
h to revise K.

4

So the operation �

represents a pro
ess of revision whi
h is �xed right from the start, so that an �-revision

of a belief set K will always yield the same result, regardless of how an agent arrived at

K. The stati
 view therefore dooms an agent to pi
king, for every belief set K, a single

epistemi
 state to asso
iate with K, and to using only that epistemi
 state to guide its

reasoning whenever its set of beliefs 
orresponds to K. Thus, for example, if the two

belief sets K and (K � �) � � happen to be identi
al, it will always be the 
ase that

K � 
 = ((K ��) � �) � 
. It is, essentially, the postulate (K�5) whi
h requires of us to

treat iterated revision in su
h a stati
 manner. In this view, a proper a

ount of iterated

revision is just the natural next step in the move from basi
 AGM theory revision to

AGM theory revision. While basi
 AGM revision �xes both arguments of the revision

3

Sin
e most resear
hers restri
t themselves to treatments of revision when it 
omes to iterated

belief 
hange, we shall do the same, for the most part.

4

See also [Are
es and Be
her, 1998℄



206 CHAPTER 7. ITERATED BELIEF CHANGE

operation �, AGM revision (whi
h also satis�es the supplementary postulates) �xes

the �rst argument, the belief set, and allows the se
ond argument, the w� with whi
h

to revise, to vary. And iterated revision is then seen as the next step, where the �rst

argument is also allowed to vary. The stati
 view thus advo
ates the introdu
tion of

additional postulates in the style of the AGM revision postulates in order to obtain an

appropriate a

ount of iterated revision.

There is a dynami
 view of iterated revision as well, in whi
h the revision pro
ess

depends on more than just the belief set to be revised. In this view, the revision

pro
edure used to revise the belief set K � � may very well di�er from the one used

when revising K. As a result, for example, K � 
 and ((K � �) � �) � 
 need not be

identi
al when K and (K � �) � � are. Stri
tly speaking, this view is in
ompatible

with AGM revision, and more parti
ularly, with (K�5). But this is merely be
ause

the notation used in the AGM postulates does not re
e
t the fa
t that revision is an

operation on epistemi
 sets, and not on belief sets (or stated di�erently, that belief

sets do not have enough stru
ture to serve as appropriate representations of epistemi


states). And as we shall see, it only requires a slight reformulation of the AGM revision

postulates to do away with the in
ompatability brought on by (K�5).

Although the stati
 view of revision might serve as a �rst approximation, it seems

reasonable to 
on
lude that a proper rational a

ount of iterated revision 
an only be

found by embra
ing the dynami
 view, and more parti
ularly, the move from revision

as an operation on belief sets, to revision as an operation on epistemi
 states. That

revision ought to be seen as an operation on epistemi
 states, be
omes apparent when

observing that AGM theory 
hange is in 
lear violation of the prin
iple of Categori
al

Mat
hing. It (AGM theory 
hange) delivers a belief set as a result of a 
hange operation,

but requires an epistemi
 state, 
onsisting of a belief set together with some kind of

sele
tion me
hanism (su
h as a faithful layered preorder) to perform these 
hange

operations. Furthermore, it is easy to 
onstru
t examples demonstrating that two

agents with di�erent epistemi
 states 
ontaining the same belief set, will sometimes

follow di�erent revision strategies. Below we provide su
h an example, whi
h is a

slight modi�
ation of an example presented in [Darwi
he and Pearl, 1997℄.

5

Example 7.2.1 Two jurors in a murder trial possess di�erent biases; both jurors

5

The example of Darwi
he and Pearl assumes that the two jurors have the same belief set, even

though juror number one believes that C is de�nitely inno
ent and B might be guilty, while juror

number two believes that B is de�nitely inno
ent while C might be guilty.
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believe that A is the murderer, and both believe that only A, B or C 
ould have


ommitted the 
rime (a 
lassi
 
ase of an alphabet murder mystery). But whereas

juror number one would more easily regard C as the murdering type than B, juror

number two would more easily 
onsider B to be guilty than C. Both jurors thus have

the same belief set. Some surprising eviden
e now 
omes to light; A has produ
ed a

reliable alibi. Clearly juror number one would now believe C to be the murderer, while

juror number two would believe that B is the murderer. 2

Finally, it is worth observing that even when adopting the dynami
 view, AGM revision

is not 
ompletely non
ommittal when it 
omes to iterated belief 
hange. Indeed, by way

of the two supplementary postulates (K�7) and (K�8), it does pla
e some 
onstraints

on the way iterated theory revision may be performed, although these 
onstraints are

fairly mild. Observe that (K�3) and (K�4) ensure that an �-expansion and an �-

revision are identi
al whenever :� is not in the belief set K. Consequently, as Freund

and Lehmann [1994℄ have shown, the following is a property derived from (K�3), (K�4),

(K�7) and (K�8).

(K�9) If :� =2 K � � then (K � �) � � = K � (� ^ �)

So AGM theory revision, in the form of (K�9), provides us with a suÆ
ient 
ondition

for insisting that the belief set resulting from a simultaneous revision of two w�s � and

� (that is, an � ^ �-revision) be identi
al to the belief set obtained from an �-revision

followed by a �-revision.

7.3 Iterated DP-revision

In two in
uential re
ent papers Darwi
he and Pearl [1994, 1997℄ have made an impor-

tant 
ontribution to the study of iterated belief 
hange. Of parti
ular signi�
an
e is

the shift they make in [Darwi
he and Pearl, 1997℄ from revision as an operation on

belief sets to an operation on epistemi
 states. Although they do not de�ne the notion

of an epistemi
 state expli
itly, they work on the assumption that we 
an extra
t from

every epistemi
 state a belief set K(�). Formally, they see a revision > as a fun
tion

from E � L to E , where E is the set of all epistemi
 states. To a

ommodate the move

to epistemi
 states, the AGM revision postulates are modi�ed appropriately.

6

6

A
tually, Darwi
he and Pearl modify the postulates of Katsuno and Mendelson (see se
tion 3.2.1),

but our a

ount here is the obvious translation to the AGM revision postulates.
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(E>1) K(�> �) = Cn(K(�> �))

(E>2) � 2 K(�> �)

(E>3) K(�> �) � K(�) + �

(E>4) If :� =2 K(�), then K(�) + � � K(�> �)

(E>5) If � = 	 and � � � then K(�> �) = K(	> �)

(E>6) K(�> �) = Cn(?) i� � :�

(E>7) K(�> � ^ �) � K(�> �) + �

(E>8) If :� =2 K(�> �), then K(�> �) + � � K(�> � ^ �)

With the ex
eption of (E>5), these postulates are just obvious translations of the


orresponding AGM revision postulates. (E>5) is an appopriate weakening of (K�5).

It requires a revision by two pie
es of logi
ally equivalent eviden
e to yield identi
al

belief sets when the epistemi
 states to be revised are identi
al, and not merely when

the belief sets 
ontained in these epistemi
 states are identi
al. Note that (E>5) does

not require a revision by two logi
ally equivalent w�s to yield the same epistemi


state; it only insists that the belief sets asso
iated with these epistemi
 states be

identi
al. This is quite surprising, espe
ially sin
e, in the words of Darwi
he and Pearl

[1997,p. 2℄, an epistemi
 state 
ontains, in addition to the belief set, \: : :the entire

information needed for 
oherent reasoning, in
luding, in parti
ular, the very strategy

whi
h the agent wishes to employ at that given time". Moreover, sin
e (K�5) is a formal

expression of the prin
iple of the Irrelevan
e of Syntax, one would expe
t (E>5) to be

an expression of the same prin
iple in the more general 
ontext of revision on epistemi


states. It thus seems as if the following postulate would have been more appropriate:

(E>9) If � = 	 and � � � then �> � = 	> �

We shall not pursue this matter further, ex
ept to note that repla
ing (E>5) with

(E>9) is 
ompatible with the results in the remainder of this se
tion.

Darwi
he and Pearl provide a representation result that is analogous to theorem

3.2.6.
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Theorem 7.3.1 Suppose we asso
iate with every epistemi
 state �, a K(�)-faithful

total preorder �

�

, and let > be any revision su
h that K(� > �) 
an be de�ned in

terms of �

�

using (Def � from �), for every � 2 E. Then > satis�es (E>1) to (E>8).

Conversely, suppose that > is a revision whi
h satis�es (E>1) to (E>8). Then every

epistemi
 state � 
an be asso
iated with a K(�)-faithful total preorder �

�

so that, for

every � 2 E, K(�> �) 
an be de�ned in terms of �

�

using (Def � from �).

Observe that if the ante
edent in (E>5) had been the requirement that K(�) = K(	),

we would have been obliged to 
onsider only those sets of faithful preorders for whi
h

�

�

= �

	

whenever K(�) = K(	). As it stands, though, we are free to asso
iate with

an epistemi
 state �, any K(�)-faithful total preorder.

Sin
e we are dealing with the �nitely generated propositional 
ase, it is easily ver-

i�ed that for a given revision > satisfying (E>1){(E>8), every epistemi
 state � is

asso
iated with a unique K(�)-faithful total preorder.

Proposition 7.3.2 Let > be a revision that satis�es (E>1) to (E>8) and pi
k any

� 2 E. There is a unique K(�)-faithful total preorder �

�

in terms of whi
h K(�>�)


an be de�ned using (Def � from �).

Proof By theorem 7.3.1, �

�

exists. Assume there is a di�erent K(�)-faithful total

preorder �

�

in terms of whi
h K(� > �) 
an be de�ned using (Def � from �). That

is, for some u; v 2 V , either u �

�

v and u 


�

v, or u �

�

v and u Æ

�

v. Now pi
k an

� su
h that M(�) = fu; vg. (Sin
e L is �nitely generated, there is su
h an �.) Then

Min

�

�

(�) 6= Min

�

�

(�), 
ontradi
ting the assumption that K(� > �) 
an be de�ned

in terms of both �

�

and �

�

using (Def � from �). 2

Armed with proposition 7.3.2, we shall deviate slightly from the presentation of Dar-

wi
he and Pearl by taking an epistemi
 state � to be an ordered pair of the form

(K(�);�

�

). This is a potentially dangerous move, sin
e it is at odds with the possi-

bility that di�erent epistemi
 states may be asso
iated with the same belief set and

faithful total preorder; a possibility that Darwi
he and Pearl make provision for. Nev-

ertheless, it will aid in the readability of the results dis
ussed below.

Having made the move to revision operations on epistemi
 states, Darwi
he and

Pearl argue that (E>1){(E>8) are too weak to provide a satisfa
tory a

ount of iterated

revision. Their argument is based on the appli
ation of the prin
iple of Minimal Change

whi
h provides the underlying rationale for AGM revision. Where iterated revision
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on epistemi
 states is 
on
erned, it seems ne
essary to apply this prin
iple to more

than just the obje
t-level beliefs of an agent. Semanti
ally speaking, the faithful total

preorder �

�

determines the models of K(� > �) uniquely, but does not pla
e any

restri
tions on the relative ordering of the 
ountermodels of K(� > �). Darwi
he

and Pearl propose that the prin
iple of Minimal Change should be brought into play

to minimise any 
hange in the relative ordering of interpretations in the epistemi


state resulting from a revision. From an information-theoreti
 point of view, this 
an

be interpreted as an attempt to retain the relative 
redibility (or entren
hment) of

infatoms. Their proposal involves the addition of the following postulates (the DP-

postulates) to (E>1){(E>8):

(DP>1) If � � � then K((�> �)> �) = K(�> �)

(DP>2) If � � :� then K((�> �)> �) = K(�> �)

(DP>3) If � 2 K(�> �) then � 2 K((�> �)> �)

(DP>4) If :� =2 K(�> �) then :� =2 K((�> �)> �)

De�nition 7.3.3 A revision on epistemi
 states is a DP-revision i� it satis�es (E>1){

(E>8) and (DP>1){(DP>4). 2

(DP>1) states that if an agent obtains more spe
i�
 information after learning that �

is the 
ase, then � should be ignored. (DP>2) requires that any information 
ontra-

di
ting newly obtained information should be ignored. On a 
ontrapositive reading,

(DP>3) insists that if an agent obtains the information �, but loses it immediately

when a
quiring the new information �, then � would never have formed part of the

beliefs of the agent if it had a
quired � immediately. And if an agent hasn't 
ompletely

ruled out � after obtaining �, then (DP4) requires that �rst obtaining � and then �

would also mean that � is not 
ompletely ruled out. In other words, as Darwi
he and

Pearl put it, information 
annot 
ontribute towards its own demise.

That the DP-postulates do indeed minimise 
hanges in the relative ordering of

interpretations 
an be seen from the following representation theorem, 
ourtesy of

Darwi
he and Pearl. They prove that ea
h one of the postulates (DP>1) to (DP>4)


an be represented semanti
ally as follows:

(DPR>1) If u 
 � and v 
 � then u �

�

v i� u �

�>�

v
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(DPR>2) If u 
 :� and v 
 :� then u �

�

v i� u �

�>�

v

(DPR>3) If u 
 � and v 
 :� then u �

�

v only if u �

�>�

v

(DPR>4) If u 
 � and v 
 :� then u �

�

v only if u �

�>�

v

Theorem 7.3.4 [Darwi
he and Pearl, 1997℄ Let > be a revision that satis�es (E>1)

to (E>8). Then >

satis�es

8

>

>

>

>

<

>

>

>

>

:

(DP> 1)

(DP> 2)

(DP> 3)

(DP> 4)

9

>

>

>

>

=

>

>

>

>

;

i� it satis�es

8

>

>

>

>

<

>

>

>

>

:

(DPR> 1)

(DPR> 2)

(DPR> 3)

(DPR> 4)

9

>

>

>

>

=

>

>

>

>

;

.

(DPR>1) ensures that the relative ordering of the models of � is preserved after an

�-revision; an appli
ation of the prin
iple of Minimal Change to the models of �.

Similarly, (DPR>2) requires that the relative ordering of the 
ountermodels of � is

preserved after an �-revision, whi
h is a 
ase of applying the prin
iple of Minimal

Change to the 
ountermodels of �. (DPR>3) and (DPR>4) together ensure that any


hange in the relative ordering of a model u of � and a 
ountermodel v of � will involve

u moving lower down than v. As su
h, they also involve, to some extent, an appli
ation

of the prin
iple of Minimal Change.

A DP-revision by a w� � thus involves a \downward shift" of the models of �,

while maintaining the relative orderings of the models of � and the 
ountermodels of

� respe
tively. DP-revision 
an therefore be seen as a qualitative version of Spohn's


onditionalisation. Indeed, Darwi
he and Pearl mention that the inspiration for these

postulates 
ame from Spohn's 
onditionalisation.

7.3.1 Minimal 
hange

While (DPR>1){(DPR>4) together impose 
onsiderable restri
tions on the permissible

ways of performing iterated revision, it is not in absolute a

ordan
e with the prin
iple

of Minimal Change. This is evident from the observation that there is a remaining 
ase

whi
h is not 
overed by (DPR>1){(DPR>4); disallowing the upward shift of a model

of � relative to a 
ountermodel of �. A blanket restri
tion of this kind would, of 
ourse,

be in
ompatible with (E>1){(E>8), sin
e the minimal models of � will then not always
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be permitted to o

upy the lowest level in the ordering resulting from an �-revision.

The 
losest we 
an 
ome to an absolute adheren
e to the prin
iple of Minimal Change

is to preserve the relative ordering of all interpretations, ex
ept for those inMin

�

�

(�).

This idea is expressed by the following property:

(CBR>) If u =2Min

�

�

(�) and v =2Min

�

�

(�) then u �

�

v i� u �

�>�

v

Darwi
he and Pearl show that this property is a semanti
 expression of the following

postulate:

(CB>) If :� 2 K(�> �) then K((�> �)> �) = K(�> �)

Theorem 7.3.5 [Darwi
he and Pearl, 1997℄ Let > be a revision that satis�es (E>1)

to (E>8). Then > satis�es (CB>) i� it satis�es (CBR>).

It is easily seen that (CBR>) implies (DPR>1){(DPR>4) but that the 
onverse doesn't

hold. In fa
t, when added to (E>1){(E>8), (CB>) des
ribes a unique revision, having

the following semanti
 de�nition:

(Def >)

2

6

6

6

6

4

K(�> �) = Th(Min

�

�

(�)) and

u �

�>�

v i�

(

v 2 V if u 2Min

�

�

(�),

u �

�

v and v =2Min

�

�

(�) otherwise

3

7

7

7

7

5

The revision de�ned in terms of (Def>) was �rst proposed by Boutilier under the names

\natural revision" [Boutilier, 1993℄ and \minimal 
onditional revision" [Boutilier, 1996℄.

From theorem 7.3.1 it follows that minimal 
onditional revision satis�es (E>1){(E>8),

and from theorem 7.3.4 that it satis�es (DP>1){(DP>4). It 
an also be seen as a

qualitative version of adjustment, one of the transmutation methods of Williams whi
h

was dis
ussed in se
tion 7.1.

7.3.2 Conditional beliefs

Darwi
he and Pearl also justify the DP-postulates in terms of 
onditional beliefs. An

agent is said to hold a 
onditional belief � � � i� the belief � is in the set of beliefs

that the agent holds after an �-revision. Note that while � and � are taken as w�s

of the language L, the 
onditional belief � � � is not, and � should thus be seen

as a meta-
onne
tive. As Boutilier [1993, 1996℄ has shown, epistemi
 states 
an also
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be represented as (appropriately 
hosen) sets of 
onditional beliefs. It is simply a

matter of asso
iating with an epistemi
 state �, the following set of 
onditional beliefs:

f�� � j � 2 K(�> �)g. We say that the 
onditional belief �� � is in the epistemi


state �, written as �� � 2 �, i� � 2 K(�> �). The DP-postulates 
an be rephrased

in terms of 
onditional beliefs as follows:

(CDP>1) If � � � then �� 
 2 (�> �) i� �� 
 2 �

(CDP>2) If � � :� then �� 
 2 (�> �) i� �� 
 2 �

(CDP>3) If �� � 2 � then �� � 2 (�> �)

(CDP>4) If �� :� =2 � then �� :� =2 (�> �)

In this reading, the DP-postulates 
an be justi�ed by an appli
ation of the prin
iple

of Minimal Change to 
onditional beliefs. (CDP>1) and (CDP>2) ensure that 
er-

tain sets of 
onditional beliefs will remain un
hanged, (CDP>3) requires that 
ertain


onditional beliefs be retained, and (CDP>4) forbids the addition of 
ertain 
ondi-

tional beliefs. More pre
isely, (CDP>1) requires that the 
onditional beliefs in � with

ante
edents that are logi
ally stronger than a w� �, should be exa
tly those in the

epistemi
 state obtained from � by a �-revision. Similarly, (CDP>2) requires that the


onditional beliefs in � with ante
edents that 
ontradi
t a w� �, should be exa
tly

those in the epistemi
 state obtained from � by a �-revision. And (CDP>3) requires

that a 
onditional belief should not be given up after a revision by its 
onsequent, while

(CDP>4) insists that a 
onditional not in the 
urrent epistemi
 state should not be

added after a revision by the negation of its 
onsequent.

As the name suggests, Boutilier's minimal 
onditional revision 
an also be justi-

�ed by referen
e to 
onditional beliefs. Observe �rstly that (CB>) 
an be given the

following reading in terms of 
onditional beliefs:

(CCB>) If :� 2 �> � then �� 
 2 � i� �� 
 2 �> �

In other words, (CCB>) states that if � is in
ompatible with �> � then � and �> �

should 
ontain exa
tly the same 
onditional beliefs with � as ante
edent. Boutilier

[1996,pp. 277-278℄ has shown that minimal 
onditional revision is the revision satisfy-

ing (E>1){(E>8), whi
h 
auses the minimum disturban
e with regard to 
onditional

beliefs. With su
h a stri
t adheren
e to the prin
iple of Minimal Change, it is thus

well worth 
onsidering whether minimal 
onditional revision should be regarded as the

way to perform iterated revision. We dis
uss this issue in se
tion 7.3.3.
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7.3.3 Is iterated DP-revision rational?

Darwi
he and Pearl provide a number of 
onvin
ing examples in justi�
ation of their

a

ount of iterated revision. Some of these serve as 
ounterexamples, indi
ating that

(E>1){(E>8) do not rule out all 
ounterintuitive forms of iterated revision, thus paving

the way for the introdu
tion of additional postulates. Others are used as eviden
e in


orroboration of the more abstra
t 
laims intended as justi�
ation for adding the four

DP-postulates. While the latter examples form part of a powerful 
ase in favour of

regarding all DP-revisions as rational, they 
annot be used as part of an argument that

the only rational iterated revisions are DP-revisions. And indeed, there are indi
ations

that (DP>2), in parti
ular, will eliminate some perfe
tly plausible forms of iterated

revision.

7

Cantwell [1999℄ shows that the following variant of the 
ontroversial Re
overy

postulate for AGM 
ontra
tion (see 
hapter 6) is a derived property of any revision

satisfying (E>1){(E>8) and (DP>2):

(Revision Re
overy) If K(�) 6= Cn(?) and � 2 K(�) then K((� > :�) > �) =

K(�)

As a result, the 
ounterexamples levelled against Re
overy 
an also be used to argue

against the in
lusion of (DP>2). Here, for instan
e, is a modi�ed version of example

6.1.2 to show that Revision Re
overy is 
ounterintuitive.

Example 7.3.6 I read a book about Cleopatra, in whi
h the 
laim is made that she

had a son and a daughter. I subsequently dis
over that the book is �
tional, whi
h leads

me to adopt the belief that Cleopatra did not have a 
hild. However, on 
onsulting a

history book I dis
over that Cleopatra indeed had a 
hild, and I thus revise my belief

set with this assertion.

Let L be a propositional language generated by the two atoms p and q. Let p

denote the assertion that Cleopatra had a son, and q the assertion that she had a

daughter. Then K(�) = Cn(p; q). The adoption of the belief that she did not have a


hild is formalised as � > :(p _ q). Sin
e p _ q 2 K(�), Revision Re
overy requires

that K((�>:(p_ q))> (p_ q)) = K(�). So revising with the assertion that Cleopatra

did, after all, have a 
hild, will ensure that I again entertain the belief that she had a

son and the belief that she had a daughter; a 
on
lusion whi
h seems unreasonable in

this 
ontext. 2

7

In se
tion 8.4.1, we show that re
ent developments 
on
erning base 
hange also 
all the appropri-

ateness of (DP>1) into question.
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In fa
t, as Cantwell [1999℄ observes, Revision Re
overy seems to be even more problem-

ati
 than Re
overy, sin
e revision usually involves greater 
hanges in epistemi
 states

than 
ontra
tion.

We now turn to a di�erent kind of question regarding the rationality of DP-revision.

We have seen that Boutilier's minimal 
onditional revision 
auses the minimum dis-

turban
e in the 
urrent epistemi
 state, resulting in the strongest possible adheren
e

to the prin
iple of Minimal Change. This raises the question of whether minimal 
on-

ditional revision should, perhaps, be regarded as the only rational form of revision on

epistemi
 states. Darwi
he and Pearl [1997℄ provide a 
onvin
ing argument against

su
h a view, indi
ating that the importan
e of the prin
iple of Minimal Change should

not be overestimated. It is based on the following example.

Example 7.3.7 We en
ounter a strange new animal and it appears to be a bird, so

we believe the animal is a bird. As it 
omes 
loser to our hiding pla
e, we see 
learly

that the animal is red, so we believe that it is a red bird. To remove any further

doubts, we 
all in a bird expert who takes it for examination and 
on
ludes that it is

not really a bird, but some sort of mammal. The question is now whether we should

still believe that the animal is red. Intuitively, it seems that we should, but minimal


onditional revision rules that we may not believe that the animal is red. This 
an

be veri�ed by using the propositional language generated by the two atoms b and r to

represent our knowledge. Let b represent the assertion that the animal is a bird, let r

represent the assertion that it is red, let (V;
) be the valuation semanti
s for L with

V = f00; 01; 10; 11g, and let > be the minimal 
onditional fun
tion de�ned using (Def

>).

8

Let � = (K(�);�

�

) be the epistemi
 state representing the situation before we

see the bird. Then K(�) = Cn(>) and �

�

= V � V . Furthermore, it 
an be veri�ed

that K(((�> b)> r)> :b) = Cn(:b). 2

The problem 
an be approa
hed from various angles, but Darwi
he and Pearl provide a

parti
ularly 
onvin
ing analysis in terms of 
onditional beliefs. It is easily veri�ed that

the 
onditional belief :b � r is not, and should not be, in the epistemi
 state � > b.

Bearing in mind that minimal 
onditional revision e�e
ts the minimal permissible


hange on the 
onditional beliefs in an epistemi
 state, :b � r will not be in the

epistemi
 state (�> b)> r either. But this is 
ounterintuitive. Sin
e the 
olour of the

8

We assume that the �rst digit in the pairs of zeroes and ones denotes the truth value of b, and

the se
ond one the truth value of r.
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animal is independent of it being a bird or not, we should persist in believing that it

is red. In general then, the requirement of minimal 
onditional revision that the set of


onditional beliefs should remain as stable as possible, may impa
t on the persisten
e

of some obje
t-level beliefs, yielding 
ounterintuitive results.

Although minimal 
onditional revision is 
learly too restri
tive to be the only form of

rational revision on epistemi
 states, it is perhaps worth 
onsidering a spe
ial 
ase under

whi
h it does seem reasonable to ensure that minimal 
hanges o

ur in an epistemi


state �; when the w� with whi
h to revise is 
ompatible with �. This 
an be expressed

as a weakened form of the postulate (CB).

(WCB) If :� =2 K(�) and :� 2 K(�> �), then K((�> �)> �) = K(�> �)

And predi
tably, (WCB) 
an be expressed semanti
ally as follows:

(WCBR) If :� =2 K(�), u =2Min

�

�

(�) and v =2Min

�

�

(�), then u �

�

v i� u �

�>�

v

Proposition 7.3.8 Let > be a revision satisfying (E>1){(E>8). Then > satis�es

(WCB) i� it satis�es (WCBR):

Proof Observe �rstly that by theorem 7.3.1, K(� > �) = Th(Min

�

�

(�)). Now sup-

pose that (WCB) holds, that :� =2 K(�), and pi
k any u; v 2 V su
h that u =2

Min

�

�

(�) and v =2 Min

�

�

(�). Let � be su
h that M(�) = fu; vg. (Sin
e L is �nitely

generated, there is su
h an �.) Then :� 2 K(�>�), and K((�>�)>�) = K(�>�)

by (WCB). But then Min

�

�>�

(�) = Min

�

�

(�), from whi
h it follows that u �

�

v

i� u �

�>�

v. Conversely, suppose that (WCBR) holds, that :� =2 K(�), and that

:� 2 K(� > �). By (WCBR) it follows that u �

�

v i� u �

�>�

v for every u; v 2 V

su
h that u =2 Min

�

�

(�) and v =2 Min

�

�

(�). And sin
e M(�) \M(K(� > �)) = ;,

we have that Min

�

�

(�) =Min

�

�>�

(�). Therefore K(�> �) = K((�> �)> �). 2

While the weakened form of minimal 
onditional revision, obtained by repla
ing (CB)

with (WCB), might seem appealing at �rst, it does not es
ape the problems asso
iated

with full minimal 
onditional revision, as one might have hoped. Example 7.3.7 in

parti
ular, is also appli
able to any revision satisfying (E>1){(E>8) and (WCB).

7.3.4 Iterated DP-withdrawal

Re
all from page 7 that Levi's 
ommensurability thesis sees revision as a two-step pro-


ess involving a removal followed by an expansion. Taking this view seriously requires
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of us to provide an a

ount of iterated removal and iterated expansion on epistemi


states as well. Unlike the 
ase for revision, it seems reasonable to require of an ex-

pansion � on epistemi
 states to be in stri
t adheren
e to the prin
iple of Minimal

Change. The following semanti
 property is a rephrasing of (CBR) for expansion.

(ER�) If u =2M(K(�� �)) and v =2M(K(� � �)), then u �

�

v i� u �

���

v

Combined with the obvious requirement that K(���) = K(�)+�, we thus have the

following unique method for expanding epistemi
 states.

(Def �)

2

6

6

6

6

4

K(�� �) = K(�) + � and

u �

���

v i�

(

v 2 V if u 2M(K(�) + �),

u �

�

v and v =2M(K(�) + �) otherwise

3

7

7

7

7

5

Obtaining a suitable a

ount of removal on epistemi
 states is less straightforward. It

will, of 
ourse, depend on the parti
ular type of removal whi
h we regard as appropriate,

although results in 
hapter 6 indi
ate that it would have to be some form of reasonable

withdrawal (see de�nition 6.3.13). For now, we restri
t ourselves to a generalisation of

AGM 
ontra
tion and severe withdrawal to epistemi
 states.

9

An AGM 
ontra
tion �

on epistemi
 states is required to satisfy the following postulates:

(E�1) K(� � �) = Cn(K(� � �))

(E�2) K(� � �) � K(�)

(E�3) If � =2 K(�) then K(� � �) = K

(E�4) If 2 � then � =2 K(� � �)

(E�5) If � = 	 and � � � then K(� � �) = K(	 � �)

(E�6) If � 2 K(�) then K(� � �) + � = K(�)

(E�7) K(� � �) \K(� � �) � K(� � (� ^ �))

9

Not too mu
h should be read into this restri
tion. It is based on a purely pra
ti
al 
onsideration;

the 
urrent representation of an epistemi
 state � as a belief set K(�) and a K(�)-faithful total

preorder. A representation using K(�)-faithful modular weak partial orders, for example, would have

resulted in a restri
tion to AGM 
ontra
tion and systemati
 withdrawal.
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(E�8) If � =2 K(� � (� ^ �)) then K(� � (� ^ �)) � K(� � �)

De�nition 7.3.9 A removal on epistemi
 states is an AGM 
ontra
tion i� it satis�es

(E�1){(E�8). 2

For the generalisation of severe withdrawal, we also need the following postulates.

(E

�

�6) If � � then K(�

�

��) = K(�)

(E

�

�8) If 2 � then K

�

�� � K

�

�(� ^ �)

De�nition 7.3.10 A removal on epistemi
 states is a severe withdrawal i� it satis�es

(E�1){(E�5), (E

�

�6), (E�7) and (E

�

�8). 2

The following results are then easily obtained.

Theorem 7.3.11 1. Let � be any removal su
h that K(� � �) 
an be de�ned

in terms of �

�

using (Def � from �), for every � 2 E. Then � is an AGM


ontra
tion. Conversely, suppose that � is an AGM 
ontra
tion. For every

� 2 E, K(� � �) 
an be de�ned in terms of �

�

using (Def � from �).

2. Let

�

� be any removal su
h that K(�

�

��) 
an be de�ned in terms of �

�

using

(Def r

�

from �), for every � 2 E. Then

�

� is a severe withdrawal. Conversely,

suppose that

�

� is a severe withdrawal. For every � 2 E, K(�

�

��) 
an be de�ned

in terms of �

�

using (Def r

�

from �).

Proof 1. Follows from theorem 3.2.6.

2. Follows from de�nition 6.3.1 and theorem 6.3.2.

2

It is also easy to verify that, on the level of belief sets, the roles of the Levi identity

(Def � from �) and the Harper identity (Def � from �) remain un
hanged.

Corollary 7.3.12 Let � and

�

� be removals, and > a revision su
h that, for every

� 2 E,

� K(� � �) 
an be de�ned in terms of �

�

using (Def � from �)

� K(�

�

��) 
an be de�ned in terms of �

�

using (Def � from r

�

)
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� K(�> �) 
an be de�ned in terms of �

�

using (Def � from �)

Then, for every � 2 L,

1. K(�> �) = (K(�) � :�) + � = (K(�)

�

�:�) + �, and

2. K(� � �) = K(�> :�) \K(�).

Proof Follows from proposition 3.2.8 and theorem 6.3.10. 2

An adheren
e to Levi's 
ommensurability thesis then seems to suggest the lifting of

the Levi identity to the level of epistemi
 states in the following manner.

(Def > from �) �> � = (� � :�)� �

The next two results show that, where AGM 
ontra
tion and revision on epistemi


states are 
on
erned, this seems to be right 
hoi
e.

Proposition 7.3.13 Let � and

�

� be removals su
h that, for every � 2 E,

� K(� � �) 
an be de�ned in terms of �

�

using (Def � from �)

� K(�

�

��) 
an be de�ned in terms of �

�

using (Def � from r

�

).

Let > and

�

> be the revisions de�ned in terms of (Def > from �) using � and

�

�

respe
tively.

1. For every � 2 L, K(�> �) = K(�

�

>�) = (K(�) � :�) + � = (K(�)

�

�:�) + �.

2. Both > and

�

> satisfy (E>1){(E>8).

Proof 1. Follows easily from theorem 6.3.10 and the de�nition of �.

2. Follows easily from part (1) and proposition 3.2.8

2

Given the 
onne
tion between withdrawal and revision on the level of belief sets, the

following postulates for withdrawal on epistemi
 states are obvious analogues of the

semanti
 DP-postulates for revision.

(DPR�1) If u 
 :� and v 
 :� then u �

�

v i� u �

���

v
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(DPR�2) If u 
 � and v 
 � then u �

�

v i� u �

���

v

(DPR�3) If u 
 :� and v 
 � then u �

�

v only if u �

���

v

(DPR�4) If u 
 :� and v 
 � then u �

�

v only if u �

���

v

For AGM 
ontra
tion, (Def > from �) provides the expe
ted link between these pos-

tulates and the DP-postulates for revision.

Proposition 7.3.14 Let � be any AGM 
ontra
tion and let > be the revision de�ned

in terms of � using (Def > from �).

1. If � satis�es (DPR�1) then > satis�es (DPR>1).

2. If � satis�es (DPR�2) then > satis�es (DPR>2).

3. If � satis�es (DPR�3) then > satis�es (DPR>3).

4. If � satis�es (DPR�4) then > satis�es (DPR>4).

Proof Follows from theorem 7.3.11, proposition 7.3.13, and proposition 3.2.8. 2

Interestingly enough, though, we do not get a similar result when de�ning revision in

terms of severe withdrawal. As the next example and the proposition following it show,

the revision obtained from a severe withdrawal on epistemi
 states satis�es (DP>1),

(DP>3) and (DP>4), but not (DP>2).

Example 7.3.15 Let L be the propositional language generated by the atoms p and

q, with the valuation semanti
s (V;
), where V = f00; 01; 10; 11g. Let � be any

severe withdrawal satisfying (DPR�1){(DPR�4) su
h that the following holds for the

epistemi
 states � and 	, where 	 = � � :(p ^ q):

K(�) = Cn(:p ^ :q) and u �

�

v i�

(

v 2 V if u = 00,

v 2 f01; 10; 11g if u 2 f01; 10; 11g,

K(	) = Cn(>) and �

	

= V � V , and

K(	� p ^ q) = Cn(p ^ q) and u �

	�(p^q)

v i�

(

v 2 V if u = 11,

v 2 f00; 01; 10g otherwise
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�

	

�

	�(p^q)

00

01 10

6

}
>

� -

11

- �

01 11

� -

00

- �

10

-�

�

�

11

01 10

6

}
>

� -

00

- �

Figure 7.1: Graphi
al representations of the faithful total preorders �

�

, �

	

, and

�

	�(p^q)

used in example 7.3.15. Two interpretations u and v are in a faithful to-

tal preorder i� (u; v) is in the re
exive transitive 
losure of the relation determined by

the arrows.

Figure 7.1 
ontains graphi
al representations of �

�

, �

	

, and �

	�(p^q)

. It is easily

veri�ed that su
h a severe withdrawal � exists, but that the revision > de�ned in

terms of � using (Def > from �) does not satisfy (DPR>2). In parti
ular, it follows

that 00; 10 2 M(:(p ^ q)), but it is not the 
ase that 10 �

�

00 i� 10 �

�>(p^q)

00. 2

Proposition 7.3.16 Let

�

� be any severe withdrawal and let > be the revision de�ned

in terms of

�

� using (Def > from �).

1. If

�

� satis�es (DP�1) then > satis�es (DP>1).

2. If

�

� satis�es (DP�3) then > satis�es (DP>3).

3. If

�

� satis�es (DP�4) then > satis�es (DP>4).

Proof These results follow easily by observing that, for every � 2 L, the total pre-

orders �

��:�

and �

�>�

are identi
al when restri
ted to elements of V nM(K(� � :�)).

2
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The results on iterated withdrawal suggest another reason for dropping (DPR>2) as a

reasonable propery of iterated revision; its in
ompatibility with Levi's 
ommensurabili-

ty thesis when applied to severe withdrawal on epistemi
 states. Semanti
ally speaking,

this in
ompatibility 
an be tra
ed ba
k to the fa
t that, unlike AGM 
ontra
tion, a

severe :�-withdrawal of an epistemi
 state � may result in the in
lusion of models of

:� to the models of K(�). This results in the loss of information pertaining to the

relative ordering of su
h elements of M(:�) in �

�

, rendering a subsequent expansion

unable to preserve the ordering of all models of :� in K(� > �). It 
an therefore be

shown that the appli
ation of (Def > from �) to any form of reasonable withdrawal

on epistemi
 states, ex
ept for AGM 
ontra
tion, will result in a revision whi
h does

not satisfy (DP>2).

7.4 Iterated L-revision

Lehmann [1995℄ 
onsiders iterated belief revision in the 
ontext of �nite sequen
es of

revisions. He extends the notion of a revision > on epistemi
 states to a revision by

a �nite sequen
e of w�s. We use the Greek letter � to denote su
h a �nite sequen
e.

�> � then refers to the iterated revision of � by the w�s in �, and if � is the empty

sequen
e, �>� is just the epistemi
 state �. Con
atenation of sequen
es is denoted by

�, and a w� � is identi�ed with a sequen
e of length one. So the sequen
e ��� 
onsists

of the w� � followed by the w�s in �, and � � � 
onsists of the w�s in � followed by

the w� �.

Considering only sequen
es of satis�able w�s, Lehmann proposes the following pos-

tulates for iterated revision.

(L>1) K(�) = Cn(K(�))

(L>2) � 2 K(�> �)

(L>3) K(�> �) � K(�) + �

(L>4) If � 2 K(�) then K(�> �) = K(�> (� � �))

(L>5) If � � � then K(�> (� � � � �)) = K(�> (� � �))

(L>6) K(�) 6= Cn(?)
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(L>7) K(�> (:� � �)) � K(�) + �

(L>8) If :� =2 K(�> �) then K(�> (� � � � �)) = K(�> (� � � ^ � � �))

De�nition 7.4.1 A revision on epistemi
 states is an L-revision i� it satis�es (L>1)

to (L>8). 2

It follows easily from Lehmann's results that every L-revision also satis�es (E>1) to

(E>8), (DP>1), (DP>3) and (DP>4). In fa
t, (L>1), (L>2), (L>3) and (L>6)


orrespond exa
tly to (E>1), (E>2), (E>3) and (E>6) respe
tively.

10

(L>4) states

that super
uous revisions are useless and should have no e�e
t on subsequent revisions.

While this may be a reasonable 
onstraint under 
ertain 
ir
umstan
es, it is a very

strong restri
tion to impose on all rational iterated revisions. The main reason for this

is that (L>4) is at odds with the notion of 
orroborating eviden
e; the idea that one's

belief in an assertion is strenghtened by repeated observations 
on�rming that it holds.

Example 7.4.2 Suppose that an agent obtains eviden
e that � is the 
ase, followed

by eviden
e that � is the 
ase. If subsequent eviden
e obtained makes it 
lear that

exa
tly one of � or � holds, it seems diÆ
ult to de
ide between � and �. If one is

in
lined to trust more re
ent eviden
e, it is perhaps reasonable to entertain the option

that it is � that holds. On the other hand, suppose that the agent obtains eviden
e

that � is the 
ase, followed by eviden
e that � is the 
ase, whi
h, in turn is followed by


on�rmation that � is the 
ase. If subsequent eviden
e now makes it 
lear that exa
tly

one of � or � holds, it seems reasonable to believe that � is the 
ase, mainly be
ause

our initial belief in � was 
orroborated by 
on�rming eviden
e that � holds. But su
h

a 
on
lusion is prohibited by (L>4). 2

(L>5) is a strengthening of (DP>1). It requires of an agent, when obtaining more

spe
i�
 information following �, not just to dis
ard the in
uen
e of � in obtaining the

resulting belief set, but also in all subsequent revisions. (L>7) is a weakened version

of (DP>2). Given the rest of Lehmann's postulates, it is equivalent to the following

postulate:

(L>9) K((�> :�)> �) � K(�> �)

Proposition 7.4.3 Let > be a revision satisfying (L>1){(L>6) and (L>8). Then >

satis�es (L>7) i� it satis�es (L>9).

10

Sin
e we only revise with sequen
es of satis�able w�s, (L>6) is indeed equivalent to (E>6).
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Proof Suppose that > satis�es (L>7). Then Lehmann's Lemma 3 [1995,p. 1537℄

shows that > satis�es (E>4). If :� 2 K(�) then K((� > :�) > �) = K(� > �) by

(L>4). And if :� =2 K(�) then

K((�> :�)> �)

� K(�) + � by (L> 7)

� K(�> �) by (E> 4).

The 
onverse follows immediately from (L>3). 2

In the presen
e of (L>5), (L>8) is a strengthening of (K�9), the postulate for AGM

revision on belief sets whi
h follows from (K�7) and (K�8).

11

This 
an be seen from

Lehmann's result that (L>8) is equivalent to the following postulate whenever (L>5)

holds.

(L>10) If :� =2 K(�> �) then K(�> (� � � � �)) = K(�> (� ^ � � �))

As mentioned above, any L-revision also satis�es (DP>3). In fa
t, Lehmann shows

that su
h a revision satis�es the following strengthened version of (DP>3).

(L>11) If � 2 K(�> �) then K(�> (� � �)) = K(�> (� � � � �))

Sin
e every L-revision also satis�es (E>1){(E>8), it follows by theorem 7.3.1 and

proposition 7.3.2 that we 
an asso
iate with every epistemi
 state �, a unique K(�)-

faithful total preorder �

�

su
h that K(� > �) 
an be de�ned in terms of �

�

using

(Def � from �), for every � 2 L. Observe, though, that it is not possible to represent

every epistemi
 state � as an ordered pair of the form (K(�);�

�

). This be
omes 
lear

on
e we realise that every epistemi
 state is asso
iated with a unique �nite sequen
e of

w�s, sin
e there are only a �nite number of su
h ordered pairs, but an in�nite number

of epistemi
 states.

We 
on
lude this dis
ussion with a brief note 
on
erning a representation theorem

proved by Lehmann. He provides a method, involving the widening ranked models, of


onstru
ting pre
isely the L-revisions. It involves the use of an implausibility ranking

over sets of valuations. Lehmann warns that it is just a te
hni
al tool, though, and

that it should not be seen as a des
ription of the epistemi
 states of an agent.

11

Lehmann [1995,p. 1537℄ 
laims that (L>8) does not represent any strengthening of the postulates

(E>1){(E>8), but this is 
learly in
orre
t. In se
tion 7.5.1 we show that Papinis's P

�

-revision satis�es

(E>1){(E>8), but does not satisfy (L>8), and in se
tion 8.4.2 we give another example of a revision

on epistemi
 states whi
h satis�es (E>1){(E>8), but does not satisfy (L>8).
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7.5 Observation-based revision

Papini [1998, 1999℄ has re
ently proposed that iterated revision be viewed in the 
ontext

of sequen
es of observations made by an agent. The basi
 idea is that the history of the

agent's observations should be taken into a

ount in some or other way. She 
onsiders

the two parti
ular 
onstru
tions whi
h lie on opposite sides of the spe
trum when

assessing the reliability of observations. The remainder of this se
tion is devoted to a

des
ription of these revision operations.

7.5.1 P

�

-revision

The intuition asso
iated with AGM revision on belief sets 
ontains the assumption

that the w� � with whi
h to revise a belief set K, takes pre
eden
e over the infor-

mation 
urrently 
ontained in K. A generalisation of revision to epistemi
 states 
an

a

ommodate this assumption in a wide variety of ways. From an information-theoreti


point of view, though, it is fair to say that any su
h a generalisation needs to re
e
-

t the requirement that no 
ontent bit of :� may be
ome more entren
hed (or more


redible) relative to the 
ontent bits of �; a requirement that is 
aptured by (DP>3)

and (DP>4). The strongest expression of this requirement is the insisten
e that an

�-revision should result in an epistemi
 state where the 
ontent bits of � are all more

entren
hed than the 
ontent bits of :�. In model-theoreti
 terms, it means that an

�-revision of the epistemi
 state � should result in an epistemi
 state in whi
h the

total preorder �

�>�

pla
es the models of � stri
tly below the 
ountermodels of :�. It


an be formulated as follows:

(PR>) If u 2M(�) and v 2M(:�), then u �

�>�

v

This is the idea underlying one of Papini's approa
hes to iterated revision. In su
h an

approa
h, the more re
ent observations of the agent are to be taken more seriously. She

provides the following semanti
 de�nition of revision on the level of epistemi
 states:

12

(Def >

�

)

2

6

6

6

6

4

K(�>

�

�) = Th(Min

�

�

�

(�))

u �

�>

�

�

v i�

(

u �

�

v if u; v 2 M(�) or u; v 2M(:�),

u 2M(�), otherwise

3

7

7

7

7

5

12

Papini's 
onstru
tion uses polynomials on the naturals numbers, but it is easily seen that her

de�nition 
orresponds to the one we give here.
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De�nition 7.5.1 The revision on epistemi
 states de�ned in terms of (Def >

�

) is

referred to as P

�

-revision and denoted by >

�

. 2

Papini shows that >

�

is a DP-revision (i.e., it satis�es (E>1){(E>8) and (DP>1){

(DP>4)). It turns out that >

�


an be 
hara
terised pre
isely by adding the following

postulate to (DP>1) and (DP>2):

(P>) If � 2 :� then K((�> �)> �) = K(�> (� ^ �))

Theorem 7.5.2 The P

�

-revision >

�

is the only revision satisfying (E>1){(E>8),

(DP>1), (DP>2), and (P>).

Proof From theorem 7.3.1 it follows easily that >

�

satis�es (E>1){(E>8), and from

theorem 7.3.4 it 
learly follows that >

�

satis�es (DP>1) and (DP>2). Furthermore, it

is easily veri�ed that>

�

is the only revision satisfying (E>1){(E>8), (DP>1), (DP>2),

and (PR>). It thus suÆ
es to show that for every revision satisfying (E>1){(E>8)

and (DP>1), the postulates (P>) and (PR>) are equivalent.

Pi
k any revision > satisfying (E>1){(E>8) and (DP>1), and suppose that >

does not satisfy (PR>). Then there is an � 2 L, a u 2 M(�) and a v =2 M(�)

su
h that v �

�>�

u, for some epistemi
 state �. Now let � be su
h that M(�) =

fu; vg. Then Min

�

�

(� ^ �) = M(� ^ �) = fug, and so K(� > � ^ �) = Cn(� ^ �).

On the other hand, either Min

�

�>�

(�) = fvg or Min

�

�>�

(�) = fu; vg. But then

K((� > �) > �) 6= K(� > (� ^ �)) by theorem 7.3.1, and so > does not satisfy

(P>). Conversely, suppose that > satis�es (PR>). Now pi
k any �; � 2 L su
h that

� 2 :�. By (PR>) it follows that Min

�

�>�

(�) � M(�), and so Min

�

�>�

(�) =

Min

�

�>�

(� ^ �). Furthermore, theorem 7.3.4 guarantees that > satis�es (DPR>1),

and so Min

�

�

(� ^ �) = Min

�

�>�

(� ^ �) = Min

�

�>�

(�), from whi
h it follows by

theorem 7.3.1 that K((�> �)> �) = K(�> (� ^ �)). 2

Observe that (P>) requires of iterated revision and simultaneous revision to yield iden-

ti
al results whenever � and � are 
ompatible. In other words, an �-revision followed

by a �-revision should be the same as an �^�-revision. This 
an be seen as a strength-

ening of the postulate (K�9), whi
h was dis
ussed in se
tion 7.2. Su
h a property seems

too strong for a general a

ount of revision, although its reformulation in the 
ontext

of nonmonotoni
 reasoning (see se
tion 4.5) is one of the impli
it assumptions made
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about most nonmonotoni
 
onsequen
e relations in the literature. Future resear
h in

nonmonotoni
 reasoning will hopefully take this into a

ount.

A 
onsequen
e of (P>) whi
h is perhaps unexpe
ted, is the following property.

13

(Weak Symmetry) If � 2 :� then K((�> �)> �) = K((�> �)> �)

Weak Symmetry suggests that it does not matter whi
h of the observations � and

� are made �rst, as long as � and � are 
ompatible. At a �rst glan
e this seems

at odds with Papini's intuition that more re
ent observations are deemed as more

a

urate, but 
loser inspe
tion reveals this not to be the 
ase. In fa
t, although the

most re
ent observation is seen as more a

urate than the previous one, both these

observations are a

orded higher prominen
e than any of the pre
eding observations.

And as long as they are 
ompatible, we should therefore expe
t the order in whi
h

these two observations were made, to be of no 
onsequen
e; at least on the level of

belief sets.

The intuition that Papini atta
hes to her 
onstru
tion seems to be in line with

Lehmann's L-revision, and one would therefore expe
t it to satisfy all of Lehmann's

postulates. However, as we shall see below, this turns out not to be the 
ase. Sin
e

Papini's 
onstru
tion is a perfe
tly reasonable way of performing iterated revision, it

would seem that some of Lehmann's postulates are a bit too restri
tive.

Sin
e (L>1){(L>3) 
orrespond exa
tly with (E>1){(E>3), the former are satis�ed

by P

�

-revision. P

�

-revision also satis�es (L>7), sin
e the latter is a weakened version

of (DP>2). These, however, are the only of Lehmann's eight postulates that P

�

-

revision satis�es. Papini allows unsatis�able belief sets, whi
h violates (L>6). For the

remaining three of Lehmann's postulates, the following examples show that P

�

-revision

does not satisfy them.

Example 7.5.3 Let L be generated by the atoms p and q, with V = f00; 01; 10; 11g.

Let � be an epistemi
 state su
h that K(�) = Cn(p ^ q) and �

�

is de�ned as follows:

u �

�

v i�

8

>

<

>

:

v 2 V if u = 11,

v 2 f00; 01; 10g if u 2 f01; 10g,

v = 00 if u = 00.

13

That (P>) implies Weak Symmetry follows immediately by noting that � � :� and � � :� are

equivalent.
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11

10 01

00

}
>

�

I

-
�

Figure 7.2: A graphi
al representation of the K(�)-faithful total preorder �

�

used

in example 7.5.3. For two interpretations u and v, u �

�

i� (u; v) is in the re
exive

transitive 
losure of the relation determined by the arrows.

Figure 7.2 
ontains a graphi
al representation of�

�

. Now let>

�

be the revision de�ned

using (Def >

�

). It is readily veri�ed that K((�>

�

p)>

�

:(p$ q)) = Cn(p^:q), but

that K(� >

�

:(p $ q)) = Cn(:(p $ q)). And sin
e p 2 K(�), this is a violation of

(L>4). 2

Example 7.5.4 Let L be generated by the atoms p and q, with V = f00; 01; 10; 11g.

Let � be an epistemi
 state su
h that K(�) = Cn(p) and �

�

is de�ned as follows:

u �

�

v i�

8

>

<

>

:

v 2 V if u 2 f10; 11g,

v 2 f00; 01g if u 2 f00g,

v = 01 if u = 01.

Figure 7.3 
ontains a graphi
al representation of�

�

. Now let>

�

be the revision de�ned

using (Def >

�

). It is readily veri�ed that K(((�>

�

p_ q)>

�

p)>

�

:p) = Cn(:p^ q),

but that K((�>

�

p)>

�

:p) = Cn(:p ^ :q). And sin
e p � p _ q, it is a violation of

(L>5). 2

Example 7.5.5 Let L be generated by the atoms p and q, with V = f00; 01; 10; 11g,

let � be an epistemi
 state su
h that K(�) = Cn(>) and �

�

= V � V , and let >

�

be
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11 10

00

6

01

�

I

-
�

Figure 7.3: A graphi
al representation of the K(�)-faithful total preorder �

�

used

in example 7.5.4. For two interpretations u and v, u �

�

i� (u; v) is in the re
exive

transitive 
losure of the relation determined by the arrows.

the revision de�ned in (Def >

�

). It is readily veri�ed that

K(((�>

�

p)>

�

q)>

�

:(p$ q)) = Cn(:p ^ q)

but that

K(((�>

�

p)>

�

p ^ q)>

�

:(p$ q)) = Cn(p ^ :q).

And sin
e :q =2 K(�>

�

p) = Cn(p), this is a violation of (L>8). 2

7.5.2 P

�

-revision

Papini also presents an operation that 
an be seen as dual to P

�

-revision. Instead

of letting the most re
ent observations 
arry the most weight, the situation is now

reversed, with the most re
ent observations 
onsidered to be the least reliable. This

revision operation is de�ned as follows:

(Def >

�

)

2

6

6

6

6

6

6

4

u �

�>

�

�

v i�

(

u �

�

v if u 2M(�) or v =2M(�),

u �

�

v, otherwise

K(�>

�

�) =

(

Th(Min

�

�>

�

�

(>)) if K(�) 6= Cn(?),

Cn(?) otherwise
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7

7

7

7
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De�nition 7.5.6 The revision >

�

de�ned in terms of (Def >

�

) is referred to as P

�

-

revision. 2

Semanti
ally speaking, a P

�

-revision of the epistemi
 state � by � has the following

e�e
t on �

�

. The relative ordering of valuations on di�erent levels of �

�

are main-

tained, but ea
h level is split into two by pla
ing the models of � stri
tly below the

models of :�. The resulting belief set is then obtained from the minimal models in

this new ordering, provided that the original belief set was satis�able.

The intuition asso
iated with P

�

-revision di�ers markedly from that normally as-

so
iated with AGM-style revision, and it is not surprising that P

�

-revision does not

satisfy all of (E>1){(E>8). Papini shows that it satis�es (E>4), (E>5), (E>7), and

the following weakened version of (E>3):

(WE>3) If :� =2 K(�) then K(�> �) � K(�) + �

Furthermore, although it does not satisfy (E>2), (E>6), or (E>8), she shows that

P

�

-revision satis�es the following dual versions of (E>2), (E>6) and the following

weakened version of (E>8):

(DE>2) K(�) � K(�> �)

(DE>6

0

) If K(�> �) = Cn(?) then K(�) = Cn(?)

(WE>8

0

) If :� =2 K(�>�) and � 2 K(�>�^�), then K(�>�)+� � K(�>�^�)

That P

�

-revision does not satisfy (E>2) is to be expe
ted, sin
e it regards the most

re
ent observation as the least reliable of all observations made thus far. The postulates

(DE>2

0

), (DE>6

0

) and (WE>8

0

) are all in line with this view. (DE>2

0

) requires all the

w�s in � to be retained after a revision of �, and (DE>6

0

) states that an �-revision of

� will result in the unsatis�able belief set only if � 
ontained the unsatis�able belief

set to begin with. (WE>6

0

) di�ers from (E>8) only in adding to the ante
edent of

(E>8) the requirement that � 2 K(�> � ^ �).

We 
on
lude this se
tion by showing that the results above 
an be sharpened some-

what. Firstly, it is easily shown that P

�

-revision satis�es both (E>1) and (E>3).

Moreover, we 
an improve on (DE>6

0

) and (WE>8

0

). We show that the 
onverse of

(DE>6

0

) also holds, and that the requirement added to the ante
edent of (E>8) 
an

be repla
ed with one that is, in our view, more natural.
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(DE>6) K(�> �) = Cn(?) i� K(�) = Cn(?)

(WE>8) If :� =2 K(�> �) and :� =2 K(�), then K(�> �) + � � K(�> � ^ �)

Proposition 7.5.7 P

�

-revision satis�es (E>1), (E>3), (DE>6) and (WE>8).

Proof (E>1) follows immediately from the semanti
 de�nition of P

�

-revision. For

(E>3), we only need to 
onsider the 
ase where :� 2 K(�) be
ause Papini has

shown that P

�

-revision satis�es (WE>3), and the result then follows immediately. For

(DE>6), we only need to show the right-to-left dire
tion, and this follows immediately

from (Def>

�

). For (WE>8), suppose that :� =2 K(�>�) and :� =2 K(�). SoK(�) 6=

Cn(?). Sin
e :� =2 K(�) it follows from (Def >

�

) that K(� > �) = Th(Min

�

�

(�))

and thus that K(� > �) + � = Th(Min

�

�

(�) \M(�)). Furthermore, it follows from

:� =2 K(�> �) that Min

�

�

(�) \M(�) 6= ;. So :(� ^ �) =2 K(�) and it thus follows

from (Def >

�

) that K(� > � ^ �) = Th(Min

�

�

(� ^ �)) = Th(Min

�

�

(�) \M(�)).

Therefore K(�> �) + � = K(�> � ^ �). 2

7.6 Merging epistemi
 states

While both of Papini's 
onstru
tions may formally be viewed as revision operations,

P

�

-revision does not quite 
onform to the intuition asso
iated with revision. The rea-

son for this is twofold. Firstly, revision has thus far referred to operations in whi
h the

w� with whi
h to revise is fully a

epted into the resulting belief set, and P

�

-revision

thus represents a signi�
ant departure from this assumption. Se
ondly, the informal

des
ription of P

�

-revision, 
oupled with properties su
h as (DE>2) and (DE>6), sug-

gests that it may also be seen as an operation in whi
h a w� is being \revised" by an

epistemi
 state, and not the other way around. The problem with the latter view, of


ourse, is the asymmetry built into a revision on epistemi
 states; its �rst argument

is an epistemi
 state, while its se
ond argument is an element of L. To obtain the re-

quired symmetry, it is ne
essary to generalise the notion of revision. Instead of revising

an epistemi
 state by a w�, we 
onsider the pro
ess of revising an epistemi
 state by

another epistemi
 state. In fa
t, sin
e we wish to in
lude 
ases where the se
ond epis-

temi
 state is not regarded as more reliable than the �rst, it is more appropriate to refer

to the merging of epistemi
 states, an area of resear
h whi
h has already re
eived some
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attention by Borgida and Imielinski [1984℄, Baral et al. [1991, 1992℄, Subrahmanian

[1994℄, Liberatore and S
haerf [1998℄, Konie
zny and Pino-P�erez [1998℄.

Formally then, a merge operation 
 is a fun
tion from E � E to E (where E is the

set of all epistemi
 states).

It is not our intention to provide a detailed dis
ussion of merging here. At this

stage, we merely wish to argue that merging is an area of resear
h whi
h needs to

be investigated more thoroughly, and to put forward some basi
 properties with whi
h

every merge operation should 
omply. We also 
onsider some spe
i�
 merge operations,

one if whi
h bolsters the 
laim that revision on epistemi
 states is indeed a spe
ial 
ase

of merging.

7.6.1 Basi
 properties of merge operations

Intuitively, the merging of epistemi
 states is intended to be a 
oherent fusion of the

information 
ontained in both. There is no assumption that one of the epistemi
 states

is deemed to be more reliable than the other. Instead, merging is intended to 
over

the whole spe
trum; from the 
ase where the �rst epistemi
 state takes absolute pri-

ority over the se
ond one, to the 
ase where the se
ond epistemi
 state has 
omplete

pre
eden
e over the �rst one. Our point of departure in this investigation is the as-

sumption that every epistemi
 state � has asso
iated with it a belief set K(�) and a

K(�)-faithful total preorder �

�

. The information 
ontained in two epistemi
 states �

and 	 to be merged, does not just refer to the beliefs 
ontained in K(�) and K(�),

but also to the information 
ontained in the orderings �

�

and �

	

. Observe that the

idea is still one of a minimal model semanti
s. Given the fa
t that �

�
	

has to be

a K(� 
 	)-faithful total preorder, this assumption is built into the de�nition of an

epistemi
 state.

With these guidelines in mind, we propose the following general properties for

merging:

(
1) K(�) \K(	) � K(�
	)

(
2) K(�
	) � Cn(K(�) [K(	))

(
3) If K(�) 6= Cn(?) and K(	) 6= Cn(?) then K(�
 	) 6= Cn(?)

(
4) If K(�) = K(
) and K(	) = K(�) then K(�
 	) = K(�
�)



7.6. MERGING EPISTEMIC STATES 233

These four properties involve the belief set obtained from a merge operation. (
1)

provides a lower bound on the resulting belief set. It states that the new belief set

has to 
ontain those beliefs asso
iated with both epistemi
 states to be merged. (
2)

on the other hand, provides an upper bound for the resulting belief set. It may not


ontain any belief whi
h does not o

ur in at least one of the two epistemi
 states

to be merged. (
3) requires that the resulting belief set be unsatis�able only if at

least one of the belief sets asso
iated with the two epistemi
 states to be merged are

unsatis�able. And (
4) is an expression of the prin
iple of the Irrelevan
e of Syntax,

applied to the belief sets asso
iated with epistemi
 states.

The next two properties are 
on
erned with the faithful total preorder resulting

from a merge operation.

(
5) If u �

�

v and u �

	

v then u �

�
	

v

(
6) If u �

�
	

v then u �

�

v or u �

	

v

Both (
5) and (
6) are motivated by the intuition that the merging of two epistemi


states � and 	 depends, in the �rst pla
e, on the information 
ontained in � and 	.

(
5) states that information 
ontained in both � and 	 should also o

ur in � 
 	.

(
6) is almost the 
onverse of (
5). It asserts that information 
ontained in � 
 	

must have been obtained from either � or 	.

7.6.2 Constru
ting merge operations

In this se
tion we take a brief look at the 
onstru
tion of some merge operations. The

�rst two we have in mind represent the two extremes on the spe
trum of merging. They

involve the 
ases where one of the two epistemi
 states to be merged takes 
omplete

pre
eden
e over the other, and 
an be de�ned as follows:

(Def 


 

) �


 

	 = �

(Def 


!

) �


!

	 = 	

It is easily veri�ed that the merge operations de�ned using (Def 


!

) and (Def 


 

)

both satisfy (
1){(
6).

The next two merge operations to be presented 
an also be seen as opposites. In

this 
ase though, it involves a preferen
e for one epistemi
 state over the other whi
h
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is of a less extreme kind. For their de�nition, we need to broaden the de�nition of the

minimal models of a w� to apply to sets of interpretations.

De�nition 7.6.1 For a binary relation� on V , andW � V , we letMin

�

(W ) = fv j v

is �-minimal in Wg. 2

So Min

�

(W ) is the set of �-minimal elements in W . The two merge operations are

de�ned as follows:

(Def 


�

)

2

6

4

K(�


�

	) =Min

�

	

(M(K(�)))

u �

�


�

	

v i� u �

�

v or (u �

�

�

v and u �

	

v)

3

7

5

(Def 


�

)

2

6

4

K(�


�

	) =Min

�

�

(M(K(	)))

u �

�


�

	

v i� u �

	

v or (u �

�

	

v and u �

�

v)

3

7

5

These two merge operations 
an perhaps best be des
ribed as lexi
ographi
 orderings

of the faithful total preorders asso
iated with the epistemi
 states; 


�

ensures that

	 orders �

�

lexi
ographi
ally, while 


�

ensures that � orders �

	

lexi
ographi
ally.

Again, both these merge operations satisfy (
1){(
6).

Proposition 7.6.2 The merge operations 


�

and 


�

de�ned using (Def 


�

) and

(Def 


�

) respe
tively, both satisfy (
1){(
6).

Proof For (
1) and (
2), observe thatM(K(�))\M(K(	)) �Min

�

	

(M(K(�))) �

M(K(�)) and that M(K(�)) \ M(K(	)) � Min

�

�

(M(K(	))) � M(K(	)). For

(
3), note that ifK(�


�

	) = Cn(?) thenM(K(�)) = ;, and ifK(�


�

	) = Cn(?)

then M(K(	)) = ;. (
4) is trivial. For (
5), suppose that u �

�

v and u �

	

v. If

u �

�

v then u �

�


�

	

v, and if u �

�

�

v then u �

�


�

	

v sin
e u �

	

v. The 
ase for




�

is similar. For (
6), suppose that u �

�


�

	

v. Then it has to be the 
ase that

u �

�

v and so (
6) holds for 


�

. The 
ase for 


�

is similar. 2

The merge operation 


�

de�ned using (Def 


�

) 
orresponds to a proposal of Nayak

[Nayak, 1994b, Nayak et al., 1996℄. His FPO (�xed point ordering) revision operation

is a generalisation of AGM revision based on modi�ed versions of the EE-orderings (see

2.3), but it is 
lear from his semanti
 des
ription [Nayak, 1994b℄ that it is, essentially,

the same 
onstru
tion as 


�

. Furthermore, Papini's P

�

-revision 
an be seen as a
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spe
ial 
ase of 


�

, while her P

�

-revision 
an be seen as a spe
ial 
ase of the merge

operation 


�

de�ned using (Def 


�

). It is simply a matter of asso
iating with every

w� � the unique Cn(�)-faithful total preorder in whi
h the 
ountermodels of � are all

on the same level. That is, every w� � is asso
iated with the epistemi
 state 	

�

where

K(	

�

) = Cn(�) and u �

	

�

v i� u 2M(�) or v 2M(:�). It then follows immediately

that �


�

	

�

= �>

�

� and �


�

	

�

= �>

�

� for every � 2 E and every � 2 L.

Finally, we propose a 
lass of merge operations whi
h regard the two epistemi


states to be merged as equally important; at least on the level of belief sets. Revesz

[1993℄ uses the term \arbitration" for merge operations 
onforming to this intuition.

Information-theoreti
ally, our proposal draws a distin
tion between two 
ases. Firstly,

if the two epistemi
 states � and 	 to be merged are 
ompatible on the level of belief

sets, the belief set resulting from an arbitration of � and 	 are obtained by pooling

the 
ontent bits of K(�) and K(	). Se
ondly, if � and 	 are in
ompatible on the level

of belief sets, the belief set resulting from an arbitration of � and 	 is built up using

those infatoms that are 
ontent bits of K(�) as well as K(	).

(Def K(

b


)) K(�

b


	) =

(

K(�) \K(	) if K(�) [K(	) � ?,

Cn(K(�) [K(	)) otherwise

De�nition 7.6.3 A merge operation

b


 on epistemi
 states is an arbitration i� the

belief setK(�

b


	) asso
iated with the arbitration of two epistemi
 states 
an be de�ned

using (Def K(

b


)). 2

Arbitration, as de�ned above, is only 
on
erned with belief sets, and therefore it does

not satisfy (
5) or (
6). However, it does satisfy the remaining properties for merging.

Proposition 7.6.4 Every arbitration satis�es (
1) to (
4).

Proof Pi
k any arbitration

b


. (
1), (
2) and (
4) are trivial. For (
3), observe

that if K(�

b


	) = Cn(?) then K(�)[K(	) � ? and thus K(�

b


	) = K(�)\K(	).

And K(�) \K(	) = Cn(?) i� K(�) = K(	) = Cn(?). 2

Liberatore and S
haerf [1998℄ propose a 
lass of merge operations whi
h is similar in

spirit to de�nition 7.6.3. They provide the following eight postulates for arbitration

operations.

(LS

b


1) K(�

b


	) = K(	

b


�)
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(LS

b


2) K(�

b


	) � Cn(K(�) [K(	))

(LS

b


3) If K(�) [K(	) 2 ? then Cn(K(�) [K(	)) � K(�

b


	)

(LS

b


4) K(�

b


	) = Cn(?) i� K(�) = K(	) = Cn(?)

(LS

b


5) If K(�) = K(
) and K(	) = K(�) then K(�

b


	) = K(


b


�)

(LS

b


6) If K(	) = K(
) \K(�) then K(�

b


	) =

8

>

<

>

:

K(�

b



) or

K(�

b


�) or

K(�

b



) \K(�

b


�)

(LS

b


7) K(�) \K(	) � K(�

b


	)

(LS

b


8) If K(�) 6= Cn(?) then K(�) [K(�

b


	) 2 ?

We show that an arbitration, in the sense of de�nition 7.6.3, satis�es all eight of these

postulates.

Proposition 7.6.5 Every arbitration

b


 satis�es (LS

b


1) to (LS

b


8).

Proof (LS

b


1){(LS

b


5) and (LS

b


7) are trivial. Now pi
k any arbitration

b


. For

(LS

b


6), pi
k any 	;
;� 2 E su
h that K(	) = K(
) \K(�). We need to 
onsider

four 
ases. First we 
onsider the 
ase where bothK(�)[K(
) 2 ? andK(�)[K(�) 2

?. Then K(�

b



) = Cn(K(�) [K(
)) and K(�

b


�) = Cn(K(�) [K(�)). So

K(�

b



) \K(�

b


�)

= Cn(K(�) [K(
)) \ Cn(K(�) [K(�))

= Cn(K(�) [ (K(
) \K(�)))

= Cn(K(�) [K(	))

= K(�

b


	) sin
e K(�) [K(	) 2 ?.

Next we 
onsider the 
ase where both K(�)[K(
) � ? and K(�)[K(�) � ?. Then

M(K(�)) \M(K(
)) =M(K(�)) \M(K(�)) = ;, and so

M(K(�)) \M(K(	))

= M(K(�)) \M(K(
) \K(�))

= M(K(�)) \ (M(K(
)) [M(K(�)))

= (M(K(�)) \M(K(
)))

[

(M(K(�)) \M(K(�)))

= ;
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Therefore K(�)[K(	) � ?. Furthermore, K(�

b



) = K(�)\K(
) and K(�

b


�) =

K(�) \K(�), and so

K(�

b



) \K(�

b


�)

= (K(�) \K(
)) \ (K(�) \K(�))

= K(�) \K(
) \K(�)

= K(�) \K(	)

= K(�

b


	) sin
e K(�) [K(	) � ?.

Finally, we 
onsider the 
ase where K(�) [ K(
) � ? and K(�) [ K(�) 2 ?. (The

remaining 
ase, where K(�) [ K(
) 2 ? and K(�) [ K(�) � ?, is similar.) Then

K(�) [K(	) 2 ? and so

K(�

b


	)

= Cn(K(�) [K(	))

= Cn (K(�) [ (K(
) \K(�)))

= Cn

�

(K(�) [K(
))

\

(K(�) [K(�))

�

= Cn(K(�) [K(�)) sin
e K(�) [K(
) � ?

= K(�

b


�) sin
e K(�) [K(�) 2 ?.

For (LS

b


8), suppose that K(�) 6= Cn(?). If K(�) [ K(	) 2 ? then K(�

b


	) =

Cn(K(�) [K(	)) 6= Cn(?) and so K(�

b


	) [K(�) 2 ?. And if K(�) [K(	) � ?

then K(�

b


	) = K(�) \K(	) and sin
e K(�) 6= Cn(?), it follows that K(�

b


	) [

K(�) 2 ?. 2

Finally, observe that there are some similarities between the properties for merge op-

erations that we have proposed, and the postulates of Liberatore and S
haerf. In

parti
ular, (
1) and (LS

b


7) are identi
al, (
2) and (LS

b


2) are identi
al, (
4) and

(LS

b


5) are identi
al, and (
3) 
orresponds to the one dire
tion of (LS

b


4). The re-

maining postulates of Liberatore and S
haerf seem to be spe
i�
ally 
on
erned with

arbitration, and are thus not suitable as properties for the more general notion of a

merge operation. On the other hand, (
5) and (
6) are 
on
erned with the faith-

ful total orders asso
iated with epistemi
 states, and have no 
ounterparts among the

postulates of Liberatore and S
haerf, whi
h are only 
on
erned with the belief sets

asso
iated with epistemi
 states.
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7.7 Con
lusion

Questions 
on
erning iterated belief 
hange 
an be tra
ed ba
k to a violation of the

prin
iple of Categori
al Mat
hing in the AGM approa
h to belief 
hange. The latter

requires an epistemi
 state to perform belief 
hange operations, but delivers just a

belief set. The AGM postulates 
an thus be seen as 
onstraints pla
ed on just one

part of the epistemi
 state of an agent. This realisation has prompted various authors

to extend the AGM postulates in order to pla
e 
onstraints on the other parts of an

epistemi
 state as well. While the work of Spohn [1988, 1991℄ has been instrumental

in this regard, the a

ount provided by Darwi
he and Pearl [1994, 1997℄ is arguably

the most in
uential. Although some of the postulates they provide seem too strong,

their de
ision to asso
iate with every epistemi
 state a unique faithful total preorder

has proved to play a 
entral role in the understanding of their 
onstraints on epistemi


states pertaining to theory revision.

A semanti
 
onsideration of epistemi
 states also promises to have a signi�
ant

impa
t on the investigation of the merging operations of se
tion 7.6. Mu
h work

still needs to be done in this area, but the work of Nayak [1994b℄, Nayak et al. [1996℄,

Liberatore and S
haerf [1998℄ and Konie
zny and Pino-P�erez [1998℄ have opened fruitful

areas of investigation.



Chapter 8

Infobase 
hange

It is undesirable to believe a proposition when

there is no ground whatsoever for believing it true.

Bertrand Russell

We have seen in se
tion 7.2 that frameworks for belief 
hange whi
h operate on the

level of belief sets are not ri
h enough in stru
ture to provide a proper treatment of


hange operations. In parti
ular, from the work of Darwi
he and Pearl [1994, 1997℄, it

has emerged that belief 
hange ought to be des
ribed on the level of epistemi
 states.

While the proposal of Darwi
he and Pearl is an important 
ontribution to the enterprise

of belief 
hange on an abstra
t level, it does not address the equally important question

of what it is that prompts an agent to adopt a parti
ular epistemi
 state in a given

situation. In this 
hapter we investigate an approa
h to �nd a solution to this problem

using stru
tures that we refer to as infobases.

The assumption underlying infobase 
hange is that an agent obtains information

(in the form of w�s of L) whi
h is to be stored in an infobase; a �nite sequen
e of

w�s 
onsisting of information obtained independently from di�erent sour
es. Infobases

thus have more stru
ture than �nite sets of w�s.

1

From this des
ription it might seem

as if infobase 
hange is a slightly generalised instan
e of base 
hange, the proposal to

1

This 
hapter is an expanded version of the paper by Meyer et al. [1999a℄. In that paper we took

an infobase to be a �nite set of w�s, but a
knowledged at the same time that su
h a representation

is not entirely satisfa
tory.

239
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repla
e 
hange operations on belief sets with 
hange operations on arbitrary sets of

w�s (known as belief bases). While it is indeed possible to 
lassify infobase 
hange as

su
h, the phrase \base 
hange" has be
ome so synonymous with the parti
ular kind of

base 
hange 
hampioned by Fuhrmann and Hansson in parti
ular, that it is perhaps

more appropriate to regard infobase 
hange as an altogether di�erent kind of belief


hange. Se
tion 8.1 
ontains a brief dis
ussion of base 
hange. It is not intended as

a 
omprehensive introdu
tion to the �eld, but is in
luded primarily for purposes of


omparison with infobase 
hange.

8.1 Base 
hange

The realisation that belief sets do not have a ri
h enough stru
ture to serve as appro-

priate models for epistemi
 states (see se
tion 7.2) has led some resear
hers to regard

AGM theory 
hange as an elegant idealisation of a more general theory of belief 
hange

in whi
h belief sets are repla
ed by arbitrary sets of w�s (known as belief bases).

2

The

intuition is that some of our beliefs have no independent standing, but arise only as

beliefs derived from our more basi
 beliefs. And if our reason for believing su
h a

derived belief disappears, then so should the belief. Martins and Shapiro [1988℄ refer

to this pro
ess as disbelief propagation. It is also known as reason maintenan
e [Doyle,

1979℄, and is the prin
iple underlying Fuhrmann's [1991℄ �ltering 
ondition, whi
h we

en
ounter in se
tion 8.2.3.

A belief base B is taken to 
onsist of su
h basi
 beliefs, with B being asso
iated

with the belief set K (and K being the belief set asso
iated with a belief base B) i�

Cn(B) = K. The 
lassi
 example in the base 
hange literature (perhaps analogous to

the Tweety example in nonmonotoni
 reasoning) is Hansson's hamburger example.

Example 8.1.1 [Hansson, 1989℄ \On a publi
 holiday you are standing in the street

in a town that has two hamburger restaurants. Let us 
onsider the subset of your belief

set that represents your beliefs about whether or not ea
h of these two restaurant is

open.

When you meet me, eating a hamburger, you draw the 
on
lusion that at least

one of the restaurant is open (a _ b). Further, seeing from a distan
e that one of the

2

Although the original AGM postulates are not ex
lusively 
on
erned with belief sets, the major

results in Al
hourr�on et al. [1985℄ only hold for belief sets.
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two restaurants has its lights on, you believe that this parti
ular restaurant is open

(a). This situation 
an be represented by the set of beliefs fa; a _ bg. When you have

rea
hed the restaurant however, you �nd a sign saying that it is 
losed all day. The

lights are only turned on for the purposes of 
leaning. You now have to in
lude the

negation of a, i.e. :a, into your belief set. The revision of fa; a _ bg to in
lude :a

should still 
ontain a _ b, sin
e you still have reason to believe that one of the two

restaurants is open.

In 
ontrast, suppose you had not met me or anyone else eating a hamburger. Then

your only 
lue would have been the lights from the restaurant. The original belief

system in this 
ase 
an be represented by the set fag. After �nding out that the

restaurant is 
losed, the resulting set should not 
ontain a _ b, sin
e in this 
ase you

have no reason to believe that one of the restaurants is open." 2

The di�eren
e in the treatment of the belief bases fag and fa; a_ bg is attributable to

the fa
t that a _ b is an expli
it belief with independent standing in fa; a _ bg, while

it is a mere derived belief of the belief base fag. The two belief bases should therefore

treat an a-
ontra
tion di�erently even though Cn(a) = Cn(a; a _ b).

One of the basi
 prin
iples of base 
hange is that it is sensitive to syntax. What

is usually not made expli
it, though, is that su
h an assertion 
an be interpreted in

many ways. In the 
ontext of belief 
hange, this sensitivity to syntax usually refers to

the following two properties:

1. Belief bases o�er a �ner-grained approa
h than belief sets in the sense that two

di�erent belief bases may both be asso
iated with the same belief set.

2. Contra
tion is interpreted on the symbol level and not on the knowledge level

(see page 3). In parti
ular, this means that a base 
ontra
tion � is expe
ted to

satisfy the property of In
lusion, whi
h requires that B � � � B, and not merely

that Cn(B � �) � Cn(B).

Observe that there are other ways for base 
hange to be sensitive to syntax as well.

To name just two, a 
hange e�e
ted by two logi
ally equivalent w�s may be treated

di�erently, or belief bases 
ontaining di�erent but logi
ally equivalent w�s may be

treated di�erently.

Even though base 
hange is more sensitive to syntax than theory 
hange, it is not

intended to be totally oblivious to knowledge level matters. For example, a base 
hange
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operation � is expe
ted to satisfy the property that � =2 Cn(B � �) whenever 2 �,

whi
h involves the belief set asso
iated with the base B � � as well.

Des
riptions of base 
hange usually subs
ribe to some form of Levi's 
ommensu-

rability thesis (see page 7), and 
ontra
tion is thus de�ned expli
itly, while revision

is de�ned in terms of some analogue of the Levi Identity (the identity (Def � from

�)). Both Fuhrmann [1991℄ and Hansson [1989, 1992a, 1993b℄ de�ne versions of base


ontra
tion whi
h 
an be viewed as generalisations of theory 
ontra
tion in whi
h the


ontra
tion of belief sets is a spe
ial 
ase. A

ordingly, their methods for 
onstru
t-

ing these base 
ontra
tion operations are appropriate generalisations of methods for


onstru
ting (basi
 AGM) theory 
ontra
tions. Fuhrmann generalises the entailment

sets used to 
onstru
t safe 
ontra
tions (see se
tion 2.4), while Hansson generalises the

remainders used to 
onstru
t partial meet 
ontra
tions (see se
tion 2.2).

Base 
ontra
tions are operations on belief bases, but it has been pointed out by

Nebel [1989℄ and Fuhrmann [1991℄, amongst others, that there is a theory 
ontra
tion

� asso
iated with every base 
ontra
tion �, whi
h 
an be obtained as follows: Cn(B)�

� = Cn(B � �).

3

In this way it is possible to provide a knowledge level analysis of

base 
ontra
tion, and to make (indire
t) 
omparisons between base 
ontra
tion and

theory 
ontra
tion.

One of the �rst observations to be made in this regard 
on
erns the 
ontroversial

Re
overy postulate for theory 
ontra
tion. Given the symbol level interpretation of

base 
ontra
tion, a simple example suÆ
es to show that Re
overy does not hold for

the asso
iated theory 
ontra
tions.

Example 8.1.2 Let B = fpg and let � be a base 
ontra
tion. Given the restri
tions

that B � � � B and that � =2 Cn(B � �) if 2 �, it has to be the 
ase that

B � p_ q = ;. Therefore Cn(B) 6= Cn(B � p_ q)+ p_ q even though p_ q 2 Cn(B);

a violation of Re
overy. 2

With the emphasis on the synta
ti
 stru
ture of a belief base, it has been remarked by

G�ardenfors and Rott [1995,p. 87℄ that a semanti
 
hara
terisation of base 
hange seems

to be out of the question. It is possible, though, to obtain an indire
t semanti
 
har-

a
terisation of bases 
hange, by fo
ussing on the theory 
hange operations asso
iated

3

This 
onstru
tion only makes sense for a �xed belief base B, though, sin
e the same belief set

may be asso
iated with di�erent belief bases, whi
h may violate the assumed fun
tionality of theory


ontra
tion.
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with base 
hange operations. Hansson [1996℄ provides postulates and representation

results for the theory 
ontra
tions asso
iated with some base 
ontra
tion operations.

A di�erent (though not 
ompletely unrelated) view of base 
hange is that more

emphasis should be pla
ed on knowledge level matters, and that a belief base should

be thought of as providing more stru
ture to its asso
iated belief set. The idea is

that the added stru
ture of a belief base 
an be used, in one way or another, to

pi
k an appropriate asso
iated theory 
hange operation, from whi
h the base 
hange

operation 
an then be 
onstru
ted. This is the view en
ountered in Nebel's [1989,

1990, 1991, 1992℄ des
ription of base 
ontra
tion. Nebel himself des
ribes his own

work as a knowledge level analysis of base 
hange. In 
on
entrating on knowledge

level matters, his 
onstru
tion violates one of the 
ornerstones of base 
ontra
tion; the

property of In
lusion, whi
h requires of a base 
ontra
tion � to satisfy B � � � B.

This violation has resulted in these operations being labelled as pseudo-
ontra
tion by

Hansson [1993a, 1999℄.

In 
on
lusion, observe that if one is interested in moving towards a realisti
 rep-

resentation of the epistemi
 states of agents, it seems reasonable to insist that su
h a

representation be �nite. Su
h a move is sometimes held up as a reason for preferring

base 
hange to theory 
hange. But to do so, is to disregard the distin
tion between an

arbitrary �nite representation of a parti
ular belief set, and a set of �nite w�s o

urring

in a belief base be
ause of their independent standing. For example, re
all from se
tion

3.2.1 that Katsuno and Mendelzon use single propositional w�s to represent belief sets.

But sin
e the parti
ular w� representing a belief set is unimportant, their work should

be 
lassi�ed as resear
h about theory 
hange, and not about base 
hange.

8.2 Constru
ting infobase 
hange

Infobase 
hange is similar in spirit to the knowledge level approa
h to base 
hange

favoured by Nebel [1989℄. The basi
 idea is to use the assumption of independen
e of

the w�s in an infobase IB to 
onstru
t the stru
tures ne
essary for performing theory


hange. Both the 
urrent infobase and the obtained theory 
hange operations are then

used in the pro
ess of determining how to modify the existing infobase when 
onfronted

with new information, resulting in an operation whi
h produ
es a new infobase from

the 
urrent one.

An infobase will be represented as a list of w�s en
losed by square bra
kets. For
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example, the infobase IB 
ontaining the three w�s p, q and p, in that order, will be

denoted as [p; q; p℄. Although infobases are sensitive to the order in whi
h w�s o

ur,

as well as to their synta
ti
al form, we shall see that these super�
ial qualities 
an be

done away with by employing the notion of element-equivalen
e.

De�nition 8.2.1 Two infobases IB and IC are element-equivalent, written as IB �

IC, i� for every � o

urring in IB su
h that 2 �, there is a unique logi
ally equivalent

w� 
 o

urring in IC, and for every 
 o

urring in IC su
h that 2 
, there is a unique

logi
ally equivalent w� � o

urring in IB. 2

The intuition is that element-equivalent infobases 
ontain exa
tly the same information.

For any �nite sequen
e � of w�s, we let j�j denote the number of w�s o

urring in

�, and we use the symbol � to denote 
on
atenation by a single w�. Thus, if � = [p; q℄,

then j�j = 2, [p; q℄ � p denotes the sequen
e [p; q; p℄, and j� � pj = 3. The 
onverse of


on
atenation (removing the last w� from a �nite sequen
e �) will be denoted by

 �

� .

In other words, if � = [p; q; r℄ then

 �

� = [p; q℄. Furthermore, in our dis
ussion of the


onstru
tion of infobase 
hange operations it will frequently be ne
essary to refer to

the (�nite) set of w�s o

urring in a �nite sequen
e of w�s �. We denote this set by

S(�). Thus, for any �nite sequen
e � of w�s, S(�) = f� j � o

urs in �g.

De�nition 8.2.2 An infobase IB is asso
iated with a belief set K (andK is asso
iated

with IB) i� Cn(S(IB)) = K. 2

For any two �nite sequen
es � and � of w�s, � is a subsequen
e of � i� for every w� in

� there is a unique o

urren
e of the same w� in �. � is an ordered subsequen
e of �

i� � is a subsequen
e of � and the w�s in � o

ur in the same order in both � and �.

In our des
ription of infobase 
hange, we subs
ribe to Levi's 
ommensurability

thesis, by viewing infobase 
ontra
tion as more primitive than infobase revision, and

preferring to de�ne infobase revision in terms of infobase 
ontra
tion by means of

an infobase 
hange analogue of the Levi Identity (see de�nition 2.1.1). Formally, we


onsider infobase 
hange operations (whi
h in
lude 
ontra
tion and revision operations)

as fun
tions from IB � L to IB, where IB is the set of all infobases. We shall also

frequently assume the existen
e of a �xed infobase IB, and 
onsider infobase IB-
hange

operations as fun
tions from L to IB.
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8.2.1 Infobase 
ontra
tion

To 
onstru
t an infobase 
ontra
tion, we �rst use the stru
ture of the infobase IB to

obtain an S(IB)-faithful total preorder (see de�nition 3.2.5). The theory 
ontra
tion

obtained from the S(IB)-faithful total preorder is taken to be the theory 
ontra
tion

asso
iated with the infobase 
ontra
tion that we aim to 
onstru
t.

De�nition 8.2.3 For every infobase IB, a theory 
ontra
tion � is asso
iated with an

infobase IB-
ontra
tion � i� Cn(IB)� � = Cn(IB � �) for every � 2 L. 2

Using the intuition asso
iated with an infobase, we order the interpretations in U

a

ording to the number of w�s of IB they satisfy; the more they satisfy, the \better"

they are deemed to be, and the lower down in the ordering they will be.

De�nition 8.2.4 For u 2 U , we de�ne u

IB

, the IB-number of u, as the number of

w�s � in IB su
h that 2 � and u 2M(�). 2

This ordering is used to obtain an appropriate S(IB)-faithful total preorder in terms

of IB as follows:

(Def � from IB) u � v i� v

IB

� u

IB

De�nition 8.2.5 We refer to the faithful total preorder �

IB

de�ned in terms of an

infobase IB using (Def � from IB) as the IB-indu
ed faithful total preorder. 2

The 
onstru
tion of the IB-indu
ed faithful total preorders is perhaps best justi�ed

from an information-theoreti
 point of view (see se
tion 3.1). Suppose that the infobase

IB represents the information that an agent has obtained from its sour
es. Sin
e the

w�s in IB are assumed to have been obtained independently, every o

urren
e of an

infatom i as a 
ontent bit of one of these w�s, 
orroborates the 
laim that i forms part

of the 
ontent bits of the belief set Cn(S(IB)) of the agent. From de�nition 3.1.3 on

34 it 
an be veri�ed that a w� � is satis�ed by an interpretation u i� the infatom i

u

asso
iated with u is a 
ontent bit of :�. So, with �

IB

seen as an ordering on infatoms,

it follows that being higher up in �

IB


orresponds to more o

urren
es of an infatom

as the 
ontent bit of some w�s in IB, whi
h is in line with the view of a faithful

total preorder as an ordering of entren
hment or 
redibility on infatoms (see 3.2, page

44). Note also that sin
e logi
ally valid w�s have no 
ontent bits, their presen
e in

an infobase is super
uous sin
e they do not 
ontribute towards the entren
hment or
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redibility of any of the infatoms. This explains why the de�nition of IB-numbers

disregards the logi
ally valid w�s in infobases.

The IB-indu
ed faithful total preorder is used to 
onstru
t a theory 
ontra
tion as

follows:

(Def �

IB

from IB) Cn(S(IB))�

IB

� = Th(M(S(IB)) [Min

�

IB

(:�))

De�nition 8.2.6 The theory 
ontra
tion�

IB

de�ned in terms of an infobase IB using

(Def �

IB

from IB) is referred to as the IB-indu
ed theory 
ontra
tion. 2

It is easy to verify that the IB-indu
ed faithful total preorder is indeed an S(IB)-

faithful total preorder and by theorem 3.2.6 it thus follows that the IB-indu
ed theory


ontra
tion is an AGM theory 
ontra
tion. Asso
iating the IB-indu
ed theory 
on-

tra
tion with the infobase IB-
ontra
tion allows us to determine whi
h w�s in IB

should be retained and whi
h 
annot be retained, after a 
ontra
tion of IB.

De�nition 8.2.7 The set of �-dis
arded w�s (of an infobase IB) is de�ned as IB

��

=

f� 2 S(IB) j � =2 Cn(S(IB))�

IB

�g. We refer to S(IB)nIB

��

as the set of �-retained

w�s (of IB). 2

Clearly the �-retained w�s are pre
isely the w�s in IB that should be retained when


ontra
ting IB by �. Unlike the dominant approa
hes to base 
ontra
tion dis
ussed

in se
tion 8.1, however, we don't simply expunge the �-dis
arded w�s, but instead

opt to repla
e them with appropriately weakened w�s. (It is only when the weakened

version of su
h a w� is logi
ally valid that we 
an think of the w� as being 
ompletely

dis
arded.) The strategy is to retain as mu
h of the information 
ontained in a w� as

possible, even if not all the information in the w� 
an be retained. This is in line with

the intuition that infobases 
onsist of independently obtained w�s. Of 
ourse, these

weakened w�s 
annot be 
hosen in an arbitrary fashion. Sin
e the IB-indu
ed theory


ontra
tion �

IB

has already been identi�ed as the theory 
ontra
tion to be asso
iated

with the infobase IB-
ontra
tion, the weakened w�s, together with the �-retained w�s,

have to generate the belief set Cn(S(IB))�

IB

�.

In de
iding on an appropriate method for the weakening of the �-dis
arded w�s,

it is ne
essary to strike the right balan
e between a 
oherentist approa
h, emphasising

knowledge level matters, and a foundationalist approa
h, emphasising the indepen-

den
e of the w�s o

urring in IB (see page 2). The following example serves to make

these matters 
on
rete.
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Figure 8.1: A graphi
al representation of the IB-indu
ed faithful total preorder �

IB

,

with IB = [p; q; r℄. For every u; v 2 U , u �

IB

v i� (u; v) is in the re
exive transitive


losure of the relation determined by the arrows.

Example 8.2.8 Let L be the �nitely generated propositional language generated by

the three atoms p, q, and r, with a valuation semanti
s (V;
), where

V = f000; 001; 010; 011; 100; 101; 110; 111g.

Consider the infobase IB = [p; q; r℄. Figure 8.1 gives a graphi
al representation of the

IB-indu
ed faithful total preorder �

IB

. Be
ause p, q and r ea
h represents indepen-

dently obtained information, a (p ^ q)-
ontra
tion of IB should have no e�e
t on r.

That is, when 
ontra
ting IB by p^ q, the resulting infobase should 
ontain weakened

versions of the two (p^q)-dis
arded w�s p and q, and should 
ontain the (p^q)-retained

w� r itself. But what should the weakened versions of p and q look like?

An appli
ation of the 
oherentist approa
h on a lo
al level suggests that, in order to

minimise the loss of information, one should add only the minimal models of :(p^q) to

the models of both p and q, and let the 
orresponding w�s be the appropriate weakened

versions. Sin
e Min

�

IB

(:(p ^ q)) = f101; 011g, the weakened version of p would be

logi
ally equivalent to p _ (q ^ r) and the weakened version of q would be logi
ally

equivalent to q _ (p ^ r).

On the other hand, the foundationalist approa
h, whi
h stresses the independen
e

of the w�s in IB, suggests that the presen
e of r should have no e�e
t on the weakened
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versions of p and q. In this view, the w� p _ q (or any w� logi
ally equivalent to it)

would be a suitable 
hoi
e for the weakened versions of both p and q. 2

There does not seem to be a de�nite answer to the question of whi
h one of these

two approa
hes to infobase 
hange is the \
orre
t" one. They should rather be seen

as opposites on a whole spe
trum of possibilities The 
oherentist approa
h 
an be

des
ribed as the 
ase where all the w�s in IB play a role in determining the weakened

versions of the �-dis
arded w�s, while the foundationalist approa
h ensures that only

the set of �-dis
arded w�s themselves is involved in the 
onstru
tion of their weakened

versions. Given these two opposites, it also seems perfe
tly reasonable to allow for any

set of w�s in between (i.e., 
ontaining the �-dis
arded w�s and in
luded in S(IB)) to

be involved in the 
onstru
tion of the weakened versions of the �-dis
arded w�s.

De�nition 8.2.9 Given an infobase IB and a w� �, a set R is said to be (IB; �)-

relevant i� IB

��

� R � S(IB). 2

Our goal is to ensure that, in the pro
ess of obtaining the weakened versions of the

�-dis
arded w�s, the e�e
t of the w�s not in the (IB; �)-relevant set R are neutralised.

To do so, we should not just add the �

IB

-minimal models of :�, but also any other

models of :� that behave exa
tly like the �

IB

-minimal models with respe
t to the

w�s in R, but that might di�er from the �

IB

-minimal models on the truth value of

the w�s in S(IB) nR.

De�nition 8.2.10 For X � L and u; v 2 U , u is X-equivalent to v, written u �

X

v,

i� for every � 2 X, u 2M(�) i� v 2M(�). 2

Observe that, for the (IB; p ^ q)-relevant set R = fp; qg in example 8.2.8, it follows

that 100 and 010 are R-equivalent to the minimal models 101 and 011 respe
tively,

and adding them to the models of p (and q) as well, results in weakened versions of p

and q that are logi
ally equivalent to p _ q, whi
h is in line with the foundationalist

intuition des
ribed above.

In general, we obtain the weakened version of every �-dis
arded w� � as follows.

We need some appropriate set of interpretations that 
an be added to the models of

� to obtain the set of models of its weakened version. On
e we have de
ided on an

(IB; �)-relevant set R, we use the set of minimal models of :� as our starting point and

then try to expand it so that only elements in R have any in
uen
e, thus neutralising



8.2. CONSTRUCTING INFOBASE CHANGE 249

the possible in
uen
e of any of remaining w�s in IB. This is a

omplished by in
luding

all the models of :� that are R-equivalent to some minimal model of :�.

De�nition 8.2.11 Let R be any (IB; �)-relevant set. For every u 2Min

�

IB

(:�), we

let N

R

u

(:�) = fv 2M(:�) j v �

R

ug, and we let

N

R

IB

(:�) =

[

u2Min

�

IB

(:�)

N

R

u

(:�).

We refer to N

R

IB

(:�) as the (R; �)-neutralised models of IB. 2

We take the (R; �)-neutralised models as the set of interpretations to be added to the

models of ea
h �-dis
arded w�. We 
an think of the (R; �)-neutralised models as a set

of interpretations in whi
h the in
uen
e of the w�s not in R has been removed, but in

whi
h the w�s in R have the same impa
t as on the minimal models of :�.

To summarise, we intend to obtain the infobase resulting from an �-
ontra
tion

of the infobase IB by weakening the �-dis
arded w�s in the manner des
ribed above,

and keeping the �-retained w�s as they are. It turns out that there is an elegant way

to provide a uniform des
ription of this pro
ess. In doing so, we des
ribe infobase


ontra
tion as a pro
ess in whi
h all the w�s in the 
urrent infobase are repla
ed with

weaker versions, but where the \weaker" version of every �-retained w� turns out to

be logi
ally equivalent to the w� itself.

De�nition 8.2.12 Let R be any (IB; �)-relevant set. For every � 2 S(IB), we let

N

R

�

(:�) =

[

u2Min

�

IB

(:�)nM(�)

N

R

u

(:�).

We refer to N

R

�

(:�) as the (R; �; �)-neutralised models of IB). 2

The next proposition shows that an �-retained w� � has no (R; �; �)-neutralised mod-

els, and that, for an �-dis
arded w� �, adding the (R; �; �)-neutralised models to the

models of � has the same e�e
t as adding the (R; �)-neutralised models.

Proposition 8.2.13 Let R be any (IB; �)-relevant set.

1. If � 2 S(IB) n IB

��

then N

R

�

(:�) = ;.

2. If � 2 IB

��

then M(�) [N

R

�

(:�) =M(�) [N

R

IB

(:�).



250 CHAPTER 8. INFOBASE CHANGE

Proof 1. Suppose that � 2 S(IB) n IB

��

. Then � 2 Cn(S(IB)) �

IB

� and thus

Min

�

IB

(:�) �M(�). And therefore

N

R

�

(:�) =

[

u2Min

�

IB

(:�)nM(�)

N

R

u

(:�) = ;.

2. Suppose that � 2 IB

��

. The left-to-right in
lusion is immediate. For the right-

to-left in
lusion we have to show that

[

u2Min

�

IB

(:�)\M(�)

N

R

u

(:�) � M(�).

So pi
k any u 2 Min

�

IB

(:�) \M(�) and v 2 N

R

u

(:�). Then v �

R

u and sin
e

� 2 R, it follows that v 2M(�).

2

Proposition 8.2.13 allows us to des
ribe an �-
ontra
tion of an infobase IB by adding

to the models of a w� � in IB, the set N

R

�

(:�), and repla
ing � with an axiomatisation

of this set of interpretations. Of 
ourse, su
h a des
ription only makes sense if these

sets of interpretations 
an be axiomatised by single w�s. While this is immediate for

the �nitely generated propositional logi
s, the next result shows that it also holds in

the more general 
ase.

De�nition 8.2.14 Let R be any (IB; �)-relevant set, and for � 2 S(IB), let IB

�

�

be

the set 
ontaining every ordered subsequen
e C of IB su
h that jCj = u

IB

for some

u 2 (Min

�

IB

(:�) \M(S(C))) nM(�) (where u

IB

is the IB-number of u). We de�ne

the �-weakened version of �, with respe
t to R, as

w

R

(IB;�)

(�) = � _

0

�

_

C2IB

�

�

��

^

(S(C) n (S(IB) nR))

�

^

�

^

: (R n S(C))

�

^ :�

�

1

A

2

Proposition 8.2.15 Let R be an (IB; �)-relevant set. For every � 2 L and every

� 2 S(IB), M(w

R

(IB;�)

(�)) =M(�) [N

R

�

(:�).

Proof De�ne IB

�

�

as in de�nition 8.2.14. If IB

�

�

= ; then it follows easily that

Min

�

IB

(:�) n M(�) = ;, whi
h means that Min

�

IB

(:�) � M(�) and therefore



8.2. CONSTRUCTING INFOBASE CHANGE 251

that N

R

�

(:�) = ;. So we only need to 
onsider the 
ase where IB

�

�

6= ;. Then

every u 2 Min

�

IB

(:�) n M(�) is a model of S(C) for some C 2 IB

�

�

. Pi
k any

C 2 IB

�

�

and any u 2 (Min

�

IB

(:�)\M(S(C))) nM(�). Observe that every model of

S(C) [ f:�g is a �

IB

-minimal element of M(:�), whi
h ensures that every element

of (R n S(C)) nCn(>) is false in all the models of S(C)[ f:�g. We re
ord this result

formally.

8
 2 (R n S(C)) n Cn(>), 8v 2M(S(C) [ f:�g), v =2M(
) (8.1)

We show that M ((S(C) n (S(IB) nR)) [ :((R n S(C)) n Cn(>)) [ f:�g) = N

R

u

(:�).

From (8.1) it follows that u =2 M(
) for every 
 2 (R n S(C)) n Cn(>) and therefore

that

u 2 M ((S(C) n (S(IB) nR)) [ :((R n S(C)) n Cn(>)) [ f:�g) .

Now pi
k any v 2M ((S(C) n (S(IB) nR)) [ :((R n S(C)) n Cn(>)) [ f:�g) and any

� 2 R. We only 
onsider the 
ase where � 6� >. If � 2 S(C) then 
learly u 2 M(�)

i� v 2 M(�), so suppose � =2 S(C). Then by (8.1) again, u =2 M(�). Furthermore,

sin
e v 2 M(:((R n S(C)) n Cn(>))), it follows that v =2 M(�) and thus that u 2

M(�) i� v 2 M(�). Finally, it is 
lear that v 2 M(:�). We have thus shown that

v 2 N

R

u

(:�). Conversely, pi
k any v 2 N

R

u

(:�). Clearly v 2 M(:�), and sin
e

u 2M ((S(C) n (S(IB) nR)) [ :((R n S(C)) n Cn(>)) [ f:�g), so is v.

It is 
lear that M ((S(C) n (S(IB) nR)) [ :((R n S(C)) n Cn(>)) [ f:�g) is ax-

iomatised by the w�

(:�)

R

C

=

�

^

(S(C) n (S(IB) nR))

�

^

�

^

:((R n S(C)) n Cn(>))

�

^ :�

and it thus follows that M((:�)

R

C

) = N

R

u

(:�). So we have shown that if IB

�

�

6= ;,

then

8C 2 IB

�

�

, 9u 2 (Min

�

IB

(:�) \M(S(C))) nM(�) and (8.2)

8C 2 IB

�

�

, 8u 2 (Min

�

IB

(:�) \M(S(C))) nM(�),

M

�

(:�)

R

C

�

= N

R

u

(:�). (8.3)

We now show that N

R

�

(�) = M

�

W

C2IB

�

�

(:�)

R

C

�

, from whi
h the required result fol-

lows. Pi
k a v 2 N

R

�

(:�). There is a u 2 Min

�

IB

(:�) nM(�) su
h that v 2 N

R

u

(:�),

and by (8.3) it follows that for some C 2 IB

�

�

, v 2 N

R

u

(:�) = M

�

(:�)

R

C

�

. So 
learly

v 2 M

�

W

C2IB

�

�

(:�)

R

C

�

. Conversely, pi
k any v 2 M

�

W

C2IB

�

�

(:�)

R

C

�

. Then v is a
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model of (:�)

R

C

for some C 2 IB

�

�

. By (8.2) there is a u 2 (Min

�

IB

(:�)\M(S(C)))n

M(�), and by (8.3), N

R

u

(:�) =M

�

(:�)

R

C

�

. So v 2 N

R

u

(:�) and thus v 2 N

R

�

(:�). 2

We are now almost in a position to de�ne basi
 infobase 
ontra
tion.

De�nition 8.2.16 A fun
tion rs : IB � }L ! }}L is a relevan
e sele
tion fun
tion

i�

1. IB

��

� rs(IB; �) � IB,

2. if � � � then rs(IB; �) = rs(IB; �), and

3. if IB � IC (that is, IB and IC are element-equivalent) then rs(IB; �) =

rs(IC; �).

2

Intuitively, a relevan
e sele
tion fun
tion indi
ates whi
h of the w�s in IB should

play a role in determining the weakened versions during a 
ontra
tion. Observe that

rs(IB; �) is (IB; �)-relevant.

De�nition 8.2.17 1. An infobase 
hange operation � is a basi
 infobase 
ontra
-

tion i� there is a relevan
e sele
tion fun
tion rs su
h that, for every IB 2 IB and

every � 2 L, IB�� is obtained by repla
ing every w� � in IB with w

rs(IB;�)

(IB;�)

(�),

the �-weakened version of � with respe
t to rs(IB; �).

2. For every IB 2 IB, an infobase IB-
hange operation �

IB

is a basi
 infobase

IB-
ontra
tion i� it 
an be obtained from an infobase 
ontra
tion � by �xing

the infobase IB. That is, i� IB �

IB

� = IB � � for every � 2 L.

2

We 
on
lude this se
tion with an example illustrating the partial 
onstru
tion of some

basi
 infobase 
ontra
tions.

Example 8.2.18 Let IB = [p; q℄. Figure 8.2 
ontains a graphi
al representation of

the IB-indu
ed faithful total preorder �

IB

. Then

Cn(S(IB))�

IB

p = Cn(q), IB

�p

= fpg

IB

p

p

= f[q℄g , IB

p

q

= ;,

Cn(S(IB))�

IB

(p ^ q) = Cn(p _ q)

IB

�(p^q)

= fp; qg, IB

p^q

p

= f[q℄g , and IB

p^q

q

= f[p℄g .
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Now observe that w

IB

�p

(IB;p)

(p) = p _ (>^:p ^:p) � > and that w

IB

�p

(IB;p)

(q) = q _? � q.

Furthermore, sin
e S(IB) = B

�p^q

, note that

w

S(IB)

(IB;p^q)

(p) = w

IB

�p^q

(IB;p^q)

(p) = p _ (q ^ :p ^ :(p ^ q)) and

w

S(IB)

(IB;p^q)

(q) = w

IB

�p^q

(IB;p^q)

(q) = q _ (p ^ :q ^ :(p ^ q)) .

It 
an be veri�ed that both w

S(IB)

(IB;p^q)

(p) and w

S(IB)

(IB;p^q)

(q) are logi
ally equivalent to p_q.

There is thus at least one basi
 infobase 
ontra
tion � su
h that

IB � p =

h

w

IB

�p

(IB;p)

(p); w

IB

�p

(IB;p)

(q)

i

� [>; q℄

and

IB � (p ^ q) =

h

w

IB

�p^q

(IB;p^q)

(p); w

IB

�p^q

(IB;p^q)

(q)

i

� [p _ q; p _ q℄ .

Furthermore, observe that w

S(IB)

(IB;p)

(p) = p_ (q ^:p ^ :p) � p_ q and that w

S(IB)

(IB;p)

(q) =

q _ ? � q. So there is least one infobase 
ontra
tion �

0

su
h that

IB �

0

p =

h

w

S(IB)

(IB;p)

(p); w

S(IB)

(IB;p)

(q)

i

� [p _ q; q℄

and

IB �

0

(p ^ q) =

h

w

S(IB)

(IB;p^q)

(p); w

S(IB)

(IB;p^q)

(q)

i

� [p _ q; p _ q℄ .

2

8.2.2 Properties of basi
 infobase 
ontra
tion

In the dis
ussion of infobase 
ontra
tion thus far, it has been implied that the �-

weakened versions of the �-dis
arded w�s are appropriate 
hoi
es for weakened versions

of these w�s, and that the IB-indu
ed theory 
ontra
tion is the theory 
ontra
tion

asso
iated with every basi
 infobase IB-
ontra
tion. The �rst point has already been

dealt with in the previous se
tion. For the se
ond point, we �rst present a preliminary

result, indi
ating that for every (IB; �)-relevant set R, the models of the �-retained

w�s that are also (R; �)-neutralised models, are pre
isely the �

IB

-minimal models of

:�.

Lemma 8.2.19 If R is an (IB; �)-relevant set, then

N

R

IB

(:�) \M(S(IB) n IB

��

) =Min

�

IB

(:�).
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-

00

R

01

	

11

�

�

10

I

Figure 8.2: A graphi
al representation of the IB-indu
ed faithful total preorder �

IB

,

with IB = [p; q℄. For every u; v 2 U , u �

IB

v i� (u; v) is in the re
exive transitive


losure of the relation determined by the arrows.

Proof By de�nition, S(IB) n IB

��

� Cn(S(IB))�

IB

� and thus

M(S(IB)) [Min

�

IB

(:�) �M(S(IB) n IB

��

).

Furthermore, Min

�

IB

(:�) � N

R

IB

(:�), and so Min

�

IB

(:�) � N

R

IB

(:�) \M(S(IB) n

IB

��

). Conversely, pi
k any v 2 N

R

IB

(:�) \M(S(IB) n IB

��

). That is, v satis�es

all the �-retained w�s, v is a model of :� and there is a �

IB

-minimal model u of

:� that satis�es exa
tly the same w�s in R as v does (whi
h in
ludes the �-dis
arded

w�s). Be
ause u 2 Min

�

IB

(:�), it follows from the de�nition of �

IB

and IB

��

that

u also satis�es all the w�s in S(IB) n IB

��

. So u and v satisfy exa
tly the same w�s

o

urring in IB, whi
h means that v 2Min

�

IB

(:�). 2

The result above is used to prove that the IB-indu
ed 
ontra
tion �

IB

is the theory


ontra
tion asso
iated with every basi
 infobase IB-
ontra
tion.

Proposition 8.2.20 Let � be any basi
 infobase 
ontra
tion. Then

Cn(S(IB))�

IB

� = Cn(S(IB � �)).

Proof Let rs be the relevan
e sele
tion fun
tion used to de�ne �. By propositions

8.2.13 and 8.2.15,

M(S(IB � �)) =

2

4

\

�2IB

��

�

M(�) [N

rs(IB;�)

IB

(:�)

�

3

5

\M(S(IB) n IB

��

)



8.2. CONSTRUCTING INFOBASE CHANGE 255

=

2

4

0

�

\

�2IB

��

M(�)

1

A

[N

rs(IB;�)

IB

(:�)

3

5

\M(S(IB) n IB

��

)

=

�

M(IB

��

) [N

rs(IB;�)

IB

(:�)

�

\M(S(IB) n IB

��

)

= M(S(IB)) [

�

N

rs(IB;�)

IB

(:�) \M(S(IB) n IB

��

)

�

= M(S(IB)) [Min

�

IB

(:�) by lemma 8.2.19,

and thus Cn(S(IB))�

IB

� = Cn(S(IB � �)). 2

Sin
e one of the basi
 tenets of infobase 
hange is that knowledge level issues matter,

one would not expe
t syntax to play too big a role in the 
onstru
tion of infobase


hange operations. We show that the synta
ti
 form of the w�s in an infobase, as well

as form of the w� with whi
h to 
ontra
t, are irrelevant.

Proposition 8.2.21 Let � be a basi
 infobase 
ontra
tion, and suppose that IB � IC

and � � 
. Then IB � � � IC � 
.

Proof Let rs be the relevan
e sele
tion fun
tion used to obtain 	. Sin
e IB and IC

are element-equivalent, u

IB

= u

IC

for every u 2 U , and so the IB-indu
ed faithful total

preorder is exa
tly the same as the IC-indu
ed faithful preorder. By the properties of

a relevan
e sele
tion fun
tion, it then follows that N

rs(IB;�)

IB

(:�) = N

rs(IC;
)

IC

(:
). So,

by propositions 8.2.13 and 8.2.15, w

IB

(IB;�)

(�

0

) � w

IC

(IC;
)

(


0

) for every �

0

in IB and every




0

in IC su
h that �

0

� 


0

, from whi
h the required result follows. 2

8.2.3 Infobase 
ontra
tion and reason maintenan
e

In se
tion 8.1 it was pointed out that base 
hange 
ame about as an attempt to perform

reason maintenan
e, the pro
ess in whi
h the removal of a basi
 belief for
es the removal

of the 
onsequen
es of the basi
 belief as well, unless the latter w�s 
an be derived from

other basi
 beliefs. In the 
ontext of infobase 
hange, the w�s in an infobase IB are

viewed as su
h basi
 beliefs of the belief set asso
iated with IB. Reason maintenan
e

would thus ensure that the 
ontra
tion of IB by a w� � in IB results in the removal

of all the w�s that are dependent on � for being in Cn(S(IB)). Fuhrmann [1991℄

has given a pre
ise meaning to the idea of a w� being dependent on � (for being in

Cn(S(IB))).

4

4

Fuhrmann works with belief bases and not infobases, and our de�nition of IB-dependen
e is thus

a slight generalisation of the notion he de�nes.
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De�nition 8.2.22 A w� � 2 L is IB-dependent on � i� � 2 S(IB) and � 2

Cn(S(IB)), but � =2 Cn(S(IB) n f�g). 2

The next result shows that basi
 infobase 
ontra
tion in
orporates reason maintenan
e.

Proposition 8.2.23 Let � be a basi
 infobase 
ontra
tion. If � is IB-dependent on

� then � =2 Cn(S(IB � �)).

Proof Sin
e � 2 Cn(S(IB)), but � =2 Cn(S(IB) n f�g), there has to be a model u of

S(IB)nf�g in whi
h both � and � are false. So u 2M(:�) and u =2M(S(IB)). Now,

there is only one w� in IB, namely �, that is false in u (although IB may 
ontain

multiple instan
es of �). So any interpretation v for whi
h v

IB

> u

IB

, has to be a

model of S(IB) and hen
e of �. Therefore u 2 Min

�

IB

(:�), and be
ause u =2 M(�),

it follows that � =2 Cn(S(IB))�

IB

�. So � =2 Cn(S(IB��)) by proposition 8.2.20. 2

Of 
ourse, the 
ontra
tion of IB by a w� � in IB is not the only way to remove

� from the infobase IB. In the light of this, it seems reasonable to inquire whether

the w�s that are IB-dependent on � will also be dis
arded if � is dis
arded during

the 
ontra
tion of IB by some w� other than � itself: That is, if � is in IB and

� =2 Cn(S(IB � 
)), will it be the 
ase that � =2 Cn(S(IB � 
)) for every � that is

IB-dependent on �? This property is known as Fuhrmann's [1991℄ �ltering 
ondition.

It is easy to see that basi
 infobase 
ontra
tion 
an violate the �ltering 
ondition. For

example, it is readily veri�ed that for any basi
 infobase 
ontra
tion, the 
ontra
tion

of the infobase IB = [p ^ q℄ by p results in an infobase in whi
h p ^ q is repla
ed by

the w� w

S(IB)

(IB;p)

(p^ q) whi
h is logi
ally equivalent to p! q. And sin
e w

S(IB)

(IB;p)

(p^ q) is


learly IB-dependent on p ^ q, the �ltering 
ondition is violated. But su
h a violation

is to be expe
ted. Given the intuition asso
iated with infobases, the �ltering 
ondition

is 
learly too strong a requirement to impose. For the �ltering 
ondition requires that

for any infobase 
ontra
tion �, Cn(S(IB � 
)) = Cn(>) for any singleton infobase

IB, and any 
 2 Cn(S(IB)) (where 2 
), thus leaving no room for weakening the w�

in IB to anything but a logi
ally valid w�.

8.2.4 Infobase revision

Basi
 infobase revision is de�ned by an appeal to the following infobase analogue of

the Levi Identity:
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(Def ~ from �) IB ~ � = (IB � :�) � �

De�nition 8.2.24 An infobase 
hange operation ~ is a basi
 infobase revision i� it


an be de�ned in terms of a basi
 infobase 
ontra
tion � using (Def ~ from �). 2

Given this 
onne
tion, it is to be expe
ted that basi
 infobase revision satis�es prop-

erties that are similar to those proved in se
tions 8.2.2 and 8.2.3. The next 
orollary

shows that this is indeed the 
ase.

De�nition 8.2.25 A theory revision � is asso
iated with an infobase IB-revision ~

(for some infobase IB) i� Cn(IB) � � = Cn(IB ~ �) for every � 2 L. 2

(Def �

IB

from IB) Cn(S(B)) �

IB

� = Th(Min

�

IB

(�))

De�nition 8.2.26 The theory revision �

IB

de�ned in terms of an infobase IB using

(Def �

IB

from IB) is referred to as the IB-indu
ed theory revision. 2

From theorem 3.2.6 it follows that the IB-indu
ed theory revision is an AGM theory

revision.

Corollary 8.2.27 Let 	 be a basi
 infobase 
ontra
tion, and let ~ be the infobase

revision de�ned in terms of � using (Def ~ from �).

1. If IB � IC and � � � then IB ~ � � IC ~ �.

2. Cn(S(IB ~ �)) = Cn(S(IB)) �

IB

�.

3. If � is IB-dependent on �, then � =2 Cn(S(B ~ :�)).

Proof 1. Follows from proposition 8.2.21.

2. Follows from proposition 8.2.20, by noting thatMin

�

IB

(�) �M(S(IB)) if :� =2

Cn(S(IB)), and by re
alling that Cn(S(IB)) �

IB

� = Th(Min

�

IB

(�)).

3. Follows from part (2) of this 
orollary, and by an argument similar to the proof

of proposition 8.2.23.

2
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Part (1) of 
orollary 8.2.27 shows that basi
 infobase revision is insensitive to the

synta
ti
 form of the w�s in an infobase, as well as to the synta
ti
 form of the w�

with whi
h to revise, part (2) shows that the theory revision asso
iated with a basi


infobase revision is the IB-indu
ed revision fun
tion, and part (3) shows that basi


infobase revision 
an be said to perform reason maintenan
e.

It is also possible to provide a result for infobase 
hange whi
h is reminis
ent of the

Harper Identity (the identity (Def � from �)).

Proposition 8.2.28 Let ~ be a basi
 infobase revision, and let � be an infobase


hange operation su
h that IB�� �

 ������

IB ~ :�. Then � is a basi
 infobase 
ontra
tion.

Proof Follows from the fa
t that there is a basi
 infobase 
ontra
tion �

0

su
h that

IB ~ :� = (IB �

0

::�) � :� and that � � ::�. 2

To 
on
lude this se
tion, we provide an example to show that infobase 
hange is able to

a

ommodate Hansson's hamburger example (example 8.1.1) in an appropriate fashion.

Example 8.2.29 Let L be the propositional language generated by the two atoms p

and q with a valuation semanti
s (V;
), where V = f00; 01; 10; 11g. We let p denote

the assertion that the restaurant whose lights are on is open, and we let q denote

the assertion that the se
ond restaurant is open. Now, let IB = [p; p _ q℄ and let

IC = [p℄. Sin
e IB

�::p

= fpg, it follows from propositions 8.2.13 and 8.2.15 that

for avery basi
 infobase revision ~, there is a � in IB ~ :p su
h that � � p _ q.

Furthermore, sin
e IC

�::p

= IC, it follows that for every basi
 infobase revision

~, IC ~ :p � [>;:p℄ � [:p℄. As our intuition suggests, revising IB by :p yields

an infobase 
ontaining p _ q (or something lo
ially equivalent to it). In 
ontra
t, a

revision of IC by :p does not 
ontain su
h a w�. Nor, for that matter, does p _ q

follow logi
ally from the infobase resulting from a :p-revision of IC. 2

8.3 Related approa
hes

Infobase 
hange relies heavily on the IB-indu
ed faithful total preorders, whi
h are

obtained by 
ounting the number of w�s in an infobase IB. As su
h, its roots 
an be

found in the work of Dalal [1988℄, Borgida [1985℄, Satoh [1988℄, Weber [1986℄, Winslett

[1988℄, all of whom use the idea of distinguishing between interpretations based on

the number of propositional atoms that they satisfy (at least in the propositional
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ase). However, these approa
hes do not distinguish between di�erent infobases (or

belief bases) generating the same belief set, and are thus more properly 
lassi�ed as

instan
es of theory 
hange for the same reasons that Katsuno and Mendelzon's work

is seen as resear
h on theory 
hange, rather than resear
h on base 
hange (see se
tion

8.1 page 243).

As dis
ussed in se
tion 8.1, base 
ontra
tion is usually asso
iated with the require-

ment that the belief base resulting from a base 
ontra
tion ought to be a subset of the

original belief base. Two notable ex
eptions to this are the base 
ontra
tion operations

of Nebel [1989, 1990, 1991, 1992℄ and Nayak [1994a℄, whi
h allow w�s into the resulting

belief base that were not in the original belief base. In this se
tion we 
ompare these

two approa
hes with infobase 
hange.

8.3.1 Nebel's approa
h

Nebel's base 
hange operations in [Nebel, 1990, 1991, 1992℄ make use of an epistemi


relevan
e ordering on the w�s in the belief set generated by the base, whi
h is taken

to denote relative epistemi
 importan
e. This is a generalisation of the 
ase 
onsidered

in [Nebel, 1989℄, whi
h 
an be seen as the spe
ial 
ase where all w�s in the base have

equal epistemi
 weight. Sin
e the latter is 
loser to infobase 
hange, we shall mainly


on
ern ourselves with the work in [Nebel, 1989℄.

Nebel's 
onstru
tion of base 
ontra
tion fun
tions uses the maximal subsets of a

set X that do not entail �. It 
an thus be seen as a generalisation of the 
onstru
tion

of the partial meet fun
tions (see se
tion 2.2). For every X � L, let X # �, the set of

remainders of X after removing �, be de�ned as

X # � = fY � X j Y 2 � and for every Z � L su
h that Y � Z � X, Z j= �g.

Nebel de�nes the base 
ontra
tion �̂, in a somewhat opaque fashion, as

B�̂� =

8

<

:

W

C2(B#�)

C ^ (B _ f:�g) if 2 �,

B, otherwise.

This 
onstru
tion is justi�ed by a 
loser look at the theory 
ontra
tion asso
iated with

�̂. He de�nes a B-faithful weak partial order � as: x � y i� (Th(x)\B) � (Th(y)\B),
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and then obtains a Cn(B)-
ontra
tion

^

� from � as follows:

5

Cn(B)

^

�� = Th(M(B) [Min

�

(:�)).

He then pro
eeds to show that

^

� is the Cn(B)-
ontra
tion asso
iated with �̂ (i.e.

Cn(B)

^

�� = Cn(B�̂�)), and that

^

� satis�es (K�1) to (K�7), but does not, in general,

satisfy (K�8).

A 
omparison of Nebel's Cn(B)-
ontra
tion

^

� (whi
h is obtained from �) with the

IB-indu
ed 
ontra
tion (where B is a belief base and IB an infobase) shows that the

intuitions employed in both 
ases are very similar. But whereas � is de�ned in terms of

the satisfa
tion of maximal subsets of B, the IB-indu
ed faithful total preorder relies

on the satisfa
tion of the maximum number of w�s in IB. While this di�eren
e allows

for Nebel's

^

� to be de�ned for in�nite bases as well, it ensures that

^

� does not always

satisfy (K�8), while the IB-indu
ed 
ontra
tion does. Below we provide an example

in whi
h it seems desirable for a base 
ontra
tion operation to satisfy (K�8), at least

under the assumption of the independen
e of the w�s in a belief base B.

Example 8.3.1 Let B = fp _ q;:p _ q; pg and let � be a base 
ontra
tion in whi
h

the w�s in B are regarded as being independently obtained. A 
ontra
tion with p ^ q

would for
e us to remove at least one of p and q from Cn(B), and sin
e p 2 B but

q =2 B, it seems reasonable to require that if one of the two is retained, it should be p

and not q. So, regardless of whether p is being retained, q should not be an element of

Cn(B � (p^ q)). Furthermore, sin
e p_ q is expli
itly 
ontained in B, a 
ontra
tion of

B by p^ q should not remove p_ q, and we should thus have p_ q 2 Cn(B � (p^ q)).

Finally, although the presen
e of both p _ q and :p _ q in B suggests that p and q are

independent (sin
e p _ q is logi
ally equivalent to :p ! q, and :p _ q to p ! q), this

is, to some extent, o�set by the presen
e in B of both p and :p _ q. The in
on
lusive

eviden
e regarding the independen
e of p and q, 
oupled with the fa
t that p itself is

in B, then suggests that p should be an element of Cn(B � q). It is easy to see that

the failure of the intuition expressed above would amount to a violation of (K � 8).

By taking � as p and � as q, it is easily seen that Nebel's Cn(B)-
ontra
tion fun
tion

^

� violates (K-8) (p _ q 2 Cn(B)

^

�(p ^ q), but p _ q =2 Cn(B)

^

�q). 2

Nebel also 
onsiders a modi�
ation of

^

� that satis�es (K�8) (whi
h allows him to set

B�̂� equal to some element of B # �) but it presupposes a linear order on the w�s

5

Nebel's 
onstru
tion of the theory 
ontra
tion fun
tion

^

� is phrased in terms of partial meet

fun
tions, but it is easily seen that it 
an also be phrased semanti
ally, as we have done.
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in B, whi
h is a very strong restri
tion indeed. The restri
tion is relaxed to a total

preorder in [Nebel, 1990, 1991, 1992℄, but then (K�8) does not hold in the general


ase.

We have thus far 
onsidered the Cn(B)-
ontra
tion

^

� in detail, but have said very

little about �̂ itself. From some 
omments made in his 
on
lusion, it seems that

Nebel regards the set of w�s B�̂� merely as a 
onvenient �nite representation from

whi
h the belief set B

^

�� 
an be generated, and nothing more. He writes: \: : :iterated


ontra
tions were ignored be
ause they present serious problems.", and \Choosing the

`right' form of the premises seems to be one of the 
entral tasks before any kind of belief

revision 
an be applied". The latter statement seems to suggest that B�̂� 
annot be

seen as a base with the w�s 
ontained in it being epistemologi
ally more important

than the w�s in Cn(B�̂�), a view that is also supported by his proposal for a base

revision

^

�. He de�nes B

^

�� as (B�̂:�) ^ f�g, whi
h means that the newly obtained

basi
 belief � o

urs in B

^

�� as a 
onjun
t of every w� in (B�̂:�). And there 
ertainly

is no intuition of a weakening of the w�s 
ontained in B, as with infobase 
hange. For

example, if B = fp; q; rg, it 
an be veri�ed that B�̂(p ^ q ^ r) 
ontains 24 elements

and is element-equivalent to the infobase [p _ q; p _ r; q _ r; p _ q _ r℄. In 
ontrast,


onsider the infobase 
ontra
tion � obtained from the relevan
e sele
tion fun
tion sr

where sr(IB; �) = IB

��

for every IB 2 IB, and every � 2 L. It 
an be veri�ed that,

for the infobase IB = [p; q; r℄, IB � (p ^ q ^ r) 
ontains three logi
ally non-equivalent

w�s (weakened versions of ea
h of the w�s in IB) and is element-equivalent to the

infobase [p _ (q ^ r); q _ (p ^ r); r _ (p ^ q)℄.

8.3.2 Nayak's approa
h

In some ways, Nayak's [1994a℄ approa
h to base 
hange is more general than infobase


hange sin
e it a

ommodates in�nite bases. (On the other hand, of 
ourse, infobases

have a ri
her stru
ture than �nite sets of w�s.) He takes Fuhrmann's [1991℄ generalised

safe 
ontra
tion as a starting point. When 
ontra
ting a base B by � (a base 
ontra
tion

whi
h we denote by ��) he �rst �nds the set E(�) of minimal subsets of B that entail

�. The idea is to 
onstru
t a reje
t set R(�) (w�s of B that will be dis
arded),


onsisting of w�s from every element of E(�). To ensure that the Cn(B)-
ontra
tion

asso
iated with �� satis�es (K�1) to (K�5), he assumes a 
hoi
e fun
tion C from

}B to }B that pi
ks the \most reje
table" elements of any subset of B. Up to this
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point the 
onstru
tion 
orresponds roughly to Fuhrmann's base 
ontra
tion. However,

Fuhrmann's version of the 
hoi
e fun
tion does not have to 
onform to the stringent

restri
tions that Nayak pla
es on C. Furthermore, Nayak does not take the set R

0

(�),

whi
h 
onsists of the most reje
table elements of all members of E(�), to be the reje
t

set, as Fuhrmann does. Instead, he uses C to 
hoose a parti
ular subset of R

0

(�), whi
h

also happens to be an element of B # �, as the reje
t set R(�). B ��� is then de�ned

as the w�s in B that are not reje
ted, together with weakened versions of the reje
ted

w�s. To be pre
ise, B ��� = B n R(�) [ f� ! � j � 2 R(�)g. Nayak proves that the

Cn(B)-
ontra
tion fun
tion

�

� asso
iated with �� satis�es all eight AGM 
ontra
tion

postulates. The addition of the weakened versions of w�s in the reje
t set ensures that

�

� satis�es (K�6), but it is 
urrently un
lear whether it plays a role in the satisfa
tion

of (K�7) and (K�8) as well.

The stri
t 
onditions imposed on C, together with the insisten
e that the reje
t

set R(�) be an element of B # �, are akin to pla
ing a linear order on B. This

means that Nayak's base 
ontra
tion fun
tion �� is 
losely related to Nebel's modi�ed

version of the base 
ontra
tion fun
tion �̂, for whi
h B�̂� is an element of B # �.

It is thus diÆ
ult to draw a dire
t 
omparison between �� and infobase 
ontra
tion,

mainly be
ause the 
onstru
tion of �� needs so mu
h more extra-logi
al information. A

feature that Nayak's base 
ontra
tion does have in 
ommon with infobase 
ontra
tion


on
erns the w�s 
ontained in the resulting base (or infobase) after a 
ontra
tion has

taken pla
e. Both retain a number of w�s and repla
e the w�s that are removed with

weakened versions. Currently, the 
losest we 
an 
ome to a 
omparison is to give an

example showing that any reasonable modi�
ation to �� whi
h 
aters for situations

in whi
h less extra-logi
al information is available will probably not always give the

desired results, at least not when the w�s in a base are assumed to be independent.

This does not, of 
ourse, suggest that infobase 
ontra
tion will always be preferable to

su
h modi�ed versions of Nayak's approa
h. It merely serves to indi
ate that, given the

assumption of the independen
e of w�s, there are 
ases in whi
h infobase 
ontra
tion

is preferable to any modi�
ation that retains the spirit of Nayak's original approa
h.

Example 8.3.2 Let B = fp; qg. The requirement that the reje
t set be a subset of B

seems to form an integral part of Nayak's approa
h, whi
h means that the reje
t set

R(p ^ q) has to be one of ;, fpg or fqg, irrespe
tive of any restri
tions on the 
hoi
e

fun
tion C. The only 
andidates for B ��(p ^ q) are thus f(p ^ q) ! p; (p ^ q) ! qg,

fp; (p ^ q) ! qg and fq; (p ^ q) ! pg. Now, if p and q have equal weight then the
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desired result when 
ontra
ting B with p^q is fp_qg (or some set 
ontaining elements

that are logi
ally equivalent to p_ q), a set of w�s whi
h Nayak's approa
h is not able

to produ
e. In 
ontrast, it was shown in example 8.2.18 that there is a basi
 infobase


ontra
tion � for whi
h [p; q℄ � (p ^ q) � [p _ q; p _ q℄. In fa
t, it 
an be shown that

every basi
 infobase 
ontra
tion yields the same result. 2

8.4 Iterated infobase 
hange

Although an infobase IB indu
es the unique theory 
ontra
tion �

IB

, infobases do not


ontain enough information to determine a basi
 infobase 
ontra
tion or revision. To

do that, we also need a relevan
e sele
tion fun
tion rs. On
e rs is �xed, though, we

are dealing with a spe
i�
 basi
 infobase 
ontra
tion and revision, whi
h allows for the

possibility of iterated infobase 
hange. In this se
tion we investigate whether iterated

infobase 
hange measures up to the postulates supplied by Darwi
he and Pearl (see

se
tion 7.3) and Lehmann (see se
tion 7.4). To do so, we have to work on the level of

epistemi
 states. Re
all from se
tion 7.3 that every epistemi
 state � is assumed to have

asso
iated with it a belief set K(�) and a K(�)-faithful total preorder �

�

. To bring

infobase 
hange into this framework, we assume that it is possible to extra
t a unique

infobase IB

�

from every epistemi
 state �. This implies that K(�) = Cn(S(IB

�

))

and that �

�

is identi
al to the IB

�

-indu
ed faithful total preorder �

IB

�

. Further-

more, sin
e Darwi
he and Pearl operate under the assumption of a �nitely generated

propositional language L with a valuation semanti
s (V;
), we shall do the same for

the rest of this se
tion.

Re
all from our dis
ussion of DP-revision in se
tion 7.3 that in order to simplify

matters, we de
ided to equate every epistemi
 state � with the ordered pair (K(�);�

�

).

With the in
orporation of infobases into epistemi
 states, it is no longer possible to

adhere to this simpli�
ation. The reason is that infobases 
ontain more information

than su
h ordered pairs. That is, while every infobase IB is uniquely asso
iated with

the ordered pair (Cn(S(IB));�

IB

), this ordered pair may be asso
iated with di�erent

infobases. For example, letting IB = [p; q℄ and IC = [p ^ q; p _ q℄, it is easy to 
he
k

that Cn(S(IB)) = Cn(S(IC)), and that �

IB

and �

IC

are identi
al. Furthermore, the

fa
t that we only deal with �nitely generated propositional logi
s makes it easy to see

that every ordered pair of this kind 
an be obtained from some infobase.

Lemma 8.4.1 For every ordered pair of the form (K;�) where K is a belief set and
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� is a K-faithful total preorder, there is an infobase IB su
h � and �

IB

are identi
al,

and K = Cn(S(IB)).

Proof Pi
k any ordered pair of the form (K;�) where K is a belief set and � is a

K-faithful total preorder. Sin
e L is a �nitely generated propositional language, V


ontains a �nite number of interpretations. The total preorder � thus partitions V

into a �nite number of subsets (blo
ks). Let us assume that there are n su
h blo
ks.

We assign ea
h of them a unique index from 1 to n a

ording to their relative positions

in �, leaving us with the n indexed blo
ks P

1

; : : : ; P

n

. That is, for 1 � i; j � n, i < j i�

for every u 2 P

i

and every v 2 P

j

, u � v. Now, for any W � V , let �

W

be some some

w� that axiomatises W . (Sin
e L is �nitely generated, su
h a w� always exists.) For

1 � i � n, let �

i

� �

W

where W =

S

1�j�i

P

j

. We de�ne an infobase IB as follows: if

? 2 K, then IB 
ontains exa
tly one instan
e of ea
h of the w�s in f?g[

S

1�i�n

f�

i

g,

otherwise IB 
ontains exa
tly one instan
e of ea
h of the w�s in

S

1�i�n

f�

i

g. It is

easily veri�ed that � and �

IB

are identi
al, and that Cn(S(IB)) = K. 2

More importantly, perhaps, is the fa
t that the extra information 
ontained in infobases

plays an important role in the pro
ess of infobase 
hange, as the next example shows.

Example 8.4.2 Let � be the basi
 infobase 
ontra
tion obtained from the relevan
e s-

ele
tion fun
tion rs, where rs(IB; �) = IB

��

, for every IB 2 IB and every � 2 L, and

let ~ be the basi
 infobase revision de�ned in terms of � using (Def ~ from �). Now,

let IB = [p; q℄ and let IC = [p ^ q; p; q; p _ q; p! q; q ! p℄. Clearly Cn(S(IB)) =

Cn(S(IC)) and it is also easy to see that �

IB

and �

IC

are identi
al, and are repre-

sented graphi
ally in �gure 8.2. Yet, it 
an be veri�ed that IB~(p^:q) � [p;>; p ^ :q℄

and that IC ~ (p ^ :q) � [p; p; p _ q; p _ q;>; q ! p; p ^ :q℄. So IB ~ (p ^ :q) and

IC ~ (p ^ :q) indu
e di�erent faithful total preorders, as 
an be seen in �gure 8.3. 2

Having established that epistemi
 states need to have a ri
her stru
ture than ordered

pairs of the form (K(�);�

�

), we now turn to the de�nition of revision on epistemi


state in terms of basi
 infobase revision.

(Def > from ~)

2

6

4

K(�> �) = Cn(IB

�

~ �)

�

�>�

= �

(IB

�

~�)

3

7

5
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Figure 8.3: A graphi
al representation of the total preorders used in example 8.4.2.

On the left is the (IB ~ (p ^ :q))-indu
ed faithful total preorder and on the right the

(IC ~ (p ^ :q))-indu
ed faithful total preorder. As usual, the appli
able preorder is

the re
exive transitive 
losure of the relation determined by the arrows.

De�nition 8.4.3 We refer to the revision on epistemi
 states de�ned in terms of a

basi
 infobase revision~ using (Def> from~) as the~-asso
iated revision on epistemi


states. 2

It is easily veri�ed that the revisions on epistemi
 states asso
iated with basi
 infobase

revisions all satisfy (E>1) to (E>8).

Proposition 8.4.4 Let ~ be a basi
 infobase revision, and let > be the ~-asso
iated

revision on epistemi
 states. Then > satis�es (E>1) to (E>8).

Proof Follows from theorem 7.3.1 and part (2) of 
orollary 8.2.27. 2

8.4.1 DP-revision

When pla
ed in the framework for iterated belief 
hange proposed by Darwi
he and

Pearl, basi
 infobase revision yields favourable results. The revisions on epistemi


states asso
iated with basi
 infobase revisions satisfy all but the �rst one of the four

DP-postulates. The satisfa
tion of these three DP-postulates rely on the following two

simple results.
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Lemma 8.4.5 Let ~ be a basi
 infobase revision and let rs be the relevan
e sele
tion

fun
tion from whi
h ~ is obtained.

1. If v 2M(:�) then, for every � in IB, v 2M(�) i� v 2M

�

w

rs(IB;:�)

(IB;:�)

(�)

�

.

2. For every � in IB, if v 2M(�) then v 2M

�

w

rs(IB;:�)

(IB;:�)

(�)

�

.

Proof By proposition 8.2.15, M

�

w

rs(IB;:�)

(IB;:�)

(�)

�

= M(�) [N

rs(IB;:�)

�

(::�) for every

� in IB.

1. Follows from the fa
t that N

rs(IB;:�)

�

(::�) �M(�) for every � in IB.

2. Follows from the fa
t that M(�) � M

�

w

rs(IB;:�)

(IB;:�)

(�)

�

.

2

Proposition 8.4.6 Let ~ be a basi
 infobase revision, and let > be the ~-asso
iated

revision on epistemi
 states. Then > satis�es (DP2){(DP4), but does not ne
essarily

satisfy (DP1).

Proof To show that > does not ne
essarily satisfy (DP1), let L be generated by the

atoms p and q, with a valuation semanti
s (V;
) where V = f00; 01; 10; 11g. Let

IB

�

= [p$ q; p _ :q;:p _ :q;:q℄ and let ~ be the basi
 infobase revision obtained

from the relevan
e sele
tion fun
tion rs for whi
h rs(IB; �) = IB

��

for every IB 2 IB

and every � 2 L. It 
an be veri�ed that

IB

�

~ (p _ q) � [p _ :q;:p _ :q;:q; p _ q℄ ,

K((�> (p _ q))> q) = Cn(S((IB

�

~ (p _ q))~ q)) = Cn(q), and

K(�> q) = Cn(S(IB

�

~ q)) = Cn(p ^ q).

So q � p _ q, but K((�> (p _ q))> q) 6= K(�> q), whi
h is a violation of (DP1).

For (DP2){(DP4), it suÆ
es, by theorem 7.3.4, to show that > satis�es (DPR2){

(DPR4). Let rs be the relevan
e sele
tion fun
tion from whi
h ~ is obtained and pi
k

any epistemi
 state �.

For (DPR2), observe that sin
e IB

�

~� is obtained by repla
ing every w� � in IB

�

with w

rs(IB

�

;:�)

(IB

�

;:�)

(�) and then adding �, it follows from part (1) of lemma 8.4.5 that
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u

IB

�

= u

IB

�

~�

(where u

IB

�

and u

IB

�

~�

are the IB

�

-number and the (IB

�

~�)-number

of u), for every u 2 M(:�). And sin
e �

�

is the IB

�

-indu
ed faithful total preorder,

and �

�>�

is the (IB

�

~ �)-indu
ed faithful total preorder, it then follows that u �

�

v

i� u �

�>�

v for every u; v 2M(:�). So (DPR2) is satis�ed.

For (DPR3) and (DPR4), note that part (2) of lemma 8.4.5 ensures that u

IB

�

�

u

IB

�

~�

. Combined with part (1) of lemma 8.4.5, it then follows for every u 2M(�) and

every v 2 M(:�), that if u

IB

�

> v

IB

�

then u

IB

�

~�

> v

IB

�

~�

. So, for every u 2 M(�)

and every v 2 M(:�), if u �

�

v then u �

�>�

v, whi
h means that (DPR3) holds.

Similarly, from parts (1) and (2) of lemma 8.4.5 it follows for every u 2 M(�) and

every v 2 M(:�), that if u

IB

�

� v

IB

�

then u

IB

�

~�

� v

IB

�

~�

. So, for every u 2 M(�)

and every v 2M(:�), if u �

�

v then u �

�>�

v; that is, (DPR4) holds. 2

It is our 
ontention that the violation of (DP1) by basi
 infobase revision is an indi
ation

that this postulate is perhaps too restri
tive to a

ommodate a wide range of rational

forms of revision. Below we give a realisti
 example in support of this 
laim.

6

Example 8.4.7 I have a 
ir
uit 
ontaining two 
omponents; an adder and a multiplier.

I have made three independent observations about these 
omponents.

1. The adder is working.

2. The multiplier is working.

3. If the adder doesn't work then the multiplier also doesn't work.

Another observation now indi
ates that at least one of the two 
omponents is not

working. In trying to in
orporate this new information, we have to dis
ard (or weaken)

at least one of the �rst two observations. Moreover, we 
annot retain both observations

(2) and (3), for they imply observation (1). So it seems reasonable to retain the belief

that the adder is working and the belief that a broken adder implies a broken multiplier.

Together with the new information that at least one of the 
omponents is broken, it

then follows that it is the multiplier that is broken.

This line of reasoning 
an be formalised by using a propositional language generated

by the two atoms a (indi
ating that the adder is working) and m (indi
ating that the

multiplier is working) with a valuation semanti
s (V;
), where V = f00; 01; 10; 11g.

7

6

This example was inspired by a similar one proposed by Darwi
he and Pearl [1997,p. 12℄.

7

We adopt the 
onvention of letting the �rst digit denote the truth value of a and the se
ond digit

the truth value of m.
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My initial infobase then looks like this: IB = [a;m;:a! :m℄. Figure 8.4 
ontains

a graphi
al representation of the IB-indu
ed faithful total preorder �

IB

. It is easily

veri�ed that for any basi
 infobase revision ~, Cn(S(IB ~ :(a ^m))) = Cn(a ^ :m),

whi
h means that m should be dis
arded and that a and :a! :m should be retained.

But what should the weakened version of the dis
arded w� m look like?

One reasonable option is to dis
ard it 
ompletely, or, what amounts to the same

thing, to weaken it so that it be
omes logi
ally valid. Formally, this 
an be a

om-

plished as follows. Let rs be a relevan
e sele
tion fun
tion su
h that rs(IB; a ^m) =

IB

�(a^m)

= fmg. Sin
e IB

�(a^m)

is (IB; � ^ m)-relevant, there is su
h an rs. Now


onsider the basi
 infobase 
ontra
tion � whi
h is obtained using rs. It 
an be

veri�ed that IB � ::(a ^ m) � IB � (a ^ m) � [a;>;:a! :m℄ and therefore

IB ~ :(a ^ m) � [a;>;:a! :m;:(a ^m)℄, where ~ is the basi
 infobase revision

de�ned in terms of � using (Def ~ from �). Figure 8.4 
ontains a graphi
al represen-

tation of the (IB ~ :(a ^m))-indu
ed faithful total preorder.

To see that the revision > de�ned in terms of ~ using (Def > from ~) violates

(DP1), note that an inspe
tion of �gure 8.4 shows that Cn(S(IB ~ :a)) = Cn(:a),

but that Cn(S((IB~:(a^m))~:a)) = Cn(:a^:m). So K((�>:(a^m))>:a) 6=

K(� > :a) even though :a � :(a ^ m) where � is an epistemi
 state su
h that

IB

�

= IB. And this 
onstitutes a violation of (DP1). 2

There is a parti
ular form of basi
 infobase revision whi
h does satisfy (DP1), though.

It 
orresponds to what we have referred to as the 
oherentist approa
h to infobase


hange on page 246 in se
tion 8.2.1.

De�nition 8.4.8 A 
oherentist basi
 infobase revision ~ is a basi
 infobase revision

su
h that rs(IB; �) = IB for every � 2 L, for the relevan
e sele
tion fun
tion rs from

whi
h ~ is obtained. 2

To show that a 
oherentist basi
 infobase revision satis�es (DP1) we need the following

two lemmas.

Lemma 8.4.9 For every u 2Min

�

IB

(�), N

IB

u

(�) � Min

�

IB

(�).

Proof Pi
k any u 2 Min

�

IB

(�) and any v 2 N

IB

u

(�). By de�nition, v 2 M(�), and

u and v satisfy exa
tly the same w�s in IB. So the IB-numbers of u and v are the

same, and therefore v 2Min

�

IB

(�). 2
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Figure 8.4: A graphi
al representation of the total preorders used in example 8.4.7.

On the left is the IB-indu
ed faithful total preorder and on the right the (IB ~ :(a ^

m))-indu
ed faithful total preorder. As usual, the appli
able preorder is the re
exive

transitive 
losure of the relation determined by the arrows.

Lemma 8.4.10 If v 2 M(�) n Min

�

IB

(�) then, for every � in IB, v 2 M(�) i�

v 2M

�

w

IB

(IB;:�)

(�)

�

.

Proof Pi
k any v 2 M(�) n Min

�

IB

(�) and any � in IB. By proposition 8.2.15,

M(�) �M

�

w

IB

(IB;:�)

(�)

�

, and so v 2M(�) implies v 2M

�

w

IB

(IB;:�)

(�)

�

. Conversely,

suppose that v 2 M

�

w

IB

(IB;:�)

(�)

�

. By lemma 8.4.9, v =2 N

IB

�

(�), and it therefore

follows from proposition 8.2.15 that v 2M(�). 2

Proposition 8.4.11 Let ~ be the 
oherentist basi
 infobase revision and let > be the

revision on epistemi
 states de�ned in terms of ~ using (Def > from ~). Then >

satis�es (DP1).

Proof By theorem 7.3.4, it suÆ
es to show that > satis�es (DPR1). Let � be any

epistemi
 state. So �

�

is the IB

�

-indu
ed faithful total preorder. We have to show

that u �

�

v i� u �

�>�

v for every u; v 2M(�).

Re
all from de�nitions 8.2.14 and 8.2.24 that IB

�

~ � is obtained by repla
ing

every w� � in IB

�

with w

IB

�

(IB

�

;:�)

(�) and then adding �. From lemma 8.4.10 it follows

that the (IB

�

~ �)-number of u is one more than the IB

�

-number of u, for every

u 2M(�) nMin

�

�

(�). So u �

�

v i� u �

�>�

v for every u; v 2M(�) nMin

�

�

(�).



270 CHAPTER 8. INFOBASE CHANGE

Next, observe that the IB

�

-number of every u 2 Min

�

�

(�) is greater than the

IB

�

-number of every v 2M(�) nMin

�

�

(�). Moreover, by part (2) of 
orollary 8.2.27

it follows that M(S(IB

�

~ �)) = Min

�

�

(�). So the (IB

�

~ �)-number of every

u 2 Min

�

�

(�) is greater than the (IB

�

~ �)-number of every v 2 M(�) nMin

�

�

(�).

Therefore u �

�

v i� u �

�>�

v for every u 2Min

�

�

(�) and every v 2M(�)nMin

�

�

(�),

and u �

�

v i� u �

�>�

v for every v 2Min

�

�

(�) and every u 2M(�) nMin

�

�

(�).

Finally, observe that elements of Min

�

�

(�) all have the same IB

�

-number, and

sin
eM(S(IB

�

~�)) =Min

�

(�), the elements ofMin

�

�

(�) all have the same (IB

�

~

�)-number as well. So u �

�

v i� u �

�>�

v for every u; v 2 Min

�

�

(�), whi
h means

we are done. 2

8.4.2 L-revision

We turn now to Lehmann's framework for iterated revision whi
h was dis
ussed in

se
tion 7.4.

8

Sin
e his postulates (L>1), (L>2), (L>3) and (L>6) 
orrespond exa
tly

to (E>1), (E>2), (E>3) and (E>6) respe
tively, it follows from proposition 8.4.4 that

the revision > on epistemi
 states obtained in terms of a basi
 infobase revision using

(Def > from ~) satisfy these four postulates of Lehmann. Furthermore, sin
e (L>7)

is a weakened version of (DP2) (see se
tion 7.4, page 223), it follows from proposition

8.4.6 that > also satis�es (L >7). It does not ne
essarily satisfy (L>4), (L>5) and

(L>8), though, as the following example shows.

Example 8.4.12 Let ~ be the basi
 infobase revision obtained from the relevan
e

sele
tion fun
tion rs for whi
h rs(IB; �) = IB

��

for every IB 2 IB and every � 2 L.

1. Let IB = [p ^ :q; p _ q℄. Clearly IB ~ p � [p ^ :q; p _ q; p℄. It 
an be veri�ed

that Cn(S((IB~p)~ q)) = Cn(p^ q), but that Cn(S(IB~ q)) = Cn(q). Taking

p as � and q as the sequen
e of w�s �, this is a violation of (L>4).

2. Let IB = [p$ q; p _ :q;:p _ :q;:q℄. It 
an be veri�ed that

IB ~ q � [p$ q; p _ :q; p _ :q; q℄ ,

IB ~ p _ q � [p _ :q;:p _ :q;:q; p _ q℄ ,

(IB ~ p _ q)~ q � [p _ q; q℄ ,

Cn(S(((IB ~ p _ q)~ q)~ :q)) = Cn(p ^ :q), and

Cn(S((IB ~ q)~ :q)) = Cn(:p ^ :q).

8

Re
all that Lehmann 
on
erns himself only with revisions by satis�able w�s.
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Taking p _ q as �, q as �, and :q as the sequen
e of w�s �, this 
onstitutes a

violation of (L>5).

3. Let IB = [p _ q; p _ :q℄. Clearly

IB ~ p � [p _ q; p _ :q; p℄ ,

(IB ~ p)~ q = [p _ q; p _ :q; p; q℄ , and

(IB ~ p)~ p ^ q = [p _ q; p _ :q; p; p ^ q℄ .

It 
an be veri�ed that

Cn(S(((IB ~ p)~ q)~ :p)) = Cn(:p ^ q), and

Cn(S(((IB ~ p)~ p ^ q)~ :p)) = Cn(:p).

With p as �, q as �, and :p as the sequen
e of w�s �, it follows that (L>8) is

violated.

2

An examination of this example suggests that, unlike the DP-postulates, (L>4), (L>5)

and (L>8) are fundamentally in
ompatible with basi
 infobase revision.

8.5 Future resear
h

This 
hapter has laid the foundation for a theory of infobase 
hange, but it is 
lear that

mu
h still needs to be done. Infobase 
hange, as we have 
urrently de�ned it, assumes

that the w�s 
ontained in the infobase IB have equal epistemi
 weight. But there may

be good reasons for regarding some w�s in IB as epistemologi
ally more important

than others, as the following example, whi
h is part of an example by Hansson [1992b℄,

attests to.

Example 8.5.1 \A geography student sees one of his fellow students pi
k up a book

in the library. The title of the book is The University at Niamey. He asks, `Where is

Niamey?', and re
eives the answer, `It is a Nigerian 
ity'.

Next day, in an oral examination, the professor asks our student, `What do you know

about Niamey?'|`It is a university town in Nigeria'|`It most 
ertainly isn't': : :the

student believes what the professor says, and adjust his beliefs a

ordingly." 2
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We use the propositional language generated by the atoms p and q to represent the

situation above, where p denotes the assertion that there is university in Niamey, and

q denotes the assertion that Niamey is a town in Nigeria. So the infobase IB is [p; q℄

and the student performs a p ^ q-
ontra
tion of IB. It is easy to verify that every

basi
 infobase 
ontra
tion of IB by p ^ q yields an infobase that is element-equivalent

to [p _ q; p _ q℄ (see example 8.2.18). But, as Hansson [1992b℄ argues, it is reasonable

to assume that the result of the above 
ontra
tion should be element-equivalent to [p℄.

This is be
ause of the extra-logi
al assumption that information obtained in library

books is more reliable than information obtained from fellow students, whi
h allows us

to retain p rather than q.

One way in whi
h to represent su
h extra-logi
al information is in terms of orderings

of epistemi
 relevan
e on IB. Nebel [1990, 1991, 1992℄ requires of epistemi
 relevan
e

orderings to be total preorders on a base B. When applied to infobase 
hange, the aim

would be to use an epistemi
 relevan
e ordering on an infobase IB to obtain a suitable

S(IB)-faithful total preorder. An appropriate infobase 
hange operation would then

be 
onstru
ted in a manner analogous to the way it is 
urrently being 
onstru
ted.

One of the main di�eren
es between infobase 
hange and many approa
hes to base


hange is illustrated by example 8.2.18, where a w� that is not 
ontained in the infobase

IB = [p; q℄ �nds its way into the resulting infobase IB � p ^ q. And while this

seems to be the 
orre
t solution in many respe
ts, it is not quite in tune with the

intuition that the w�s in an infobase represent independently obtained beliefs. For it

seems 
ounterintuitive to regard a w� that is merely entailed by the w�s in IB as an

independently obtained belief 
ontained in IB � p ^ q. It is with this kind of example

in mind that Rott [1992a℄ writes as follows (In the quotation H represents the base

fp; qg):

\: : :Even after 
on
eding that one of p and q may be false, we should

still 
ling to the belief that the other one is true. But H

0

= fp _ qg is

no base whi
h 
an be 
onstru
ted naturally from H|it 
ertainly does not

re
ord any expli
it belief. We are fa
ed with a deep-seated dilemma: : :"

Rott ultimately de
ides against the in
lusion of su
h w�s, arguing that bases should

only 
ontain expli
it beliefs.

9

We 
on
lude this se
tion by arguing that a priority or-

9

Hansson [1996℄ mentions the use of disjun
tively 
losed bases (in whi
h the disjun
tion � _ � of

every �; � 2 B is also in B) as a possible solution to problems of this kind. Unfortunately this ensures
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dering, similar in spirit to the epistemi
 relevan
e orderings, may provide an a

eptable

solution. The idea is to split the infobase obtained from an infobase 
ontra
tion into

two partitions; one 
ontaining the expli
it beliefs and the other 
ontaining the intro-

spe
tive beliefs. After an infobase 
ontra
tion of the infobase IB by the w� �, the

expli
it beliefs 
onsists of the �-retained w�s of IB, while the introspe
tive beliefs are

appropriately weakened versions of the �-dis
arded w� � of IB. W�s that were, at

some stage, obtained dire
tly from independent sour
es thus 
onstitute the expli
it

beliefs, while w�s su
h as the ones logi
ally equivalent to p _ q in example 8.2.18 are

regarded as beliefs obtained by introspe
tion during the 
ontra
tion pro
ess, and are

thus to be seen as 
arrying less epistemi
 weight than the expli
it beliefs.

that bases 
an't be �nite. And in any 
ase, Hansson does not regard it as an a

eptable solution,

warning that it should be seen as an interesting spe
ial 
ase, rather than a required property of bases.
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Chapter 9

Con
lusion

It 
an go on and on, or someone must write \The End" to it.

Gerald R. Ford, 38th US President

One of the most important issues in the area of knowledge representation is to �nd

appropriate representations of the epistemi
 states of agents equipped with the ability

to reason intelligently. In this dissertation we have 
on
entrated on semanti
 represen-

tations of the part of an epistemi
 state pertaining to belief 
hange. We 
hose the AGM

approa
h to theory 
hange as our starting point, primarily be
ause of its importan
e in

the study of belief 
hange. Histori
ally, AGM theory 
hange has be
ome synonymous

with a presentation in terms of postulates, as outlined in se
tion 2.1, plus the following

four basi
 
onstru
tion methods:

1. The method of partial meet 
ontra
tion, whi
h uses remainders [Al
hourr�on et al.,

1985℄.

2. The method of safe 
ontra
tion, whi
h makes use of entailment sets [Al
hourr�on

and Makinson, 1985, Rott, 1992b℄.

3. A 
onstru
tion method involving the EE-orderings of G�ardenfors and Makinson

[1988℄ and G�ardenfors [1988℄.

4. A semanti
 method of 
onstru
tion, in terms of systems of spheres [Grove, 1988℄.

275
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The semanti
 method we have 
hosen to fo
us on is a slight variation on Grove's systems

of spheres. It involves a set of total preorders on the set of interpretations of the logi


language under 
onsideration, whi
h we have 
hosen to refer to as the faithful total

preorders [see Katsuno and Mendelzon, 1991, Peppas and Williams, 1995℄.

1

While the

representation theorems involving these 
onstru
tion methods allow us to move from

any one 
onstru
tion method to any one of the others (at least in prin
iple), it is, in our

view, diÆ
ult to es
ape the 
on
lusion that the semanti
 methods are, in an important

sense, more fundamental than the others.

The use of faithful total preorders is model-theoreti
 in nature, and has been used

as su
h in our te
hni
al results. But it 
an also be given an information-theoreti



avour in terms of the infatoms introdu
ed in se
tion 3.1. The basi
 idea is that the

bits of information making up the belief set of an agent are ordered a

ording to their

entren
hment or 
redibility, and that any 
hanges in beliefs are ultimately made with

this ordering in mind. It is our 
ontention that su
h an information-theoreti
 view of

belief 
hange provides an appropriate setting for further studies in belief 
hange.

Not long after the in
eption of the resear
h area known as nonmonotoni
 reasoning,

resear
hers started to point out 
onne
tions between this �eld and the enterprise of

belief 
hange. The link is provided by theory revision operations on the one hand,

and nonmonotoni
 
onsequen
e relations on the other. The basi
 idea is that results

obtained from an �-revision 
an be seen as the plausible (but nonmonotoni
) 
onse-

quen
es resulting from the adoption of the eviden
e �, and vi
e versa. What is most

interesting from our point of view, is that a slight variation on expe
tation based non-

monotoni
 reasoning [G�ardenfors and Makinson, 1994℄ 
an be 
onstru
ted from the

faithful total preorders, thus leading to the 
laim that the pro
esses involved in the-

ory revision and nonmononi
 reasoning are identi
al. While su
h results indi
ate a

formal 
onne
tion between theory revision and nonmonotoni
 reasoning, it has been

argued that one should not attempt to extend this link to the epistemologi
al level

as well [G�ardenfors and Makinson, 1994℄. It is our view that both these areas 
an be

in
orporated into a more general formal theory of 
autious and bold reasoning, with

nonmonotoni
 reasoning being viewed as a form of reasoning whi
h is bolder than the

type of reasoning en
ountered in theory revision.

1

For some reason it seems that the use of systems of spheres is more popular in philosophi
al


ir
les, while arti�
ial intelligen
e resear
hers prefer to use faithful total preorders.
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It is a 
urious feature of many a nonmonotoni
 reasoning system that, while the

examples used in justifying the formal 
onstru
tion have a dynami
 quality to them,

the 
onstru
tion itself is viewed as the des
ription of a stati
 pro
ess. This behaviour


an only be explained by the (impli
it) assumption that the adoption of two pie
es

of eviden
e in sequen
e, yields results that are identi
al to that obtained from the

simultaneous adoption of the same bits of eviden
e. Using the 
onne
tion between

nonmonotoni
 reasoning and theory revision, we have argued that this is too strong a

restri
tion to pla
e on all forms of nonmonotoni
 reasoning. It is hoped that future

resear
h on nonmonotoni
 reasoning systems will take this result into a

ount.

Orderings of entren
hment on w�s are frequently advan
ed as appropriate repre-

sentations of the epistemi
 states of agents; at least with regard to belief 
hange. We

have surveyed the forms of entren
hment found in the literature, and presented a novel

version of entren
hment | re�ned entren
hment | whi
h is intended as an alternative

to the EE-orderings of G�ardenfors and Makinson [1988℄ and G�ardenfors [1988℄. The


onstru
tion of re�ned entren
hment orderings involves the use of the faithful modular

weak partial orders, instead of the faithful total preorders, thereby ensuring the elimi-

nation of some of the undesirable properties of the EE-orderings. The use of the faithful

modular weak partial orders paves the way for the introdu
tion of a more general set

of faithful orderings, the faithful layered preorders, from whi
h both the EE-orderings

and the re�ned entren
hment orderings 
an be 
onstru
ted. Using these results, we

have argued that su
h orderings on interpretations (and on their information-theoreti



ounterparts) ought to be seen as more fundamental than the entren
hment orderings

on w�s generated from them.

One of the most 
ontroversial aspe
ts of AGM theory 
hange is the insisten
e on

the in
lusion of the Re
overy postulate (K�6). Those theory removal operations that

satisfy the �rst �ve basi
 AGM postulates have 
ome to be known as withdrawal oper-

ations. In re
ent years, there have been a number of proposals aimed at 
onstru
ting

rational forms of theory withdrawal that do not, in general, satisfy Re
overy. Following

a survey of withdrawal operations, we have introdu
ed a new member of this family,

dubbed systemati
 withdrawal. The method for 
onstru
ting systemati
 withdrawal is

semanti
 in nature. It involves the faithful modular weak partial orders; the preorders

used in the 
onstru
tion of re�ned entren
hment. We have argued that systemati


withdrawal seems to retain the advantages of other forms of withdrawal, but does not

su�er from their undesirable properties. By applying the method used in the 
onstru
-
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tion of systemati
 withdrawal to the faithful layered preorders, we have obtained a set

of prin
ipled withdrawal operations whi
h in
ludes systemati
 withdrawal as well as

the severe withdrawal operations of Rott and Pagnu

o [1999℄. From our investigation

into withdrawal it seems reasonable to advan
e the thesis that any prin
ipled form

of withdrawal will be amenable to semanti
al 
onstru
tion, in terms of some kind of

ordering on interpretations (or infatoms).

Due to its violation of the prin
iple of Categori
al Mat
hing, AGM theory 
hange

has been shown not be suitable for a satisfa
tory des
ription of iterated belief 
hange.

In one of the most important re
ent advan
es in the �eld of belief 
hange, Darwi
he

and Pearl [1994, 1997℄ have shown that investigations of iterated belief 
hange ought to

be 
ondu
ted on the level of epistemi
 states. The main results about their proposed

framework rely on a semanti
 view of epistemi
 states, whi
h states that it is possible to

extra
t from every epistemi
 state a unique faithful total preorder and a unique belief

set. Our investigation into iterated belief 
hange 
onsist of a survey of the proposed

frameworks of Darwi
he and Pearl [1994, 1997℄ and Lehmann [1995℄, a dis
ussion of

transmutation, whi
h 
an be viewed as a generalised version of iterated belief 
hange,

and a dis
ussion about two revision operations re
ently proposed by Papini [1998,

1999℄. Papini's revision operations and work done by Nayak [1994b℄, Nayak et al.

[1996℄ and Liberatore and S
haerf [1998℄, 
oupled with the move to view revision as

an operation on epistemi
 states, have also served as inspiration for the proposal to

investigate operations involving the merging of two epistemi
 states. It seems diÆ
ult

to 
ondu
t an investigation into merging without in
orporating the semanti
 view.

Most of the work in this dissertation is of a de
larative nature. It addresses the ques-

tion of how an agent may employ the semanti
 stru
tures extra
ted from an epistemi


state to perform belief 
hange, but ignores, for the most part, the equally important

question of how an agent may arrive at a parti
ular epistemi
 state. We have shown

how data stru
tures 
alled infobases 
an be used to a
hieve the latter obje
tive. An

infobase is a �nite ordered list of w�s. It is asso
iated with a belief set | the set of

w�s entailed by the w�s in the infobase, and the stru
ture of an infobase is exploited

to indu
e a faithful total preorder. Every infobase is thus asso
iated with a unique

belief set and a unique faithful total preorder; the two 
omponents of an epistemi
 s-

tate needed to perform theory 
hange. While the basi
 idea of asso
iating extra-logi
al

information with the stru
ture of a set of w�s is nothing new, the parti
ular method

we have employed ensures that faithful total preorders are obtained, and is a novel
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ontribution. Although infobase 
hange views knowledge level matters as important,

it is also 
on
erned with appropriate issues on the symbol level. Unlike the pro
ess

that has be
ome known as base 
hange, infobase 
hange involves the weakening of w�s

in an infobase, rather than the removal of some w�s.

In 
on
lusion, we restate the three main questions with whi
h this dissertation is


on
erned and indi
ate to what extent answers have been provided for them.

1. How should an epistemi
 state (or at least the part pertaining to belief 
hange)

be represented?

The work in this dissertation suggests that the answer to this question 
onsists of

a single word; \semanti
ally". Mu
h of the work done here indi
ates that an ordered

pair, 
onsisting of a belief set and a layered preorder on a set of infatoms of the logi


language under 
onsideration, is an appropriate representation of an epistemi
 state, at

least for belief 
hange operations su
h as theory revision and theory withdrawal. And

while some of the later 
hapters, in parti
ular 
hapter 8, suggest that ri
her stru
tures

are needed for more realisti
 belief 
hange operations, there is a 
lear indi
ation that

su
h ri
her stru
tures also need to be semanti
 in nature.

2. How does an agent use an epistemi
 state to perform belief 
hange?

The most imporant issue that has been resolved in 
onne
tion with this question is

that any belief 
hange operation ought to produ
e, not just a belief set, but rather a


omplete new epistemi
 state. Furthermore, it has be
ome 
lear that, while the pro
ess

of identifying the belief sets asso
iated with those epistemi
 states resulting from belief


hange operations is well laid out (notwithstanding some variations in the methods for

doing so), mu
h work still has to be done to determine the permissible ways of arriving

at 
omplete epistemi
 states resulting from belief 
hange operations.

3. How does an agent arrive at a parti
ular epistemi
 state?

Our main 
ontribution in providing an answer to this question is the use of infobases.

We assume that w�s in an infobase are independently obtained and then exploit the

stru
ture of the infobase to aid in the 
onstru
tion of an appropriate epistemi
 state.



280 CHAPTER 9. CONCLUSION

The use of infobases in this fashion is just a �rst approximation, although it seems to

have the potential for developing into a full-
edged theory.

9.1 Future resear
h

This dissertation provides guidelines for some promising areas of future resear
h, some

of whi
h have already been tou
hed on in the relevant 
hapters. We brie
y outline the

most interesting of these.

It seems worthwhile to explore the 
onne
tions between the information-theoreti


semanti
s des
ribed in 
hapter 3 and other logi
-oriented approa
hes su
h as that

of Barwise and Seligman [1997℄. It is also possible that there might be a link with

algorithmi
 information theory in the sense of Shannon [1964, 1993℄ and Chaitin [1987℄.

Having a

epted the importan
e of semanti
 stru
tures for the 
onstru
tion of belief


hange operations, it is tempting to re-evaluate some of the generalisations of AGM

theory 
hange whi
h do not admit semanti
 des
riptions. This has, to some extent,

already been a

omplished with base 
hange, resulting in the de�nition of infobase


hange. Another su
h area is that of multiple 
hange; theory 
hange operations involv-

ing sets of w�s instead of single w�s.

2

Some proposals for multiple 
ontra
tion have

been made by Fuhrmann and Hansson [1994℄. One of their proposals, pa
kage 
on-

tra
tion, is 
onstru
ted from generalised versions of the partial meet 
ontra
tions (see

se
tion 2.2). A 
loser look at this 
onstru
tion from a semanti
 point of view seems to

point to some in
onsisten
ies in the 
hoi
e of admissable belief sets when 
ontra
ting

by 
ertain sets of w�s, and also suggests a possible solution to this problem.

In re
ent years, 
onsiderable progress has been made in the area of iterated belief


hange. The framework provided by Darwi
he and Pearl [1994, 1997℄, in parti
ular,

has provided an ex
ellent starting point. However, mu
h work still needs to be done

in this regard. Some re
ent results suggest that the �rst two DP-postulates may be

too restri
tive. The 
hallenge is thus to weaken these two postulates in an appropriate

fashion. One possibility is suggested by 
on
entrating on the semanti
 versions of the

four DP-postulates. It involves the kind of restri
tion pla
ed on the relative ordering

of interpretations whi
h is found in (DPR4). The idea is that an �-revision need not

leave the relative order of the models of � un
hanged, as (DPR1) requires. Instead, it

2

Peppas and Sprakis [1999℄ have re
ently provided a semanti
 des
ription of Lindstr�oms's [1991℄

proposed version of multiple revision.
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only requires of model v of � that is stri
tly higher up in the ordering than a model u

of �, to be at least as high up as u after an �-revision. From an information-theoreti


point of view, this means that an �-revision may 
ause a 
ontent bit i of :� to be
ome

less entren
hed, but i may not be
ome stri
tly less entren
hed than any of the 
ontent

bits of :� whi
h are 
urrently at most as entren
hed as i. A similar weakening of

(DPR2) would require of a model u of :� that is stri
tly lower down in the ordering

than a model v of :�, to be at most as high up as v after an �-revision. Information-

theoreti
ally, this means that an �-revision permits a 
ontent bit i of � to be
ome more

entren
hed, but i may not be
ome stri
tly more entren
hed than any of the 
ontent bits

of � whi
h are 
urrently at least as entren
hed as i. It remains to be seen whether these

suggested properties will turn out to be appropriate postulates for iterated revision.

Further investigations into iterated belief 
hange are also bound to have an impa
t

on resear
h 
on
erning multi-agent belief 
hange [K�r-Dahav and Tennenholtz, 1996℄,

and in parti
ular, the merging of epistemi
 states [Borgida and Imielinski, 1984, Baral

et al., 1991, 1992, Subrahmanian, 1994, Liberatore and S
haerf, 1998, Konie
zny and

Pino-P�erez, 1998℄. Currently the major results in these areas seem to be fo
used on

the level of the belief sets asso
iated with epistemi
 states. An area that needs to be

looked at is the establishment of a framework involving restri
tions on the faithful total

preorders asso
iated with epistemi
 states.

The faithful total preorders have played a major role in many of the belief 
hange

operations des
ribed in this dissertation. As su
h it may be seen as a suitable point

of departure for the des
ription of appropriate semanti
 stru
tures to be used in belief


hange. Two obvious generalisations of these orderings seem to be worthy of inves-

tigation: Firstly, the role of the faithful modular weak partial orders, both in the


onstru
tion of re�ned entren
hment and systemati
 withdrawal, is an indi
ation that

one needs to move to a set of faithful preorders whi
h in
ludes both the faithful total

preorders and the faithful modular weak partial orders. A 
andidate whi
h seems to

be appropriate is the set of faithful layered preorders. En
ompassing both the faithful

total preorders and the faithful modular weak partial orders, it retains an important


hara
teristi
 shared by these two sets of preorders; the idea of layers of elements, with

elements on di�erent levels being 
omparable. It is, essentially, this property whi
h en-

sures the satisfa
tion of the postulates (K�8) and (K�8) in the 
ontext of AGM theory


hange and the postulate known as Rational Monotoni
ity in the 
ontext of nonmono-

toni
 reasoning. Se
ondly, while the faithful layered preorders may be suÆ
ient for the
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de�nition of some belief 
hange operations su
h as revision and withdrawal, it has been

pointed out by Rott [1991,p. 172℄, amongst others, that ri
her stru
tures are needed

for others. A proposal that immediately springs to mind is to use stru
tures along the

lines of Spohn's [1988, 1991℄ ordinal 
onditional fun
tions. (Observe that we may view

the faithful total preorders indu
ed by infobases in this light, sin
e these orderings are

obtained from the IB-numbers of the interpretations.) Considerable progress has been

made in this regard by Goldszmidt and Pearl [1996℄. Amongst many other desirable

properties, their formalism is able to deal with observations with a varying degree of

�rmness. They also provide a link with qualitative probabilities. It remains to be seen

whether their approa
h 
an be 
ombined with the use of faithful layered preorders,

where elements on the same level (with the same ordinal assigned to them) need not

be seen as 
omparable.

With the ex
eption of the IB-indu
ed faithful total preorders, the use of semanti


stru
tures for de�ning belief 
hange has been of a de
larative nature in this dissertation,

with not mu
h attention being paid to the equally important question of how to extra
t

suitable semanti
 stru
tures from the data stru
tures at one's disposable in order to

perform belief 
hange. This question has re
eived some attention in the nonmonotoni


literature [Ge�ner and Pearl, 1992, Ge�ner, 1992, Delgrande and S
haub, 1997℄, and

has also been addressed by Goldszmidt and Pearl [1996℄ in the 
ontext of belief 
hange,

but mu
h work still needs to be done.

Finally, we 
ome to an extremely important general aspe
t whi
h has re
eived no at-

tention in this dissertation, and indeed, very little, in the resear
h �eld of belief 
hange;

implementational 
onsiderations and the 
omputational 
omplexity of proposed belief


hange operations. While some resear
hers [Lehmann and Magidor, 1992, G�ardenfors

and Rott, 1995, Goldszmidt and Pearl, 1996, Greiner, 1999℄ have presented relevant

results, a more general pi
ture has yet to emerge.



Appendix A

Proofs of some results in 
hapter 3

A.1 Theorems 3.2.3 and 3.3.1

Theorem 3.2.3

1. A removal de�ned in terms of a semanti
 sele
tion fun
tion using (Def � from

sm

K

) is a basi
 AGM 
ontra
tion. Conversely, every basi
 AGM 
ontra
tion 
an

be de�ned in terms of a semanti
 sele
tion fun
tion using (Def � from sm

K

).

2. A revision de�ned in terms of a semanti
 sele
tion fun
tion using (Def � from

sm

K

) is a basi
 AGM revision. Conversely, every basi
 AGM revision 
an be

de�ned in terms of a semanti
 sele
tion fun
tion using (Def � from sm

K

).

Proof 1. Let sm

K

be a semanti
 sele
tion fun
tion and let � be de�ned in terms

of sm

K

using (Def � from sm

K

). We 
onstru
t a sele
tion fun
tion s

K

su
h

that � is de�ned in terms of s

K

using (Def � from s

K

). By theorem 2.2.4

it then follows that � is a basi
 AGM 
ontra
tion. Pi
k any � 2 L. If � =2

K or if � � then s

K

(K?�) = fKg and by de�nition sm

K

(�) = ;, and thus

\s

K

(K?�) = Th(M(K) [ sm

K

(�)). So we suppose that 2 � and � 2 K.

Then ; � sm

K

(�) � M(:�). By proposition 3.2.1 it follows that for every

u 2 sm

K

(�), there is an A

u

2 K? � su
h that Th(M(K) [ fug) = A

u

. We let

s

K

(K?�) be the set 
onsisting of all these A

u

's. That is,

s

K

(K?�) = fA 2 K?� j 9u 2 sm

K

(�) su
h that Th(M(K) [ fug) = Ag.

Sin
e sm

K

(�) 6= ; it 
learly follows that s

K

(K?�) 6= ;. Furthermore, it is 
lear

that s

K

(K?�) � K? �. We still need to show that \s

K

(K?�) = Th(M(K) [

283
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sm

K

(�)). By proposition 3.2.1 we have that, for every u 2 sm

K

(�), there is an

A 2 s

K

(K?�) su
h that Th(M(K) [ fug) = A, and for every A 2 s

K

(K?�),

there is a u 2 sm

K

(�) su
h that A = Th(M(K) [ fug), and therefore

\

u2sm

K

(�)

Th(M(K) [ fug) = \s

K

(K?�):

So it suÆ
es to show that

\

u2sm

K

(�)

Th(M(K) [ fug) = Th(M(K) [ sm

K

(�)):

Pi
k any � 2

T

u2sm

K

(�)

Th(M(K)[fug). Then u 2M(�) for every u 2 sm

K

(�)

and v 2M(�) for every v 2M(K). ThereforeM(K)[sm

K

(�) �M(�) and thus

� 2 Th(M(K) [ sm

K

(�)). Conversely, suppose that � 2 Th(M(K) [ sm

K

(�)).

Then M(K) [ sm

K

(�) � M(�) and therefore M(K) [ fug � M(�) for every

u 2 sm

K

(�). So � 2 Th(M(K) [ fug) for every u 2 sm

K

(�), whi
h means that

� 2 Th(M(K) [ fug).

Conversely, pi
k any basi
 AGM 
ontra
tion �. By theorem 2.2.4, there is a

sele
tion fun
tion s

K

in terms of whi
h � is de�ned using (Def � from s

K

). We


onstru
t a semanti
 sele
tion fun
tion sm

K

su
h that for every �, \s

K

(K?�) =

Th(M(K) [ sm

K

(�)). Pi
k any � 2 L. The 
ases in whi
h � =2 K or � � have

already been dealt with above, so suppose that 2 � and � 2 K. Then ; �

s

K

(K?�) � K?�. By proposition 3.2.1 it follows that for every A 2 s

K

(K?�),

there is a u

A

2M(:�) su
h that Th(M(K)[fu

A

g) = A. We let sm

K

(�) be the

set 
onsisting of all these u

A

's. That is,

sm

K

(�) = fu 2M(:�) j 9A 2 s

K

(K?�) su
h that Th(M(K) [ fug) = Ag:

Clearly ; � sm

K

(�) � M(:�) and if � � � then sm

K

(�) = sm

K

(�). To show

that \s

K

(K?�) = Th(M(K) [ sm

K

(�)) we pro
eed exa
tly as above, whi
h

means we are done.

2. By theorem 2.1.6 and part (1) above, it suÆ
es to show that the revision �,

de�ned in terms of a semanti
 sele
tion fun
tion sm

K

using (Def � from sm

K

),


an also be de�ned in terms of � using (Def � from �), where � is the removal

de�ned in terms of sm

K

using (Def � from sm

K

). So, ignoring the trivial 
ases,
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observe that if :� 2 K and 2 :�, then

(K � :�) + �

= Th(M(K) [ sm

K

(:�)) + �

= Th(sm

K

(:�)) by lemma 1.3.4.

2

Theorem 3.3.1

1. Every faithful total preorder de�nes a GE-ordering using (Def v

G

from �). Con-

versely, every GE-ordering 
an be de�ned in terms of a faithful total preorder

using (Def v

G

from �).

1

2. Every faithful total preorder de�nes an EE-ordering using (Def v

E

from �).

Conversely, every EE-ordering 
an be de�ned in terms of a faithful total preorder

using (Def v

E

from �).

Proof 1. Let � be any faithful total preorder. We show that the relation v

GE

on

L, de�ned in terms of � using (Def v

G

from �) is a GE-ordering. For (GE1),

pi
k any �; � 2 L and suppose that � 6v

GE

�. That is, there is a y 2 M(�)

su
h that x Æ y (and thus y � x) for every x 2 M(�), and so � v

GE

�. For

(GE2), suppose that � v

GE

� and � v

GE


, and pi
k any y 2M(
). There is an

x 2M(�) su
h that x � y, and a z 2M(�) su
h that z � x. By the transitivity

of �, z � y. For (GE3), suppose that � � � _ 
 and assume that � 6v

GE

� and


 6v

GE

�. So there is a y 2 M(�) su
h that y � x for every x 2 M(�), and

there is a v 2 M(�) su
h that v � u for every u 2M(
). Clearly y =2M(�) and

v =2 M(
). If y � v then y =2 M(
), whi
h 
ontradi
ts the fa
t that � � � _ 
.

Similarly, if v � y then v =2 M(�), 
ontradi
ting the fa
t that � � � _ 
. For

(GE4), suppose that K 6= Cn(?) and pi
k an � 2 L su
h that :� =2 K. Then

M(K) \M(�) 6= ;, and it thus follows that x � y for every � 2 L and every

y 2 M(�); i.e. � v

GE

� for every � 2 L. Conversely, suppose that � v

GE

�

for every � 2 L. In parti
ular then, � v

GE

>; i.e. for every y 2 U there is an

x 2M(�) su
h that x � y. Be
ause K 6= L, this means that M(K)\M(�) 6= ;,

1

This result �xes up some small ina

ura
ies of Grove [1988℄ and Boutilier [1992℄, and it sharpens

a result of Boutilier [1994℄.
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from whi
h it follows that :� =2 K. For (GE5), suppose that � :�. SoM(�) = ;,

and it thus follows va
uously that � v

GE


 for every � 2 L. On the other hand,

suppose that � v

GE

� for every � 2 L. Then, in parti
ular, ? v

GE

�, whi
h has

to mean that M(�) = ;, and thus that � :�.

For the 
onverse, letv

GE

be a GE-ordering. We 
onstru
t a faithful total preorder

� in terms of whi
h v

GE


an be de�ned using (Def v

G

from �). For any � 2 L,

let 4� = f� 2 L j � v

GE

�g. Grove [1988℄ refers to these sets as 
uts. It is easy

to see that the set of 
uts is totally ordered under set in
lusion. Pi
k any two

w�s � and �, and suppose that 4� * 4�. Then 4� n4� = f
 j � v

GE


 <

GE

�g 6= ;, and so it follows that 4� � 4�. Now, for every x 2 U , let

t x =

[

f4� j � 2 L and x 2M(:(4�))g.

So t x is the largest 
ut that 
ontains none of the w�s satis�ed by x. We de�ne

� as follows:

For every x; y 2 U; x � y i� t x � t y.

First we show that � is a faithful total preorder. Cuts are totally ordered by

set in
lusion, so it 
learly follows that � is a total preorder. Now pi
k any

x; y 2M(K). By (GE4), t x = t y = f� j :� 2 Kg and so x � y. Furthermore,

if we pi
k a z =2 M(K), then there is at least one :� 2 K su
h that z 
 �. So

t x � t z, whi
h means that x � z. To prove that � is smooth, it suÆ
es to

show that for every � 2 L su
h that 2 :�, Min

�

(�) 6= ;. The following result

shows that there is an interesting 
onne
tion between a 
ut C and the setM(:C)

of all interpretations that satisfy none of the w�s in C.

For every 
ut C and every � 2 L, � 2 C i� M(:C) � M(:�). (A.1)

For the proof of (A.1), pi
k any 
ut C and any � 2 L and suppose that � 2 C.

Then, by de�nition, M(:C) �M(:�). Conversely, suppose � =2 C. If :C 2 :�,

then there is a model of :C that satis�es �, and thus M(:C) * M(:�). So

suppose that :C � :�. By 
ompa
tness, there is a �nite subset C

Fin

of C su
h

that :C

Fin

� :�, and so � �

W

C

Fin

. By repeated appli
ations of (GE3), it then

follows that for some � 2 C

Fin

, � v

GE

�, and thus � 2 C, 
ontradi
ting the

supposition.

Now, pi
k any � 2 L su
h that 2 :�, and let C

�

=

S

f4� j � =2 4�g. So C

�

is the largest 
ut not 
ontaining �. From (A.1) it follows that M(:C

�

) 
ontains
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an interpretation y that satis�es �. We show that C

�

= t y. If C

�

* t y,

then t y � C

�

, whi
h means there has to be a � 2 C

�

that is satis�ed by y,


ontradi
ting (A.1). So C

�

� t y. Conversely, sin
e C

�

is the largest 
ut not


ontaining �, and sin
e � =2 t y, it follows that t y � C

�

. Now assume there

is an x 2 M(�), and thus � =2 t x, su
h that x � y. Then t x � t y = C

�

,


ontradi
ting the fa
t that C

�

is the largest 
ut not 
ontaining �. Therefore

y 2Min

�

(�).

Finally, let v be the GE-ordering de�ned in terms of � using (Def v

G

from �).

We show that v = v

GE

. Pi
k any �; � 2 L. If � :� then by the de�nition of

v, � v � and, by (GE5), � v

GE

�. Furthermore, if � :� and � v

GE

�, then

by (GE5), � :�, and if � :� and � v �, it follows from the de�nition of v

that � :�. Hen
e, if � :� or � :�, then � v

GE

� i� � v �. So we suppose

that 2 :
 and 2 :Æ. By (A.1), there is a y 2 M(:

C

�

) that satis�es �, and

an x 2 M(:

C

�

) that satis�es �. As above, it then also follows that C

�

= t y,

C

�

= t x, y 2 Min

�

(�) and that x 2 Min

�

(�). If � v

GE

�, then C

�

� C

�

,

and thus t y � t x. So, by the de�nition of �, x � y, and therefore � v �. On

the other hand, if � v �, it means that u � v for every u 2Min

�

(�), and every

v 2 Min

�

(�). So in parti
ular, x � y, whi
h means that C

�

= t y � t x = C

�

,

and thus that � v

GE

�.

2. Follows from part (1) and theorem 2.3.5.

2

A.2 Results used in the proof of theorem 3.2.6

This se
tion 
ontains the results used to prove that AGM 
ontra
tion and AGM revision


an be 
hara
terised in terms of faithful total preorders. First we provide a \soundness"

result for AGM 
ontra
tion.

Proposition A.2.1 Every removal de�ned in terms of a faithful total preorder � using

(Def � from �) is an AGM 
ontra
tion.

Proof For (K�1) to (K�6), it suÆ
es, by theorem 3.2.3, to show that the fun
-

tion sm

K

: L ! }U obtained by setting sm

K

(�) = Min

�

(:�) nM(K) is a seman-

ti
 sele
tion fun
tion. If � � � then Min

�

(:�) = Min

�

(:�) and so sm

K

(�) =
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sm

K

(�). Furthermore, if � =2 K then there is an x 2 M(K) su
h that x =2 M(�).

So Min

�

(:�) � M(K) and thus sm

K

(�) = ;. On the other hand, if � � then

Min

�

(:�) = ; and thus sm

K

(�) = ;. So suppose that � 2 K and 2 �. Then

M(K)\Min

�

(:�) = ;, but by smoothness, Min

�

(:�) 6= ;. So ; � sm

K

(�). Finally,

sm

K

(�) � M(:�) sin
e Min

�

(:�) �M(:�).

For (K�7), suppose that 
 2 K � � and 
 2 K � �. That is,

M(Th(M(K) [Min

�

(:�))) �M(
) and

M(Th(M(K) [Min

�

(:�))) �M(
).

If we 
an show that M(K) [Min

�

(:(� ^ �)) �M(
), it follows that 
 2 K � � ^ �,

whi
h means we are done. We already have that M(K) � M(
), so it remains to

be shown that Min

�

(:(� ^ �)) � M(
). Pi
k a u 2 Min

�

(:(� ^ �)). It follows

that either u 2 M(:�) or u 2 M(:�). In the latter 
ase, u 2 Min

�

(:�) and thus

x 2M(
) sin
e Min

�

(:�) �M(
). A similar argument holds in the former 
ase.

For (K�8), suppose that � =2 K � (� ^ �). If � ^ � =2 K, then K � (� ^ �) = K

by (K�3), and thus also K = K � � (be
ause � =2 K � (� ^ �) = K), from whi
h

the result follows. So we suppose that � ^ � 2 K. Be
ause � =2 K � (� ^ �),

there is a u 2 M(K) [Min

�

(:(� ^ �)) su
h that u 1 �. But � ^ � 2 K, and so

u =2M(K), whi
h means that u 2 Min

�

(:(� ^ �)). Now, pi
k a 
 2 K � (� ^ �), i.e.

M(K)[Min

�

(:(�^�)) �M(
). We have to show that M(K)[Min

�

(:�) �M(
).

We already have that M(K) � M(�). To show that Min

�

(:�) � M(
), pi
k a

v 2 Min

�

(:�) and assume that v =2 M(
). Be
ause Min

�

(:(� ^ �)) � M(
), it

follows that v =2 Min

�

(:(� ^ �)). But then u � v sin
e u 2 Min

�

(:(� ^ �)),


ontradi
ting the minimality of v in M(:�). 2

To prove the \
ompleteness" result for AGM 
ontra
tion, we 
onstru
t an appropriate

faithful total preorder.

De�nition A.2.2 Let � be an removal, and let

Min

K

= fu =2 M(K) j u 2M(K � �) for some �g.

The 
anoni
al relation for � is the binary relation � on U 
ontaining just the ordered

pairs san
tioned by 
onditions 1 to 5 below.

1. For every u; v 2M(K), u � v.
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2. For every u; v 2 U n (M(K) [Min

K

), u � v.

3. For every u 2M(K) and v =2 M(K), u � v.

4. For every u 2Min

K

and v 2 U n (M(K) [Min

K

), u � v.

5. For every u; v 2Min

K

, u � v i� for every � 2 K, v 2 M(K��) and u 2M(:�)

implies u 2M(K � �).

2

As we shall see below, the 
anoni
al relation for an AGM 
ontra
tion � is a total

preorder on U with

� the models of K as the minimal elements,

� the elements that are neither models of K nor of some belief set obtained from

K via �, as the maximal elements, and

� the rest of the elements of U in between.

We also need the following te
hni
al lemmas.

Lemma A.2.3 [Al
hourr�on et al., 1985℄ If � is a basi
 AGM 
ontra
tion then the

following is equivalent to (K�7): (K � �) \ Cn(�) � K � (� ^ �).

Lemma A.2.4 If � is a removal satisfying (K�1), (K�4), (K�6) and (K�8), then

either K � (� ^ �) � K � � or K � (� ^ �) � K � � for every �; � 2 L.

Proof If � � ^ � then � � and � �, and by (K�6), K � � = K � � = K �

(� ^ �) = K, from whi
h the result follows. So suppose that 2 � ^ �. By (K�4),

� ^ � =2 K � (� ^ �), and so by (K�1), either � =2 K � (� ^ �) or � =2 K � (� ^ �).

The result then follows dire
tly from (K�8). 2

Lemma A.2.5 Let � be a basi
 AGM 
ontra
tion. If � 2 K, u =2 M(K) and u 2

M(K � �) then u 2M(:�).

Proof Suppose � 2 K, u =2 M(K) and u 2 M(K � �). By (K�6), M((K � �) +

�) = M(K), and be
ause M(K � �) \ M(�) � M((K � �) + �), we have that

u =2M(K � �) \M(�) and therefore u 2M(:�). 2
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Lemma A.2.6 Let � be an AGM 
ontra
tion, and let � be the 
anoni
al relation for

�. If � 2 K n Cn(>) and u 2M(K � �), then u � v for every v 2M(:�).

Proof If u 2 M(K) then u � v for every v 2 U , so suppose that u =2M(K). Be
ause

u 2 M(K � �), u 2 Min

K

. Pi
k any v 2 M(:�). Be
ause � 2 K, v 2 Min

K

or

v 2 U n (M(K) [Min

K

). In the latter 
ase the result follows from the de�nition of

�. For the former 
ase, pi
k any � 2 K su
h that u 2 M(:�) and suppose that

v 2 M(K � �). By lemma A.2.5, v 2 M(:�). We need to show that u 2 M(K � �).

By lemma A.2.4, eitherM(K��) � M(K� (�^�)) orM(K��) �M(K� (�^�)).

In the former 
ase, � =2 K�(�^�) by (K�4) and in the latter 
ase v 2M(K�(�^�)),

and be
ause v 2 M(:�), � =2 K � (� ^ �). So in either 
ase � =2 K � (� ^ �) and

thus, by (K�8), K � (� ^ �) � K � �. Now assume that u =2M(K � �). Then there

is a 
 2 K � �, and thus � _ 
 2 K � �, su
h that u =2M(
), whi
h means, by lemma

A.2.3, that (� _ 
) 2 K� (�^ �) � K ��. And be
ause u 2M(K ��), we have that

u 
 � _ 
, 
ontradi
ting the fa
t that u 2M(:�) and u =2M(
). 2

Lemma A.2.7 The 
anoni
al relation � for an AGM 
onta
tion � is a total preorder.

Proof It suÆ
es to 
onsider only interpretations in Min

K

. For re
exivity, note that

for every � 2 K, if x 2M(K��) and x 2 M(:�) then x 2M(K��). For transitivity,

pi
k any x; y; z 2 Min

K

and suppose that x � y and y � z. We need to show that

x � z. Pi
k a � 2 K and suppose that z 2M(K��) and x 2M(:�). By lemmaA.2.5,

z 2M(:�). We show that x 2M(K � �). Be
ause y 2Min

K

, there is a 
 2 K su
h

that y 2M(K � 
) and therefore, by lemma A.2.5, y 2M(:
). Furthermore, be
ause


 2 K and � 2 K we have 
 ^ � 2 K. And be
ause M(:(
 ^ �)) =M(:
) [M(:�)

it follows that x; y; z 2M(:(
 ^ �)). By lemma A.2.4, M(K � �) �M(K � 
 ^ �) or

M(K�
) � M(K�
^�). In the former 
ase, z 2M(K�
^�) be
ause z 2M(K��).

So be
ause y 2 M(:(
 ^ �)), 
 ^ � 2 K and y � z, we have y 2 M(K � 
 ^ �). In

similar fashion, be
ause x 2 M(:(
 ^ �)) and x � y, x 2 M(K � 
 ^ �). In the

latter 
ase, be
ause y 2 M(K � 
), we have y 2 M(K � 
 ^ �) and then as before,

x 2 M(K � 
 ^ �). So either way x 2 M(K � 
 ^ �). To show that x 2 M(K � �),

pi
k any � 2 K � �. We show that x 2M(�). Be
ause � 2 K � �, we also have that

� _ � 2 K � �, so by lemma A.2.3, � _ � 2 K � 
 ^ �. So x 
 � _ �. But be
ause

x 2M(:�), we have that x 2M(�).

To show that � is a total preorder we still need to show that for every x; y 2Min

K

,

x � y or y � x. Pi
k any x; y 2 Min

K

, and suppose that x Æ y. Then there is an
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� 2 K su
h that y 2M(K ��) and x 2M(:�), but x =2M(K ��). By lemma A.2.6

it then follows that y � x. 2

We are now ready to prove the \
ompleteness result" for AGM 
ontra
tion.

Proposition A.2.8 Every AGM 
ontra
tion � 
an be de�ned in terms of a faithful

total preorder using (Def � from �).

Proof We show that the 
anoni
al relation � for � is su
h a faithful total preorder.

By lemma A.2.7, � is a total preorder. To show that � is faithful, we need only

show that � is smooth; the other 
onditions for faithfulness follow dire
tly from the

de�nition of �. So pi
k any �. If :� =2 K, the M(�)-smoothness of � follows dire
tly

from the de�nition of �, and if � :� then M(�) = ;, and thus � is M(�)-smooth.

So suppose that :� 2 K, 2 :� and pi
k any y 2 M(�). We need to show that there

is an x that is �-minimal in M(�) su
h that x � y. Be
ause 2 :� it follows from

(K�2) and (K�4) that M(K) � M(K � :�). So there is an x 2 M(K � :�) su
h

that x =2 M(K). By lemma A.2.5, x 2 M(�) and by lemma A.2.6, x � y for every

y 2 M(�).

To show that� 
an be de�ned in terms of� using (Def� from�), it suÆ
es to show

that M(K � �) =M(K) [Min

�

(:�) for every � 2 L. Clearly, if � � or � =2 K, then

M(K)[Min

�

(:�) =M(K), so we need only 
onsider the 
ase where � 2 K nCn(>).

For the left-to-right in
lusion, pi
k any x 2 M(K � �). If x 2 M(K) then 
learly

x 2 M(K) [Min

�

(:�), so suppose that x =2 M(K). By lemma A.2.5, x 2 M(:�).

By lemma A.2.6 it follows that for every y 2 M(:�), x � y. So x 2 Min

�

(:�) and

thus x 2M(K) [Min

�

(:�).

For the right-to-left in
lusion, note �rstly that by (K�2), M(K) � M(K � �).

Now pi
k any x 2 Min

�

(:�). We need to show that x 2 M(K � �). Be
ause 2 �, it

follows from (K�4) thatM(K��)\M(:�) 6= ;. So pi
k any y 2M(K��)\M(:�).

By lemma A.2.6, y � x, and then x � y be
ause x 2 Min

�

(:�). Now, x =2 M(K)

be
ause � 2 K and x 2 M(:�), and so x =2 U n (M(K) [Min

K

) be
ause y 2 Min

K

and x � y. So x 2 Min

K

and therefore, from part (5) of de�nition A.2.2, it follows

that x 2M(K � �). 2

We thus obtain the following representation theorem.
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Theorem 3.2.6

1. Every faithful total preorder de�nes an AGM 
ontra
tion using (Def � from �).

Conversely, every AGM 
ontra
tion 
an be de�ned in terms of a faithful total

preorder using (Def � from �).

2. Every faithful total preorder de�nes an AGM revision using (Def � from �).

Conversely, every AGM revision 
an be de�ned in terms of a faithful total preorder

using (Def � from �).

Proof 1. The proof follows dire
tly from propositions A.2.1 and A.2.8.

2. Follows from theorem 2.1.6, part (1) above, and proposition 3.2.8.

2



Appendix B

Proofs of some results in 
hapter 6

B.1 Results used in the proof of theorem 6.3.4

Proposition B.1.1 Let � be a faithful modular weak partial order. The fun
tion

ss

K

: L! }U , de�ned as: ss

K

(�) = r

�

(:�), is a saturatable sele
tion fun
tion.

Proof It follows trivially that � � � implies ss

K

(�) = ss

K

(�), and that � � implies

ss

K

(�) = ;. Now suppose that � =2 K. Then 2 �, and it follows easily that ss

K

(�) =

r

�

(:�) � Min

�

(:�) � M(K). Finally, suppose that � 2 K and 2 �. By smoothness,

; �Min

�

(�) � r

�

(:�), and so ss

K

(�) \M(:�) 6= ;. 2

Proposition B.1.2 Every systemati
 withdrawal satis�es (K�1) to (K�10).

Proof Let � be a systemati
 withdrawal, and let � be a faithful modular weak partial

order from whi
h � is obtained using (Def � from r

�

). By proposition B.1.1 and

de�nition 6.2.5, � is a saturatable withdrawal and by theorem 6.2.6, it thus satis�es

(K�1) to (K�6). For (K�7), suppose that 
 2 K� (�^
). We only 
onsider the 
ase

where 2 � and �^
 2 K. Then 
 2 K by (K�2),Min

�

(:(�^
)) �M(:�)\M(
) and

r

�

(:�) � M(
). Now pi
k any x 2 Min

�

(:(�^�^
)) and any y 2Min

�

(:(�^
)).

(By smoothness, neither Min

�

(:(� ^ � ^ 
)) nor Min

�

(:(� ^ 
)) is empty.) It is


lear that y � x. So r

�

(:(� ^ � ^ 
)) nMin

�

(:(� ^ � ^ 
)) � M(
). To show that


 2 K � (�^� ^
), it thus remains to show thatMin

�

(:(�^� ^
)) � M(
). And if

this were not the 
ase, there would be a z 2Min

�

(:(�^�^
)) su
h that z 2M(:
).

But then z 2Min

�

(:(� ^ 
)), thus 
ontradi
ting Min

�

(:(� ^ 
)) �M(:�) \M(
).

293
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For (K�8), suppose that � =2 K�(�^�). We have to show thatK�(�^�) � K��.

If �^� =2 K, then by (K�3), K� (�^�) = K, and thus also K = K�� (be
ause � =2

K� (�^�) = K), from whi
h the result follows. So we suppose that �^� 2 K. Now,

pi
k an � 2 K � (�^ �). Then M(K)[r

�

(:(�^ �)) � M(�) and so M(K) � M(�)

and r

�

(:(� ^ �)) � M(�). We have to show that M(K) [ r

�

(:�) � M(�). We

already have that M(K) � M(�). To show that r(

�

:�) � M(�), it suÆ
es to show

that r

�

(:�) � r

�

(:(� ^ �)). If we 
an show that Min

�

(:�) � Min

�

(:(� ^ �)),

it immediately follows from (Def r

�

) that r

�

(:�) � r

�

(:(� ^ �)). So pi
k any

y 2 Min

�

(:�) and assume that y =2 Min

�

(:(� ^ �)). Sin
e y 2 M(:(� ^ �)),

it follows by the smoothness of � that there is an x 2 Min

�

(:(� ^ �)) su
h that

x < y. Be
ause y 2 Min

�

(:�), it must be the 
ase that x 2 M(:� ^ �), and sin
e

� is a modular weak partial order it then also follows that Min

�

(:(� ^ �)) � M(�).

Moreover, sin
e y 2 Min

�

(:�) and sin
e x < y it has to be the 
ase that for every

v 2 Min

�

(:(� ^ �)) and every u � v, u 2 M(�). But then r

�

(:(� ^ �)) 2 M(�),


ontradi
ting the supposition that � =2 K � (� ^ �). For (K�9), suppose that � 2 K,

� _ � 2 K � � and � =2 K � �. We only 
onsider the 
ase where 2 �. Then

Min

�

(:�) �M(�), r

�

(:�)nMin

�

(:�) � M(�), and r

�

(:�)nMin

�

(:�) * M(�).

So Min

�

(:(�^ �)) < Min

�

(:�), and therefore r

�

(:(�^ �)) �M(�), from whi
h it

follows that � 2 K � (� ^ �).

1

For (K�10), suppose that 2 � and � 2 K � �. Then

r

�

(:�) �M(�). Therefore Min

�

(:�) � Min

�

(:(�^ �)) and thus � =2 K � (�^ �).

2

Lemma B.1.3 If 2 � and � is a removal that satis�es (K�1), (K�4), (K�5), (K�7)

and (K�8), then f� j � 2 K � (� ^ �)g =

T

fK � (� ^ �) j � 2 Lg.

Proof Suppose � 2 K � (� ^ �). Now pi
k any 
. By (K�7), � 2 K � (� ^ 
 ^ �),

and by (K�4), � ^ 
 ^ � =2 K � (� ^ 
 ^ �). Therefore � ^ 
 =2 K � (� ^ 
 ^ �)

by (K�1), and so K � (� ^ 
 ^ �) � K � (� ^ 
) by (K�5) and (K�8), from whi
h

it follows that � 2 K � (� ^ 
). So we have shown that f� j � 2 K � (� ^ �)g �

T

fK � (� ^ �) j � 2 Lg. The 
onverse is trivial. 2

Lemma B.1.4 If � satis�es (K�1) to (K�10), the withdrawal

�

� de�ned in terms of

� using (Def

�

� from �) is a severe withdrawal.

1

See se
tion 1.3 for an explanation of the 
onvention of applying < to sets of interpretations.
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Proof (K

�

�1) to (K

�

�6) follow easily from lemma B.1.3, and (K

�

�7) follows easily from

(K�7). For (K

�

�8), suppose that � =2 K

�

�(�^�). If 2 �^� then � =2 K � (�^�^�) =

K � (� ^ �). And if � � ^ � then � =2 K, and thus � =2 K � (� ^ �) by (K�2). So in

either 
ase, K � (�^�) � K � � by (K�8). We need to show thatK

�

�(�^�) � K

�

��.

The 
ase where � � ^ � is trivial, and so we suppose that 2 � ^ �. We only 
onsider

the 
ase where 2 �. We need to show that f
 j 
 2 K � (� ^ � ^ 
)g � f
 j K �

(� ^ 
)g. Suppose that 
 2 K � (� ^ � ^ 
). If � ^ 
 =2 K � (� ^ � ^ 
), then

K � (�^� ^
) � K � (� ^
) by (K�8), and so 
 2 K � (� ^
). So we 
onsider the


ase where � ^ 
 2 K � (�^ � ^ 
). Sin
e 
 2 K � (�^ � ^ 
), it follows from (K�4)

that �^� =2 K � (�^� ^
), and then by (K�8) that K � (�^� ^
) � K � (�^�).

Be
ause K � (� ^ �) � K � � we then have that � ^ 
 2 K � �, and therefore

� 2 K � �, 
ontradi
ting 2 � and (K�4). 2

Lemma B.1.5 Let � be a withdrawal satisfying (K�1) to (K�10). Now de�ne the

removal

�

� in terms of � using (Def

�

� from �), and de�ne the removal � in terms of

�

� using (Def � from

�

�). Then � and � are identi
al.

Proof By 
ombining (Def

�

� from �) and (Def � from

�

�) it suÆ
es to show that

� 2 K � � i�

8

>

<

>

:

� _ � 2 K � (� ^ (� _ �)) and � =2 K � (� ^ �)

if 2 �, 2 �, � 2 K,

� 2 K otherwise.

We only 
onsider the 
ase where 2 �, 2 � and � 2 K. If � 2 K � � then � _ � 2

K � � = K � (� ^ (� _ �)) by (K�5), and � =2 K � (� ^ �) follows from (K�10).

Conversely, if � _ � 2 K � (� ^ (� _ �)) = K � �, and � =2 K � (� ^ �), then

� 2 K � � by (K�9). 2

B.2 Theorems 6.5.12 and 6.5.14

Theorem 6.5.12 Suppose that the RE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related. Then

� =2 K � � i�

8

>

>

>

>

<

>

>

>

>

:

� =2 K and � �, or

� =2 K and � =2 K, or

� v

RE

� and 2 �, or

� 6v

RE

� and 9
 6v

RE

� su
h that f�; 
g � �,

(6:1)
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or equivalently,

� 2 K � � i�

8

>

<

>

:

� 2 K and � �, or

� 2 K and � =2 K, or

� 6v

RE

� and for every 
 6v

RE

�, f�; 
g 2 �.

(6:2)

Proof For the left-to-right dire
tion of the proof of (6.1), suppose that � =2 K�� and

that none of the �rst three of the four required possible 
ases hold. That is, suppose

that (� 2 K or 2 �) and (� 2 K or � 2 K) and (� 6v

RE

� or � �). This means

that (� 2 K or (2 � and � 2 K)) and (� 6v

RE

� or � �), whi
h, in turn, means that

(� 2 K and � 6v

RE

�) or (� 2 K and � �) or ((2 � and � 2 K) and � 6v

RE

�) or ((2 �

and � 2 K) and � �). Of these four 
ases, the fourth one is a logi
al 
ontradi
tion,

while the se
ond one 
ontradi
ts the supposition that � =2 K � � (sin
e K � � = K

if � � by (K�6)). So it has to be the 
ase that (� 2 K and � 6v

RE

�) or ((2 � and

� 2 K) and � 6v

RE

�). If � 2 K and � 6v

RE

� then, sin
e � =2 K � �, we have that

K 6= K � �, from whi
h it follows by (K�3) that � 2 K. And thus, by part (1) of

proposition 6.5.11, it follows that there is a 
 6v

RE

� su
h that f�; 
g � �. Similarly,

if (2 � and � 2 K) and � 6v

RE

� then, together with the supposition that � =2 K � �,

it follows that there is a 
 6v

RE

� su
h that f�; 
g � �. For the right-to-left dire
tion,

note that if � =2 K then it follows from (K�2) that � =2 K � �. If � v

RE

� and 2 �

then by proposition 6.5.6, � =2 K � �. Finally, if � 6v

RE

� and there is a 
 6v

RE

� su
h

that f�; 
g � �, then by part (2) of proposition 6.5.11, � =2 K � �.

For the left-to-right dire
tion of the proof of (6.2), suppose that � 2 K � � and

that neither of the �rst two of the required three possible 
ases hold. That is, suppose

that (� =2 K or �) and (� =2 K or � 2 K). This means that � =2 K or (2 � and

� 2 K). If � =2 K then, sin
e � 2 K � �, it follows that K 6= K � �, and thus, by

(K�3) and (K�6), that � 2 K and 2 �. So, regardless of whi
h of the two possibilities

hold, it will be the 
ase that � 2 K and 2 �. Sin
e � 2 K � � and 2 �, it follows

from proposition 6.5.6 that � 6v

RE

�. Now assume that there is a 
 6v

RE

� su
h

that f�; 
g � �. Then, by part (2) of proposition 6.5.11, � =2 K � �, 
ontradi
ting

the supposition that � 2 K � �. So it has to be the 
ase that for every 
 v

RE

�,

f�; 
g 2 �. For the right-to-left dire
tion, note that if � 2 K and � �, or � 2 K and

� =2 K, respe
tively, then by (K�6) or (K�3) respe
tively, � 2 K � �. So we need

only 
onsider the 
ase in whi
h these two possibilities do not hold. We have already

seen above that if neither of these two possibilities hold, then � 2 K. Now suppose
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that � 6v

RE

�, and that f�; 
g 2 � for every 
 6v

RE

�. It then follows from part (1) of

proposition 6.5.11 that � 2 K � �. 2

Theorem 6.5.14 Suppose that the RE-ordering v

EE

and the systemati
 withdrawal

� are semanti
ally related. Then

� =2 K � � i�

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

� =2 K and � �, or

� =2 K and � =2 K, or

� v

RE

� and 2 �, or

� <

RE

� and 9
 2 L su
h that

� <

RE


, � k

v

RE


 and f�; 
g � �, or

� k

v

RE

� and 9
 2 L su
h that

� k

v

RE


, � k

v

RE


 and f�; 
g � �,

(6:3)

or equivalently,

� 2 K � � i�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

� 2 K and � �, or

� 2 K and � =2 K, or

� <

RE

� and 8
 2 L su
h that

� <

RE


 and � k

v

RE


, f�; 
g 2 �, or

� k

v

RE

� and 8
 2 L su
h that

� k

v

RE


 and � k

v

RE


, f�; 
g 2 �.

(6:4)

Proof To prove the left-to-right dire
tion of (6.3), suppose that � =2 K � � and that

none of the �rst three of the �ve required possible 
ases hold. That is, suppose that

(� 2 K or 2 �) and (� 2 K or � 2 K) and (� 6v

RE

� or � �). This means that (� 2 K

or (2 � and � 2 K)) and (� 6v

RE

� or � �), whi
h, in turn, means that (� 2 K and

� 6v

RE

�) or (� 2 K and � �) or ((2 � and � 2 K) and � 6v

RE

�) or (((2 � and

� 2 K) and � �). The fourth possibility above is a logi
al 
ontradi
tion, while the

se
ond possibility 
ontradi
ts the supposition that � =2 K�� (sin
e K = K�� if � �,

by (K�6)). So it must be the 
ase that (� 2 K and � 6v

RE

�) or ((2 � and � 2 K)

and � 6v

RE

�). If � 2 K, then K 6= K � �, and by (K�3), � 2 K. So in both 
ases,

� 2 K and � 6v

RE

�. Now we 
an distinguish between two 
ases: Either � v

RE

� or

� 6v

RE

�. In the former 
ase it follows that � <

RE

�, and from part (1) of proposition

6.5.13 it then follows � <

RE


, � k

v

RE


 and f�; 
g � � for some 
 2 L. In the latter


ase we have that � k

v

RE

� and it then follows from part (2) of proposition 6.5.13 in

that � k

v

RE


, � k

v

RE


 and f�; 
g � � for some 
 2 L. For the proof in the 
onverse
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dire
tion note that if � =2 K then it follows from (K�2) that � =2 K � �. If � v

RE

�

and 2 �, it follows from proposition 6.5.6 that � =2 K � �. If � <

RE

� and there is a


 su
h that � <

RE


, � k

v

RE


 and f�; 
g � �, it follows from part (2) of proposition

6.5.11 that � =2 K � �. Similarly, if � k

v

RE

� and there is a 
 su
h that � k

v

RE


,

� k

v

RE


 and f�; 
g � �, it follows from part (2) of proposition 6.5.11 that � =2 K��.

To prove the left-to-right dire
tion of (6.4), suppose that � 2 K � �, and that

neither of the �rst two of the four required possible 
ases hold. That is, suppose that

(� =2 K or 2 �) and (� =2 K or � 2 K), whi
h means that � =2 K or (2 � and � 2 K).

If � =2 K then, be
ause � 2 K � �, it follows that K 6= K � �, and thus, by (K�6)

and (K�3), that 2 � and � 2 K. So in both 
ases, 2 � and � 2 K. Sin
e � 2 K � �

and 2 �, it follows from proposition 6.5.6 in that � v

RE

�. We distinguish between

two 
ases. Either � v

RE

�, or � 6v

RE

�. In the former 
ase we get that � <

RE

�.

Now assume there is a 
 su
h that � <

RE


, � k

v

RE


 and f�; 
g � �. Then, by

part (2) of proposition 6.5.11, it follows that � =2 K � �, 
ontradi
ting the supposition

that � 2 K � �. So it has to be the 
ase that f�; 
g 2 � for every 
 su
h � <

RE




and � k

v

RE


. In the latter 
ase, when � v

RE

�, � k

v

RE

�. Now assume there is

a 
 su
h that � k

v

RE


, � k

v

RE


 and f�; 
g � �. Then, by part (2) of proposition

6.5.11, it follows that � =2 K � �, 
ontradi
ting the supposition that � 2 K � �. So

it has to be the 
ase that f�; 
g 2 � for every 
 su
h that � k

v

RE


 and � k

v

RE


.

For the 
onverse dire
tion, note that if � 2 K and � � (or � 2 K and � =2 K), then

it follows from (K�6) (or (K�3)) that � 2 K � �. So we need only 
onsider the 
ase

in whi
h these two possibilities don't hold. We've already seen above that if neither

of these two possibilities hold, then � 2 K. Now, suppose that � <

RE

� and that

f�; 
g 2 � for every 
 su
h that � <

RE


 and � k

v

RE


. Then it follows from part (1)

of proposition 6.5.13 that � 2 K � �. Similarly, if � k

v

RE

� and f�; 
g 2 � for every


 su
h that � k

v

RE


 and � k

v

RE


, then it follows from part (2) of proposition 6.5.13

that � 2 K � �. 2
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(Def � from �) page 21

(Def � from �) page 21

(Def � from s

K

) page 22

(Def � from M) page 22

(Def s

K

from b) page 23

(Def � from v

EE

) page 25

(Def v

EE

from �) page 25

(Def � from v

GE

) page 26

(Def v

E

from v

G

) page 27

(Def v

G

from v

E

) page 27

(Def K=� from <

H

) page 28

(Def � from <

H

) page 28

(Def � from sm

K

) page 40

(Def � from sm

K

) page 40

(Def � from S) page 42

(Def � from �) page 43

(Def � from �) page 43

(Def � from B) page 47

(Def v

E

from �) page 48

(Def v

G

from �) page 48

(Def v

GE

from �) page 49

(Def � from b) page 51

(Def � from �) page 51
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(Def b from �) page 52

(Def <

EE

from <

H

) page 53

(Def j�

P

from P ) page 65

(Def j� from �) page 72

(Def E from j�) page 72

(Def j� from s

K

) page 73

(Def j� from �) page 75

(Def � from j�) page 75

(Def s


v

) page 90

(Def r

�

) page 90

(Def � from �) page 96

(Def v

�

from �) page 97

(Def <

P

from �) page 98

(Def v

R

from �) page 99

(Def � from �) page 106

(Def � from �) page 106

(Def v

RE

from v

EE

) page 112

(Def v

EE

from v

RE

) page 112

(Def v

RE

from �) page 117

(Def � from v

RE

) page 117

(Def � from v

RG

) page 126

(Def v

GE

from v

RG

) page 127

(Def v

RG

from v

GE

) page 127

(Def j� from v) page 127

(Def v

C

from v

EE

and v

GE

) page 129

(Def � from � and s) page 148

(Def � from r

�

) page 152

(Def

:::

� from

�

�) page 156

(Def

:::

� from �) page 157

(Def � from �) page 160

(Def

�

� from �) page 160

(Def

�

� from � (v2)) page 160

(Def � from �) page 162

(Def � from

�

�) page 162
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(Def

_

�) page 169

(Def � from V) page 172

(Def V

D

from V) page 173

(Def

�

� from v

EE

) page 174

(Def v

EE

from

�

�) page 175

(Def

�

� from v

RE

) page 176

(Def � from v

EE

) page 177

(Def � from v

RE

) page 178

(Def 
ug

v

) page 191

(Def �

v

) page 191

(Def > from �) page 203

(Def � from �) page 204

(Def � from �) page 204

(Def ? from �) page 204

(Def >) page 212

(Def �) page 217

(Def > from �) page 219

(Def >

�

) page 225

(Def >

�

) page 229

(Def 


 

) page 233

(Def 


!

) page 233

(Def 


�

) page 234

(Def 


�

) page 234

(Def K(

b


)) page 235

(Def � from IB) page 245

(Def �

IB

from IB) page 246

(Def ~ from �) page 257

(Def �

IB

from IB) page 257

(Def > from ~) page 264
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tion with a base 
on-

tra
tion, 242

theory 
ontra
tion with infobase IB-


ontra
tion, 245

theory revision with infobase revi-

sion, 257

valuation, 34

valuation semanti
s, 34

assumption, 85

Assumption Based Truth Maintenan
e

Systems, 2

axiomatisation

�nite, of a belief set, 13

axiomatise

belief set, 13

set of infatoms, 37

set of interpretations, 13

ba
kground 
ontext, 60

base 
hange, 240

belief, 1

belief base, 240

belief 
hange, 1

iterated, 201

belief revision, 1

belief set, 13

belief update, 2

C, see semanti
 
ontent


hoi
e fun
tion, 261

Cleopatra

example, 141, 166


losest upper gate, 191

Cn, 11


o-atom, 96


oherentist, 2

basi
 infobase revision, 268


ombined entren
hment, 129


ommensurability thesis, 7


ompa
tness, 11


onditional

assertion, 82

belief, 212

knowledge base, 82

logi
, 71


onditionalisation, 203


onne
ted, 14


onsequen
e relation

abstra
t, 12


umulative, 62

expe
tation based, 72

E-based, 75

loop-
umulative, 62

nonmonotoni
, 61

P-indu
ed, 65

preferential, 62

rational, 62, 67


onservative 
ore, 82


ontent

bit, 34

element, 33

relation, 33


ontra
tion, 7

AGM, 19

on epistemi
 states, 218

basi
 AGM, 18

basi
 infobase, 252
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full meet, 22

maxi
hoi
e, 22

mild, 173

pa
kage, 280

partial meet, 22


onne
tively relational, 23

relational, 23

transitively relational, 23

pseudo-, 243

safe, 28

saturatable, 144

semi-, 148


ontra
tion postulates

basi
 AGM, 18

supplementary AGM, 19


onverse 
omplement, 103


ore, 91


orroborating eviden
e, 223


ounterfa
tual reasoning, 71


ountermodel, 11

CR-ordering, 130


ug

v

, see 
losest upper gate

DAG, see dire
ted a
y
li
 graph

default information, 81

defeasible reasoning, 59

dependent, 256

dire
ted a
y
li
 graph, 196

dis
arded w�s, 246

downset, 90

DP-

postulates, 210

revision, 210

EE-ordering, see epistemi
 entren
hment

element-equivalent, 244

elementarily equivalent, 12

entailment

�-entailment, 83

preferential, 82

rational, 83

semanti
, 11

entailment set, 27

epistemi


entren
hment, 25

relevan
e, 259

state, 1

equivalent

logi
ally, 14

X-equivalent, 248

eviden
e, 60

expansion, 14

on epistemi
 states, 217

expe
tation state, 76

expe
tations, 72

faithful, 42, 45

fallba
k, 91

-based withdrawal, 163

families, 103

�ltering 
ondition, 256

�xed information, 60

�xed point ordering

revision operation, 234

foundationist, 2

FPO, see �xed point ordering

G�ardenfors triviality result, 82

GE-ordering, 26

GRE-ordering, 132
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hamburger example

Hansson's, 240

Harper Identity, 21

hierar
hy, 28


ontinuing down, 28


ontinuing up, 28

regular, 28

virtually 
onne
ted, 29

i-
ontaining, 34

(IB; �)-relevant, see relevant

IB-dependent, see dependent

IB-indu
ed

faithful total preorder, 245

theory 
ontra
tion, 246

theory revision, 257

IB-number, 245

Inf, 33

infatom, 32

infobase 
hange operations, 244

infon, 33

informational value, 171

damped, 173

undamped, 172

inter
hangeable, 21, 25, 56, 113, 118,

140, 161, 163, 174, 175

interpolation thesis, 157

interpretation, 11

introspe
tive beliefs, 273

irrelevan
e, 69

iterated revision

dynami
 view of, 206

stati
 view of, 205

K

�

, 96

K-linear order, 114

KLM approa
h, 61

knowledge, 1

knowledge level, 3

L, formal obje
t language, 10

l-model, 65

L-revision, 223

labelling fun
tion, 65

Levi Identity, 21

limit assumption, 42

LR-entren
hment, 102

LR-ordering, 101

merging, 231

Min

�

, 42, 234

minimal-equivalent, 54

model, 11

modular

stri
t partial order, 67

weak partial order, 106

multiple


hange, 280

revision, 280

withdrawal, 142

N

PL
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N

R

�

, see neutralised

N

R
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, see neutralised

n-

reasoning 
ontext, 86

re�ned epistemi
 state, 86

natural 
onditional fun
tion, 202

neutralised, 249

nonmonotoni
, 59
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nonmonotoni
 reasoning
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dynami
 view of, 77

stati
 view of, 80

OCF, see ordinal 
onditional fun
tion

ordinal 
onditional fun
tion, 96, 202

P

�

-revision, 226

P

�

-revision, 230

partial meet Levi-
ontra
tion, 145

plausibility ordering

Grove, 26

Spohn, 98

plausible, 59

plausible 
onsequen
e, 61

power order, 48

preferential model, 65

preorder, 14

B-faithful, 46

faithful, 42

KM-faithful total, 46

layered, 131

total, 14

prin
iple of

Categori
al Mat
hing, 4

Conservatism, 5

Identity of Indis
ernibles, 39

Indi�eren
e, 5

Informational E
onomy, 5

Irrelevan
e of Syntax, 4

Minimal Change, 4

Preferen
e, 5

Redu
tionism, 3

propositional atoms, 11

pseudo-
ontra
tion, see 
ontra
tion

(R; �; �)-neutralised, see neutralised

(R; �)-neutralised, see neutralised

R-ordering, see re�ned ordering

ranked model, 68

rational 
losure, 83

RE-ordering, see re�ned entren
hment

reason maintenan
e, 240

reasoning


autious and bold, 87

re�ned entren
hment, 107

re�ned ordering, 99

relevan
e sele
tion fun
tion, 252

relevant, 248

remainder, 22, 259

retained w�s, 246

revision

AGM, 20

basi
 AGM, 20

basi
 infobase, 257

multiple, 280

on epistemi
 states, 207

revision postulates

basi
 AGM, 20

supplementary AGM, 20

revision-equivalent, 155

revision-equivalent 
lass

prin
ipled, 155

RG-ordering, 124

S(�), 244

satisfa
tion, 11

satis�able, 13
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sele
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saturatable, 146
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semi-, 148

semanti
 
ontent, 34

semanti
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118, 124, 131, 132, 135, 156, 161,

174

semanti
s

infatom, 34

possible-worlds, 11

valuation, 12
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al, 38

semi-
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tion, see 
ontra
tion

smooth, 42

spe
i�
ity, 83

sphere-semanti
s, 41

state des
ription, 38

stopperedness, 42

stri
t 
ut, 90

subsequen
e, 244

ordered, 244

symbol level, 4

system of spheres, 41

system-Z, 84

Th, see theory

theory, 13

determined by, 13

generated by, 34

transitively relational

binary relation, 73

transmutation, 203

transparent propositional language, 14

Truth Maintenan
e Systems, 2

Tweety, 59

U , set of interpretations, 11

u

IB

, see IB-number

upset, 191

V , set of valuations, 11

valuation, 11

W -smooth, 42

weakened version of w�, 250

well-founded, 64

widening ranked models, 224

withdrawal, 19

fallba
k-based, 163

methodi
al, 171

multiple, 142

proper, 144

reasonable, 157

saturatable, 146

sensible, 147

severe, 152
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systemati
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X-equivalent, see equivalent


