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Abstract

The ability to change one’s beliefs in a rational manner is one of many facets of the
abilities of an intelligent agent. Central to any investigation of belief change is the
notion of an epistemic state. This dissertation is mainly concerned with three issues

involving epistemic states:
1. How should an epistemic state be represented?
2. How does an agent use an epistemic state to perform belief change?
3. How does an agent arrive at a particular epistemic state?

With regard to the first question, note that there are many different methods for
constructing belief change operations. We argue that semantic constructions involving
ordered pairs, each consisting of a set of beliefs and an ordering on the set of “possible
worlds” (or equivalently, on the set of basic independent bits of information) are, in an
important sense, more fundamental.

Our answer to the second question provides indirect support for the use of semantic
structures. We show how well-known belief change operations and related structures
can be modelled semantically. Furthermore, we introduce new forms of belief change
related operations and structures which are all defined, and motivated, in terms of
such semantic representational formalisms. These include a framework for unifying
belief revision and nonmonotonic reasoning, new versions of entrenchment orderings
on beliefs, novel approaches to withdrawal operations, and an expanded view of iterated
belief change.

The third question is one which has not received much attention in the belief change
literature. We propose to extract extra-logical information from the formal representa-

tion of an agent’s set of beliefs, which can then be used in the construction of epistemic



i ABSTRACT

states. This proposal is just a first approximation, although it seems to have the po-

tential for developing into a full-fledged theory.

Keywords: Belief change, theory change, theory revision, belief revision, epistemic
state, contraction, nonmonotonic reasoning, withdrawal, epistemic entrenchment, base

change, base revision, base contraction.
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Chapter 1

Introduction

Of course not. After all, I may be wrong.
Bertrand Russell, on being asked whether

he would be prepared to die for his beliefs.

The comic strip on the opposite page concisely captures the central topic of this disser-
tation: that a rational intelligent agent is sometimes forced to adjust its current beliefs
in some appropriate fashion when confronted with new information. The investigation
of the reasoning patterns involved in such a task is known as the study of belief revision
or belief change.

The ability to change one’s beliefs in a manner that can be described as rational
is one of many facets of the abilities of an intelligent agent. Central to the analysis
of reasoning is the (somewhat nebulous) notion of an epistemic state. An epistemic
state contains, in one form or another, the knowledge and beliefs of an agent, together
with the information needed for coherent reasoning. This includes, in particular, the
strategies for performing belief change. Our aim in this dissertation is to obtain a
clear picture of the part of an epistemic state involving belief change. In doing so, it
is necessary to draw a clear distinction between an agent’s knowledge and its beliefs.
We consider the beliefs of an agent to be the information that it is willing to act on,
while knowledge comprises the beliefs that the agent refuses to retract; at least until
some state change takes place. Belief, then, is defeasible knowledge, a view that is
compatible with that of Moses and Shoham [1993].

1



2 CHAPTER 1. INTRODUCTION

This difference between belief and knowledge is also the basis of the difference
between belief change and belief update. The former is concerned with changes to
the epistemic state of an agent resulting from new information in a static world. In
contrast, the latter deals with changes to epistemic states when the world described by
it changes; changes to epistemic states in a dynamic world, if you will.! In our view,
the knowledge of an agent can only be substantially altered once a state change has
taken place (although knowledge can increase monotonically without any change in the
current state). By concentrating on belief change, we operate under the assumption

that the knowledge of an agent is fixed.

In the course of research into the area of belief change, two different (but not
necessarily incompatible) approaches have begun to emerge; the foundationist and co-
herentist approaches. The distinguishing feature of the foundationist approach is that
it assumes the existence of a set of basic beliefs which need no justification. All other
beliefs in a foundational system have a justificatory pedigree. Every such a belief can
be justified in terms of other beliefs, which in turn, can be justified in terms of other
beliefs, until we eventually encounter the set of basic beliefs on which the original be-
lief is ultimately based. The best known examples of foundational systems are Doyle’s
(1979, 1992] Truth Maintenance Systems and their successors, Reiter and de Kleer’s
[1987] Assumption Based Truth Maintenance Systems. Approaches to base change
[Fuhrmann, 1991, Hansson, 1989, 1992b, 1993c, 1996] are also motivated by founda-
tionist ideas. The coherentist approach, on the other hand, sees the justification for
beliefs in terms of the way they interact or “cohere” with other beliefs. In determining

whether a belief is justified, one should thus look at its relationship with other beliefs.

A proper description of belief change demands that we specify an appropriate rep-
resentational formalism. For our purposes, a certain family of logic languages with a
propositional structure will be sufficient. More details can be found in section 1.3. For
concreteness, the reader may think of a propositional language generated by a (possibly
infinite) number of atoms, and equipped with a classical semantics. (See, for instance,
Enderton [1972] or Fitting [1996].) The beliefs of an agent, as well as any information
obtained, will be expressed in this language. The knowledge of an agent is equated

with the sentences whose models establish the semantic framework within which belief

1Keller and Wilkins [1985] first pointed out the distinction between belief change and belief update.
Subsequently, Katsuno and Mendelzon [1992] formalised this distinction and proposed an abstract
framework for belief update.



change occurs. This implements the view of knowledge as those beliefs that an agent
refuses to retract.
Having chosen an appropriate language, we now turn to the three basic issues con-

cerning belief change that we shall be addressing;:

1. How should an epistemic state (or at least the part pertaining to belief change)

be represented?

When addressing this question, observe that we are only concerned with that part
of an epistemic state which involves belief change. When we talk about representing
an epistemic state in a certain manner, it should be understood that such a represen-
tation can be extracted from the epistemic state.

We shall primarily be concerned with three representations of epistemic states; the
second two being richer in structure than the first. The first representation is as a belief
set, a set of sentences closed under logical entailment. Although such a representation
contains too little information to be appropriate, it plays an important role in the
establishment of abstract patterns and properties. As such, it is an extremely useful
first approximation. The next representation is as an ordered pair, consisting of a belief
set and an ordering on a set of “possible worlds” associated with the logic language
under consideration (or equivalently, as a belief set and an ordering on the basic bits
of information from which any set of beliefs is built up). As we shall see, such a view
of epistemic states has proved to be a significant step forward in the study of belief
change. Finally, epistemic states are often represented as ordered pairs consisting of
a belief set and an epistemic entrenchment ordering on the sentences of the language
under consideration. While such an ordering is, in a sense, equivalent to an ordering
on possible worlds, we shall argue that the latter is a more fundamental construction.

In doing so, we rely on the following principle:
(Reductionism) Complex objects are built up from simpler objects.

A consequence of the fact that these representations make use of belief sets, is the
assumption that agents believe all the logical consequences of their beliefs. Levi [1991]
refers to this as the agent’s epistemic commitment, and such agents are referred to as
logically omniscient. In this sense, we provide an analysis of belief change on Newell’s

[1982] knowledge level. Newell postulated the existence of a knowledge level above the
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symbol level, on which there is no distinction between explicit information and derived
information. This implies the satisfaction of Dalal’s [1988] principle of the Irrelevance

of Syntax:

(Irrelevance of Syntax) A belief change operation is independent of the form of the

belief set involved.

The assumption of logical omniscience is clearly an idealisation, though, and future re-
search on belief change will, no doubt, incorporate results on the resource-boundedness
of agents.

Regardless of the way in which epistemic states are represented, however, it is

important that the following principle is adhered to:

(Categorical Matching) A belief change operation performed on epistemic states

should produce an epistemic state.

While this principle is almost too obvious to mention explicitly, much of the research
on belief change has concentrated on operations that produce sets of beliefs, and not

epistemic states. We now turn to the second issue.
2. How does an agent use an epistemic state to perform belief change?

Let us first make it clear that, although there are psychological studies which focus on
the way human agents perform belief change and similar kinds of reasoning [Edwards,
1968, Einhorn and Hogarth, 1978, Ross and Lepper, 1980, Hoenkamp, 1988, Pelletier
and Elio, 1997|, our interest lies in the development of a normative account of belief
change. That is, we are not (necessarily) concerned with the way in which human
agents reason, but with the ways in which all rational agents ought to reason.

An answer to the question of how to use an epistemic state to perform belief change
will, of course, depend on the specific belief change operation to be performed. Never-
theless, there are some basic principles underlying the appropriate use of information
contained in epistemic states. The most important of these is the principle of Minimal
Change [Harman, 1986].

(Minimal Change) Keep loss and addition to a minimum.

The basic idea is that the current epistemic state possesses a kind of inertia, and

that any changes made to it ought to be only those that have to be made. We shall



also encounter two more specific versions of this principle, known as the principles of

Informational Economy and Conservatism:
(Informational Economy) Keep the loss of information to a minimum.
(Conservatism) Keep the set of beliefs as large as possible.

One of the main obstacles to be encountered when attempting to satisfy principles such
as these, is that there may not be a unique way in which to effect minimal change. In

such an event, the use of the principle of Indifference is frequently advocated.
(Indifference) Objects held in equal regard should be treated equally.

A related principle, the principle of Preference, will play an important role in the

analysis of withdrawal, an important form of belief change.

(Preference) Objects held in higher regard should be afforded a more favourable

treatment.

This brings us to the third issue.
3. How does an agent arrive at a particular epistemic state?

This is a question which has not received much attention in the belief change liter-
ature, and there are, most probably, quite a number of angles from which it can be
approached. We investigate one particular proposal in this regard. Our idea is to use
finite ordered sequences of sentences to represent the beliefs of an agent. The struc-
ture of this representational formalism is then exploited to aid in the construction of
epistemic states. On one level this is a violation of the principle of the Irrelevance
of Syntax, but on other levels, this principle is still being respected. This proposal is
not intended as a broad investigation into the question posed in point (3). It is just
a first approximation, although it seems to have the potential for developing into a
full-fledged theory.

Having outlined the three questions which we intend to address, it is perhaps nec-
essary to mention that this dissertation does not contain a description of the compu-
tational aspects of belief change. This is not because we regard it as unimportant.

On the contrary, the algorithmic and complexity-theoretic aspects of belief change is
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perhaps the most important issue to be dealt with in future research. But, although
some results dealing with these issues have recently begun to appear [Lehmann and
Magidor, 1992, Gérdenfors and Rott, 1995, Goldszmidt and Pearl, 1996, Greiner, 1999],

a more general picture has yet to emerge.

1.1 A brief history of belief change

The quest for a detailed theory of belief change is an old one. In 1907, for example,
James [1907,p. 59| already gave a detailed description of a process by which we acquire
new beliefs. Among contemporary researchers, Isaac Levi [1973, 1980, 1991, 1996] has
been active in research related to belief change for three decades, and many of the ideas
being developed today can be traced back to Levi’s writings.

A major advance in the development of a detailed theory of belief change occurred
during the first half of the 1980s. Known as the AGM approach to belief change,
and named after its three originators, Carlos Alchourrén, Peter Géardenfors and David
Makinson, it was developed in a number of papers published in the late seventies and
the beginning of the eighties [Gérdenfors, 1978, 1982, 1984, Alchourrén and Makinson,
1981, 1985, Alchourrén et al., 1985]. It forms the basis of most current research on
belief change, including this dissertation.

AGM belief change is primarily concerned with three types of operations:

e A remowal occurs when information is removed from the current set of beliefs of

an agent.

e A revision occurs when new information is incorporated into the current set of

beliefs in a way that ensures consistency.

e An expansion occurs when new information is simply added to the information

currently in the set of beliefs, regardless of the consequences.

Expansion turns out to be non-problematic, and is defined by adding the new informa-
tion to the agent’s current set of beliefs, and then closing under logical consequence.
It is the AGM proposals for removal and revision operations which have proved to be
so influential. Actually, AGM belief change is mostly concerned with methods for con-
structing removal operations. This can be translated into the construction of revision

operations by the application of one of Isaac Levi’s ideas. Levi claims that the only
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legitimate ways of transforming an epistemic state are expansion and removal [Levi,
1977], a view known as the commensurability thesis [Levi, 1991]. In this view, a revision
by a sentence « consists of a removal of the negation of «, followed by an expansion

with «.

AGM belief change is coherentist in nature. It subscribes to the principle of Min-
imal Change in that it strives to make the minimal changes necessary to an agent’s
set of beliefs following a change operation. Ironically, their version of revision, which
is defined in terms of removal, has been accepted enthusiastically, while their propos-
al for removal, known as contraction, has met with some resistance [Makinson, 1987,
Fuhrmann, 1991, Lindstrom and Rabinowicz, 1991, Niederee, 1991, Hansson, 1991,
1992a, 1993c, 1996]. In recent years, there have been a number of proposals for con-
structing removal operations that retain the advantages of AGM contraction without
suffering from its disadvantages [Levi, 1991, 1998, Hansson and Olsson, 1995, Rott and
Pagnucco, 1999, Cantwell, 1999, Fermé, 1998, Fermé and Rodriguez, 1998].

Since AGM belief change is coherentist in nature, it is concerned with sets of beliefs
closed under logical consequence without any justificatory structure. It has been ar-
gued though [Alchourrén and Makinson, 1982, Makinson, 1985, Hansson, 1989, 1992b,
Fuhrmann, 1991], that some of our beliefs have no independent standing, but arise
only as inferences from our basic beliefs. This foundationist view has led to the devel-
opment of a generalisation of AGM belief change, known as base change, in which the
emphasis is placed on changes made to the set of basic beliefs of an agent. While such
an approach accommodates the idea of basic beliefs, it is, to a large extent, in violation
of the principle of the Irrelevance of Syntax. It can thus be seen as operating on the
symbol level, thereby forfeiting an important characteristic of AGM belief change: an
analysis of belief change on the knowledge level. Interestingly enough though, it turns
out that by relaxing some widely held assumptions about base change, it is indeed
possible to provide a knowledge level description of base change [Nebel, 1989, 1990,
1991, 1992].

AGM belief change places the emphasis on sets of beliefs closed under logical con-
sequence. As such, it is in violation of the principle of Categorical Matching. For,
although it needs more than just a set of beliefs to perform revision and contraction,
it concentrates only on the sets of beliefs obtained when performing such change op-
erations. This is one of the reasons why AGM belief change is not able to provide a

proper account of iterated belief change, the description of the process of performing
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sequences of changes. One of the most important contributions to the enterprise of
belief change in recent years concerns the realisation that belief change ought to be
described on the level of epistemic states, and not on the level of belief sets. This has
led to an influential proposal by Darwiche and Pearl [1994, 1997] for a framework for
iterated belief change. Their proposal has served to highlight the semantic methods
for constructing AGM-style belief change operations, for it presupposes the existence
of the semantic structures used for constructing AGM belief change.

Finally, in this brief discussion we have concentrated on revision and removal, but
AGM belief change has also been the inspiration for a number of other types of belief
change such as relational change [Lindstrém and Rabinowicz, 1991], multiple change
[Fuhrmann and Hansson, 1994, Peppas and Sprakis, 1999] and multi-agent belief change
[Kfir-Dahav and Tennenholtz, 1996], with merging [Borgida and Imielinski, 1984, Baral
et al., 1991, 1992, Subrahmanian, 1994, Liberatore and Schaerf, 1998, Konieczny and

Pino-Pérez, 1998] as a special case of the latter.

1.2 A reader’s guide

The next two chapters are mainly concerned with classic AGM belief change. Chap-
ter 2 is a survey of AGM belief change, containing sets of rationality postulates for
revision and contraction, as well as a description of the primary methods used in the
construction of such operations. The one aspect which is missing from this chapter is
a discussion of the semantic modellings of AGM belief change. We regard the latter as
important enough to devote the whole of chapter 3 to it. The semantic construction
methods discussed in chapter 3 form the cornerstone of the results presented in the rest
of the dissertation. Besides the well-known semantic modellings in terms of orderings
on the interpretations of the logic language under consideration, we propose that an
information-theoretic semantics be used, with orderings on the basic bits of information
available to an agent. While such a semantics has very strong formal links with the
traditional possible-worlds semantics (they are dual to each other in a sense that will be
made precise in propositions 3.1.5 and 3.1.6), we contend that the information-theoretic
view is of use in the intuitive justification of such semantic constructive methods. By
summarising well-known results about AGM belief change, we show that the methods
discussed in chapter 2, for constructing AGM belief change operations, can all be seen

as being obtained from the semantic method of construction. Although this is to be
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expected, given the various representation results linking these methods to AGM belief
change, it is difficult to escape the conclusion that the semantic modelling is more

“basic”, in a sense.

Chapter 4 explores the relationship between belief change and nonmonotonic rea-
soning. As has been noted, the influential semantic approaches of Kraus et al. [1990]
and Lehmann and Magidor [1992] to nonmonotonic reasoning have much in common
with the semantic construction of belief change. So much so, in fact, that it has been
claimed that the processes involved in belief revision and nonmonotonic reasoning are
the same, although used for different purposes [Gérdenfors and Makinson, 1994]. We
show that these two areas can be unified into a more general theory of bold and cau-
tious reasoning. Furthermore, applying the view of belief change as a dynamic process
to nonmonotonic reasoning, we argue that most approaches to nonmonotonic reasoning
operate under the implicit assumption that obtaining new pieces of evidence sequen-
tially is equivalent to obtaining them simultaneously; a view that seems too strong to

be appropriate for a general theory of nonmonotonic reasoning.

Chapter 5 is concerned with one of the standard methods for constructing AGM
belief change; in terms of epistemic entrenchment orderings on sentences of the logic
language to be used. We provide a survey of the field, and present a new form of
entrenchment — termed refined entrenchment — which does not suffer from the same
drawbacks as the best known form of epistemic entrenchment [Gérdenfors and Makin-
son, 1988, Gérdenfors, 1988]. Refined entrenchment is defined semantically, but it can
also be characterised in terms of a set of rationality postulates. Chapter 6 is devoted
to the study of a family of removal operations which are intended as alternatives to
AGM contraction; the withdrawal operations. We survey the field, and propose the
addition of a new member of this family, known as systematic withdrawal. 1t is defined
semantically (in terms of the same set of orderings used to define refined entrenchmen-
t), but can also be characterised in terms of a set of rationality postulates. Systematic
withdrawal seems to retain the advantages of most forms of withdrawal, while not be-
ing subject to their disadvantages. Some of the results in chapters 5 and 6 suggest the
use of a general set of orderings on interpretations which can be used to construct a
wide variety of entrenchment orderings and withdrawal operations.

In chapter 7 we investigate the issue of iterated belief change. We discuss the
frameworks recently proposed by Darwiche and Pearl [1994, 1997] and Lehmann [1995],

as well as the work of Spohn [1988] (which had served as inspiration for Darwiche
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and Pearl), and its generalised version in the form of the transmutations proposed by
Williams [1994]. Both of the proposed frameworks for iterated belief change operate
on the level of epistemic states, and both concentrate on revision. We show that the
extension of the proposal of Darwiche and Pearl to various forms of withdrawal casts
some doubt on the desirability of some of the restrictions they impose, and we measure
a recently proposed version of revision [Papini, 1998, 1999] against these frameworks.
Inspired by the semantic approach of Darwiche and Pearl, as well as by the work of
Nayak [1994b], Nayak et al. [1996] and Liberatore and Schaerf [1998], we regard the
merging of epistemic states as a fruitful area for future research.

Chapter 8 is an attempt at solving a problem that has not received its fair share
of attention in the belief change literature; determining how an agent arrives at a
particular epistemic state. Our proposal is to represent the information obtained by
an agent as ordered sequences of sentences, with each one being seen as a piece of
information (or an observation) obtained from an independent source. Such a sequence
of sentences is referred to as an infobase. The structure of infobases is used to induce
the semantic structures necessary for performing belief change. This process determines
the appropriate belief set resulting from a change operation, thereby operating on the
knowledge level. A second phase then determines the infobase resulting from the change
operation by weakening the sentences contained in the original infobase. While infobase
change can be compared with traditional approaches to base change [Fuhrmann, 1991,
Hansson, 1989, 1992b, 1993c¢, 1996], it has more in common with the pseudo-contraction
operations [Hansson, 1999,p. 334] of Nebel [1989, 1990, 1991, 1992].

Finally, chapter 9 summarises the results presented and points to open problems
and future research. As the title suggests, the main thesis defended in this dissertation
is that semantic approaches to belief change have proved to be most fruitful in the

past, and will continue to play such a role in future.

1.3 Formal preliminaries

In our investigation of belief change we assume a formal object language L in which the
beliefs of an agent are expressed. We take L to be closed under the usual propositional
connectives =, A, V, —, <>, and to contain the symbols T and L. The well-formed
formulas (wffs) of L will be denoted by lower-case Greek letters. Furthermore, we

assume L to be equipped with a two-valued model-theoretic semantics defining truth
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and falsity. A (possible-worlds) semantics for L is thus an ordered pair (U, ), where U
is a (non-empty) set of interpretations of L, and IF is a satisfaction relation for L. That
is, for the relation I+ from U to L, u IF o means that « is true in u, or that u satisfies «.
Elements of U will be denoted by lower-case Latin letters. The satisfaction relation I+
is required to behave classically with respect to the propositional connectives. We use
T and L as canonical representatives for the logically valid and logically invalid wifs
respectively. The set of models M(A) of any set of wifs A is the set of interpretations
satisfying all the wffs in A. That is M(A) ={u € U |Va € A, ul- a}. For a € L we
write M («) instead of M ({a}). We refer to the set U\ M(A) as the countermodels of
A.

Such a semantics allows us to define the notion of semantic entailment in the
standard manner. Formally, semantic entailment is a binary relation from L (the
powerset of L) to L, and is defined as follows: A E g iff M(A) C M(B). For o € L
we write a F [ instead of {a} E 3, and we abbreviate ) £ § as E . Intuitively,
A F a means that « follows logically from A. The only requirement that we place on
F is that it satisfies compactness : A E «a iff Ap E « for some finite subset Ap of A.
The entailment relation F is associated with a consequence operation Cn. Formally,
Cn is a unary consequence operation on plL, and is defined in terms of F as follows:
Cn(A) = {a | A F a}. So, intuitively, Cn(A) consists of all the beliefs that follow
logically from A. Whether one uses Cn or F is a matter of preference and convenience,
since it is clear that F can also be defined in terms of C'n as follows: A F « iff
a € Cn(A).

It should be obvious that the logics we consider include all classical propositional
logics and classical first-order logics (with the first-order languages restricted to closed
wifs). In fact, every logic we consider can be “converted” into a propositional logic,
based on a propositional language PL, in the following sense. Define the set of atoms

Apy, of the propositional language PL in terms of L as Ap;, = L\ Npr, where

a=1l,a=T,a=-p,ora= [, }

NpL: a€l
where ¢ € {V,A\,+, <} and 3,7 € L

So Apj, is the set of wifs of L mot having one of the propositional connectives as its
main connective. We refer to Apy as the propositional atoms of L. Now, for every
interpretation u € U we define a valuation val, : Apy, — {F,T} as: val,(«) = T iff
u - «, and we let the set of valuations V of PL be V = {wval, | u € U}. A satisfaction

relation IFy from V to PL is then obtained recursively from V in the standard way:
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1. Forevery v € V, vy T and v ¥y L.

2. f o€ Apy, then v lFy a iff v(a) =T.

3. If a=—p then v Ik « iff v ¥y 5.

4. If o = BV v then v IFy « iff either v Iy 3, or v IFy 7, or both.
5. If a = g A~y then v Iy « iff both v IFy 8 and v IFy 7.

6. If « = — ~ then v IFy « iff either v ¥y 3, or v Iy 7, or both.

7. If « = B <> 7 then v Iy « iff either both v Iy 8 and v Iy 7, or both v ¥y
and v ¥y .

Since the languages PL and L are identical, the set of valuations V' also provides an
acceptable semantics for L. This is easily verified by observing that the semantics
(V.IFy) for L generates exactly the same entailment relation & as the semantics (U, IF)
for L. (Actually, the inclusion of Iy is redundant, since it can be obtained from V')
In fact, in any equivalence class containing every semantics for L that generates the
same entailment relation =, (V,IFy) occupies a unique position, since it is the only
semantics (up to isomorphism) without elementarily equivalent interpretations. (Two
interpretations xz,y are elementarily equivalent iff they satisfy exactly the same wifs
of L. That is, z IF « iff y IF «, for every o« € L.) We shall refer to (V,IFy) as the
F-valuation semantics for L. In general, we refer to a semantics (V,IF) for L in which
V' is a set of valuations, and in which I is obtained from V in the manner described
above, as a valuation semantics for L.

In the belief change literature it is not standard practice to start with a semantic
description. Instead, L usually comes equipped with an abstract consequence relation,
denoted by the single turnstile -, in place of the semantic entailment relation. The
consequence operation Cn is defined in terms of -, and Cn is assumed to satisfy the

following properties:
(Inclusion) A C Cn(A)
(Idempotence) Cn(Cn(A)) C Cn(A)

(Monotonicity) If A C B then Cn(A) C Cn(B)
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(Supraclassicality) Cn(A) includes every truth-functional tautology and satisfies

Modus Ponens
(Deduction theorem) € Cn(AU {a}) iff « — € Cn(A)
(Compactness) o € Cn(A) iff & € Cn(Ap) for some finite subset Ap of A

It is easy to show that, with the exception of a single pathological case, the entailment
relations we consider are precisely the semantic versions of these consequence relations.
To see why, note firstly that the consequence operation Cn associated with every en-
tailment relation F we consider, clearly satisfies the six properties outlined above. And
conversely, from every consequence relation - whose associated consequence operation
Cn satisfies these six properties (except the trivial one for which - = pL x L), we
can construct an appropriate semantics for L that will satisfy all the requirements set
out above.? Simply take U, the set of interpretations of L, to be the set of maximally

consistent subsets of L. That is, let
U={ACL|A¥F L and VB C L such that AC B, BF L}.

The satisfaction relation IF is then defined as follows: A IF « iff & € A. It is readily
verified that the semantic entailment relation F obtained from - behaves exactly like
. Note also that the semantics obtained in this way is isomorphic to the F-valuation
semantics for L.3

A theory or a belief set is a set K C L closed under entailment, i.e. for which
K =Cn(K). A set X C L aziomatises a belief set K iff Cn(X) = K, and X finitely
artomatises K iff X is finite. For every W C U, the theory determined by W is

Th(W)={a € L|W C M(a)},

and for v € U we write Th(u) instead of Th({u}). A set A C L aziomatises a set
of interpretations W iff M(A) = W. A set A C L is satisfiable iff M(A) # 0, iff
2The trivial consequence relation - = L x L can be obtained from a possible-worlds semantics

(U,IF) with U = 0.
3The single consequence relation F for which we cannot obtain a corresponding semantics is the

trivial one for which every wif follows from every set of wifs, defined as - = pL x L. It is easily verified
that such a b satisfies the six properties above, but allows for no maximally consistent subsets.
Consequently, the set U of interpretations obtained from F will be empty, something that is not

permitted by our definition of a semantics.
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Cn(A) # Cn(L). For every satisfiable subset A of L, « € L is A-established (or A-
believed) iff A F «, a is A-undecided (or A-neutral) iff A ¥ o« and A ¥ —a, and « is
A-refuted (or A-disbelieved) iff A E —a. For an unsatisfiable subset A of L, all the wifs
of L are A-established, while none are A-undecided or A-refuted.

The use of the following abbreviations will be convenient. By o = [ we understand
that o and (8 are logically equivalent, i.e. o F 8 and g F «. For every finite A, B € pL
we write A ¢ B as an abbreviation for {«¢ o | @ € A and 3 € B} where ¢ € {V, A},
—A as an abbreviation for {—a | « € A}, A\ A as an abbreviation for the conjunction
of all elements in A, with A () = T, and \/ A as an abbreviation for the disjunction of
all elements in A, with \/() = L. For a belief set K and a wif « € L, the ezpansion of
K by « is defined as K + o = Cn(K U {a}).

A binary relation R on any set X is connected iff Ry or yRx for every z,y € X.
A preorder C (i.e. a reflexive and transitive binary relation) on a set X that is also
connected is called a total preorder. For any preorder C on a set X, we write x C y
ifeCyandyZ ez, o=cyifeCyandyCox, z|cyiff v Zyand y Z z, and we
let [z]c = {y | + =c y}. For every non-empty Y, Z C X, we write Y C Z iff y T 2 for
everyycYandze Z, Y C ZiffyCzforeveryy€Y and z € Z, and Y = 7 iff
y = z for every y € Y and z € Z. And as a limiting case, we set ) C Y for every
non-empty Y C X.

Our examples are usually phrased in propositional languages (containing the usual
propositional connectives) that are generated by at most three atoms. We use the
letters p, ¢ and r to denote these atoms, and interpretations (or rather valuations) of
the languages will be represented by appropriate sequences of Os and 1s, 0 representing
falsity and 1 representing truth. The convention is that the first digit in the sequence
represents the truth value of p, the second the truth value of ¢ and the third the truth
value of r.

Sometimes it will be convenient to use transparent propositional languages in our
examples. These are restricted versions of first-order languages containing no variables
and no quantifiers. The propositional atoms of such a language are then simply the
first-order atoms that can be formed from the available predicate symbols and terms.
For example, suppose that L is a transparent propositional language containing the
predicate symbols b and f and the two constant symbols ¢ and ¢. Then L is generated
from the four propositional atoms b(t), b(c), f(t) and f(c).

For the reader’s convenience, we provide (without proof) the following well-known



1.3. FORMAL PRELIMINARIES 15

model-theoretic results about the kind of semantic setup we consider.
Proposition 1.3.1 Let (U, IF) be a possible-worlds semantics for L.
1. If o« = B then M(«) = M(p).

2. M(T)="U.

J. € M(a) iff u¢ M(~a).

5. M(a A B) = M(a) N M(B).

6. M(aV B) = M(a)V M(B).

7. For every W C U, W C M(Th(W)).

Proposition 1.3.2 Let L be a finitely generated propositional language and let (V1)

be a valuation semantics for L.
1. For every W CV, W = M(Th(W)).

2. For every W C V there is an oy € L such that M(aw) = W. That is, every set

of valuations can be axiomatised by a wff of L.

The following model-theoretic results will also prove to be most useful.
Lemma 1.3.3 Suppose that K is a belief set and that W C M (—«). Then
(M(Th(M(K)UW))\ M(K)) C M(—a«).

Proof We only consider the case where W # (), and there is thus a w € W such
that w € M(—-«a). Let X = M(Th(M(K) U W))\ M(K), suppose that v € X
and assume that © € M(«). So there is a f € K such that © ¢ M(f), and then
a— B eTh(M(K)UW) (since « — € K and W C M(—«)). But this means that
x € M(a — [3), contradicting the fact that © € M(«) and = ¢ M(f). O

Lemma 1.3.4 Suppose that K is a belief set, « € K, W C M(—a), and
X =M(Th(M(K)uW))\ M(K).

Then Th(W) =Th(X).
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Proof Since W C X it suffices to show that for every 5 € L, it W C M (/) then X C
M (). So pick a f € L and suppose that W C M(S). Then =5 — a € Th(M (K)UW),
since = — o € K and W C M(f3). Therefore X C M (- — «), and then X C M (p)
since X C M(—«) by lemma 1.3.3. O

Lemma 1.3.5 Let K be a belief set, and suppose that X C M(—a) and W C M(«).
Then M(Th(M(K)UXUW))NM(—~«a)=M(Th(M(K)UX))N M(—«a).

Proof We only consider the case where ¥ a. Assume that the left-to-right inclusion
does not hold. So there is a u € M(Th(M(K)U X UW)) N M(—«) such that u ¢
M(Th(M(K)U X)) N M(—«). There is thus a § such that (M (K)U X) C M(f), but
u ¢ M(S3). Now observe that = — a € Th(M(K)U X U W). But this means that
u € M(—f — «), contradicting the fact that u € M (=) and u € M(—«). The proof

for the right-to-left inclusion is similar. O



Chapter 2

AGM theory change

But O the heavy change, now thou art gone,
Now thou art gone, and never must return!

John Milton, Lycidas, 37

One of the most influential contributions to the study of belief change is that of Al-
chourrén, Gardenfors and Makinson — the so-called AGM approach to theory change
— developed in a number of papers in the late 1970s and 1980s [see Gérdenfors, 1978,
1982, 1984, Alchourrén and Makinson, 1981, 1985, Alchourrén et al., 1985]. Even
though it is mainly concerned with belief sets, it has become a benchmark against
which to test and compare (whether directly or indirectly) a wide variety of belief
change operations. AGM theory change takes the epistemic state of an agent to be a
belief set [Géardenfors, 1988 p. 47], and aims to give a description of the permissible
changes to a belief set resulting from the revision by, or the removal of, a single wf-
f.1 This is accomplished in terms of two sets of rationality postulates. Formally, we
assume a fixed belief set K, defining (belief) removal and revision pertaining to K as
functions from L to pL. Where there is no ambiguity, we shall drop the references
to K. (In later chapters it will be necessary to view change operations differently, as
functions from Bel x L to pL, where Bel is the set of all belief sets.) By an a-removal,
a-revision, a-contraction, and so on, we mean a removal of o from K, revision of K

by «, a contraction of K by «, and so forth.

L Although the original AGM papers are not exclusively concerned with belief sets, the major results
in [Alchourrén et al., 1985] only hold for belief sets.

17
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By now a whole array of methods have been developed for constructing AGM
theory change. In this chapter we briefly discuss three classical ways of doing so.
When removing a wif o from a belief set K, partial meet contraction does so using
the maximal subsets of a belief set K not entailing a wif «, safe contraction employs
minimal subsets of K that entail «, and epistemic entrenchment makes use of an
ordering of relative entrenchment on wifs. Our treatment of AGM theory change in
this chapter cannot be regarded as complete, primarily because it does not contain a
discussion of semantic approaches to theory change. We regard the latter as important

enough to devote the whole of chapter 3 to it.

2.1 Postulates for AGM theory change

AGM theory change is concerned with a whole spectrum of rational ways to perform
belief change, and does not provide unique definitions for revision and removal. Instead,
a number of postulates are provided with which all removals and revisions are required
to comply. The idea is that these are the rational choices to be made. As we have seen
in chapter 1 on page 7, Levi’s commensurability thesis views removal as more primitive
than revision, and it is thus appropriate that we start with the AGM postulates for

belief removal.

(K-1) K —a=0Cn(K — «a)

(K-2) K —aCK

(K-3) f o ¢ K then K —a =K
(K—4) If # o then a ¢ K — «

(K-5) fa=fthen K —a=K - §
(K—6) If o € K then (K —a) +a =K

Definition 2.1.1 A removal is a basic AGM contraction iff it satisfies (K—1) to (K—6).

We refer to these six postulates as the basic AGM contraction postulates. O

The first five contraction postulates together constitute little more than an obvious

expression of the intuition that the AGM trio associate with belief removal. (K—1)
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is the requirement that AGM contraction operate on belief sets, while (K—2) ensures
that the contraction of a belief set actually results in a contracted belief set. (K—3) is
a straightforward appeal to the principle of Informational Economy in the pathological
case of contraction by a wif that is not in the belief set to begin with. (K—4) ensures
that contraction by any wff other than a logically valid one is successful, and (K—5) is
a formalisation of the principle of the Irrelevance of Syntax. This brings us to (K—6),

the postulate also known as Recovery. It was originally phrased as follows:
(K-6') K C (K —a)+«

but it is easily verified that these two formulations are equivalent in the presence of
(K—-1), (K—2), and (K-3).

The Recovery postulate is an expression of the principle of Informational Economy.
It requires of a contraction of K by a wif & € K to retain so much of K, that it is
possible to recover the whole of K from an a-expansion of the resulting belief set. The
desirability of the Recovery postulate is a contentious issue and has evoked a vigorous
debate [see Makinson, 1987, 1997, Hansson, 1991, 1993c, 1996, Levi, 1991, Lindstrém
and Rabinowicz, 1991, Niederee, 1991]. We take up the matter in chapter 6, where we
discuss belief removals that satisfy all the basic AGM contraction postulates except
for Recovery. In accordance with a suggestion by Makinson [1987], we refer to such

removals as withdrawals.
Definition 2.1.2 A removal is a withdrawal iff it satisfies (K—1) to (K—5). O

With the exception of (K—5), which involves two logically equivalent wifs, the basic
AGM contraction postulates all refer to a fixed wif by which to contract a belief set.
Basic AGM contraction can thus be seen as a description of how to contract a fixed
belief set K by a fixed wif a. The addition of the two supplementary AGM contrac-
tion postulates below, enforces a connection between the belief sets obtained during a

contraction of a (fixed) belief set by different wifs.?
(K=7) (K—=a)N(K=p) S K—(anp)
(K-8) If ¢ K — (aAp) then K — (aANB)C K —-f

Definition 2.1.3 A removal is an AGM contraction iff it satisfies (K—1) to (K—8). O

2This matter is discussed in more detail in section 2.2.
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The postulates for revision follow the same pattern as for contraction. There are six

basic AGM revision postulates.

(Kx1) Kxa=Cn(K x«)

(K¥2) Kxa C K+«

(K%3) If ~a ¢ K then K xa =K +«

(Kx4) a € K x «

(K«5) If a = 3 then K xa= K * [

(K«6) L € Kxaiff F -«

Definition 2.1.4 A revision is a basic AGM revision iff it satisfies (K1) to (Kx6). O

(Kx1) is the requirement that revision operate on belief sets, while (K%2) places an
appropriate upper bound on the belief set obtained from a revision. (K«3) invokes the
principle of Informational Economy for the case where the wff with which to revise is
consistent with the current belief set. (Kx4) ensures that revision is always successful,
and (Kx5) expresses the principle of the Irrelevance of Syntax. Finally, (Kx6) highlights
the difference beween expansion and revision.

Like (basic AGM) contraction, basic AGM revision can be seen as a description of
how to revise a fixed belief set by a fixed wiff. To ensure that there is a connection
between the revision by different wifs of the same belief set, it is necessary to add the

supplementary AGM revision postulates.
(K«7) Kx(aAp) C(Kx*xa)+p
(K«8) If = ¢ K xa then (K *xa)+ [ C K % (a A S3)

Definition 2.1.5 A revision is an AGM revision iff it satisfies (Kx1) to (Kx8). O

2.1.1 Connections between contraction and revision

A quick perusal of all the AGM postulates shows that, with the exception of (K—6)
and (Kx6), there are obvious similarities between the AGM contraction postulates and
their revision counterparts. Gérdenfors [1988] shows that AGM contraction and AGM

revision are interdefinable by courtesy of the two identities given below.
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(Def x from ~) Kx*xa= (K ~ —a)+«
(Def — from *x) K —a= (K x—-a)NK

These identities are known respectively as the Levi identity and the Harper identity.

Observe that the Levi identity is a formal expression of Levi’s commensurability thesis.

Theorem 2.1.6 1. A revision defined in terms of a (basic AGM) contraction using
(Def * from ~) is a basic AGM revision.?

2. A removal defined in terms of a basic AGM revision using (Def — from x) is a
(basic AGM) contraction.

3. A revision defined in terms of an AGM contraction using (Def x from ~) is an
AGM revision.

4. A removal defined in terms of an AGM revision using (Def — from x) is an AGM

contraction.

What is more, these two identities are also interchangeable. That is, if we start with a
theory change operation (satisfying either the six basic AGM contraction postulates or
the six basic AGM revision postulates), and then apply one of these identities, followed
by an application of the other, we’ll be back at the theory change operation that we
started with.

Theorem 2.1.7 [Gdrdenfors, 1988]

1. Let — be a (basic AGM) contraction, let * be obtained from — using (Def * from
~) and let ~ be obtained from x using (Def — from x). Then — and ~ are

identical.

2. Let x be a basic AGM revision, let — be obtained from x using (Def — from x)

and let % be obtained from — using (Def * from ~). Then x and % are identical.

So the Levi and Harper identities provide us with a strong form of interdefinability
between contraction and revision. The significance of this result will become apparent

when we discuss the methods for constructing AGM theory change.

3The proof of this part of the theorem does not make use of the Recovery postulate. This is a

significant result that will be discussed and exploited in chapter 6.
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2.2 Partial meet contraction

The first method proposed for constructing contraction operations [Alchourrén et al.,
1985] is known as partial meet contraction.* In this approach, the construction of an

a-contraction uses as building blocks the maximal subsets of K that do not contain c.

Definition 2.2.1 A belief set K’ is an a-remainder (of K) iff K' C K, a ¢ K' and
«a € K'+ [ for every f € K\ K'. The set of a-remainders of K is denoted by K La. O

It is easily seen that K la = {K} iff o ¢ K, and that K La = () if F o. Compactness
further ensures that K Lo = () only if F oo. The partial meet contractions are obtained
by picking out a set of a-remainders, and taking their intersection. Intuitively, we pick

the best a-remainders, and then retain those wifs that occur in every one of them.

Definition 2.2.2 A selection function is a function sx : {K La | @ € L} — ppK such
that ) C s (A) C A for every A # 0, and sg(0) = {K}. O

Selection functions are used to define the partial meet contractions.

(Def ~ from sg) K ~a=()sg(K_Lla)

Definition 2.2.3 A removal is a partial meet contraction iff it is defined in terms of

a selection function sk using (Def ~ from sg). O

Theorem 2.2.4 [Alchourrén et al., 1985] Every removal defined in terms of a selection
function using (Def ~ from sk ) is a (basic AGM) contraction. Conversely, every (basic

AGM) contraction can be defined in terms of a selection function using (Def ~ from

SK).

The two limiting cases of partial meet contraction, in which s () is either taken as the
set of all a-remainders, or as a single a-remainder, are known as full meet contraction
and mazichoice contraction respectively. Clearly there is only one full meet contraction,
but many maxichoice contractions. In fact, it is easily verified that every basic AGM

contraction — can be defined in terms of a set M of maxichoice contractions, as follows:

(Def — from M) K —a =), K ~«

4Partial meet contraction is directly concerned with contraction, but the corresponding revisions
can, of course, be obtained in terms of (Def % from ~).
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and that full meet contraction is obtained when M contains all the maxichoice contrac-
tions. Full meet contraction thus provides a lower bound on basic AGM contraction
in the sense that, for any basic AGM contraction, the belief set obtained from the
a~-contraction of a wif v includes the one obtained from the full meet a-contraction. It
is also easily verified that full meet contraction is an AGM contraction (satisfying the
supplementary postulates as well), but that not all of the maxichoice contractions are.

For the construction of AGM contraction in terms of (Def ~ from sg), a selection
function has to be more principled in its choice of a-remainders. This is attained by

imposing a suitable binary relation € on the set of remainders
KiL=|J{Ae Kla|aeL\Cn(T)}

and defining a selection function from it as follows:

{Ae Kla|Be A VB e Kla}if Fa,

Def sk from ©) sg(K la) =
( " ) o ) {{K} otherwise

Intuitively, € is used to obtain the maximal or “best” a-remainders (higher up being

better), and these are the ones picked out by the selection function.

Definition 2.2.5 A partial meet contraction is called relational iff it is defined in
terms of a selection function sy (using (Def ~ from sk )), where sy is defined in terms
of a relation € using (Def sk from €). If € is transitive, the partial meet contraction
is called transitively relational, and if € is connected as well as transitive (which means

that it is a total preorder), it is called connectively relational. O

It turns out that all relational partial meet contractions satisfy (K—7), and that the
transitively relational partial meet contractions, the connectively relational partial meet

contractions, and the AGM contractions coincide exactly.

Theorem 2.2.6 [Gardenfors, 1988] A removal is an AGM contraction iff it is a tran-
sitively relational partial meet contraction, iff it ws a connectively relational partial meet

contraction.

It is worth noting that not every relation € on K 1L can succeed in producing a
selection function using (Def sx from &€). By definition, a selection function has to
produce non-empty sets of a-remainders for every K La. So (Def sk from &) will yield

a selection function only if, for every « that is not logically valid, there are elements of
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K L« that are at least as good, in terms of €, as all the elements of K L «. And it is easy
to verify that not every relation on K 1L, nor even every transitive relation on K 1L,
has this property. Any irreflexive relation serves as an obvious counterexample. In
fact, not even all the total preorders have this property. In this case, a counterexample
is provided by considering a total preorder € that contains an infinitely ascending
chain of elements of K L«. This restriction of the application of (Def s from &) to
well-behaved relations also explains the (seemingly) surprising result that the set of
transitively relational partial meet contractions and the set of connectively relational
partial meet contractions are identical. For it is a consequence of this result that
the selection functions defined in terms of the total preorders using (Def sk from
€) coincide with the selection functions defined in terms of the transitive relations
using (Def si from &). And this is the case because both the ill-behaved transitive
relations and the ill-behaved total preorders are simply not taken into consideration in
the definition of the selection functions. The obvious question to consider is whether
it is possible to give a direct description of a set of transitive relations on K 1 L that
are well-behaved, in the sense that they induce selection functions when using (Def sk
from &), and can be used to construct all the AGM contractions. Such a description
would provide a sharper version of theorem 2.2.6. In section 3.2 we shall see that this

can be done.

2.3 Epistemic entrenchment

The basic idea behind epistemic entrenchment is that some of our beliefs are more
firmly entrenched than others, and we would thus be more willing to give up the latter
wifs than the former if we are forced to choose. In the view of Géardenfors and Makinson
[1988] and Gérdenfors [1988], an epistemic entrenchment ordering should be subject
to the following set of postulates (with wffs higher up in the ordering being more

entrenched):

(EE1) Cgpg is transitive.

(EE2) If a F 8 then a Cgg

(EE3) Forall o, e K, a CppaAfor fCppalAf

(EE4) If K # Cn(L) then a ¢ K iff @« Cgg (3 for all
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(EE5) If o Cpp S for all « then F 3

Definition 2.3.1 A binary relation Cgp on L is an EE-ordering (an epistemic en-
trenchment ordering) with respect to a belief set K iff it satisfies (EEL) to (EE5).
|

(EE1) seems to be a reasonable condition to impose on a relation that qualifies as
an ordering. (EE2) requires that logically weaker wifs be more entrenched, which
makes perfect sense once we realise that it is impossible to remove a wff from a belief
set without removing all the logically stronger wiffs as well. The innocent-looking
postulate (EE3) turns out to be very powerful indeed. It is the cornerstone of the
controversial property that every EE-ordering is a total preorder. In chapter 5 we
consider entrenchment orderings that are not total preorders. Finally, (EE4) and (EE5)
are minimality and maximality conditions respectively. (EE4) states that all the wifs
not in K are equally entrenched, but less entrenched than the wffs in K. And (EE5)
(together with (EE2)) requires the logically valid wffs to be equally entrenched, but
more entrenched than all the other wffs.

From results in [Gardenfors and Makinson, 1988], AGM contraction and epistemic

entrenchment are interdefinable by means of the following two identities:

Kn{f|aCgraVp}lifaec K, and ¥ «a,

Def — from C K—-—a=
( Cir) { K otherwise

(Def Cpp from ~) aCpp fifa¢g K ~(aAf)orEanp

Theorem 2.3.2 1. A remowal is an AGM contraction iff it is defined in terms of
an EE-ordering using (Def — from Cgg).

2. A binary relation on L is an EE-ordering iff it is defined in terms of an AGM

contraction using (Def Cgg from ~).

In fact, as we shall see in chapter 3, these identities are interchangeable in the sense
that moving from an EE-ordering to an AGM contraction and back (or vice versa),

brings us back to where we started.
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2.3.1 Plausibility orderings

Grove [1988] presents a class of plausibility orderings on wffs. The set of postulates he

uses to describe these orderings bears some resemblance to that for the EE-orderings.
(GE1) Cgpg is connected

(GE2) Cgp is transitive

(GE3) If a E BV ythen B Cgr aor v Cap «

(GE4) If K # Cn(L) then —a ¢ K iff @« Cgp § for all g € L°

(GE5) F—aiff fCep aforall e L

Definition 2.3.3 A binary relation Cgp on L is a GE-ordering (with respect to a
belief set K) iff it satisfies (GE1) to (GE5). O

Grove then defines AGM revision in terms of the GE-orderings as follows:®

AB)C A —p) if F —a,
(Def  from Cgp) € K xaiff (@A B) Cox (a B)i “
B € L otherwise
Theorem 2.3.4 [Grove, 1988] Every GE-ordering defines an AGM revision using (Def
x from Cgg ). Conversely, every AGM revision can be defined in terms of a GE-ordering

using (Def x from Cap ).

>Grove [1988] does not include the condition that K # Cn(L) in (GE4), but without it some of
his results (Theorem 4, p. 164) do not hold for an unsatisfiable K. Géardenfors [1988] gives the same
formulation as Grove, but his result about the relation between epistemic entrenchment orderings
and the Grove orderings (Lemma 4.27, p. 96) only holds if the above condition is included. The
proposal of Boutilier [1992, 1994] to rectify the formulation of (GE4) is to exclude the condition that
K # Cn(l), as well as the reverse direction of our version of (GE4). But this is too weak, and it
can be shown that it destroys the desired relationship between the Grove orderings and the epistemic

entrenchment orderings of Gardenfors and Makinson.
6Grove’s definition of revision in [1988] in terms of G-orderings does not include the case where

F —a, and neither does the definition of Gardenfors [1988], but it is clearly a necessary part of the
definition. For if « is logically invalid, then K * o = Cn(L), by (K%6). But, since both o A § and
a A —f are then also logically invalid for every 3, it follows from (GE5) that (a A 5) Zge (a A —f).
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Grove describes the GE-orderings as measures of relative importance, and they have
also been described as orderings of plausibility [Boutilier, 1992]. However, (GE4) seems
to be at odds with both these epistemic interpretations of the GE-orderings, for in both
these cases, one would expect the wifs in K to be more important, or more plausible
than, all the wffs not in K. And yet (GE4) requires of every wff whose negation is not
in K to be as important, or as plausible, as the wifs in K. We return to this issue in
chapter 5.

Gérdenfors [1988] shows that the resemblance between the postulates for the EE-
orderings and the GE-orderings is not just coincidental, and that the GE-orderings are

dual to the EE-orderings in the following sense:

(Def EE from EG’) « EE 5 iff -« EG _IB

Theorem 2.3.5 [Gardenfors, 1988] A relation on wff is an EE-ordering iff it can be
defined in terms of a GE-ordering using (Def Cg from Cg ).

From (GE2) it follows that logically equivalent wffs are equally plausible, and the GE-
orderings can thus be defined in terms of the EE-orderings in a manner analogous to
that in (Def Cp from Cg):

(Def Cg from Cp) a Cg fiff na Cp —f

2.4 Safe contraction

Safe contraction was originally introduced by Alchourrén and Makinson [1981, 1985].
Intuitively, the idea is to identify wifs in the belief set K that cannot be blamed for
a wif a being in K. When contracting K by «, these wifs should all be retained, i.e.,
they are safe with respect to a contraction by «. The belief set resulting from an
a-contraction is then taken to be the belief set generated by the wifs that are safe with
respect to a. To determine the wifs that are safe with respect to «, we first need to

consider the minimal subsets of K that entail o, dubbed the entailment sets for .

Definition 2.4.1 B is an entailment set for « (with respect to K) iff B C K and
BFE «, but B\ {8} ¥ « for every # € B. We denote the set of entailment sets of a by
KTa. O
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Note that KTa =0 iff E « or o ¢ K. We also need to introduce a binary relation on

the wifs in K, subject to certain conditions.

Definition 2.4.2 A binary relation Ty on K is a hierarchy (over K) iff for every finite

sequence «y, . ..., of wifs in K, if a; Ty oy for 1 <i <mn, then o, £y . O

A hierarchy over K can be seen as an indication of the reliability of the wifs in K, with
those higher up being more reliable. As such, it is not unlike an epistemic entrenchment
ordering with respect to K. Wffs in K that are safe with respect to « are taken to be
those that are not minimal elements (with respect to Cg) of any of the entailments
sets for . In other words, the wifs in K that are not safe with respect to «, are those
that occur as the least reliable members of some entailment set for . We denote the
wifs that are safe with respect to a (and a hierarchy Cy) by K/a. That is:

Def K/a from Cpy) K/a = €K
( / H) / {6 Jv € B such that v Cy 8

VB € KTa such that g € B, }

K/a is then used to define safe contraction.

Cn(K/a) where K/« is defined in terms of Ty

Def — from Cy) K —a =
( ) { using (Def K/a from Cpg)

Definition 2.4.3 A removal — is a safe contraction iff it is defined in terms of a

hierarchy Cy using (Def — from Cy). O

Alchourrén and Makinson [1985] show that every safe contraction is a (basic AGM)
contraction. In [1986], they also provide a connection with AGM contraction for the
case where K is finitely axiomatisable. To do so, they impose stricter conditions on

hierarchies.
Definition 2.4.4 A hierarchy over K

1. continues up iff the following holds for every o, 3,7 € K: if a Cy f and S F v
then o Ty 7,

2. continues down iff the following holds for every o, 8,7 € K: ifaF fand 8 Cg 7y
then o C g 7,

3. is regular iff it continues up and down, and
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4. is virtually connected iff the following holds for every «, 5,7 € K: if a Cy [ then
alCgyorvyCqgpB.

(I
They show that if K is finitely axiomatisable, the removals defined in terms of the

regular virtually connected hierarchies using (Def — from ) are precisely the AGM

contractions. Rott [1992b] extends this to the general case as well.

Theorem 2.4.5 A removal — is a safe contraction defined in terms of a reqular vir-

tually connected hierarchy using (Def — from Ty ) iff it is an AGM contraction.

In chapter 3 we delve deeper into the connection between safe contraction and other

methods for constructing AGM contraction.
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Chapter 3

Semantic belief change

‘When I use a word,” Humpty Dumpty said
wn rather a scornful tone, ‘it means just what
I choose it to mean — neither more nor less.’

Lewis Carrol, Alice’s Adventures in Wonderland

One of the central themes of this dissertation is to emphasise the fundamental role that
semantic approaches play in belief change. In this chapter we take the initial steps in
the justification of such a claim. We commence with the introduction of a notion
of semantic information and its relation to a possible-worlds semantics for L. This
is followed by a discussion of semantic approaches to AGM theory change, in which
the central idea is that of a preorder on the interpretations of L. We point out the
strong links between such semantic approaches and the methods for constructing AGM
theory change that were discussed in chapter 2. With the aid of our theory of semantic
information, we argue that the preorders on interpretations can be transformed into
preorders on the basic units of belief of an agent, and that it is appropriate to use these
orderings as representations of the epistemic states of an agent. In this and in later

chapters, such a representation of epistemic states will prove to be most fruitful.

31
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3.1 Semantic content and infatoms

One of the assumptions encountered in chapter 2 is the representation of an epistemic
state as a belief set. This decision has a number of associated problems, one of the
most basic objections being that the elements of a belief set are linguistic in nature.
In our view, an epistemic state ought to consist of non-linguistic entities from which
the beliefs associated with the epistemic state can be determined. And since it is the
semantics of the language that determines the meaning of the wffs in the language,
the interpretations of the language (the elements of U) are usually used as the basic
building blocks of epistemic states. This is the basis for the representations used by
many authors [Harper, 1977, Grove, 1988, Katsuno and Mendelzon, 1991, Morreau,
1992, Peppas and Williams, 1995, Darwiche and Pearl, 1997]. Such representations
have proved to be very useful in a wide variety of situations, and much of the work
discussed in this and later chapters are based on the idea of an epistemic state as a
set of interpretations. But if we think of the elements of an epistemic state as objects
from which (linguistic) beliefs are built up, the use of interpretations does not seem to
be quite satisfactory. For it is difficult to see how an interpretation can be considered

as a basic part of a belief expressed as a wif in L.!

It is with this objection in mind that we propose the use of infatoms as the basic
units of an epistemic state. Intuitively, infatoms are the basic independent pieces of
information from which the beliefs of an agent (expressed as wffs of L) are built up. In
this view, the information contained in a belief, and in a belief set, is a set of infatoms.
More infatoms thus correspond to a set of beliefs that contains more information and
is logically stronger. Infatoms are independent in the sense that it is only the set of all
infatoms that contains too much information, leading an agent to include all wffs in its
set of beliefs. Any strict subset of the set of all infatoms corresponds to a satisfiable
set of beliefs.

Since the notion of an epistemic state is so central to the study of belief change,
it seems more appropriate to use a semantics based on infatoms when constructing
belief change operations. Although we give a formal description of infatoms and an

infatom semantics below, we shall express most of the formal work on semantic belief

n fact, it makes more sense to do it the other way round and think of an interpretation (or rather,
a valuation) as being built up from a set of wifs. As we have seen in section 1.3, this is a standard
way of constructing a semantics that is isomorphic to the F-valuation semantics for L.
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change in this, and indeed in later chapters, in terms of a possible-worlds semantics.
There are two reasons for this. Firstly, semantic descriptions of belief change have
thus far concentrated on the use of a possible-worlds semantics. (In fact, with a few
exceptions, such as [Lindstrém, 1991], the emphasis has been placed on a semantics that
is isomorphic (or identical) to a valuation semantics for L.) And secondly, we’ll show
that there is such a close technical association between infatoms and interpretations
(and valuations in particular), that a switch from interpretations to infatoms is merely
a matter of regarding an interpretation as its associated infatom. In order to formalise
this relationship, we now proceed with a formal explication of a semantics for L based
on infatoms.

Infatoms are generalised semantic versions of the content elements of Carnap and
Bar-Hillel [1952, 1953], and as such, are quite different from Keith Devlin’s [1991]
infons, although the latter is also described as basic bits of information. Formally, an
infatom is a function i from Apy, the set of propositional atoms of L (see section 1.3),
to the set {I, E}. The intuition is that infatoms are independent bits of information
from which the information contained in the wifs of L are built up. An infatom 7 sends
a propositional atom « to [ if ¢ is Included in the information contained in «, and ¢

sends « to F if ¢ is Ezcluded from the information contained in «.

Definition 3.1.1 Given a set Inf of infatoms, the content relation IIF from Inf to L is

then defined recursively as follows:
1. for every ¢ € Inf, ¢ [ T and 4 lIF L,
2. if o € Apy, then i llF a iff i(a) = 1,
3. if @« = —p then ¢ lIF o iff 7 I)F 3,
4. if a =V ythenillFaiff 2 lIF g and 2 lIF 7,
5. if @« = B A~y then i lIF « iff either ¢ IF 8 or ¢ lIF 7y, or both,
6. if « = — 7 then i lIF o iff ¢ [ 5 and 7 IF 7, and

7. if @ = B < v then i lIF « iff either both ¢ [ 5 and 7 lIF 7, or both ¢ IIF 8 and
vl .
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The semantic content of a set of wifs A, denoted by C'(A), is defined as
C(A) = {i € Inf | 3o € A such that i lIF a}.

For a wif o € L, we write C'(«) instead of C'({a}). So the semantic content of A
consists of all the infatoms that are part of the information contained in at least one
of the wffs in A. We shall refer to such infatoms as the content bits of A. Conversely,
for an infatom 7, A is said to be i-containing iff 7 is a content bit of A. An infatom
semantics for L is an ordered pair (Inf, IF), where Inf is a set of infatoms and I is the
content relation of definition 3.1.1. The theory generated by a set of infatoms I C Inf
is defined as Th(I) = {« | C(a) C I}. That is, Th(I) contains all the wifs whose

contents bits are included in I. Our first result about infatoms is given without proof.
Proposition 3.1.2 Let (Inf,lIF) be an infatom semantics for L.

1. ClaAB)=Cla)uC(p).

2. ClaV p)=Cla)nC(p).

It turns out that there is a natural way to associate a unique infatom semantics with
every possible-worlds semantics, and to associate a unique valuation semantics with

every infatom semantics.

Definition 3.1.3 1. Given a possible-worlds semantics (U, IF) for L, the associated
infatom semantics for L is defined as (Inf,lIF), where Inf = {i, | v € U}, IIF is
obtained as in definition 3.1.1, and for every u € U, the associated infatom ¢, is

defined as follows: for every o € Apy, i,(a) = I iff ul¥ a.

2. Given an infatom semantics (Inf,llF) for L, the associated valuation semantics
(V,IF) based on valuations is defined as (V,IF), where V' = {v; | ¢ € Inf}, IF
is obtained in the standard way (see section 1.3), and for every ¢ € Inf, the
associated valuation v; is defined as follows: for every a € Apy, vi(a) = T iff
v F a.

O

Definition 3.1.3 is justified by propositions 3.1.5 and 3.1.6 below. They, in turn, rely

heavily on the following lemma.
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Lemma 3.1.4 1. Let (U,lF) be a possible-worlds semantics and let (Inf,|IF) be the

associated infatom semantics for L. For every a € L and everyu € U, i, € C(«)

iff ud M(a).

2. Let (Inf,IIF) be an infatom semantics and let (V,IF) be the valuation semantics

associated with (Inf,\IF). For every o € L and every i € Inf, v; € M(a) iff

i¢ O(a).

Proof Both proofs follow by induction on the structure of the wifs of L, and applica-
tions of definition 3.1.3. a

Proposition 3.1.5 establishes some connections between interpretations and infatoms.

Proposition 3.1.5 Let (U,IF) be a possible-worlds semantics and let (Inf,lIF) be the

associated infatom semantics for L.
1. AE B iff M(A) C M(B) iff C(A) 2 C(B).
2. Th(C/(A)) = Th(M(A)).
3. Eaiff M(a) = U iff Ca) = 0.
J. C(A) = Inf\ {i, | u € M(A)}.
5. IfW CU and I = {i, | we W} then Th(W) = Th(Inf \ I).
6. Th(M(A)U{u}) =Th(C(A)\ {in}).
7. Ifu €U then

Th(M(A)\ {w | is elementarily equivalent to u}) = Th(C(A) U {i,}).

Proof 1. Suppose that M(A) C M(f) and pick any i, € C(). Now assume that
iy ¢ C(A). That is, for every a € A, i,, ¢ C(«). Then, by lemma 3.1.4, u € M(«)
for every o € A, and therefore u € M(A). But by supposition, u € M(/3), and by
lemma 3.1.4, i, ¢ C(f); a contradiction. Conversely, suppose that C'(3) C C'(A)
and pick any u € M(A). Now assume that u ¢ M(f). By lemma 3.1.4, i, € C().
So i, € C(A), and there is thus an a € A such that i, € C(«). But by lemma
3.1.4, u ¢ M(«), contradicting the supposition that u € M(A).
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2. a € Th(C(A)) iff C(a) C C(A) iff M(A) C M(«) (by part (1) above) iff a €

Th(M(A)).

. It follows easily from the definitions of M («) and C(«) that M(a) = U iff F «

and that C(«) = 0 iff F «.

. Pick an i,, € C(A). So, there is an a € A such that i, € C(«). By lemma 3.1.4,

u ¢ M(a). Sou ¢ M(A), and thus i, € Inf\ {i, | v € M(A)}. Conversely,
suppose that i, € Inf\ {i, | v € M(A)}. Then u ¢ M(A), and there is thus
an o € A such that v ¢ M(a). Hence, by lemma 3.1.4, i, € C(«). Therefore
ie C(A).

. Suppose that W C U and I = {i, | w € W}, and pick an o € Th(W). So

W C M(«). Now assume that o ¢ Th(Inf\ I). That is, C(a) € Inf\ I. In
other words, there is an i, € C'(«) such that i, € I. So u € W and by lemma
3.1.4, u ¢ M(«a), contradicting the fact that W C M («). Conversely, suppose
that o € Th(Inf\ I). So C(«) C Inf\ I. Now assume that o ¢ Th(WW). Then
W ¢ M(«), and there is thus a w € W such that w ¢ M(«). So i, € I, and by
lemma 3.1.4, i, € C(«), thus contradicting the fact that C'(«) C Inf\ 1.

. Pick any g € Th(M(A)U{u}). That is, M(A)U{u} C M(B). It suffices to show

that C'(8) € C(A) \ {iu}. So pick any i, € C(f). By lemma 3.1.4, v ¢ M(f),
and this means that v ¢ M(A) U{u}. So u # v (and hence i, # i,) and there is
an o € A such that v ¢ M(a). By lemma 3.1.4 it then follows that i, € C(«),
and thus that i, € C(A). The required result then follows from the fact that
iy # 1,. Conversely, pick any € Th(C(A) \ {i.}). That is C(5) C C(A) \ {i.}.
It suffices to show that M(A)U{u} C M(5). So pick any v € M(A)U{u}. Then
either v = u (and hence i, = i,), or v € M(«) for every @ € A. In the former
case i, ¢ C(f), and in the latter case, it follows by lemma 3.1.4 that i, ¢ C'(«)
for every @ € A, and thus that i, ¢ C(A). So either way, i, ¢ C(f), and hence,
by lemma 3.1.4, v € M(p).

. Pick any g € Th(M(A) \ {w | w is elementarily equivalent to u}). That is,

M(A) \ {w | w is elementarily equivalent to u} C M(/3). It suffices to show that
C(B) € C(A) U {in}. So pick any i, € C(3). By lemma 3.1.4, v ¢ M(/5). And
this means that v ¢ M(A) \ {w | w is elementarily equivalent to u}. So either
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v is elementarily equivalent to u (and hence i, = i,), or there is an o € A such
that v ¢ M(«). In the former case it obviously follows that i, € C(A)U{i,}, and
in the latter case it follows by lemma 3.1.4 that i, € C'(«). But then i, € C(A),
which means we are done. Conversely, pick any § € Th(C(A) U {i,}). That is,
C(B) € C(A) U{i,}. It suffices to show that

M(A) \ {w | w is elementarily equivalent to u} C M (/).

So pick any v € M(A) \ {w | w is elementarily equivalent to u}. Then v € M(«)
for every o € A. By lemma 3.1.4, i, ¢ C(a) for every a € A. Therefore
i, ¢ C(A). Furthermore i, # i,, for if i, = i,, it would have meant that v is
elementarily equivalent to u, contradicting the fact that v € M(A) \ {w | w is
elementarily equivalent to u}. And thus i, ¢ C'(f), which means, by lemma 3.1.4,
that v € M ().

([

Part (1) of proposition 3.1.5 shows us that semantic entailment can also be defined in
terms of infatoms. A wif « is semantically entailed by a set of wifs A iff the content
bits of A includes all the content bits of a. This enables us to define a notion of
axiomatisability for sets of infatoms. A set of wifs A aziomatises a set of infatoms [
iff C(A) = I. The intuition is along the same lines as the axiomatisability of sets of
interpretations; both provide syntactic descriptions of a semantic concept.

Of particular interest in the proposition above are the last two parts. Part (6)
shows that adding an interpretation to the models of a set of wifs A is the same as
removing its associated infatom from the semantic content of A. Part (7) shows that the
removal, from the models of A, of all interpretations that are elementarily equivalent
to an interpretation u is the same as adding u’s associated infatom to the semantic
content of A.

The next proposition draws parallels between valuations and infatoms.

Proposition 3.1.6 Let (Inf,lIF) be an infatom semantics and let (V,IF) be the valua-

tion semantics associated with (Inf,|IF).
1. M(A) =V \{v; |ieC(A)}.

2. If I CInf and W = {w; | i € I} then Th(I) =Th(V \W).
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3. Th(C(A) U {i}) = Th(M(A) \ {v:}).

4 Th(C(A)\ {i}) = Th(M(A) U {vi}).

Proof 1. v, € M(A) iff v; € M(«) for every a € A, iff i ¢ C(«) for every a € A
(by lemma 3.1.4), iff i ¢ C'(A), iff v; € V\ {w; | i € C(A)}.

2. Suppose that I C Inf and W = {w; | ¢ € I'}. Now pick any a € Th(I). That
is, C(«) C I. Tt suffices to show that V' \ W C M(«). So pick any w; € V'\ W.
By the definition of W it follows that i ¢ I. But this means that i ¢ C'(«), and
by lemma 3.1.4, that w; € M(«). Conversely, pick any o € Th(V \ W). That
is, V\ W C M(«). It suffices to show that C'(«) C I. So pick an i ¢ I. By the
definition of W it follows that w; € V' \ W. But then w; € M(«), and by lemma
3.1.4, i ¢ C(a).

3. The proof is very similar to the proof of part (7) of proposition 3.1.5 and is

omitted.

4. The proof is very similar to the proof of part (6) of proposition 3.1.5 and is
omitted.
(Il

These results clearly show that there is a strong connection between interpretations
and valuations on the one hand, and infatoms on the other.

The connection between infatoms and the contents elements of Carnap and Bar-
Hillel [1952, 1953] is easily established as follows. Let L be the language of a finitely
generated propositional logic, generated by the atoms p; ..., p, and let (V,IFy) be the
classical valuation semantics for L (i.e., V' contains all possible valuations). Now, let
(Inf,lIF) be the associated infatom semantics for L. It is well known that a valuation
v € V can be axiomatised by a conjunction of literals A|_, {;, where [; € {p;, —p;}.
That is, M (A, ;) = {v}. These conjunctions are called state descriptions. From
part (4) of proposition 3.1.5 it then follows that C'(= (A, ;) = {i,}). That is, the
negation of the state description of v axiomatises the infatom associated with v. And
it is precisely these negations of the state descriptions that are the content elements of

Carnap and Bar-Hillel.
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From the discussion above it is clear that every entailment relation = for L can
be obtained from a unique valuation semantics (V,IF) and a unique infatom seman-
tics (Inf,lIF), and that (V,IF) is the valuation semantics associated with (Inf,lIF) and
(Inf, lIF) is the infatom semantics associated with (V,IF). It is therefore appropriate to
consider (V,IF) and (Inf,llF) as dual to each other. It is also clear that, like valuations
and unlike interpretations, there can never be two distinct infatoms ¢ and j that are
elementarily equivalent in the sense that they are content bits of exactly the same
wifs (i.e. Th(i) = Th(j)). So valuations and infatoms have the same grainsize, with
interpretations (possibly) being finer grained than either valuations or infatoms. From
an information-theoretic point of view, it seems reasonable to appeal to the Principle
of the Identity of Indiscernibles, thereby disallowing the elementarily equivalence of

distinct infatoms:

(Identity of Indiscernibles) Objects that cannot be distinguished from one another

should be regarded as identical.

Given the close connection between interpretations and valuations on the one hand, and
infatoms on the other, we shall frequently find it convenient to refer to interpretations
as infatoms. In particular, when referring to an interpretation v € U as an infatom,
we actually have in mind the infatom i, associated with w. While this convention

introduces some ambiguity, it should cause no confusion, and will aid in brevity.

3.2 A semantics for theory change

The construction of basic AGM contraction in terms of partial meet contraction can
easily be converted into a semantic description of basic AGM theory change. Grove
[1988] pointed out that it is just a matter of realising that the a-remainders are obtained

by adding single models of —a to the models of K.
Proposition 3.2.1 Let # a and o € K.
1. If u € M(—a) then Th(M(K) U {u}) € K La.
2. If Ae Kla then A=Th(M(K) U {u}) for some u € M(—«).

Proof For (1) pick any v € M(—«). Clearly, Th(M(K)U{u}) C K and Th(M(K) U
{z}) # a. Now pick any 8 € K such that Th(M(K) U {u}) ¥ §, and thus v ¢ M(f).
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By lemma 1.3.3, Th(M(K)U {u}) +  =Th(M(K)NM(5)) = K, and so a € K =
Th(M(K) U {u}) + 5.

For (2) pick any A € Kla. Because A ¥ «, there is a u € M(A) such that
u € M(—«), and there is thus a W C U such that W N M(K) = 0, v € W and
A=Th(M(K)UW) C Th(M(K)U{u}). If A C Th(M(K) U {u}) then there is
a 3 € Th(M(K) U {u}), and therefore 5 € K, such that § ¢ A. But then A +
f=ThMK)UW)+p5 C Th(M(K)U{u})+p = Th(M(K) U {u}). And since
a ¢ Th(M(K) U {u}), it also follows that o ¢ A + (3, contradicting the fact that
Ae Kla. O

If L has a valuation semantics, then there is a one-to-one correspondence between the
elements of M (—«) and the elements of K L. In general however, different elements
of M(—«) may determine the same element of K L«. From an information-theoretic
viewpoint, an a-remainder is obtained by removing one of the content bits of o from
the semantic content of K.

Proposition 3.2.1 gives us a way to characterise the partial meet contractions seman-
tically. Instead of a function selecting a subset of the remainders of K after removing
a, we have a function selecting a subset of the models of —a to be added to the models

of K. We call such a function a semantic selection function.

Definition 3.2.2 A function smg : L — pU is a semantic selection function iff the

following holds:
1. If « = 8 then smy(a) = smg () and
2. if a ¢ K or F « then smg(a) =0, otherwise ) C smg (o) C M(—a).
g

Basic AGM theory change can then be defined in terms of semantic selection functions

as follows:
(Def ~ from smg) K ~a=Th(M(K)U smg(a))

Th(smg(—a)) if ~a € K and ¥ —q,

(Def * from smy) K xa = .
K + « otherwise
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Theorem 3.2.3 1. A removal defined in terms of a semantic selection function
using (Def ~ from smg) is a basic AGM contraction. Conversely, every basic
AGM contraction can be defined in terms of a semantic selection function using
(Def ~ from smy ).

2. A revision defined in terms of a semantic selection function using (Def % from
smg) is a basic AGM revision. Conversely, every basic AGM revision can be

defined in terms of a semantic selection function using (Def x from smy ).
Proof The proof can be found in appendix A. a

Information-theoretically, theorem 3.2.3 tells us that if the semantic content of K
contains all the content bits of a and « is not logically valid, then a-contraction is
obtained by removing some of the content bits of o from the semantic content of K.
Similarly, if the semantic content of K contains all the content bits of -, and -« is
not logically valid, then an a-revision is obtained by adding all content bits of a to
the semantic content of K, and removing some of content bits of —a. So basic AGM
contraction involves the removal of content bits of «, while basic AGM revision means
adding all the content bits of «, and removing some content bits of —q.

For a semantic construction of AGM theory change, it is necessary to approach
matters in a more systematic fashion. It turns out that the use of preorders on the
interpretations of L, subject to certain restrictions, will do the trick. The first explic-
itly semantic method for constructing AGM revision (satisfying all eight of the AGM
revision postulates) is due to Grove [1988], who uses a generalised version of Lewis’
[1973] sphere-semantics for counterfactuals. Grove’s systems of spheres are based on
the maximally satisfiable subsets of L. By considering these sets as interpretations of
L, we obtain a (possible-worlds) semantics for L that is isomorphic to the F-valuation
semantics for L. Let us denote by [A] the set of maximally satisfiable extensions of a set
of wifs A C L, and that of a single wif & € L by [«]. When viewed as interpretations,
the elements of [A] are thus the models of A. A system of spheres (centred on K) is
a collection S of subsets of [T], the set of all maximally satisfiable subsets of L, that

satisfy the following conditions:
(S1) S is totally ordered by set-inclusion

(S2) [K] is the C-minimum of §
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(S3) [T]e S
(S4) If any element of S intersects [«], then there is a smallest element of S doing so

Letting Smin(a) be the smallest element of S intersecting [a], AGM revision can then

be defined in terms of S as follows:

ﬂ([a] N Smin) if [Oé] - @,

(Def « from S) K xa = .
L otherwise

Theorem 3.2.4 [Grove, 1988] Every system of spheres defines an AGM revision using
(Def x from S). Conversely, every AGM revision can be defined in terms of a system
of spheres using (Def x from S).

With [T] viewed as the set of interpretations of L, it is not difficult to see that a system
of spheres corresponds to a preorder on U, subject to a number of conditions. (S1)
ensures that the preorder is total, (S2) requires that the models of K all be equally
comparable and strictly below the countermodels of K, and (S3) ensures that the
preorder is defined on the whole of U. The purpose of (S4) is to retain only those total
preorders for which the set of minimal models of every wff (that is not logically invalid)
is non-empty. From a suggestion by Katsuno and Mendelzon [1991], we refer to such
preorders as faithful. For reasons that will become clear, our definition applies to all

the preorders on U and not just the total preorders.
Definition 3.2.5 Let < be any preorder on U.

1. If W C U then any v € W is <-minimal in W iff for every w € W, w £ v. We
denote the set of <-minimal elements of M () by Min<(«).

2. Fora W C U, < is W-smooth iff for every w € W there is a v < w such that v

is <-minimal in W.
3. =< is smooth iff it is M («)-smooth for every a.?

4. A preorder < on U is faithful (with respect to a belief set K) iff < is smooth,
x <yforeveryx € M(K)andy ¢ M(K), and x £ y for every z,y € M(K). For
an X C L, we say that < is X-faithful iff < is faithful with respect to Cn(X).

ZSmoothness is also known as stopperedness [Makinson, 1989] and the limit assumption [Lewis,
1973].
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O

Grove regards such preorders as measures of the compatibility of an interpretation with
the current beliefs of an agent, whilst interpretations lower down in the preorder are
regarded as more compatible. Revision is then defined in terms of a faithful preorder
by letting the minimal models of a wff & (the models of « that are most compatible
with the current beliefs of the agent) generate the belief set resulting from a revision

by a.
(Def * from <) K xa =Th(Min<())

This approach is a bit more general than Grove’s sphere-semantics, since faithful total
preorders can be imposed on the interpretations of any (possible-worlds) semantics
(U,E) for L, and not just the interpretations obtained from a system of spheres. In
fact, Grove’s result can be seen as the special case in which elementarily equivalent
interpretations form part of the same equivalence class (modulo the faithful total pre-
order). With the aid of (Def x from <) and (Def — from x), obtaining a definition of

contraction in terms of faithful preorders is also a straightforward matter:
(Def ~ from <) K ~a =Th(M(K)U Min<(—a))
And as expected, the use of faithful total preorders characterises AGM theory change.

Theorem 3.2.6 1. Every faithful total preorder defines an AGM contraction using
(Def ~ from <). Conversely, every AGM contraction can be defined in terms of
a faithful total preorder using (Def ~ from <).

2. Every faithful total preorder defines an AGM revision using (Def x from <).
Conversely, every AGM revision can be defined in terms of a faithful total preorder
using (Def x from <).

Proof This result is essentially the same as a result of Peppas and Williams [1995].
The proof draws heavily on similar results in [Gardenfors, 1988] and [Grove, 1988|. For

the reader’s convenience, we provide the complete proof in appendix A. O

A recurring theme throughout this dissertation is the advocation of orderings on
infatoms as an adequate representation of epistemic states in many contexts. One

of the reasons for advancing this claim is that, in many respects, such orderings seem
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to lie at the heart of the construction of belief change operations. Here is the first
formal argument in support of such a claim. We show that the AGM contraction and
revision defined in terms of the same faithful total preorder can also be defined in terms

of each other using the Levi and Harper identities.

Definition 3.2.7 An AGM contraction — and an AGM revision * are semantically
related iff they can defined in terms of the same faithul total preorder using (Def ~
from <) and (Def  from =<). O

The notion of semantic relatedness will be extended, as we proceed, to various con-

structions involving faithful preorders.

Proposition 3.2.8 Let — be an AGM contraction and * an AGM revision that are

semantically related.
1. — can also be defined in terms of * using (Def — from x).

2. x can also be defined in terms of — using (Def x from ~ ).

Proof Let < be a faithful total preorder in terms of which — and % can be defined
using (Def ~ from <) and (Def x from <). The proof of (1) is trivial and is omitted.
For the proof of (2), it suffices to show that Th(Min<(a)) = Th(M(K)UMin<(a))+a.
If - € K, it follows from lemma 1.3.4, and if ~« ¢ K, it follows from the fact that
Min<(a) C M(K). O

When viewed as orderings on infatoms, a faithful total preorder can be seen as a
way of ordering the basic units of information according to their entrenchment (or
importance, or credibility), with an infatom higher up in the ordering considered as
more entrenched. Recall from part (1) of proposition 3.1.6 that the models of K
correspond to the infatoms that do not form part of the semantic content of K, and
from part (4) of proposition 3.1.5 that the countermodels of K correspond exactly
to the content bits of K. So a faithful total preorder places the content bits of K
strictly above the remaining infatoms, which are all placed on the same level. The
accompanying intuition is clear. The content bits of K are more entrenched than the

infatoms not forming part of the semantic content of K.
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3.2.1 The propositional finite case

In the context of theory change, Katsuno and Mendelzon [1991] seem to have been the
first to make the transition from Grove’s sphere-semantics to faithful total preorders.
They investigate theory revision for the simplified case of the finitely generated clas-
sical propositional logics (for which (U, F) is the F-valuation semantics for L). This
simplification ensures that all belief sets can be axiomatised by single wifs, and accord-
ingly, this is the way they choose to represent belief sets. That is, a belief set K is
represented by any wif a such that Cn(«a) = K. For them, a revision is thus a function

from L to L. They provide four basic revision postulates, and two supplementary ones.
(KMx1) o € Cn(é * )

(KMx2) If o ¢ Cn(¢) then Cn(¢ + a) = Cn(¢ A )

(KM+3) If Cn(¢) = Cn(h) and a = B then Cn(é * a) = Cn(¢ )

(KM#4) If ¥ —a then L ¢ Cn( * )

(KMx5) Cn(¢* (aAB)) S Cn((¢*a)AB)

(KMx6) If =3 ¢ Cn(¢ * o) then Cn((¢* ) A B) C Cn(d * (a A B))

It is easy to see that these postulates are just the AGM revision postulates phrased to
fit in with their representation of belief sets. (KMx1) corresponds to (Kx2), (KM=*2)
is a combination of (Kx3) and (Kx4), (KMx3) corresponds to (Kx5), and (KMx4)
combined with (KMx1) give (K«6). Furthermore, (KMx5) and (KMx*6) respectively
correspond to (Kx7) and (Kx8).

The method that Katsuno and Mendelzon employ to construct revisions involves
the faithful total preorders on U. They use the term faithful to refer to an assignment
of total preorders to every wif ¢ (representing the belief set C'n(¢)), with <, satisfying

the following three conditions:
1. If u,v € M(¢) then u £ v.
2. f ue M(¢) and v ¢ M(¢) then u <, v.
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We shall refer to these as the KM-faithful total preorders. Since U is finite, every total
preorder on U is smooth, and so < is clearly a faithful total preorder (with respect to
Cn(¢)). In their view, a KM-faithful total preorder is an indication of minimal change
(of some sort) on interpretations, a suggestion that is more or less in line with Grove’s
idea of a measure of compatability. They proceed to show that the postulates (KMsx1)
to (KMx6) characterise AGM revision.

Theorem 3.2.9 [Katsuno and Mendelzon, 1991] A revision satisfies the postulates
(KMx1) to (KMx6) iff there is a KM-faithful total preorder <, such that M (¢ * o) =
Min<, ().

3.2.2 Semantic AGM revision without smoothness

The reason for including smoothness as one of the properties of the faithful preorders
is that the lack thereof opens the door for the possibility that a wif o (which is not
logically invalid) need not have any minimal models. In such cases, the use of (Def
from <) to define revision will result in the violation of (K«2) and (Kx6). Apparently
Boutilier [1990, 1994] first noticed that it is possible to do away with smoothness.
His idea can be explained as follows. When dealing with total preorders, a lack of
smoothness only causes problems for an a-revision if « is not logically invalid and «
doesn’t have minimal models. And this can only occur if there is an infinite descending
chain of models of . In such situations it makes sense to obtain the belief set resulting
from an a-revision by a simple extension of minimality. Instead of taking a wff 5 to
be in K x « iff  is true in all the minimal models of «, we allow [ into K * « iff there
is some level in the total preorder, below which all models of a are also models of 3.
Boutilier’s setup differs from ours in a number of aspects. He casts L, the language
in which an agent expresses his beliefs, into a propositional modal framework, and his
construction for defining revision is phrased in terms of modal operators. But it easy
to see that, in effect, he considers the same logics as we do, and that his definition of
revision corresponds to (Def x from B) below. Let us refer to a preorder on U (with
respect to a belief set K) as B-faithful iff the following two conditions hold:

1. If u,v € M(K) then u 4 v.

2. Ifue M(K) and v ¢ M(K) then u < v.
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So a preorder is faithful iff it is B-faithful and smooth. Boutilier’s definition of revision

in terms of a B-faithful total preorder < then looks as follows:

Vw € M(«), v < w such that v € M(a) N M(S), )

(Def  from B) € Kxaiff
and Yu € M («a) such that v < v, u € M(B)

Boutilier shows that this construction can be used to define AGM revision.

Theorem 3.2.10 [Boutilier, 1994] Every B-faithful total preorder defines an AGM
revision using (Def x from B). Conversely, every AGM revision can be defined in terms
of a B-faithful total preorder using (Def * from B).

It is easily verified that, for the faithful total preorders, the identities (Def % from
<) and (Def % from B) are equivalent, and Boutilier’s construction is thus clearly an

extension of the minimal model semantics for revision.

3.3 Orderings as epistemic states

Recall from chapter 1 that the epistemic state of an agent has to be represented in a
way that, at the very least, ensures the extraction of the beliefs of the agent, as well
as the information needed to perform reasoning in a coherent fashion. In the context
of AGM theory change, the latter includes the information to decide which of the
permissible AGM theory change operations to use. Semantically, it is thus sufficient to
represent an epistemic state as an ordered pair (K, <), where K is a belief set and < is
a faithful total preorder. We shall see that such a representation becomes particularly
apt when we adopt an information-theoretic view of the faithful preorders, where an
infatom higher up in the ordering is regarded as more entrenched. For the moment
though, we concentrate on matters more formal, and discuss the connection between
semantic AGM theory change and the three construction methods discussed in chapter
2. It turns out that the use of faithful total preorders is already implicitly contained
in transitively (and connectively) relational partial meet contraction, safe contraction
and epistemic entrenchment. In fact, there is a very strong connection between the
faithful total preorders, the orderings used for the construction of the transitively
(and connectively) relational partial meet contractions, the epistemic entrenchment
orderings, and the hierarchies used by safe contraction. Coupled with the principle
of Reductionism, these results provide support for the proposal to represent epistemic

states semantically.
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3.3.1 Semantic epistemic entrenchment

From an information-theoretic point of view it seems natural to be able to extend
the faithful total preorders to orderings on the wffs of L. The basic idea is simply
to lift a faithful total preorder (on infatoms) in a sensible way to a power order (an
ordering on sets of infatoms). Because every wif is associated with a particular set
of infatoms — its semantic content — we can view the ordering on sets of infatoms
as an ordering on wifs. The question of deciding what constitutes a sensible way of
lifting a faithful total preorder is, of course, largely dependent on the stated purpose
of such an ordering on wffs. Recall from section 2.3 that the intuition associated with
an epistemic entrenchment ordering is that wifs lower down are less entrenched, and
should be given up more easily. So epistemic entrenchment places the emphasis on
what should be discarded rather than on what should be retained. We can thus think
of the level of entrenchment of a wif as being determined by its least entrenched content
bits. Accordingly, it seems reasonable to regard [ as at least as entrenched as « iff
every content bit of [ is at least as entrenched as some content bit of «.. It is in this
spirit that we define the power order C in terms of a preorder < on the infatoms of L

as follows:
a C g iff for every j € C(B) there is an i € C'(«) such that i < j.

It turns out that the model-theoretic version of this definition applied to the faithful
total preorders yields precisely the EE-orderings of section 2.3.

(Def Cp from <) a Cg giff Yy € M(—=f) 3z € M(—a) such that z <y

This follows from the relationship between the GE-orderings and the EE-orderings
discussed in section 2.3.1, and results in [Grove, 1988, Gérdenfors, 1988, Boutilier,
1992, 1994], showing that the GE-orderings can be defined in terms of the faithful

total preorders as follows:

(Def Ci; from <) a Cg fiff Vy € M(5) 3z € M(«) such that z <y

Theorem 3.3.1 1. Every faithful total preorder defines a GE-ordering using (Def
Cq from <). Conversely, every GE-ordering can be defined in terms of a faithful
total preorder using (Def Cq from <).
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2. Every faithful total preorder defines an EE-ordering using (Def Cp from <).
Conversely, every EE-ordering can be defined in terms of a faithful total preorder
using (Def Cg from <).

Proof 1. The proof draws heavily on results of Grove [1988], Géardenfors [1988],
Boutilier [1992, 1994]. For the reader’s convenience, we provide a complete proof

in appendix A.

2. Follows from part (1) and theorem 2.3.5.
([

With the help of part (1) of theorem 3.3.1, the GE-orderings can be defined in terms

of AGM revision as follows:
(Def Cgp from %) a Cop fiff na ¢ K+ (aV () or ~a ¢ K or F =

Proposition 3.3.2 Let x be an AGM revision. The relation defined in terms of *

using (Def Cap from x) is a GE-ordering.

Proof Let < be a faithful total preorder from which * is obtained using (Def * from
<), and consider the GE-ordering Cp defined in terms of < using (Def Cg from =<).
We show that oo Cep B iff ma ¢ K x (aV ) or ma ¢ K or £ —/3. We only consider
the case where ma € K and ¥ . Suppose that a Cgr 8. So, for every y € M(5)
there is an « € M(«) such that < y. And hence, for every y € Min<(f) there is
an x € Min<(c) such that < y. It thus follows that Min<(a) € Min<(aV ). So
Ming(aV ) € M(—a) and therefore ~a ¢ K x (a V ). Conversely, suppose that
- ¢ K % (aV 3). Then there is an € Min<(a V () such that z € M(a). So, z <y
for every y € M(/3) and therefore a Cp . O

A reasonable interpretation of part (2) of theorem 3.3.1 is that one should think of
the EE-orderings as being derived from the faithful total preorders. This view is also
supported by an appeal to the principle of Reductionism, since every EE-ordering is
built up from an ordering on infatoms in much the same way that the entailment
relation F is built up from the interpretations of L (or from the infatoms of L). And
it is in line with the claim that orderings on infatoms are adequate representations of
the epistemic states of an agent. What is more, there is a strong connection between
the AGM contraction and the EE-ordering defined in terms of the same faithful total

preorder, much along the lines of proposition 3.2.8.
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Definition 3.3.3 An AGM contraction and an EE-ordering are semantically related
iff they can defined in terms of the same faithul total preorder using (Def ~ from <)
and (Def Cp from <). O

Proposition 3.3.4 Let — be an AGM contraction and Cgr an EE-ordering that are

semantically related.
1. — can also be defined in terms of Cpp using (Def — from Cpp ).

2. Crp can also be defined in terms of — using (Def Cpp from ~).

Proof Let < be a faithful total preorder in terms of which — and Cgg are defined
using (Def ~ from <) and (Def Cp from <).

1. We need to show that if « € K\ Cn(T) then f € K —aiff € K and o Cgg
(aV ) (the remaining case is trivial). It suffices to show that Min<(—a) C M ()
iff @« Cpp aVp. Now, Min<(—~a) C M(B) iff y € M(p) for every y € Min<(—a),
iff there is a y € M (—«) such that x € M(aV ) for every z <y, iff oV Lpr «,
iff a CprpaVpg.

2. We need to show that if ¥ g then o Cgpp 5 iff « ¢ K — (a A §) (the remaining
case is trivial). Suppose that o Cgp 8. So, for every y € M(—f) there is an
x € M(—a) such that # < y. In particular, for every y € Min<(—3) there is
an © € M(—«) such that < y. So Min<(—a) € Min<(—(a A §)) and thus
a ¢ K — (a A B). Conversely, suppose that « ¢ K — (a A ). Then there is a
z € M(K)U Min<(—(a A )) such that 2 € M(—«). And since z < y for every
y € M(—p), it follows that o Cpp f.

3.3.2 The connection with relational partial meet contraction

With proposition 3.2.1 at our disposal, it becomes clear that the use of faithful total
preorders can be traced back to the construction of relational partial meet contractions
(see section 2.2). Recall that the relational partial meet contractions are constructed

with the aid of a binary relation € on the set of all remainders

KlL={AeKla|aeL\Cn(T)}.
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Intuitively, € is seen as an ordering, with elements “higher up” in the relation being
regarded as “better”. To obtain a related ordering on interpretations, we reinterpret
€ as (the inverse of) a relation, not on remainders, but on the corresponding inter-
pretations, in the sense of proposition 3.2.1. Since proposition 3.2.1 just applies to
a-remainders where o € K\ Cn(T), we use € restricted to (K LL)\ {K}. (Recall that
Kla={K}iff o ¢ K.) It is easily verified from proposition 3.2.1 that the interpreta-
tions corresponding to the elements of (K LL) \ {K} are precisely the countermodels
of K. The corresponding relation < on U is then defined as follows:

Th(M(K)U{v}) € Th(M(K) U {u})
(Def <« from €) u<viff { ifu,v¢ M(K),
u € M(K) otherwise.

So < orders the countermodels of K inversely to the way & orders the corresponding
elements of K 1L, puts the models of K strictly below the countermodels of K, and
places all the models of K equally low down in the ordering. Now define a removal —

in terms of < as follows:
(Def — from <) K —a=Th(M(K)U{u € M(-a) | u < v Yv € M(-a)})

That is, instead of taking the intersection of the “best” ca-remainders (in terms of €)
to obtain an a-contraction, we add the “best” models of -« (in terms of <) to M(K)
and take K —a to be the corresponding theory. Under the proviso that the function sg
defined in terms of € using (Def si from €) is indeed a selection function, it is easily
verified that — is identical to the partial meet contraction defined in terms of sy using
(Def ~ from sk). Furthermore, the set of faithful total preorders is clearly a strict
subset of the transitive relations (and indeed of the total preorders) on U defined in
terms of the transitive relations (and the total preorders respectively) on K 1L using
(Def < from €). And most importantly, every faithful total preorder < is well-behaved
in the sense that the removal defined in terms of < using (Def — from <) is an AGM
contraction. This observation enables us to answer a question posed in section 2.2. To
obtain a set of relations on K 1 L that are well-behaved in the sense that the functions
they induce using (Def sk from €) are selection functions, and for which these selection
functions define all the AGM contractions when using (Def ~ from sk ), we simply need
to obtain the relations on K 1 L corresponding to the faithful total preorders. They are

obtained as follows. First we consider the set containing every faithful total preorder <
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in which all elementarily equivalent interpretations form part of the same equivalence
class (modulo <). Then we show how to obtain the appropriate corresponding relation
€ on K 1L from such a faithful total preorder <:

w = v Yu,w ¢ M(K) such that
Th(M(K)U{v})=A and Th(M(K)U{w}) =B
if A B+K,

B = K otherwise.

(Def € from <) A € B iff

It is easily verified that € is a total preorder, and that the function sx defined in terms
of € using (Def sy from €) is a selection function. So the contraction — defined in terms
of sk using (Def ~ from sg) is an AGM contraction. In fact, it is easily verified that
— is the same contraction as the one defined in terms of < using (Def ~ from <). So
this set of total preorders on K 1 L is the set of well-behaved relations on K 1 L referred
to in section 2.2. They are all well-behaved in the sense that the functions induced
from them using (Def sx from &) are all selection functions. Furthermore, it follows
indirectly from theorem 3.2.4 that all the AGM contractions can be defined in terms
of these selection functions using (Def ~ from sg). And analogous to the situation
with the faithful total preorders and the EE-orderings, an appeal to the principle of
Reductionism provides support for the claim that the faithful total preorders are more

fundamental than the corresponding total preorders on K L L.

We conclude with a semantic view of full meet contraction and maxichoice contrac-
tion, the two limiting cases of partial meet contraction mentioned in section 2.2. From
the discussion above it is clear that full meet contraction is obtained semantically (using
(Def ~ from <)) from the faithful total preorder on interpretations in which the coun-
termodels of K are all equally comparable. Intuitively, this corresponds to the most
cautious form of contraction in which all content bits of K are equally entrenched.
On the other hand, those maxichoice contractions that are also AGM contractions,
are obtained from the faithful total preorders in which the ordering restricted to the
countermodels of K is linear. The intuitive reading of these orderings corresponds
to the boldest forms of contraction, in that we are able to distinguish between the

entrenchment of all the content bits of K.
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3.3.3 Safe contraction

Rott [1992b] describes a very strong connection between the EE-orderings and the
regular virtually connected hierarchies (see definition 2.4.4). Recall from theorem 2.4.5
that the AGM contractions can be defined in terms of the regular virtually connected
hierarchies (over K') using (Def — from Cg). A closer look at virtual connectivity
shows that when it is applied to a hierarchy, it yields the strict version of a total
preorder on K. So the strict version of every EE-ordering, restricted to K, is thus
a virtually connected hierarchy. What is more, it is easily verified that every strict
version of an EE-ordering restricted to K is also regular. So every strict version of an
EE-ordering can also be used as a regular virtually connected hierarchy to define an
AGM contraction using (Def — from Cp). In a slight abuse of notation we sometimes
use the term EE-ordering to refer to the strict version Cggr of an EE-ordering Cgp.

Of course, Cgg can easily be obtained from Cgg as follows:

Cee = Cepr U {(o,B) | aZpe B and 8 Vpp a}.

Rott shows the following remarkable connection between the EE-orderings, the reg-
ular virtually connected hierarchies, and AGM contraction. Every regular virtually

connected hierarchy Cy defines an EE-ordering as follows:

(Def Cpp from Cy) o Cgp 5 iff there is a B C K such that B E 3, and for every
A C K such that A F «, it is the case that A # ), and for every 0 € B there is a
v € A such that vy Cg 0

Furthermore, the regular virtually connected hierarchies defining the same EE-ordering
C gr includes C g itself, and are precisely those that define the same AGM contraction
as well. And finally, every EE-ordering yields the same AGM contraction, whether used
as an EE-ordering, or as a regular virtually connected hierarchy. These results from

Rott [1992b] are summarised in the following theorem.

Theorem 3.3.5 1. Let Ty be a regular virtually connected hierarchy. The relation
defined in terms of Ty using (Def Cgp from CTy) is the strict version of an

EFE-ordering.

2. Two regular virtually connected hierarchies define the same AGM contraction
using (Def — from Ty ) iff they also define the same strict version of an EE-
ordering using (Def Cgg from Ty ).
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3. Let Cgp be the strict version of an EE-ordering Cpp. If the regular virtually
connected hierarchy, obtained by restricting Cpp to K, is applied to (Def Cpp

from Ty ), the resulting relation is identical to Cpp.

4. Let Ty be a reqular virtually connected hierarchy, and let Cgp be the strict version
of the EE-ordering Cgg, where the former is defined in terms of Ty using (Def
Cpr from Cy). Then the AGM contractions defined in terms of Cy using (Def

— from Cy) is identical to the AGM contraction defined in terms of Cpp using
(Def — from Cgg).

So every AGM contraction — can be defined in terms of an equivalence class H of
regular virtually connected hierarchies using (Def — from ), with H containing a
unique EE-ordering Cgp. Given these results, it seems reasonable to regard Cpp as
the canonical hierarchy from which — is obtained, especially since Cgpg is also the

EE-ordering defined in terms of every element of H using (Def Cgp from Cy).

3.3.4 Summary

We conclude this discussion with a summary of the semantic connections between AGM
contraction and revision, the EE-orderings, the GE-orderings and the regular virtually
connected hierarchies.®> Centre stage is occupied by the faithful total preorders, from
which all these belief change related operations and orderings can be obtained. To be
able to draw the connections properly, it is necessary to work with equivalence classes

of faithful total preorders.

Definition 3.3.6 Two faithful preorders < and < are said to be minimal-equivalent
iff Th(Min<(c)) = Th(Ming(«)) for every « € L. O

For the finitely generated propositional logics, no two different faithful total preorders
will be minimal-equivalent, but as the next example shows, this is not so in the general

case.

Example 3.3.7 Let L be the propositional language generated by the set of proposi-
tional atoms {p; | i« > 0}, and with the standard valuation semantics (V,IF) in which

V' contains all possible valuations. Furthermore, let

3The orderings on remainders encountered in section 3.3.2 are too closely related to the faithful
total preorders to be mentioned separately.
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The faithful total preorder < The faithful total preorder <
e v 0000... e w 01111...
e w 01111... ¢ v 0000...
| VA A{u, v, w} | V\ {u,v,w}
e u 1111... e u 1111...

Figure 3.1: The faithful total preorders used in example 3.3.7. The faithful total
preorders =< and < are obtained from the reflexive transitive closures of the relations

determined by the arrows.

1. u denote the valuation that assigns the value T to all atoms, i.e. u(p;) =T for

every 1 > 0,

2. v denote the valuation that assigns the value F' to all atoms, i.e. v(p;) = F for

every 1 > 0,

3. w denote the valuation that assigns the value T to all atoms except py, i.e.

w(p;) =T for every i > 0, and w(py) = F.

Now let < be the total preorder that places u on its own on the lowest level, followed
by all the remaining valuations, except v and w, on the next level, followed by v on the
next level, and followed by w on the highest level. Also, let < be the total preorder
that is identical to <, except that v and w exchange positions. Figure 3.1 contains
a graphical representation of these two total preorders. Clearly, both < and < are

K-faithful total preorders, where K = Cn({p; | ¢ > 0}). Furthermore, it is also easily
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verified that neither v nor w are minimal models of any wiff & € L. And it thus follows

that < and < are minimal-equivalent. O

Although an equivalence class of minimal-equivalent faithful total preorders may con-
tain a large number of different total preorders, they all have the same relative ordering
of the minimal models of every wif in L. For if the minimal models of a wif « are at
least as low as the minimal models of § in terms of one member < of such an equiv-
alence class, but not in terms of some other member < of the same equivalence class,
the minimal models of o A S cannot be the same in terms of both < and <. It is there-

fore easy to see that any two minimal-equivalent faithful total preorders define the same

AGM contraction (Def ~ from <)

AGM revision , (Def % from <)
in terms of

EE-ordering (Def Cg from <)

GE-ordering (Def Cg from <)

In view of these results, it makes sense to generalise definitions 3.2.7 and 3.3.3, and

extend the notion of semantic relatedness as follows.

Definition 3.3.8 An AGM contraction, an AGM revision, an EE-ordering and a GE-
ordering are semantically related iff they can be defined in terms of the same faithful
total preorder using (Def ~ from <), (Def % from <), (Def Cg from <), and (Def Cg
from <). O

It follows, either directly or indirectly, from theorems 2.3.5, 3.2.6, and 3.3.1, as well as
propositions 3.2.8 and 3.3.4, that an

AGM contraction AGM revision

AGM contraction EE-ordering
and a(n)

AGM revision GE-ordering

EE-ordering GE-ordering

that are semantically related are interchangeable using

(Def — from x) (Def x from ~)
(Def — from Cgg) (Def Cpp from ~)
an
(Def x from Cgp ) (Def Cgp from )

(Def Cg from Cg (Def Cg from Cg)
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Figure 3.2 contains a summary of these results, together with the results of theorem
3.3.5.
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(Def — from Cp)

(Def — from EEE)
(Def EEE from N)

(Def — [from x) from C)

(Def * from ~) from Cp)

(Def * from Cgp)
(Def Cgp from x)

Figure 3.2: The relationship between minimal-equivalent faithful total preorders, and
semantically related AGM contractions, AGM revisions, EE-orderings, GE-orderings,

as well as safe contractions defined in terms of regular virtually connected hierarchies.



Chapter 4

Nonmonotonic reasoning

We demand guaranteed rigidly defined areas of doubt and uncertainty.

Douglas Adams

The phrase “logical reasoning” is usually associated with the kind of arguments found
in mathematical proofs. Perhaps the most essential ingredient of such arguments is
truth preservation, which ensures that the truth of the conclusions drawn from a set
of assumptions are guaranteed by the truth of the assumptions. Although useful in
many areas, an agent equipped solely with reasoning abilities of this kind will soon find
itself paralysed and unable to draw almost any conclusion. For, as Benjamin Franklin
is so aptly quoted by Matthew Ginsberg [1987] in his introduction to nonmonotonic
reasoning, “Nothing is certain but death and taxes.”. To be able to operate at all
in a world filled with uncertainties, it is frequently necessary to be able to jump to
conclusions of which the truth is not sanctioned by the evidence at our disposal. Of
course, for this to be seen as some kind of reasoning, it will have to be a rational and
systematic method of determing what is plausible, and not just an arbitrary drawing
of inferences in a seemingly random fashion.

Nonmonotonic reasoning is part of the study of such forms of defeasible reasoning.
A logic is said to be nonmonotonic if its associated entailment relation ~ need not
always satisfy the following monotonicity property: if A then AU {a}p3. With
r seen as a relation of plausible consequence, there are many examples to show that
monotonicity is an undesirable property. Perhaps the one most deeply entrenched in

the nonmonotonic reasoning literature is the Tweety example. Given that Tweety is a

29
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bird, it seems plausible to infer that Tweety can fly. But given the additional evidence
that Tweety is an ostrich, we should abandon our conclusion about Tweety’s flying

capabilities.

To be able to draw plausible conclusions, nonmonotonic reasoning formalisms are
usually concerned (whether implicitly or explicitly) with three types of information.
Firstly, we have fized information. This includes information such as “ostriches are
birds”. Secondly, we have default information which consists of information such as
“birds normally fly”, and “ostriches normally don’t fly”. Together the fixed and default
information provide a background contert [Geffner, 1992,p. 25]. And thirdly, we have
evidence such as “Tweety is a bird” and “Chirpy is an ostrich”, containing information
specific to the situation at hand. The difference between fixed and default information
is that the conclusions drawn from the system may defeat default information, but
not fixed information. For example, any nonmonotonic reasoning system worth its
salt should be able to conclude from the background context and the evidence given
above that “Chirpy doesn’t fly”, thus defeating the information that “birds normally
fly” (combined with the information that ostriches are birds). But adding the evidence
that “Chirpy is an ostrich but not a bird” should render the system inconsistent, since

the evidence now conflicts with the fixed information.

A cursory comparison of belief change and nonmonotonic reasoning might create
the impression that they have very little in common. After all, the former is concerned
with the dynamic process of changing one’s beliefs, while the latter deals with the
seemingly static process of jumping to conclusions on the basis of new evidence. As we
shall see however, these two fields of research just provide different views of what are
essentially identical processes of reasoning. The suggestion of identifying nonmonotonic
reasoning with theory change can already be found in [Glymour and Thomason, 1984],
but it was only with the subsequent development of general frameworks for both theory
change and nonmonotonic reasoning that such a suggestion was properly investigated.
In the case of theory change, the relevant framework is that of AGM theory change.
For nonmonotonic reasoning the appropriate setting is provided by the nonmonotonic
consequence relations of Kraus et al. [1990], and the subsequent extensions proposed by
Lehmann and Magidor [1992], and Gérdenfors and Makinson [1994]. We shall therefore

focus our attention on these approaches to nonmonotonic reasoning.
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4.1 KLM nonmonotonic reasoning

During the 1980s a host of nonmonotonic logics made their appearance, of which the
modal systems of McDermott and Doyle [1980, 1982, Moore’s [1984, 1985] autoepis-
temic logic, Reiter’s [1980] default logic, McCarthy’s [1980, 1986] circumscription [Lif-
schitz, 1986, 1987], and Poole’s [1988] system for default reasoning are probably the
best known. While these systems all have interesting properties when looked at indi-
vidually, the lack of a general framework for nonmonotonic reasoning made it difficult

to compare and evaluate them.

One of the most influential attempts to establish such a general nonmonotonic
setting is the KLM approach, named after its three originators Sarit Kraus, Daniel
Lehmann and Menachem Magidor [1990]. The success of their approach is largely
attributable to their decision to focus on the consequence relations associated with
nonmonotonic logics, an idea that seems to have originated with Gabbay [1985]. From
a semantic point of view, the work of the KLM trio is an extension of Shoham’s
[1987a, 1987b] proposed model theory for nonmonotonic reasoning. As a formal study
of consequence relations, it grew out of the work of Gabbay [1985], and has much in
common with Makinson’s [1989] theory of cumulative inference, which was developed
independently and more or less at the same time. Kraus et al. concern themselves
with binary relations, denoted by f~, on a propositional language L closed under the
usual propositional connectives. The semantics for L is assumed to be a valuation
semantics (V,IF) as defined in section 1.3, with F denoting the standard notion of
semantic entailment associated with it. As we have shown in section 1.3, every one
of the logics we consider can be “converted” into such a propositional logic, which
means that the logics permitted by Kraus et al. are precisely those that we consider
as well. One of their primary aims is to demarcate those binary relations on L that
are deserving of the name “nonmonotonic consequence relation”. Elements of such
relations are denoted by expressions of the form a5 (where a and  are wifs of L),
and should be read as “f is a plausible consequence of o, or “if o holds then I am

willing to (defeasibly) jump to the conclusion that 5 holds”.

Of the three types of information used in nonmonotonic reasoning systems, only
the evidence is explicitly represented in the KLM setup. In an expression such as a3,
« is the available evidence from which the plausible conclusion 3 is drawn. The fixed

information is coded into the semantics for L, and is represented on the object level
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by the logically valid wffs. Default information, on the other hand, should be seen as
somehow being encoded into the consequence relation . For example, let b(t) and
f(t) be atoms of a transparent propositional language L (see section 1.3), with b(t)
representing the assertion that Tweety is a bird, and f(t) representing the claim that
Tweety can fly. Then b(t)rf(t) is read as “I am willing to jump to the conclusion
that Tweety can fly, given that Tweety is a bird”. The fact that such a conclusion
seems reasonable can be attributed to the existence of a default rule stating that birds
normally fly. But it would be a mistake to think that b(¢)f(¢) is, or forms part of,
such a default rule. Rather, it is the fact that such a default rule is built into | that
allows us to plausibly conclude that Tweety can fly from the evidence that Tweety is

a bird. In section 4.6 we discuss these matters in more detail.

4.2 Preferential consequence relations

Formally, the KLM approach to nonmonotonic reasoning mirrors the AGM approach
to theory change in many ways. The KLM nonmonotonic consequence relations are
defined in terms of sets of postulates. This is followed by a description of semantic
methods for constructing these relations, and the statement of representation theorems,
proving that the construction methods do indeed yield precisely the set of consequence
relations described by the appropriate set of postulates. Four families of consequence
relations are studied by Kraus et al. [1990] and Lehmann and Magidor [1992]: cumula-
tive consequence relations, loop-cumulative consequence relations, preferential conse-
quence relations and rational consequence relations. We shall restrict our attention to
the preferential consequence relations in this section and to the rational consequence

relations in section 4.3.

Definition 4.2.1 A preferential consequence relation p is a binary relation on L
satisfying the postulates Ref, LLE, RW, And, Or and CM given below.! O

(Ref) For every o € L, apoa (Reflexivity)
(LLE) If @ = § and afvy then Spoy (Left Logical Equivalence)

(RW) If 5 = v and af~f then afvy (Right Weakening)

! This description of the preferential consequence relations is given by Lehmann and Magidor [1992].
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(And) If g and apey then apf Ay

(Or) If apvy and fpy then a Vv By

(CM) If apf and afvy then a A Sy (Cautious Monotonicity)

Reflexivity ensures that « itself is a plausible consequence of «, while Left Logical
Equivalence requires different bits of evidence, which happen to be logically equivalent,
to have the same plausible consequences. Right Weakening expresses the intuition
that anything logically weaker than some plausible consequence of « should also be a
plausible consequence of &. The And postulate requires the conjunction of two plausible
consequences to be a plausible consequence, while Or stipulates that the same plausible
consequence of two different pieces of evidence should also be a plausible consequence
of their disjunction. As the name suggests, Cautious Monotonicity is a weakened form
of the monotonicity property. In the context of binary consequence relations, the latter

can be phrased as follows:
(Mon) If apy then o A Sy (Monotonocity)

While Monotonicity ensures that a consequence v of a will also be a consequence of a
wif obtained by adding any wiff § to a, Cautious Monotonicity requires that the wff g
added to « has to be a plausible consequence of «. In other words, all the plausible
consequences of a are also plausible consequences of a A 3, as long as [ is a plausible
consequence of a. Kraus et al. mention a number of other properties satisfied by the
preferential consequence relations, and it is not that difficult to come up with even
more. We limit ourselves below to some intuitively desirable ones, mainly to give the

reader a flavour of the characteristics of these consequence relations.
(SC) If a F 8 then apf (Supraclassicality)
(Cut) If a A Sy and apf then apey

(Cum) If apf then apvy iff a A Sy (Cumulativity)

(Rec) If af~f and fhva then afvy iff Sy (Reciprocity)

(Cond) If a A B~ then apf — v (Conditionalisation)
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Supraclassicality is the very natural condition that anything logically weaker than «
should also be a plausible consequence of «. Under the assumption that aj~3, Cut
can be seen as the converse of Cautious Monotonicity. It ensures that in the process
of checking whether v is a plausible consequence of «, it is sufficient to show that
v is a plausible consequence of a together with any plausible consequence [ of a.
Cumulativity is just Cut and Cautious Monotonicity thrown together, but is included
here because it is an important nontrivial property of nonmonotonic reasoning systems.
Together with Reflexivity, Left Logical Equivalence and Right Weakening, it provides
a guarantee that adding to « any plausible consequences of «, will not in any way alter
the plausible consequences obtained. It is thus markedly different from probabilistically
motivated consequence relations in which the expression aj~f3 is taken to mean that the
conditional probability of § given « is above some threshold value. Reciprocity (referred
to by Kraus et al. [1990] as Equivalence) shows that if o and 5 are “equivalent” under
v, then the plausible consequences of o and [ are exactly the same. Conditionalisation
(referred to by Kraus et al. [1990] as rule S) is reminiscent of one part of the deduction

theorem for classical propositional logic.

4.2.1 A semantics for preferential consequence relations

The method for constructing preferential consequence relations provided by Kraus et
al. is semantic in nature and makes use of, what is called, preferential models. The
idea is to place an ordering on a set of “states”, with the states lower down in the
ordering being more “normal”, in some sense. A wif /3 is then taken to be a plausible
consequence of « if 4 holds in the most normal states in which « holds. Intuitively, it
has much in common with Shoham’s [1987a, 1987b| preferential models which, in turn,
is a generalisation of the semantics for McCarthy’s circumscription [Lifschitz, 1987].
Technically, it generalises Shoham’s construction in two aspects. Firstly, it draws a
clear distinction between the valuations of L and the set of “states”, and places an
ordering on the states, not the valuations. A [abelling function is used to associate
every state with a particular valuation. States are thus more general than valuations,
since different states may be associated with the same valuation. Secondly, it relaxes
Shoham’s requirement that the ordering on interpretations be well-founded (i.e. that
there are no infinite descending chains). This generality is needed in the representation

theorem that links the preferential consequence relations to the preferential models.
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Definition 4.2.2 Let S be any set. We refer to the elements of S as states.

1. A labelling function for S is a function from S to V, the set of valuations of L.

2. Given a labelling function [ for S, the [-models of a wif o € L, denoted by a, is
defined as @ = {s € S | l(s) IF a}.

3. A preferential model P is an ordered triple (S, [, <), where [ is a labelling function
for S, < is a strict partial order on S, and for every « € L, < is a-smooth (see
definition 3.2.5).

O

Given a preferential model P, the P-induced consequence relation fv, is defined in

terms of P as follows:
(Def fv,, from P) a0 iff for every s € S that is <-minimal in &, s € 3

Kraus et al. then show that the binary relations on L defined in terms of the preferential

models using (Def v, from P) are precisely the preferential consequence relations.

Theorem 4.2.3 [Kraus et al., 1990] Every binary relation on L defined in terms of
a preferential model P using (Def v from P) is a preferential consequence relation.

Conversely, every preferential consequence relation can be defined in terms of some
preferential model P using (Def ~, from P).

The insistence on the @-smoothness, in the set of [-models, of the strict partial order
<, for every wif «, is necessary for the satisfaction of Cautious Monotonicity, and it is a
much weaker condition than Shoham’s requirement that the ordering be well-founded.
In fact, if < is required to be well-founded, the converse part of theorem 4.2.3 does
not hold [Lehmann and Magidor, 1992]. The use of states instead of valuations is also
necessary for the converse part of theorem 4.2.3 to hold, as the following example of
Kraus et al. [1990] shows.

Example 4.2.4 Let L be the propositional language generated by the atoms p and g,
and let (V,IF) be the valuation semantics for L with V' = {11,10,00}. Let P = (5,1, <)
be a preferential model, with S = {s1, 9, 83,54}, < = {(s1, $3), (52, 84)}, and with [

defined as follows:

[(s1) =00, I(s9) =10, I(s3) = 11, I(s4) = 11.
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s3 11 54 11

S1 00 So 10

Figure 4.1: The preferential model P = (S,[, <) used in example 4.2.4. The strict

partial order < is determined by the arrows.

Figure 4.1 contains a graphical representation of the preferential model P. We show
that the preferential consequence relation p,, defined in terms of P using (Def , from
P) cannot be defined in terms of any preferential model whose labelling function is the
identity function. Assume, to the contrary, that there is a preferential model P’ =
(S",I',<") for which [ is the identity function, such that the preferential consequence
relation pvp, defined in terms of P’ using (Def |~ from P) is identical to fvp. It is
easily verified that —-p A =¢lfp L, p A ~qlep L, p A qfep L, but —=p A gpvp L, from
which it follows that S' = {s], s}, s4}, with '(s}) = 00, I'(s}) = 10 and I'(s}) = 11.
Furthermore, (pAq)V =g p=g, but (pAq) V=g pmp A=g and (pAG)V =g pp Ay,
which means that the <-minimal elements of (p A ¢) V —¢ are the states s} and s}. So
either s} < s} or s < s}, or both. But from p < ¢}, —p A =g and pllpp A —q it

follows respectively that s| £ s} and si, 4 s4; a contradiction. O

It is worth noting at this stage that Kraus et al. see preferential models only as technical
tools to aid in the study of the preferential consequence relations, and do not regard
the former as suitable representations of the part of an epistemic state pertaining to

nonmonotonic reasoning [see Kraus et al., 1990,p. 170].

4.3 Rational consequence relations

There seems to be a fair amount of agreement that any reasonable nonmonotonic

consequence relation should at least be a preferential consequence relation. A more
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controversial question is whether one should cut down any further by picking out some
strict subset of the preferential consequence relations, and if so, how to go about it.
A particularly attractive proposal in this regard is the one advanced by Lehmann and

Magidor [1992], in which they propose the addition of the following three postulates:
(NR) If apvf then either a Ay or aw A =y (Negation Rationality)

(DR) If oV Sy then either afvy or Sy (Disjunctive Rationality)

(RM) If apvy then either a A Sy or apo—f (Rational Monotonicity)

Kraus et al. [1990] already considered these postulates, and described them as necessary
properties for a rational reasoner. Negation Rationality stipulates that if we regard /3
as a plausible consequence of o, we must have some reason for doing so. Since exactly
one of v or =y holds, it has to be the case that /3 is a plausible consequence when adding
either v or =7y to a. Disjunctive Rationality is a slightly generalised version of the same
idea. If v is a plausible consequence of o V 3 then, since one of o or § has to hold, v
should be a plausible consequence of either a or 5. Rational Monotonicity requires of a
reasoner to comply with Monotonicity unless there is a very good reason not to. If v is
a plausible consequence of a then v should also be a plausible consequence when adding
[ to «, unless =3 is a plausible consequence of a. It is easily verified that, for each of
these three postulates, there is a preferential consequence relation in which it does not
hold. In fact, in the presence of the postulates for preferential consequence relations,
Rational Monotonicity is strictly stronger than Disjunctive Rationality which, in turn,

is strictly stronger than Negation Rationality [Lehmann and Magidor, 1992].

Definition 4.3.1 A rational consequence relation is a preferential consequence rela-

tion that also satisfies Rational Monotonicity. a

To obtain a semantic characterisation of the rational consequence relations, we restrict
ourselves to those preferential models in which the strict partial orders on states are

also modular.

Definition 4.3.2 A strict partial order < on a set X is called modular iff for every
rv,y,z€ X, if v Ay,y A xand z < x then z < y. a

The modular strict partial orders are the strict versions of the total preorders on X.
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Definition 4.3.3 A ranked model is a preferential model R = (5,1, <) in which the

strict partial order < is modular as well. O

Every modular strict partial order < partitions the states into levels, with comparable
states being on different levels, and incomparable states considered to be on the same
level. We can thus think of < as being obtained from a ranking function that ranks

states according to normality — the lower the rank of a state, the more normal it is.

Theorem 4.3.4 [Lehmann and Magidor, 1992] Every binary relation on L defined in
terms of a ranked model R using (Def ~p from P) is a rational consequence relation.

Conversely, every rational consequence relation can be defined in terms of some ranked
model R using (Def b from P).

Lehmann and Magidor regard Rational Monotonicity as a natural condition that should
be satisfied by all nonmonotonic consequence relations, and they thus tend to favour
the rational consequence relations as the set of nonmonotonic consequence relations.
This is not a view shared by everyone. For example, Makinson [1994] regards Rational
Monotonicity as too strong a condition to insist upon. He argues as follows: If v is a
plausible consequence of a then, even if =3 does not follow plausibly from a, o may
still suggest the possibility of = strongly enough to undermine the plausibility of ~
given o A 5. Makinson is in favour of removing some of the preferential consequence
relations, though. He seems to be of the opinion that all nonmonotonic consequence
relations should satisfy Disjunctive Rationality. In section 4.4.2 we present an argument
supporting the viewpoint of Lehmann and Magidor.

We now come to properties that are not satisfied by all rational consequence rela-
tions. As expected, it is easily shown that some rational consequence relations do not
satisfy Monotonicity. What is perhaps surprising is that some rational consequence
relations do satisfy Monotonicity. For example, it is easily verified that the entailment
relation F obtained from any valuation semantics (V,IF) for L is a rational consequence
relation. One simply needs to examine the ranked model (S, 1, <) where S =V I(s) = s
for every s € S, and < is the empty relation. So the classical entailment relations of
the logics we consider are all instances of the rational consequence relations! While
it might seem strange to include consequence relations that satisfy Monotonicity in a
family of nonmonotonic consequence relations, it can be justified as follows. As ex-
plained on page 59, the intuition that we are trying to formalise is one of jumping to

conclusions in a systematic fashion. And it seems reasonable to include, as a sceptical



4.3. RATIONAL CONSEQUENCE RELATIONS 69

extreme, the case where an agent refuses to jump to any conclusions other than those
sanctioned by classical logic. So perhaps it is not the inclusion of these monotonic
consequence relations that should be called into question, but rather the choice of the
name “nonmonotonic reasoning” for this field of study.

Kraus et al. also consider the following three properties.
(EHD) If apf — 7 then a A By
(Trans) If apf and Sy then apvy (Transitivity)
(Cont) If ajvf then —fp—a (Contraposition)

EHD is reminiscent of one part of the deduction theorem for classical propositional
logic; hence the acronym “EHD” which stands for the “Easy Half of the Deduction
theorem”. Kraus et al. show that for the preferential consequence relations, EHD,
Transitivity and Monotonicity are equivalent, and Contraposition is stronger than
Monotonicity. It is thus clear that these are not suitable properties for nonmonotonic
reasoning.

Two properties which are worth considering are given below.
(DP) If ay then either aw A Sy or a A fv—y (Determinacy Preservation)
(CP) If apL then F -« (Consistency Preservation)

Like Rational Monotonicity, Determinacy Preservation (which was first suggested by
Makinson [see 1994,p. 93]) requires Monotonicity to hold unless there is a very good
reason not to. If v is a plausible consequence of «, then it must also be a plausible
consequence obtained when adding £ to «, unless the addition of § to a has —vy
as a plausible consequence. It is easily verified that for the preferential consequence
relations, Determinacy Preservation is strictly stronger than Rational Monotonicity,
and its acceptance would thus amount to a restriction to a strict subset of the rational
consequence relations. It is a desirable property in many instances since it promotes
considerations of irrelevance. The notion of irrelevance involves the idea that irrelevant
additional evidence should not influence our plausible consequences. So, given the
default information that birds normally fly, we should conclude that Tweety can fly
from the evidence that Tweety is a red bird, since being red is irrelevant to Tweety’s

flying abilities. In general then, an irrelevance postulate will usually have the following
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form: If v is a plausible consequence of «, and £ is irrelevant in terms of v’s plausibility
when presented with « as evidence, then v is a plausible consequence of a A . Of
course, the question is how to formalise the intuition that 3 is irrelevant in terms of 7’s
plausibility when « is given as evidence. In the case of Determinacy Preservation, the
formalisation comes down to the requirement that —vy should not be plausible when

presented with oo A 8 as evidence, i.e., that o A BJL—y.

In the context of our red bird example above, Determinacy Preservation can be
explained as follows. Since we are willing to conclude that Tweety can fly on learning
that it is a bird, and since the additional evidence that Tweety is red does not lead us to
conclude that Tweety can’t fly, we have to conclude that Tweety can fly when presented
with the evidence that Tweety is a red bird. Although Determinacy Preservation is
appropriate in this example, it is too strong a condition to impose in all situations. For
example, from the evidence that Tweety is a bird, it is, as we have argued, reasonable
to conclude that Tweety can fly. But when retracting this conclusion on learning that
Tweety was spotted in Oudtshoorn — an area in South Africa where ostriches are not
uncommon — we do not necessarily want to be forced into concluding that Tweety can’t
fly. After all, the information about Tweety’s whereabouts might raise the possibility
that Tweety is an ostrich without rendering it so plausible that one would be willing
to act on such a claim.

Consistency Preservation stipulates that logically invalid wifs may only be plausible
consequences of logically invalid wiffs. It seems to be a reasonable condition, and it is
therefore surprising that it is not satisfied by all rational consequence relations. As the
next example shows, the failure of Consistency Preservation can be attributed to the

fact that the labelling functions of ranked models need not be surjective.

Example 4.3.5 Let L be the propositional language generated by the two atoms p
and ¢, and let (V,IF) be the F-valuation semantics for L where V' = {11,10,01,00}.
Let R = (5,1, <) be the ranked model where S = {s}, I(s) = 00 and < = (), and let v,
be the consequence relation defined in terms of R using (Def |~ from P). It is easily
verified that ppv,L, even though ¥ —p, and fvj therefore does not satisfy Consistency

Preservation. O

In the next section we shall have more to say about those rational consequence relations

that satisfy Consistency Preservation.



4.4. NONMONOTONIC REASONING AS THEORY REVISION 71

4.4 Nonmonotonic reasoning as theory revision

From the results above it should be obvious that there are close similarities between the
ranked models that characterise the rational consequence relations and the semantic
characterisation of AGM theory revision. Both employ orderings to define some kind of
minimal model semantics, although the elements on which the orderings are placed, are
not quite the same. Based on these similarities, we can move from theory revision to
nonmonotonic reasoning and back as follows [Makinson and Géirdenfors, 1991]: Given
a belief set K and a theory revision operation, define a nonmonotonic consequence
relation by letting the set of plausible consequences of « coincide with the new belief
set obtained from an a-revision of K. Conversely, given a nonmonotonic consequence
relation, fix a belief set K in some appropriate fashion and then define an a-revision
of K by letting the resulting belief set be equal to the set of plausible consequences of
.

This translation scheme provides a nice way of comparing postulates for theory
revision with postulates for nonmonotonic reasoning and vice versa, as is done by
Makinson and Gérdenfors [1991] and Gérdenfors and Rott [1995]. One can also use
the translation method as the basis for an investigation aimed at discovering the extent
to which the two fields of research overlap. The results of Gardenfors and Makinson

[1994], which we describe below, are evidence of the success of such an approach.

4.4.1 Expectation based consequence relations

The fact that the semantic structures used in AGM theory revision and KLM non-
monotonic reasoning are similar, should not be too surprising. The idea of an ordering
on worlds or states, with elements lower down (or higher up, as the case may be) in the
ordering as somehow being “better”, can be traced back to work done in the 1960s and
1970s on conditional logic and counterfactual reasoning [Lewis, 1973, Adams, 1975,
Burgess, 1981, Stalnaker et al., 1981, van Benthem, 1984, Ginsberg, 1986]. Makinson
[1993] also provides a survey of research areas employing some kind of minimal model
semantics. What is perhaps surprising is how easily the structures used in AGM theory
revison and KLM nonmonotonic reasoning can be made identical. The two differences
to be eliminated are that AGM theory revision uses total preorders, not modular strict
partial orders, and places them on the interpretations of L, not on a set of states. From

results by Gérdenfors and Makinson [1994] it follows indirectly that these differences



72 CHAPTER 4. NONMONOTONIC REASONING

can easily be done away with. We show that those rational consequence relations sat-
isfying Consistency Preservation can be defined in terms of the faithful total preorders

as follows:?

(Def p from <) apvg iff Minz(a) € M(5)

Definition 4.4.1 An ezpectation based consequence relation is a rational consequence

relation that also satisfies Consistency Preservation. O

The underlying intuition provided by Gardenfors and Makinson is that the reasoning
of an agent is guided, not just by its firm beliefs, but also by its expectations. Every
expectation based consequence relation v is based on a set of expectations E, playing
a role that is analogous to that of a belief set K in theory change. In fact, every
expectation set F is, technically speaking, a belief set, as we shall see below. Intuitively,
E is the “current” set of expectations of the agent, and the plausible consequences of
a wif a (i.e., every wif 5 for which apf holds) are those wifs that follow logically
from « together with “as many as possible” of the elements of E that are compatible
with a. The set of expectations F is not explicitly mentioned in the definition of an
expectation based consequence relation v, but a suitable E can be recovered from |

as follows.
(Def E from ) E = {a| Thoa}

That is, F is taken as the set of plausible consequences of any logically valid wif. This
process of recovery is justified by noting that the plausible consequences of a wff o can
be seen as the “new” set of expectations that an agent would be willing to embrace
whenever it is willing to accept a as a new piece of evidence. Now, offering a logically
valid wff as a new piece of evidence is just a roundabout way of saying that we are
in a situation in which no new evidence has been obtained. And when an agent is
not presented with any new evidence, it is reasonable to require that its current set of

expectations should not change. Hence the definition of E as in (Def E from |v).

2In fact, the rational consequence relations can be defined in terms of total preorders on interpre-
tations of L, but it includes total preorders on strict subsets of the interpretations of L as well. The
inclusion of Consistency Preservation is thus necessary solely for the purpose of ensuring that we only
consider the total preorders on all the interpretations of L.
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Theorem 4.4.2 Given any belief set K, every binary relation |~ on L defined in terms
of a K-faithful total preorder using (Def I~ from <) is an expectation based consequence
relation. Conversely, every expectation based consequence relation ~ can be defined
in terms of a K-faithful total preorder < using (Def p from <), where K is some
satisfiable belief set.

Proof Pick any belief set K and any K-faithful total preorder <, and let |~ be the
binary relation on L defined in terms of < using (Def p from <). To show that |~
satisfies Reflexivity, Left Logical Equivalence, Right Weakening, and And, is trivial. For
Or, suppose that apy and Bpy. That is, Min<(a) € M(y) and Min<(8) C M(y).
In the case where at least one of o or [ is logically invalid, it follows trivially that
a V Bpy. So we suppose that this is not the case. If the <-minimal models of «
are strictly below the <-minimal models of 3, then Min<(a V ) = Min<(«), and so
@V By, A similar argument holds if the < -minimal models of /3 are strictly below
the <-minimal models of . In the remaining case, it follows from the properties of
a K-faithful total preorder that Min<(a V ) = Min<(«) U Min<(f), from which
it also follows that « V Bpy. For Cautious Monotonicity, suppose that aj~5 and
apy. That is, Min<(o) € M(S) and Min<(o) € M(y). If « is logically invalid
then clearly a A Sy. So we suppose that this is not the case. From the M(«)-
smoothness of < it then follows that Min<(a A f) = Min<(«), and so a A Bhy.
For Rational Monotonicity, suppose that apy and that af—3. So Min<(a) C M(7)
and Min< (o) N M(S) # 0. From the properties of a K-faithful total preorder it then
follows that Min<(aAB) = Min<(a)NAM(S), and so aABpy. Finally, for Consistency
Preservation, suppose that afv_L. That is, Min<(a) = (). By the smoothness of < it
then has to be the case that M(a) = 0, and so F —a.

Conversely, let ) be any expectation based consequence relation. Now consider the
following definition of a binary relation v on L in terms of the selection functions of
definition 2.2.2.

(Def |~ from si) apfiff e (K +a | K' € sk(KL-a)}

A binary relation on L is called transitively relational iff it is defined in terms of
a selection function sk using (Def v from sg), where sk is defined in terms of a
transitive relation € on K 1L using (Def sx from &) (see page 23), and K is some
satisfiable belief set. Girdenfors and Makinson [1994] prove that the expectation based

consequence relations are precisely the transitively relational binary relations on L. So
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there is a satisfiable belief set K, and a transitive relation € on K 1L that defines a
selection function sk using (Def sk from €), and (v can be defined in terms of sk
using (Def v, from sg). But by theorem 2.2.6, the K-removal defined in terms of sy
using (Def ~ from sg) is an AGM K-contraction. By theorem 2.1.6 it then follows
that the K-revision * defined as

Kxa= D{K'+o¢ | K' € sg(KL-a)} for every aw € L

is an AGM K-revision. And by theorem 3.2.6 it follows that there is a K-faithful total
preorder < such that * is defined in terms of < using (Def * from <). Since f~ can
be defined in terms of sy using (Def p from sk ), | can also be defined in terms of <
using (Def v from <). O

With the aid of theorem 4.4.2 we can show that, technically at least, it makes sense to
regard every expectation based consequence relation j as being based, not just on the
set of plausible consequences of any logically valid wff, but also on the unsatisfiable
belief set. The idea is that whenever an expectation based consequence relation v can
be defined in terms of a K-faithful total preorder from using (Def v~ from <), then K
is the expectation set on which v is based. The question of whether it is appropriate
to view an unsatisfiable belief set as an expectation set will be discussed in section
4.4.2.

Lemma 4.4.3 Let |~ be an expectation based consequence relation and let K be the
set of wffs defined in terms of p using (Def K from p~). Then K is a satisfiable belief
set, and v can be defined in terms of at least one K-faithful total preorder, and at
least one C'n(L)-faithful total preorder using (Def b from =<). Furthermore, |~ cannot
be defined in terms of any K'-faithful total preorder, using (Def v from <), for any
satisfiable belief set K' that is not equal to K.

Proof From theorem 4.4.2 it follows that p can be defined in terms of a K”-faithful

total preorder < where K" is a satisfiable belief set. So
K ={a| Tha} =Th(Min<(T)),

and since it follows from K"-faithfulness that Min<(T) = M(K"), we thus have that
K" = K. So we have shown that K is a satisfiable belief set and that p can be defined
in terms of at least one K-faithful total preorder using (Def j from <). By noting that
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< is also a C'n(L)-faithful total preorder, we immediately get that |~ can be defined in
terms of at least one C'n(_L)-faithful total preorder using (Def  from <). And finally,
pick any satisfiable belief set K' # K, any K'-faithful total preorder <, and let )’ be
the expectation based consequence relation defined in terms of <’ using (Def v from
=<). So

{a| TR a} = Th(Min(T)) = Th(M(K'")) = K.

For at least one wif 3, either Th3 but T|'3, or T8 but Th'3, and so ' is not
identical to . O

Lemma 4.4.3 is the justification for the following definition. It allows us to associate
expectation sets with expectation based consequence relations in the same way that

belief sets are associated with theory change operations.

Definition 4.4.4 An expectation based consequence relation v is said to be based on
E iff either E = Cn(L), or E is defined in terms of | using (Def E from ). For
brevity we shall refer to an expectation based consequence relation based on E as an

E-based consequence relation. O

From lemma 4.4.3 it follows that the expectation based consequence relations can be
partitioned into equivalence classes according to the satisfiable belief sets on which they
are based, and that all the expectation based consequence relations are based on the
unsatisfiable belief set. This enables us to associate, for every belief set K, the K-based
consequence relations with the AGM K-revisions, using the following two definitions,
which can be seen as a formalisation of the procedure for translating between theory

revision and nonmonotonic reasoning, and vice versa.
(Def  from x) afpfiff f € K x «
(Def * from ) K xa={8]|app}

Corollary 4.4.5 Let K be any belief set and let < be any K-faithful total preorder.
The AGM K -revision * defined in terms of < using (Def = from <), and the K-based

consequence relation ~ defined in terms of < using (Def pv from <), can also be defined
in terms of each other using (Def 1~ from %) and (Def x from ).

Proof The proofs follow easily from theorems 3.2.6 and 4.4.2, and lemma 4.4.3, and

are omitted. O
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4.4.2 Expectations, beliefs and epistemic states

The semantic construction of the expectation based consequence relations suggests that
the nonmonotonic reasoning abilities of agents can be modelled by ordered pairs of the
form (E, <), where E is a belief set representing the expectations of the agent, and
< is an E-faithful total preorder on the interpretations of L. We shall refer to these
structures as expectation states. An expectation state is thus a part of an epistemic
state involved with nonmonotonic reasoning abilities. An information-theoretic view,
with < seen as a total preorder on infatoms instead of on interpretations, suggests
the following interpretation of expectation states. Think of the expectations of an
agent as being built up from infatoms. For a given expectation state (E, <), E is,
of course, built up from Cont(FE), the content bits of E. Since < is an E-faithful
total preorder, the lowest infatoms in < are precisely those that do not form part of
Cont(E). The total preorder < should thus be seen as a representation of the extent
to which infatoms form part of the current expectations (the content of E). Infatoms
higher up in < are less easily dislodged from Cont(E), with the lowest infatoms in
the ordering representing the limiting case of those that do not form part of Cont(FE)
to begin with. The plausible consequences of a wff « are then taken to be all the
wifs whose content are included in the set of infatoms, obtained by augmenting the
content of a with “as many as possible” of the content bits of E. All that remains
is to give a precise description of the phrase “as many as possible”. Now, the only
set containing too many infatoms is the set of all infatoms, since it is the only set of
infatoms corresponding to an unsatisfiable set of wifs. So, when adding content bits of
E to the content of «, the main consideration is to avoid ending up with the set of all
infatoms, something that can only occur if the content of E contains all the content
bits of —a. It thus boils down to the question of determining which content bits of —a
should not be added to the content of a. With the help of the total preorder < and
the principle of Indifference, the decision is an easy one. The content bits of —a not to
include, are the ones that are most easily dislodged from Cont(E), i.e. the <-minimal

content bits of —a.

The expectation states and the way they are used to define nonmonotonic reasoning
thus coincide exactly with the modelling of theory revision as proposed in section 3.3.
So the reasoning process employed in nonmonotonic reasoning and theory revision is

identical. Does it then follow that nonmonotonic reasoning is theory revision (and vice
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versa)? Gérdenfors and Makinson argue that this is not the case. Their argument is
based on the fact that there is a difference between beliefs and expectations. Fuhrmann
and Levi [1994] use this difference as an argument in favour of the claim that there is a
difference in the processes of reasoning involved in theory revision and nonmonotonic
reasoning. They do not question the appropriateness of AGM revision, but cast doubt
on the desirability of Rational Monotonicity for nonmonotonic reasoning. Rabinowicz
[1995] provides yet another perspective. He takes issue with the use of “mere expecta-
tions” (which he regards as being too weak) when interpreting nonmonotonic reasoning
as belief change, and suggests the use of “assumptions”, which are taken to provide a
basis for both reasoning and action. But in doing so, he rejects AGM revision as an

appropriate framework for dealing with assumptions.

In our opinion, the crux of the matter is to determine what a particular reasoning
process is intended to produce. For belief revision it is not an issue. The set of wifs
obtained when an agent revises its current set of beliefs, is clearly intended to be the
new set of beliefs of the agent. For expectation based nonmonotonic reasoning, though,
matters are not so clear. How should we interpret the set of plausible consequences
of a wif a? It is our contention that it cannot be interpreted as anything other than
the new set of expectations that an agent is willing to embrace when presented with
the evidence a. In other words, expectation based nonmonotonic reasoning is the
process of moving from one expectation set to another when confronted with new
evidence. The main motivation for this claim centres around the identification of the
current set of expectations with the plausible consequences of a logically valid wif,
and can be explained as follows. Since the expression afvf is understood to mean
that (3 is a plausible consequence of the new evidence a at my disposal, it seems
reasonable to interpret the situation in which « is a logically valid wff as one in which
no new evidence has become available. So my current set of expectations consists of the
plausible consequences of the currently available evidence. And it therefore stands to
reason that if I am willing to accept « as new evidence, my new set of expectations will
be the plausible consequences of . We shall have more to say about such a dynamic

view of nonmonotonic reasoning in section 4.5.

The acceptance of this viewpoint has some interesting consequences for the rela-
tion between nonmonotonic reasoning and belief revision. Firstly, it requires the new
belief set obtained when revising by a particular wif «, to be a subset of the plausible

consequences of a;, because the latter is precisely the set of wifs making up the expec-
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tation set obtained when accepting « as new evidence. Secondly, it requires of us to
associate a reasoning process with nonmonotonic reasoning that is at least as strong as
the process of reasoning used in belief revision. A phrase such as “a stronger reasoning
process” is, of course, highly ambiguous, but at least one sensible interpretation would
be to insist that the postulates satisfied by belief revision should also be satisfied by
nonmonotonic reasoning. The acceptance of AGM revision as an appropriate mod-
elling for belief revision then forces us to accept Rational Monotonicity as a desirable

postulate for nonmonotonic reasoning.

Our justification of the dynamic view of nonmonotonic reasoning presented above
is, to a large extent, based on the premise that the current set of expectations of an
agent can be identified with the plausible consequences of any logically wif. However,
such an identification is slightly at odds with the idea, expressed in lemma 4.4.3, of
obtaining the expectation set of an agent from a K-faithful total preorder, since this
lemma shows that every expectation based consequence relation is not just based on
some satisfiable belief set K, but also on the unsatisfiable belief set. Now, the latter
certainly does not correspond to the set of plausible consequences of any logically valid
wif (nor, for that matter, does it correspond to the plausible consequences of any
wif other than one of the logically invalid ones). This presents us with the following
dilemma. Should the unsatisfiable set be seen as an expectation set? A negative
answer is not unlike the assumption frequently made in the theory change literature,
where the current set of beliefs of an agent is assumed to be satisfiable. Indeed, in the
representation results of Gardenfors and Makinson [1994] that apply to this discussion,
they restrict themselves to satisfiable expectation sets. But there are at least two
reasons to consider unsatisfiable expectation sets as well. Firstly, in the context of
the dynamic character that we attribute to nonmonotonic reasoning, the unsatisfiable
belief set is a legitimate expectation set — the one obtained when accepting a logically
invalid wff as evidence. And secondly, a broader view of the reasoning abilities of an
agent might well include other forms of defeasible reasoning in which the acceptance
of evidence, represented by wifs other than logically invalid ones, will give rise to an

unsatisfiable belief set.> On the other hand, if we accept the unsatisfiable belief set as

3A case in point is that of base change in which the beliefs of an agent are represented by a base,
which is taken to be a set of wils that is not closed under classical entailment. In such cases, the
theory generated by a base may be unsatisfiable, but the base itself might contain enough structure
to enable us to define appropriate change operations. See, for example, [Fuhrmann, 1991,p. 186],
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a legitimate expectation set, how are we to explain the association of every expectation
based consequence relation with two expectation sets, one of which is the unsatisfiable
belief? The solution, we believe, is a simple one. It is just a matter of realising that
the notion of an expectation state is more fundamental than that of a nonmonotonic
consequence relation. An expectation set is thus obtained from an expectation state,
not from the derived notion of an expectation based consequence relation. Viewed
information-theoretically, an expectation state (F, <) with £ = Cn(L) should simply
be seen as an ordering on infatoms in which the lowest level, containing the infatoms
that do not form part of Cont(FE), is empty.

In conclusion, there s a difference between theory revision and expectation based
nonmonotonic reasoning, although the reasoning process involved in both might very
well be identical. As a consequence, our representation of an epistemic state ought
to be modified such that both forms of reasoning can be recovered from it. That is,
an epistemic state should contain, not just the information necessary for performing
theory change; it should also incorporate the information in an expectation state so as
to be able to perform expectation based nonmonotonic reasoning. In section 4.7 we

present one method for doing so.

4.5 A dynamic view of nonmonotonic reasoning

As discussed on page 59, the role of the set of nonmonotonic consequence relations
is to provide a framework in which legitimate forms of nonmonotonic reasoning can
be expressed. It is usually motivated in terms of examples such as the following.
Consider a transparent propositional language containing the atoms b(t), f(¢) and
o(t), respectively representing the assertion that Tweety is a bird, Tweety can fly,
and Tweety is an ostrich. Given the fixed information that ostriches are birds and
the default information that birds normally fly, but that ostriches usually don’t, it
is reasonable to conclude that Tweety can fly when learning that Tweety is a bird,
but that Tweety can’t fly when obtaining the additional evidence that Tweety is an
ostrich. One should thus be able to find at least one nonmonotonic consequence relation
r containing both b(t)p~ f(t) and b(t) A o(t)—f ().

Examples such as the one above have a definite dynamic flavour to them. It involves

the adjustment of the current set of plausible consequences when obtaining the initial

[Hansson, 1993b,p. 641], and chapter 8 of this dissertation.
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evidence (that Tweety is a bird), only to be followed by a readjustment when presented
with the additional evidence (that Tweety is an ostrich). Given the dynamic nature
of such examples, the formalisation presented above offers a curiously static view of
nonmonotonic reasoning. The idea of additional evidence (that Tweety is an ostrich)
being added to the initial evidence (that Tweety is a bird) somehow gets lost in the
formalisation of the example. So, although b(t) A o(t)p—f(t) is intended to signify
that the addition of the new evidence o(t) to the initial evidence b(¢) will result in
—f(t) as a plausible consequence, the given interpretation of |~ simply takes it to mean
that —f(¢) is a plausible consequence of b(t) A o(t), and nothing more. There are
only two ways to explain this seemingly anomolous behaviour. We can adopt a view
of nonmonotonic reasoning as a kind of suppositional reasoning, in which evidence is
put forward “for the sake of argument”, only to be discarded again when it has been
determined what its plausible consequences would be. Such an interpretation seems to
be in line with the aims of conditional logic [Adams, 1975, van Benthem, 1984], but it
does not provide an accurate reflection of what nonmonotonic reasoning ought to be.
Alternatively, we can attach both a static and a dynamic interpretation to expressions
such as b(t) A o(t)ro—f(t). In general then, we would take the expression a A Sy to
mean that v is a plausible consequence of oA 3, as well as to convey the intuition that,
when presented with « as initial evidence, followed by [ as additional evidence, we will
be able to draw the plausible conclusion . The dynamic interpretation describes a
process in which evidence is being accumulated systematically, and can be seen as a kind
of iterated version of nonmonotonic reasoning. In fact, it ties up nicely with the view
of expectation based nonmonotonic reasoning, presented in section 4.4.2, as a process
of moving from one expectation set to another when faced with new evidence. Let E
be our current set of expectations, i.e. the wifs that we currently regard as plausible,
and let f~,, be the E-based consequence relation describing our current nonmonotonic
reasoning process. When confronted with evidence in the form of a wif a, our new
set of expectations E’ consists of all the plausible consequences of «. But having
accepted the evidence « (at least for the moment), there is every reason to believe
that modifications will be made, not just to our expectation set E, but also to the very
process of nonmonotonic reasoning that we employ. In other words, we don’t just move
to a new expectation set E’, but also to a new (E’-based) consequence relation %,
and any additional evidence  will now be evaluated in terms of |~},. The decision to

attach both a static and a dynamic interpretation to expressions of the form a A Sy
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can thus be formalised as the following property:

If a F = then a A By iff S5y

where |~ is an E-based consequence relation, E' = {0 | ajvz0}, and where 5, is
the E'-based consequence relation adopted when presented with the evidence «. In
section 7.5.1 we reconsider this property in the context of iterated belief change, and

show that, when slightly modified, it has an interesting model-theoretic interpretation.

4.6 Representing default information

Although our description of the three types of information used by nonmonotonic rea-
soning systems (see page 60) has, for the most part, been of an informal nature thus
far, it is clear that both the fixed information and the evidence can be represented ade-
quately by sets of wifs of the language L. (In fact, the approach we have followed only
makes provision for single wifs to represent evidence.) When it comes to the represen-
tation of default information, however, the situation is not so clear. One solution is to
be satisfied with an implicit representation of default rules. For example, suppose L is
a transparent propositional language containing the predicate symbols b and f, with b
representing the property of being a bird and f the property of being able to fly. Then
any expectation based consequence relation p containing all the elements of the form
b(z)p f(z), with & being replaced by all the terms in L, contains an implicit represen-
tation of the default rule that “birds normally fly”. This is the viewpoint advanced by
Gérdenfors and Makinson [1994,p. 224], at least when it comes to expectation based
nonmonotonic reasoning. Of course, such an approach still leaves unanswered the ques-
tion of how an agent chooses a particular expectation based consequence relation, or
equivalently, how it arrives at a particular expectation state.

In many instances though, of which the Tweety example is a case in point, it seems
more natural to have an explicit way of representing default information. The question
then becomes one of deciding on the most appropriate form of explicit representation.
A first attempt might involve the expansion of the language L to introduce another
object level connective ~», which is used to encode default information. Thus, the
default rule asserting that birds normally fly might be represented as the set of wifs of
the form b(x) ~» f(x), with  being replaced by all the terms in L. But this approach is

bound to complicate matters enormously, since such default wffs can then also occur as
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fixed information, as evidence and as plausible consequences of the evidence at hand.
In fact, it is tantamount to the introduction of a conditional connective into L, and can
easily lead to a variant of Géardenfors’ triviality result [Gardenfors, 1988,pp. 156-166].
A more realistic initial approach, and one that avoids the complicated issue of an agent
reasoning about its own reasoning, is to view ~» as a meta-connective. The language
L thus remains unchanged, but in specifying default information we use expressions
of the form a ~» (3, where o and 3 are wffs of L. This is the method of representing
default information in quite a number of recently developed nonmonotonic reasoning
systems, [Kraus et al., 1990, Pearl, 1990, Lehmann and Magidor, 1992, Geffner and
Pearl, 1992, Goldszmidt and Pearl, 1993, 1996]. These systems are all based on notions
independently developed by Lehmann and Magidor [1992] on the one hand, and Pearl
[1990] on the other hand, which we briefly discuss below.

Lehmann and Magidor [1992] present three nonmonotonic reasoning systems, all
of which involve the specification of a conditional knowledge base. In our terminology,
a conditional knowledge base C'K is a set of default rules of the form « ~~ [, with
«, B € L. They refer to such default rules as conditional assertions. The idea is that one
should be able to derive a set of conditional assertions from any conditional knowledge
base. When viewed as a binary relation on L, such a derived set of conditional assertions
can then be seen as a nonmonotonic consequence relation. So, for example, if we are
able to derive the conditional assertion o ~~ [ from CK, we would take 3 to be a
plausible consequence of « in the presence of CK. The question is then to determine
which conditional assertions we should be able to derive from a particular conditional
knowledge base.

Lehmann and Magidor’s first proposal is based on the preferential consequence

relations (see definition section 4.2.1), and is termed preferential entailment.

Definition 4.6.1 A conditional knowledge base C' K preferentially entails a condition-
al assertion « ~ 3 iff for every preferential consequence relation |~ containing C K (in
the sense that yj~d for every v ~» § € CK), apf holds. O

So preferential entailment only permits us to draw those plausible conclusions that we
will be able to draw from every preferential consequence relation respecting the default
information contained in C'K. This is one of the reasons that it has been advocated
by Pearl [1989] as the conservative core that should be contained in any nonmonotonic

reasoning system.
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Clearly the set of conditional assertions preferentially entailed by a conditional
knowledge base C'K also contains C'K, and preferential entailment can thus be seen
as a closure operation of some kind. When viewed as a binary relation on L, it turns
out that every set of conditional assertions preferentially entailed by some conditional
knowledge base is itself a preferential consequence relation. Preferential entailment is
thus seen as too weak, since it cannot be described as a set of rational consequence
relations.

For Lehmann and Magidor’s second proposal of what a conditional knowledge base
should entail, they apply the construction used above to the rational consequence

relations (see definition 4.3.1).

Definition 4.6.2 A conditional knowledge base C'K rationally entails a conditional
assertion o ~» [ iff for every rational consequence relation  containing CK (in the
sense that ypd for every v ~~ 0 € CK), apf holds. O

Remarkably, it turns out that rational entailment is equivalent to preferential entail-
ment. To be more precise, Lehmann and Magidor show that a conditional knowledge
base C'K rationally entails a conditional assertion o ~» 3 iff C' K preferentially entails
a ~» . Even more remarkable, perhaps, is the fact that for finitely generated propo-
sitional languages, Pearl’s e-entailment [1988], which is a proposal to deal with default
information on qualitative probabilistic grounds, is also equivalent to preferential en-
tailment [Geffner and Pearl, 1992].

Since rational entailment is equivalent to preferential entailment, the former is
thus also regarded as too weak. Lehmann and Magidor [Lehmann, 1989, Lehmann
and Magidor, 1992] propose to rectify the situation as follows. Consider the set of
conditional assertions rationally entailed by a conditional knowledge base C' K. Viewed
as a binary relation on L, this set is a preferential consequence relation. The idea is to
find a sensible way to extend the preferential consequence relation to obtain a rational
consequence relation. This rational consequence relation, termed the rational closure
of CK, seems to be a genuine improvement on rational and preferential entailment,

since it is able to handle accounts of irrelevance as well as specificity.* The interested

4Specificity refers to the ability to give priority to more “specific” default information. For example,
if we know that birds normally fly, but that ostriches normally don’t fly, the latter rule should have
priority over the former when dealing with a bird that also happens to be an ostrich. See section 4.3

for a description of irrelevance.
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reader is invited to consult [Lehmann, 1989] and [Lehmann and Magidor, 1992] for
more details. Interestingly enough, Goldszmidt and Pearl [1990] have shown that, for
the finitely generated propositional languages, rational closure is quivalent to system-Z
[Pearl, 1990}, another of Pearl’s nonmonotonic reasoning systems based on qualitative

probabilities.

4.7 Unifying cautious and bold reasoning

We have seen (see section 4.4.2) that Gérdenfors and Makinson [1994] use the ex-
pectation based consequence relations as the basis for a unified treatment of theory
revision and nonmonotonic reasoning, arguing that they can be seen as the same pro-
cess, although used for two different purposes. In this section we show that a closer
examination of the Géardenfors-Makinson claim is the gateway to a theory of cautious
and bold reasoning, encompassing both AGM theory revision and nonmonotonic rea-
soning (in the form of the expectation based consequence relations) as special cases.
Such a theory thus provides a truly unified picture of the two areas.

Let us first consider the claim that theory revision and nonmonotonic reasoning
can be seen as the same process. With AGM revision and the expectation based
consequence relations in mind, the interpretation to attach to this assertion is straight-
forward. If the belief set K of an agent in a particular situation, and the expectation set
E of the same agent in a (possibly) different situation are identical, then the reasoning
process involved when revising K by a wff a should be the same as when trying to
incorporate the evidence o into E. In other words, the permissible ways of revising K
by « should be exactly the same as the permissible ways of obtaining the plausible con-
sequences of o, given the expectation set £. What then, about the statement that this
process is used for two different purposes? According to Géardenfors and Makinson, it
boils down to the difference between beliefs and expectations. For them, expectations
include not only our beliefs as a limiting case, but also other wffs that are regarded
as plausible enough to be used as a basis for inference. The set of expectations of an
agent will thus always include its set of beliefs. If we take seriously this relationship
between expectations and beliefs, we are one step closer to a unified view of theory
revision and nonmonotonic reasoning. For, such a relationship does not just involve
the current belief set K and the current set of expectations E. It also requires the

belief set obtained when revising K by a to be a subset of the plausible consequences
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of «, given the expectation set E. In other words, we should have both K C E and
K xa C{f|appg} for any AGM K-revision * and any E-based consequence relation
r. In fact, we might as well use AGM revisions to represent expectation based rea-
soning, as long as we keep in mind that when doing so, the belief sets used are to be
interpreted as expectation sets. This is the route we shall take in the remainder of this

section.

Gardenfors and Makinson have chosen to differentiate between beliefs and expec-
tations, but there is nothing preventing us from introducing even further distinctions
between sets of conclusions. Rabinowicz [1995], for example, proposes the use of a set
of assumptions, which is intended to be included in the set of expectations, and also
to include the set of beliefs. Formally, there is, of course, no problem with drawing
such distinctions. In fact, we might as well continue in this fashion, and make room
for an arbitrary finite sequence of sets of wifs, each one including its predecessor and
being included in its successor. But what would we be gaining epistemologically? One
answer to this question concerns the actions to be taken by agents under various cir-
cumstances. For example, Rabinowicz’s reason for introducing sets of assumptions is
related to his dissatisfaction with the use of “mere expectations” when identifying the
process of theory revision with nonmonotonic reasoning. He argues that expectations,
as understood by Gardenfors and Makinson, are too provisional to be used for purposes
of deliberation and action, and suggests the use of assumptions instead. It is our view
that the qualitative difference between beliefs, assumptions, expectations and the like,
can perhaps best be expressed, not in terms of whether an agent is willing to act on
them, as Rabinowicz contends, but rather in terms of how it is willing to act on them.
For example, a detective investigating a murder case may be willing to draw tentative
conclusions in order to get his investigation going. He may even be willing to act on
such conclusions by, for example, following up certain leads. But he may not have
sufficient faith in these conclusions to bring suspects in for questioning, or to obtain a
warrant for searching the house of the main suspect. And even when the evidence at
his disposal provides, in his opinion, sufficient grounds for assuming the main suspect
to be guilty, he may not be willing to hand the case over for prosecution. In this ex-
ample then, his ezpectations might determine his actions related to initial investigative
work, his assumptions might determine when to take actions with possible negative

ramifications, and his beliefs might determine when to close the investigation.

Intuitively, such a sequence of sets of wffs thus corresponds to various degrees of
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beliefs, with a set of wifs earlier in the sequence being associated with the outcome
of a more cautious form of reasoning, and one later in the sequence representing the
outcome of a bolder form of reasoning. In the spirit of Gardenfors and Makinson we
take all these different forms of reasoning to be driven by the same reasoning process,

and we represent them as a sequence of AGM revisions.

Definition 4.7.1 An n-reasoning context is a sequence of of ordered pairs

(Kyy%1), .0y (K, %p))

where, for every ¢ from 1 to n, *; is an AGM Kj;-revision, and for every ¢ from 1 to
n—1,and every a € L, K; C K;;1 and K; *; a C K1 %11 Q. O

We can then, for example, represent a setup involving beliefs, assumptions and expec-
tations as a 3-reasoning context in which K corresponds to the set of beliefs, K5 to
the set of assumptions, and K3 to the expectation set.

It turns out that in the finitely generated propositional case, at least, the n-
reasoning contexts can be constructed elegantly in terms of sequences of successively

refined ordered pairs, each consisting of a belief set and a faithful total preorder.

Definition 4.7.2 For any n > 0, an n-refined epistemic state is an n-tuple of epistemic
states (®q,...P,) (with every ®; being an ordered pair (K;, <;), where K; is a belief
set, and =; is K;-faithful total preorder) such that, for every i from 1 to n — 1:

1. K; C K,

2. for every x,y € U (the set of interpretations of L), if v =<, | y then z =<, y,

and
3. for every x,y € U, if v <; y then x <, ¥.
(Il

Intuitively, finer grained total preorders represent more adventurous forms of reasoning.
From an information-theoretic point of view, it ensures that an agent is better able
to discriminate between infatoms, and will therefore remove fewer infatoms during a

revision process.

Theorem 4.7.3 Pick any positive integer n.
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1. Every n-refined epistemic state (®q,...®,) defines an n-reasoning context

(K1, %1), ey (K, %))

by letting every x; be the AGM K;-revision defined in terms of <; using (Def *
from <).

2. If L is a finitely generated propositional language, then every n-reasoning context
(K1,%1), .-, (Kp, %)) can be defined in terms of some n-refined epistemic state
(Dy,...D,) for which every *; is defined in terms of <; using (Def x from <).

Proof 1. Pick any 7 such that 1 <7 < n and any o € L. It suffices to show that
Min<,, (o) € Minz,(«). So pick any y € Minx,,, («). For every v € M(«),
r Ait1 Yy, and so x 4; y. That is, y € Min<, (o).

2. From theorem 3.2.6 it follows that every *; can be defined in terms of some K;-
faithful total preorder <; using (Def % from <). Pick any i such that 1 < i < n,
and any z,y € U, and let a be a wff that axiomatises the set {z,y}. We need
to show that x =<, | y implies x =<, y, and = <; y implies x <;;; y. Suppose
firstly that # =<, | y but that x Z<, y. Without loss of generality we can assume
that x <; y. It then follows that Min<, (o) = {z} and Min<, () = {z,y}. But
then M (K *; ) C M (K11 %41 o), contradicting the supposition that K; x; o C
K1 %;11 a. Next, suppose that x <; y but that z 4,41 v, i.e. ¥ =;41 . Then
Min<,(a) = {x} and either Min<,, (o) = {z,y} or Min<, (o) = {y}. Either
way, Min<,,, (o) € Minz, (), and so M (K;y1%i410) € M(K;*;c), contradicting
the supposition that K; x; « C K; 1 %11 .

(I

So the n-refined epistemic states provide a suitable abstract framework for a unified
view of cautious and bold reasoning, including both AGM theory revision and expec-

tation based inference.

4.8 Conclusion

Although sometimes viewed as two distinct albeit related fields, theory revision and

nonmonotonic reasoning seem to be two sides of the same coin. In recent years, the
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research conducted in these two areas have become more and more entwined, with fre-
quent attempts at attaining a kind of synergy on various levels [Makinson, 1989, 1993,
Katsuno and Mendelzon, 1991, Katsuno and Satoh, 1991, Lindstrom, 1991, Gardenfors
and Makinson, 1994, Boutilier, 1994, Goldszmidt and Pearl, 1996].

One of the reasons for the view that theory revision and nonmonotonic reasoning
are motivated by different ideas, is that theory revision is usually seen as a description
of the dynamic process of an agent modifying its set of beliefs, while nonmonotonic
reasoning is viewed as the study of the seemingly static notion of jumping to conclusions
in the face of uncertainty.® But, as we have seen in sections 4.4.2 and 4.5, a closer look
at the intuition underlying nonmonotonic reasoning reveals it to be of a dynamic nature
as well. In fact, the word “nonmonotonic” can be seen as a reference to the willingness
of an agent to modify its current set of plausible conclusions in the face of additional
conflicting evidence. The prevalence of the static view of nonmonotonic reasoning is
perhaps attributable to the fact that many of the nonmonotonic reasoning formalisms
are firmly rooted in work originally done in the area of conditional logic [Adams, 1975,
Stalnaker et al., 1981, van Benthem, 1984].

As we have shown in section 4.5 the accommodation of the dynamic nature of
nonmonotonic reasoning in these formalisms is made possible by making certain implicit
assumptions. In section 7.5.1 we show how these assumptions can be translated into a
property of iterated theory revision, thus providing another example of nonmonotonic
reasoning as theory revision.

In conclusion, it is clear that research involving both nonmonotonic reasoning and
theory change will benefit both areas. As a contribution along these lines, we have
presented a general theory of bold and cautious reasoning, with AGM theory revision
and expectation based reasoning as special cases. From our perspective, though, the
important advantage resulting from the comparison of theory revision and nonmono-
tonic reasoning presented in this chapter, is that it provides more support for the use
of faithful total preorders as an appropriate way to represent parts of the epistemic

states of agents.

®See Veltman [1996] for a different view.



Chapter 5

Epistemic entrenchment

Good order is the foundation of all things.
Edmund Burke (1729-97), Irish-born British politician

As indicated in chapter 1, belief change is concerned with the ability of an agent to
modify its current view of the world in a coherent fashion when confronted with new
information. To be able to effect such modifications, it is necessary to find a way to
represent the epistemic states of agents. In our view, an appropriate representation
of an epistemic state, at least in the case of theory contraction and revision, is as an
ordered pair of the form (K, <), where K is a belief set and < is a faithful preorder.
But this is not the only possibility. Other proposals include a representation as a set of
“conditional assertions” (see section 4.6 and Darwiche and Pearl [1997,p. 2]), and as
an ordering of entrenchment among the wifs of L, [Nayak, 1994b, Nayak et al., 1996].
Our focus in this chapter is on the latter proposal.

The best-known version of such entrenchment orderings is the EE-orderings of
Gérdenfors and Makinson [Géardenfors, 1988, Gérdenfors and Makinson, 1988, dis-
cussed in section 2.3 and again in section 3.3.1. In this chapter we consider them
yet again. We show how to formalise the intuition underlying the definition of AGM
contraction in terms of the EE-orderings. Then we focus on new results regarding the
relationship between the EE-orderings and the faithful total preorders. This leads to
a surprising connection between the EE-orderings and the orderings on wifs obtained

from Spohn’s ordinal conditional functions [1988].

Section 5.5 of this chapter is an expanded version of the paper by Meyer et al. [1999b].

89
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The EE-orderings provide an adequate formalisation of the intuitive notion of the
entrenchment of beliefs in most respects, but they also have some undesirable prop-
erties. We take a look at other approaches to entrenchment and discuss the extent
to which they circumvent the problems associated with the EE-orderings. This in-
cludes a presentation of our own proposal for entrenchment, a refined version of the
EE-orderings that is, perhaps not surprisingly, motivated by semantic considerations.

This chapter contains references to virtually every variation on entrenchment that
has been put forward in the belief change literature. Remarkably, each and every one
of these can, in some way or another, be constructed semantically in terms of some
ordering on interpretations or infatoms; a result that is, in part, summarised in figure

5.6 on page 136.

5.1 AGM contraction via the EE-orderings

The intuition ascribed to the EE-orderings is that wifs higher up in the ordering are
more entrenched in the belief set K. When forced to choose, we should thus rather
discard the less entrenched wifs. This is Gardenfors’ intuitive description of contraction
via epistemic entrenchment [1988,p. 89]; an intuition that is not in exact accordance
with (Def — from Cgp), the formal definition of AGM contraction in terms of the
EE-orderings. (We discuss this matter in more detail in chapter 6.) In this section we
show that it is possible to formalise the intuition above, by specifying exactly what it
means to say that we are “forced to choose”. We describe AGM contraction in terms
of the EE-orderings in a way that differs from (Def — from Cgg). In doing so, we make

use of the following identities:

(Def scc) sec(o) ={8|aC B}

(Def V<) V(o) ={z | Jy € Min<(a), such that z < y}

Definition 5.1.1 1. Given a preorder C on L, and a wif «, we define scc(«), the

strict cut of ¢, in terms of C using (Def scr).

2. For a faithful preorder < (which need not be total), we define V<(«), the downset
of a wif v in terms of < using (Def V).
([
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A strict cut of a wif a contains all the wifs that are more entrenched than « in C.
Strict cuts can be seen as the strict versions of the fallbacks of Lindstrém and Rabi-
nowicz [1991]. On the other hand, for the faithful total preorders, V<(«) is the set
of interpretations that are not strictly above the minimal models of . We show that

there is a close connection between strict cuts and downsets.

Proposition 5.1.2 Let < be a faithful total preorder, and let Crp be the EE-ordering
defined in terms of = using (Def Cg from <). If ¥ a then Th(V<(—a)) = scc,,, (o).

Proof Suppose that # « and pick any § € Th(V<(—«)). It suffices to show that
[ ¥ge . Because Min<(—a) C V<(—a), there is a y € Min<(—a) such that z €
M(p) for every x <y, and thus  Zgg . Conversely, pick a € scc,, (o), and pick
any y € Min<(—«a). Since f Lgg a, x € M(B) for every « < y, from which it follows
that V<(—a) C M(B). O

Proposition 5.1.2 enables us to show that the wifs that are strictly more entrenched

than « form the core of the wifs to be retained during an a-contraction of K.

Proposition 5.1.3 Let < be a faithful total preorder, let Crg be the EE-ordering
defined in terms of < using (Def Cp from <), and let — be the AGM contraction
defined in terms of = using (Def ~ from <). If ¥ o then scc,, (o) C K — a.

Proof Follows easily from proposition 5.1.2. O

The remaining question is thus to determine which of the wffs that are at most as
entrenched as « will be retained, and which will be discarded during an a-contraction
of K. The intuition dictates that we only remove those wffs that we are forced to
remove. Given proposition 5.1.3, it is clear that a wif # in K will have to discarded if

« is entailed by § together with scc,, ().

Proposition 5.1.4 Let < be a faithful total preorder, let Crg be the EE-ordering
defined in terms of < using (Def Cg from <), and let — be the AGM contraction
defined in terms of < using (Def ~ from <). If ¥ «a and o € scc,,(a) + B then

fé¢K—a.

Proof Suppose that # o and o € scr,, (a)+ 5. By proposition 5.1.3, sce,,, (o) € K—«
and so, if f € K — «, then a € K — «, contradicting (K—4). O
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Furthermore, if the addition of any two wifs 5 and 7 to scc,,(«) yields «, then both
will have to be removed from K, even when adding either of them on their own to

scr,, (o) does not entail «.

Proposition 5.1.5 Let < be a faithful total preorder, let Crg be the EE-ordering
defined in terms of < using (Def Cg from <), and let — be the AGM contraction
defined in terms of < using (Def ~ from <). Now suppose that o ¢ scc,, (o) + B and
a ¢ sco,, () +, but o« € sec,, () + BAy. Then f ¢ K —a and v ¢ K — .

Proof Because o ¢ scr,,, (o) + v, we have that # «, and by proposition 5.1.2 there
is an + € M(Th(V<(—«))) such that x € M(—«) N M(vy). Furthermore, since a €
sccyp(@) + B Ay, x € M(—f). Since M(K) C V<(—a), it then follows from lemma
1.3.5 that v € M(Th(M(K)UMin<(—«))) and so f ¢ K —ca. The proof for v ¢ K —a

is similar. O

And finally, we get a result that places an upper bound on the wffs to be removed
from K. The next proposition ensures that there is a good reason for discarding a wff
f € K during an a-contraction of K: We’ll always be able to find a wif that is at least

as entrenched as (3, and which, together with § and the core, entail a.

Proposition 5.1.6 Let < be a faithful total preorder, let Crg be the EE-ordering
defined in terms of < using (Def Cp from <), and let — be the AGM contraction
defined in terms of < using (Def ~ from <). For every f € K\ K —a thereis ay € K
such that o ¢ scc,, (o) +v and B Cgg v, but o € sco,,(a) + A 7.

Proof Pick any § € K \ K — «. We show that f — « has the desired properties.
Since f € K\ K — a, it follows that o € K, and so f — « € K. Furthermore, because
e K\ K —a, there is an x € Min<(—«a) C V<(—a) such that x € M(—a) N M (=p).
Sox € M(B = a)NV<(-a) € M(scc,,(a) + 8 — «) by proposition 5.1.2, and
thus o ¢ scc,, (o) + 5 — «. To show that 3 Cgp 8 — « it is enough to point out
that © < y for every y € M(—(8 — «)), and to recall that x € M(—3). Finally,
a € scc,,(a) + BA (B — a) because {5, — a} F «. O

Combining the results above, we obtain the following representation theorem.
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Theorem 5.1.7 Let = be a faithful total preorder, let Crg be the EE-ordering defined
in terms of < using (Def Cg from <), and let — be the AGM contraction defined in
terms of =< using (Def ~ from <). For every «, 5 € L,

f ¢ K, or

o and o € sco,, (o) + B, or

¥ o and 3y € K such that o ¢ scc,, (o) + 5, B Cig 7,
and « € sco,, (o) + B A 7.

f¢ K — «iff

Proof Suppose that § ¢ K — o, that § € K and that either F o or o ¢ scr,, () + .
F « contradicts (K—6) and the fact that § € K\ K — «, so we suppose that ¥ « and
a ¢ scc,, (o) + . Then the required result follows from proposition 5.1.6. Conversely,
if 5 ¢ K then by (K-2), 6 ¢ K —a. If # @ and o € scr,,, (o) + 5 then § ¢ K — «
by proposition 5.1.4. So suppose that 3 € K, ¥ a, o ¢ scc,, (o) + [ and that there
is a 7 € K such that a ¢ scc,,(o) +7, B Cgg 7, and o € sc,, (o) + 8 Ay. Then
f ¢ K — « by proposition 5.1.5. a

Theorem 5.1.7 shows that a wff § € K will be discarded during an a-contraction of K

for precisely one of the following two reasons:
e If o is entailed by /3 together with scc,, ().

e If o is entailed by § together with scr,,(a) and some wif v that is at least as

entrenched as f3.

So, during an a-contraction of K, we say that we are “forced to choose” between two
wifs 3 and v iff the core of wifs to be retained (the set scc,,(«)) entails o when both
B and v are added to it.

5.2 EE-orderings and minimality

Implicit in the semantic description of the EE-orderings in section 3.3.1, is the idea
that the entrenchment of wifs is a derived notion, based on orderings of interpretations,
or perhaps more aptly, orderings of infatoms. Of course, theorem 3.3.1 also guarantees
the construction of faithful total preorders in terms of some kind of converse of (Def
Cg from <), leaving the door open for a view of the EE-orderings as at least as

basic, epistemologically, as the faithful total preorders. Nevertheless, a number of
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other factors make it difficult to escape the conclusion that the latter is the more
fundamental of the two. In the first place, an appeal to the principle of Reductionism
becomes appropriate in this context if we adopt the view that the EE-orderings are
built up from orderings on infatoms, in much the same way that classical entailment
relations are built up from the interpretations (or infatoms) of L. In addition, there
is also the fact that different minimal-equivalent faithful total preorders (see definition
3.3.6) may define the same EE-ordering using (Def Cg from <). This last realisation
is, in fact, the key to some important results about the connection between the EE-
orderings and the minimal models of the wifs of L. The verification of these results is
based on the following useful observations concerning the relationship between power
orders on L, in the sense of (Def Cp from <), and the preorders from which they
are obtained. These technical results will again prove to be most useful in section 5.5,
where we shall have occasion to make extensive use of them without explicitly referring

to lemma 5.2.1.

Lemma 5.2.1 Let < be any preorder (not necessarily total), and let T be the ordering
on L defined in tems of (Def Cp from <).

1. « T B iff for every y € Min<(—f) there is an v € Min<(—«) such that x < y.

2. oL B iff there is a y € Min<(—f) such that v € M(«) for every x < y.

Proof 1. Suppose that o C f and pick any y € Min<(—f). From (Def Cp from
<) it follows that there is a z € M(—«) such that © < y. By the smoothness
of <, there is an x € Min<(—a) such that < z, and the required result then
follows from transitivity. Conversely, suppose that for every y € Min<(—p5)
there is an v € Min<(—«) such that z < y, and pick any v € M(—f). By the
smoothness of < there is a v' € Min< (=) such that v" < v, and by supposition
there is a u € Min<(—f) such that u < v’. The required result then follows from

transitivity.

2. Suppose that o IZ §. That is, there is a v € M (—f3) such that © € M(«) for every
x = v. The required result then follows from smoothness and transitivity. The
converse follows immediately from the supposition that there is a y € Min<(—0)
such that z € M(«) for every z < y.

(I
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For any faithful total preorder, the set of minimal models of any wif is particularly
well-behaved in the sense that they are all on the same level. As a consequence, the
application of lemma 5.2.1 to the faithful total preorders and the EE-orderings obtained
from them, using (Def Cg from <), leads to some interesting results. It shows that the
EE-orderings can be completely determined by the minimal models of the wifs of L. In
the non-trivial case of two wifs o and 3 that are both not logically valid,  is at most
as entrenched as « iff the minimal models of =3 are at least as high up as the minimal
models of —a, and « will be strictly more entrenched than g if and only if the minimal
models of -« are strictly below the minimal models of —3. Moreover, any two wifs «
and [ are equally entrenched if and only if the minimal models of —a and = are on
the same level. In the next section we show that these results provide an interesting
connection between the GE-orderings of Grove (see section 2.3.1), the EE-orderings,

and the orderings on wffs obtained from Spohn’s ordinal conditional functions [1988].

Corollary 5.2.2 Let < be a faithful total preorder, let Cgg be the EE-ordering defined
in terms of < using (Def Cg from <), and let Cgp be the GE-ordering defined in terms
of < using (Def Cg from <).!

~

fFE o and ¥ 5 then o Cpg B iff Min<(—a) < Min<(—0).
2. If ¥ o and ¥  then o Cgg B iff Min<(—a) < Min<(=0).
8. a=c,, B if Ming(—a) =< Min<(=f).?
4. If ¥ —a and ¥ = then o Cgp B iff Min<(a) = Min<(f).
5. If ¥ —a and ¥ =3 then o Cap B iff Min<(a) < Min<(5).
6. @ =c,, B iff Ming(a) =< Min<(5).
Proof Follows easily from lemma 5.2.1 and theorem 2.3.5. a

From an information-theoretic point of view, the results concerning the EE-orderings

are particularly illuminating. Recall that a faithful total preorder can be seen as an

!See section 1.3 for an explanation of the convention of applying <, < and =< to sets of interpre-
tations.
2This is a well-known result in the context of Grove’s systems of spheres [see Gérdenfors, 1988,p.

95].
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ordering in which infatoms lower down are regarded as less entrenched. The entrench-
ment of a wif is thus completely determined by its least entrenched content bits, a view
that is reminiscent of the saying that a chain is only as strong as its weakest link. It can
be seen as a generalisation of a result by Gérdenfors and Makinson [1988], that when
a belief set K is finite modulo Cn, an EE-ordering with respect to K is completely
determined by the co-atoms of K, where the co-atoms of K are the logically weakest
elements of K\ Cn(T).

5.3 Ordinal conditional functions

Spohn [1988] presents a representation of epistemic states inspired by probability the-
ory. Let us restrict ourselves to a valuation semantics (V,IF) for L. Spohn defines an
ordinal conditional function (OCF) k to be a function from V', the set of valuations of
L, into the class of ordinals, such that x(v) = 0 for at least one v € V. Intuitively,
valuations with a smaller ordinal assigned to them are considered to be more plausible.
The valuations assigned the ordinal 0 are thus seen as the most plausible, and conse-
quently the current belief set is defined as K, = Th({v | k(v) = 0}). Since  has to
assign the ordinal 0 to at least one element of V', K, will always be satisfiable.

Clearly any OCF & induces a total preorder < on V' as follows:
(Def < from k) v <X w iff k(v) < k(w)

In fact, since every subset of V' has a smallest ordinal associated with it, < is a well-
order, which means it will also be smooth (see definition 3.2.5). Also, < will be a
K .-faithful total preorder, provided that {v | k(v) = 0} = M(K,).> Some K,-faithful
total preorders, however, are not well-orders, and they can thus not be defined in
terms of any OCF &k using (Def < from k). In this sense ordinal conditional functions
are less general than faithful total preorders. On the other hand, the reference to
ordinals ensures that OCFs allow for a representation of degrees of belief that is more
sophisticated than any such notion defined in terms of faithful total preorders.

Spohn extends the ordinal conditional functions to functions from pV \ {0} into
the class of ordinals by associating every non-empty subset W of V' with the smallest

ordinal assigned to any of the valuations in W. That is, for any OCF &k, he defines

3The requirement that {v | K(v) = 0} = M(K}) is a technical restriction that can be traced back
to the non-axiomatisability of infinitely generated propositional languages.
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k(W) = min{k(w) | w € W}, and the extended  thus defines a total preorder on
eV \ {0}. Tt is easily verified that for every OCF k and every W € pV \{V}, k(w) =0
for every w € W iff x(V \ W) > 0. As a consequence, K, can also be described as the
set of all wifs « such that k(M (—a)) > 0.

Since every wif of L is associated with a particular set of valuations — its set of

models — every OCF k defines a total preorder on L as follows:*

k(M(a)) < k(M(B)) if ¥ —a and ¥ =4,

(Def C,, from k) a C, [ iff .
F -« otherwise

Remarkably, it turns out that these orderings on wffs are instances of the GE-orderings

of Grove.

Proposition 5.3.1 Let k be an OCF), let <X be the total preorder on V' defined in terms
of k using (Def < from k), and let C,; be the total preorder on L, defined in terms of
k using (Def Ty from k).

1. Ty can also be defined in terms of < using (Def Cg from <), where < is the

total preorder on V' obtained from k.
2. Cx 1s a GE-ordering.

Proof 1. The non-trivial cases, i.e. for satisfiable wffs that are not logicaly valid,

follow from the definition of the extended x and part (4) of corollary 5.2.2.

2. If < is a K,-faithful total preorder, the result follows from part (1) and theorem
3.3.1. The case where < is not K, -faithful corresponds to a violation of the
technical restriction that the lowest level of < has to contain all the models of
K,. It is easily verified that in such a case, < also defines a GE-ordering. From
part (1) we then get the required result.

(Il

We now come to Spohn’s definition of the plausibility of wifs. He takes a wif « to be
less plausible than a wif 5 iff k(M (—«)) < k(M (=3)) or k(M (S)) < k(M (a)). Since &
only assigns ordinals to non-empty sets of valuations, we let this definition apply only

to satisfiable wifs that are not logically valid. In order to accommodate all the wffs of

4The OCF determines the relationship between all satisfiable wifs. For completeness, we include
the logically invalid wffs by placing them strictly below the satisfiable ones.
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L, we extend the definition by letting the logically valid wffs be more plausible than
all the other wffs, and letting the logically invalid wffs be less plausible than all the
others. The plausibility ordering Cp is then defined in terms of an OCF & as follows:

K(M (=) < k(M(=5)) or k(M(S)) < k(M (a))
(Def Cp from k) aCp Siff ¢ if K a, ¥ -, ¥ B3, and ¥ —f,
F-a and F -3, or ¥ a and F 3, otherwise

Spohn justifies his definition of plausibility in terms of the firmness with which a wff is
believed or disbelieved. The basic idea is that if « is K-established (i.e. x(M(—a)) >
0) then « is believed with a firmness of k(M (—«)), if -« is Ky-refuted (i.e. k(M («)) >
0), then « is disbelieved with a firmness of k(M («a)), and if « is K-undecided (i.e.
k(M (a)) = k(M(—a)) = 0), then « and -« are both believed and disbelieved, with a
firmness of 0. A wff o will thus be less plausible than a wff § for one of the following

reasons (where both o and £ are satisfiable but not logically valid):

1. « is K,-established and [ is K, -established. That is, « is disbelieved and [ is
believed. Then k(M (—«)) < K(M(=4)) and k(M (5)) < k(M (a)).

2. ais Ki-undecided and 3 is K-established. That is, « is less firmly believed than
f. Then k(M (—«a)) < K(M(—p)).

3. Both a and g are Kj-established and « is less firmly believed than S. Then
K(M(-a)) < k(M(=5)).

4. « is Ky-refuted and g is K,-undecided. So « is more firmly disbelieved than /.
Then k(M(5)) < k(M (a)).

5. Both o and 3 are K,-refuted and « is more firmly disbelieved than 5. Then
K(M(B)) < k(M(c)).

There is another way to justify (Def Cp from k) as a suitable proposal for obtaining
plausibility orderings as well; one that involves the connection between the ordinal
conditional functions and the GE-orderings. Recall that one of the primary purposes
of an EE-ordering (with respect to K) is to compare the wifs in K. It regards all wifs
that are not in K as equally entrenched. Similarly (see section 2.3.1), a GE-ordering
distinguishes between wffs that are K-refuted, but regards all the wffs in K, together
with all the K-undecided wffs, as equally plausible. Now suppose that we want to
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obtain an entrenchment ordering that combines the best of the EE-orderings and the
GE-orderings.® We need to consider three cases. Firstly, wifs not in K need to be
placed strictly below wifs in K. Secondly, when comparing wifs in K we need to use an
EE-ordering. And thirdly, when comparing wffs not in K, we need to use the inverse
of a GE-ordering (since GE-orderings regard wifs lower down as more plausible). We
therefore define a refined ordering, an R-ordering Cp in terms of a faithful total preorder

< as follows:

Vy € M(—3), dx € M(—«) such that z <y
ifa, 8 € K,

(Def Cp from <) aCp S iff { Vy € M(«), 3z € M(B) such that z <y
ifa,f ¢ K,

a ¢ K and g € K otherwise

\

It is easily shown that (Def Cp from <) is a formalisation of the verbal description

given above.

Proposition 5.3.2 Let < be a faithful total preorder, let Crg be the EE-ordering
defined in terms of < using (Def Cg from <), let Cgp be the GE-ordering defined in
terms of < using (Def Cg from <), and let Cg be the R-ordering defined in terms of
=< using (Def Cg from <). Then

alppfitafek,
abpfifft ¢ Bleraifa,f ¢ K,
a ¢ K and § € K otherwise.

Proof Follows from theorem 2.3.5. O

It turns out that Spohn’s plausibility orderings are instances of the strict versions of

the R-orderings.

Theorem 5.3.3 Let k be an OCF, let =< be the K-faithful total preorder obtained in
terms of k using (Def < from k), let Cp be the plausibility ordering obtained in terms
of k using (Def Cp from k), and let Cg be the R-ordering obtained in terms of < using
(Def Cg from <). Then o Cp B iff « Tg B for every o, B € L.

This is a suggestion due to Rabinowicz [1995].
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Proof We only consider the case where ¥ «, ¥ —a, # [ and ¥ —f3. Firstly, note that
it follows readily from proposition 5.3.2 that the strict version of Cg can be described

as follows:
aCpe Bifa,p € K,

a[Rﬂlﬁ BEGEaifaaﬁgéKna
a ¢ K, and § € K, otherwise.

Now suppose that « Cp §. That is, k(M (—«a)) < k(M (—=5)) or k(M (B)) < k(M (a)).
If a, € K, then k(M(«)) = (M(5)) = 0, and therefore k(M (—«)) < k(M(=5)).
But this means that Min<(—«) < Min<(—f). By proposition 5.3.2 it then follows
that o Cgg (, and so o Cg 5. If o, ¢ K, then x(M(-a)) = k(M(=8)) = 0,
and therefore k(M (f)) < k(M («)). But this means that Min<(3) < Min<(«). By
proposition 5.3.2 it then follows that  Cqp «, and so a« Cg 5. Then the only remaining
possibility is for a not to be in K, and for § to be in K. For if « € K, and § ¢ K,
then k(M («)) = 0 and x(M(—f)) = 0, contradicting the supposition that o Cp . So
we again have that o Cg .

Conversely, suppose that o Cg 8. If o, 8 € K, then o« Cgg [, and so, by corollary
5.2.2, Min<(—~a) < Min<(—f). But this means that x(M(-«a)) < k(M (—f)), and so
aCp f. lf o, ¢ K, then 8 Cep o, and by corollary 5.2.2, Min<(8) < Min<(«).
But then x(M(8)) < k(M(a)), and so o Cp B. So we are left with the case where
a ¢ K, and 8 € K, which means that x(M(—-a)) = 0 and x(M(—f5)) > 0. So
K(M(—a)) < k(M(=8)) and therefore o Cp f. O

We shall encounter the ordinal conditional functions again in section 7.1 in the context

of iterated belief change.

5.4 Generalised epistemic entrenchment

The EE-orderings of Gardenfors and Makinson provide a satisfactory formalisation of
the intuition of the entrenchment of wifs in many ways, but they have drawn criticism
from various quarters, mainly for being too restrictive in three aspects [Lindstrém and
Rabinowicz, 1991, Rott, 1992¢, Gérdenfors and Makinson, 1994, Rabinowicz, 1995].
The first, and most serious objection, is that every EE-ordering is a total preorder.
This has the unfortunate consequence of ruling out any kind of formal representation

of the idea that some wffs are not comparable in terms of entrenchment. A second
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objection concerns the minimality condition, imposed on the EE-orderings in the guise
of the postulate (EE4). It ensures that the EE-orderings do not distinguish between
wifs that are not in K, and are thus unable to give a proper account of entrenchment
among wifs that are not in the current belief set of an agent. That this is undesirable
is highlighted by the realisation that an agent cannot regard a wff o as being more
entrenched than its negation -« without accepting « into its current set of beliefs. And
thirdly, there is resistance to the maximality condition, imposed on the EE-orderings
in terms of the postulate (EE5), which requires the most entrenched wffs to be nothing
other than the logically valid wifs. In this section we consider proposals intended to
rectify these shortcomings by providing entrenchment orderings that generalise the

EE-orderings in one way or another.

5.4.1 LR-entrenchment

Lindstrom and Rabinowicz [1991] propose a generalised version of the EE-orderings
aimed at rectifying the first objection mentioned above, subject to the following set of

postulates:

(LR1) Cpp is transitive.

(LR2) If aF B then a Cpg

(LR3) If a Cpp fand a Cpp y then a« Cpp S Ay
(LR4) If K # Cn(L) then a ¢ K iff « Cp i § for all 8

(LR5) If T Cpr o then F «

Definition 5.4.1 A binary relation Cpr on L is an LR-ordering (with respect to a
belief set K) iff it satisfies (LR1) to (LR5). 0

With the exception of (LR3), which replaces the postulate (EE3), and (LR5), which is
equivalent to (EE5) in the presence of (LR1) and (LR2), the LR-postulates are identical
to the postulates for the EE-orderings. (LR3) is a weakened version of (EE3), and its
adoption in the place of (EE3) ensures the possibility that wifs in K need not all be
comparable. In fact, it is easy to see that if we only consider those LR-orderings in

which all wff are comparable, we end up with precisely the EE-orderings. To see why,
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V]
\\\v///

=(p < q)

LipANg,~pANqg,pAN—q=pAN—q,p,q,p <> q,pV =g, pVq

Figure 5.1: A graphical representation of the LR-ordering used in example 5.4.2. The
ordering is obtained from the reflexive transitive closure of the relation determined by
the arrows. Every wif in the figure is a canonical representative of the set of wifs that

are logically equivalent to it.

note that it follows from (LR3) that if & Cpr B then o T a A 5. Now, if all wifs are
comparable, then we have either o« C;r 0 or f Cpr «, from which we immediately get
thataELRa/\ﬁorﬁgLRa/\ﬁ.

LR-entrenchment is thus a generalisation of the EE-orderings, but is it a proper
generalisation? That is, are there any LR-orderings for which some wffs are indeed not

comparable? The answer to this question is provided by the following simple example.

Example 5.4.2 Let L be the propositional language generated by the two atoms p
and ¢, and let (V,IF) be the valuation semantics for L where V' = {11,10,01,00}. Now
let K = Cn(=(p <> q)), and define the LR-ordering C; g as follows: a Cpr fiff a F 3
or ¢ K. Tt is easily verified that T is indeed an LR-ordering. Figure 5.1 contains
a graphical representation of Cpg, from which it is easily seen that —pV ¢ and p V ¢

are incomparable. O
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Lindstrom and Rabinowicz provide a method for constructing the LR-orderings in
terms of fallback families and prove an appropriate representation theorem. More
interesting, from our perspective, is their second construction method. They show that

the LR-orderings can also be obtained as the intersections of families of EE-orderings.
Theorem 5.4.3 [Lindstrém and Rabinowicz, 1991]
1. The intersection of every family of EE-orderings is an LR-ordering.

2. For every LR-ordering Cpgr there is a family € of EE-orderings such that Cpr =
NE.

In this view of the LR-orderings, the epistemic state of an agent is taken to be a class of
EE-orderings. An appeal to the principle of Indifference then results in the construction
of an entrenchment ordering in which a wff « is seen as at most as entrenched as a wf

g iff every EE-ordering in £ regards « as at most as entrenched as .

5.4.2 GEE-entrenchment

Rott [1992c] takes the view that it is more natural to consider strict relations on
wifs and argues that the EE-orderings should be seen as converse complements of
such strict relations (or equivalently, that these strict relations be obtained as the
converse complements of the EE-orderings).® He defines a set of generalised epistemic

entrenchment orderings in terms of the following set of postulates:
(GEE1) TiZ T

(GEE21) If a C f and B F «y then a C v

(GEE2|) IfaC fand yF a then yC 3

(GEE31) IfaC fand o C y then « S Ay

(GEE3]) If aANfC fthenaC 8

Definition 5.4.4 A binary relation Cggp on L is a GEE-ordering (with respect to a
belief set K) iff it satisfies (GEEL) to (GEE3J). O

6A relation S is the converse complement of a binary relation R on a set X iff for every z,y € X,
(z,y) € Siff (y,z) ¢ R.
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Rott is of the opinion that the EE-orderings should be seen as converse complements of
the GEE-orderings. Since the EE-orderings are total preorders, taking the strict version
of an EE-ordering is the same as taking its converse complement. He shows that the
strict versions of the EE-orderings form a strict subset of the set of all GEE-orderings.
The GEE-orderings are not subject to analogues of the minimality and maximality
conditions imposed on the EE-orderings. The following four supplementary postulates

for generalised epistemic entrenchment are intended to serve as such analogues.
(GEE4) If K # Lthen L Caifae K

(GEE4') If a ¢ K and § € K then a C f8

(GEE5) If # o then « T

(GEE5') If aC T and S Z T then a C f8

It is easily verified that the strict versions of the EE-orderings satisfy these four pos-
tulates as well.

It turns out that the GEE-orderings can be defined in terms of families of strict
versions of the EE-orderings. With a small modification, the following results are
obtained from [Rott, 1992c].

Theorem 5.4.5 1. The intersection of every family of strict EFE-orderings is a
GFEE-ordering that satisfies the four supplementary postulates as well.

2. For every GEE-ordering Cargp that satisfies the four supplementary postulates as
well, there is a family € of strict EE-orderings such that Copp = NE.

Theorem 5.4.5 is remarkably similar to theorem 5.4.3, the representation theorem for
the LR-orderings in terms of families of EE-orderings, and might lead one to suspect
that the GEE-orderings (satisfying the four supplementary postulates) are precisely
the strict versions of the LR-orderings. But as the next example shows, this is not the

case.

Example 5.4.6 Consider the propositional language L generated by the two atoms
p and ¢ with the valuation semantics (V,IF), where V' = {11,10,01,00}. Let K =
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pVyq

|-pVq,q| p;pV q|

P q,pAgq

PA—¢ g, ~(p < q), L,pA-g,—pV g, pAg,—p

Figure 5.2: A graphical representation of the LR-ordering used in example 5.4.6. The
ordering is obtained from the reflexive transitive closure of the relation determined by
the arrows. Every wif in the figure is a canonical representative of the set of wifs that

are logically equivalent to it.
Cn(p A q), and consider the LR-ordering Ty g defined as follows:
(BeLifadK,

pANgEBifa=pAgora=p<+aq,
gFEpBifa=qora=-pVy,

aC iff <
Cirf pEpfifa=pora=pV g,
pVgEBifa=pVyg,
\ ac Lif Fg.

Figure 5.2 contains a graphical representation of the LR-ordering C;z. An inspection
of figure 5.2 shows that T, is indeed an LR-ordering, but that the strict version Cj g
of T, violates (GEE31), by taking « as p <> ¢, § as p, and v as ¢, and violates
(GEE3]) by taking « as p and (3 as gq. O
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5.5 Refined entrenchment

Although the faithful total preorders are sufficient for a complete characterisation of
AGM theory change, it is possible to achieve the same effect with other preorders as
well. We have a particular interest in a set of faithful preorders that are very closely

related to the faithful total preorders.

Definition 5.5.1 A weak partial order < on a set X is called modular iff for every

z,y,z€ X, if v ||< y and z <z, then z < y. O

The modular weak partial orders are the reflexive versions of the modular partial
orders of Ginsberg [1986] and Lehmann and Magidor [1992], which in turn, can also be
described as the relations on a set X satisfying transitivity and virtual connectivity (see
definition 2.4.4). Intuitively, a modular weak partial order ensures that the elements
of X are arranged in levels, with incomparable elements being regarded as on the same
level. Using this intuition, it is clear that the following two identities provide a natural

connection between the total preorders and the modular weak partial orders.
(Def < from <) < =<\ {(z,y) e X x X |z #yand z =< y}

(Def < from <) < =<U{(z,y) e X x X |z ||xy}

Definition 5.5.2 A faithful modular weak partial order and a faithful total preorder
are semantically related iff they can be defined in terms of each other using (Def <
from <) and (Def < from <) respectively. O

It is easily seen that a faithful total preorder and its semantically related modular
weak partial order are minimal-equivalent (see definition 3.3.6), and as a result, the set
of faithful modular weak partial orders can also be used to characterise AGM theory
change.” So if we are only interested in minimality, as in the case of AGM theory
change, a move from the faithful total preorders to the faithful modular weak partial
orders is an inessential technical modification. But as we shall see below, other con-
structions involving orderings on interpretations are more sensitive to such a shift. (See
also chapter 6.) From an information-theoretic point of view, there is also an impor-
tant difference. In a faithful total preorder, infatoms on the same level are regarded as

equally important or entrenched, while the semantically related faithful modular weak

"These results are special cases of proposition 5.7.3 and corollary 5.7.4.
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partial order will regard them as incomparable. As we shall see in chapter 6, this can
have important effects on basic principles such as the principle of Indifference and the
principle of Preference.

In this section we use the faithful modular weak partial orders as the basis for
the presentation and investigation of sets of refined versions of the EE-orderings that
allow for the possibility of wifs being incomparable. These orderings are obtained by
applying (Def Cp from < ), not to the faithful total preorders, but to the faithful

modular weak partial orders.

Definition 5.5.3 An RE-ordering Crp (refined entrenchment ordering) is a binary
relation on L defined in terms of a faithful modular weak partial order using (Def Cg
from <). We say that an EE-ordering and an RE-ordering, defined respectively in
terms of a faithful total preorder and its semantically related faithful modular weak

partial order, using (Def Cp from <), are semantically related. O
The next proposition provides a preliminary list of properties of the RE-orderings.

Proposition 5.5.4 Let Cpp be the RE-ordering defined in terms of the faithful mod-
ular weak partial order < using (Def Cg from <). Then Cgrg satisfies the following

properties.
1. CgE is a preorder (that need not be total).

2. Suppose that the EE-ordering Cgg is semantically related to Crp. If a Cre O
then a Cpp (.

3. If a E B then a Crg 5.

4. o Cgre B forall a, iff E 5.

5. If a = B then o Erp v iff B Ere 7, and v Erp o iff v CEre B.
6. If K is satisfiable then {o | ~a € K} = L]z,

7. Ifa ¢ K and € K then a Crp 5.

8. If -f €K and —y ¢ K then B Crg -

9. If a ¢ K then K U{a} F B iff a Crg f.
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10. If a =¢,, B then a A B,aV B € [alc,, = [Blcus-

11. a Crg a A B, or BEgrg aA B, or both o — B Lrg « and B — o Lgrg (.

Proof Many of these results follow from proposition 5.7.6. We only prove the re-
maining parts. For part (6), we need to show that if K is satisfiable, then [L]|-,, C
{a | ma € K}. So suppose that K is satisfiable, pick any « € [L]c,, and assume
that ma ¢ K. Then there is at least one model x of K that satisfies «, and thus

« Zre L, contradicting the supposition that o € [L] For part (8), we need

Cre-
to show that if =3 € K and =y ¢ K then v Lz 5. So suppose that - € K
and =y ¢ K. Since M(K) N M(y) # 0, it follows from faithfulness that there is a
y € M(y) N M(K) C M(—f), such that © € M(y) for every x <y, i.e. v ZLgrr (. For
part (9), we need to show that if & ¢ K and oo Cgp S then KU{a} F 5. Solet o ¢ K
and suppose that K U {a} ¥ 5. So there is a y € M(K) N M(«) such that y € M(=f).
That is, y € M (=) and for every x <y, © € M(«), which means that o Zgp 3. For
part (10), we need to show that if @ =, 5 then aV 5 € [@]c,, = [Blcg,- From part
(3) of this proposition it follows that @ Cgrr oV f. To show that oV f Cgrg «, assume
that it is not the case. Then there is a y € Min<(—«) such that x € M(aV j3) for every
r < y. Therefore y € M(—a) N M(B). But since f Crp «, there is a z € Min<(—f)
such that z < y which, together with the minimality of y in M (—a), contradicts the
fact that a Crp 5. O

An inspection of the properties set out in proposition 5.5.4 reveals something of the
structure of the RE-orderings. They are refined versions of the EE-orderings that
need not be total. Furthermore, every RE-ordering partitions the set of wifs into four
disjoint sets. The logically valid wffs are all equally entrenched and strictly more
entrenched than all other wifs. Next comes the remaining wifs in K. While strictly
more entrenched than the wifs not in K, they need not all be comparable. The third
partitition consists of the K-undecided wffs, which are all strictly less entrenched than
the wifs in K and more entrenched than the K-refuted wffs. (If K is unsatisfiable,
there are not any K-undecided wffs or K-refuted wifs.) So the RE-orderings are able
to distinguish between wffs not in K. In fact, the part of an RE-ordering restricted
to the wifs that are not in K, corresponds to classical entailment relative to K. This
certainly has more intuitive appeal than regarding all the wffs that are not in K as

equally entrenched, such as the EE-orderings do. For example, it makes much more
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sense to regard a wiff that is K-refuted as less entrenched than a wif that is merely
K-undecided, than to regard them both as equally entrenched.

The last two parts of proposition 5.5.4 are worth singling out. Note that part (10)
does not hold for the EE-orderings. An interesting example is the case of a wff a and its
negation. In an EE-ordering Cgp, it is perfectly acceptable to have ~a =¢,,,, a as long
as « is not logically valid or logically invalid. However, if this were the case in an RE-
ordering Cpp, part (10) of proposition 5.5.4 would require that oV —av € [y, thus
contradicting part (4) of the same proposition. Part (11) bears a vague resemblance
to the postulate (EE3), and will be used in our characterisation of the RE-orderings in

terms of postulates. In fact, so will the properties contained in the lemma below.
Lemma 5.5.5 Let Crp be an RE-ordering.
1. If o« 5 vCgrp a then o — 8 Crp « or 8 — v Cre B.

2. If o« - v Cgg « then o Lgg B or f— v Cgre B.

3. If o = v Cgrp athen f ULre v or a — B Cre a.

Proof Let < be a faithful modular weak partial order from which C g is defined using
(Def Cg from <).

1. Suppose that o — 8 Zgg a and f — v Lre . By a — 0 ZLgg « there is a
y € Min<(—«) such x € M(a — ) for every x < y. And by the minimality of
y in M(-a), x € M(a) N M(S) for every x < y. Similarly, 5 — v Lgg  implies
that there is a v € Min<(—f) such that v € M ()N M(vy) for every u < v. Since
< is a modular weak partial order, it has to be the case that v £ y. And this
means that z € M(a)NM(vy) for every z < y. Soy € M(—«a) and x € M(a — )
for every x < y. That is, a = 7 Lz a.

2. Suppose that o Cgp f and  — v Zrg 8. As in part (1), f — v Lge S means
there is a v € Min<(—f) such that v € M(B) N M(y) for every u < v. So by
a Cgg B there is a w < v such that w € Min<(—ca). And since w < v, it follows
that uw € M(«) N M(7) for every u < w. So u € M(a — ) for every u < w.
That is, @« — v Lgg a.

3. Suppose that 5 Cgrr v and @ —  Lgrg . As in part (1), « — [ Lgrp o means
there is a y € Min<(—a)such that x € M(a) N M(f) for every z < y. So by
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B Cre v, z £y for every z € M(—7). And therefore x € M(v) for every = < y.
Soy € M(—a) and z € M(a — ) for every x < y. That is, « — v Lgg a.

5.5.1 Refined entrenchment and the EE-orderings

The application of lemma 5.2.1 to the faithful modular weak partial orders and the
RE-orderings obtained in terms of them, using (Def Cj, from <), yields a useful result.
It shows that two wffs are equally entrenched if and only if their negations have the
same minimal models, and for any two wffs a and 3, both of whom are not logically
valid, « is strictly more entrenched than g if and only if the minimal models of = are
either strictly above the minimal models of —a, or form a strict subset of the minimal
models of —«. As a consequence, two wifs o and [ are incomparable iff the minimal
models of the negations of the two wffs are on the same level, the minimal models of

-« include a model of 3, and the minimal models of =3 include a model of «.

Corollary 5.5.6 Let < be a faithful modular weak partial order, and let Crp be the
RE-ordering defined in terms of < using (Def Cg from <).

1. a=c,, B iff Minc(—8) = Min<(—a).

2. If # « and ¥ 5 then o Cre B iff Min<(—f) C Min<(—a) or Min<(—-a) <

8. allcy, B iff Minc(—a) € M(=8), Minc(—8) € M(—«), and z ||< y orx =y
for every y € Min<(—f) and every x € Min<(—«).

Proof 1. Follows easily from lemma 5.2.1.

2. Suppose that ¥ «, ¥ 3, and o Cgp 3, and suppose there is a y € Min<(—f) and
an v € Min<(—«), such that © £ y. From  Zgg « there is a v € Min<(—«)
such that u € M(f) for every u < v. So, for every s € Min<(—f) and every
t € Min<(—a), s £ t. Therefore the minimal models of —a and —f lie on
the same level. Now pick any u € Min<(—f). By o Cgg B, v € Min<(—a).
Furthermore v is a minimal model of —« that is not a minimal model of =3 and

so Min<(—f) C Min<(—«). The converse follows easily, and is omitted.
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Figure 5.3: A graphical comparison of the EE-orderings and the RE-orderings

3. Suppose « [|c,, B. So there is a v € Min<(—a) such that v € M(p) for every
u < v, and there is a y € Min<(—f) such that x € M(«) for every x < y. The
required result then follows from the fact that v ||< y and that < is a modular
weak partial order. The converse follows easily.

a

A consequence of corollaries 5.2.2 and 5.5.6 is that the RE-ordering which is semantical-
ly related to an EE-ordering C pr maintains the ordering between the equivalence class-
es of wifs modulo Cz but offers an exploded view of each of these equivalence classes.
Figure 5.3 gives a graphical representation of this situation. From an information-
theoretic point of view, the results of corollary 5.5.6 are quite interesting. They show
that the RE-orderings have more of the underlying entailment relation F built into
them than their semantically related EE-orderings. Thus, two wffs are equally en-
trenched when they have ezactly the same set of least entrenched contents bits, not
when their least entrenched content bits are merely on the same level, as is the case
for the EE-orderings. Similarly, a wff 5 will be more entrenched than a wiff a, not
only when the least entrenched content bits of J are more entrenched than the least
entrenched contents bits of «, but also when the least entrenched content bits of «
strictly includes the least entrenched content bits of . And continuing in the same
vein, the incomparability of two wifs o and 3, in terms of refined entrenchment, then
occurs when their least entrenched content bits are on the same level, but neither set

is included in the other.
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The strong link with the entailment relation F is evident when we consider the
faithful modular weak partial order < in which the countermodels of K are all on the
same level. In such a case, the RE-ordering defined in terms of < using (Def Cp from
<) corresponds exactly to entailment relative to K. In fact, an even stronger link exists
in the limiting case where K just contains the logically valid wffs. In this case, there
is only one RE-ordering and one EE-ordering with respect to K. And whereas the
RE-ordering is exactly the entailment relation F, the semantically related EE-ordering
regards all wffs, except for the logically valid ones, as equally entrenched. An elegant
explanation for this difference can be found by looking at < and the semantically
related faithful total preorder <. It is easily verified that < is the identity relation on
U, while < is the Cartesian product U x U. So < represents the epistemic state of an
agent for whom all infatoms are incomparable. In the absence of any preference for
certain bits of information, it has no choice but to revert back to the logical content
of wifs as a measure of the entrenchment. Hence the use of the classical entailment
relation F as the associated entrenchment ordering. On the other hand, the faithful
total preorder < represents the epistemic state of an agent who regards all infatoms as
equally entrenched. Hence all wifs, except the logically valid wifs, are seen as equally
entrenched.

In light of the similarity between the methods of constructing the RE-orderings and
the EE-orderings, it is natural to wonder whether they can be defined in terms of one
another. The next theorem shows that this can be accomplished by the following two

identities:
(Def Cgp from Cpp) a Crp fiffF Sor a Cpp for f Cppa—

(Def Cpp from Crp) aCpp Biff aCrp B or o — B Upge «

Theorem 5.5.7 Let the RE-ordering Crgr and the EE-ordering Cgg be semantically

related.
1. CgE can also be defined in terms of Cgpr using (Def Crp from Cgg)

2. Cgp can also be defined in terms of Crp using (Def Cpg from Crg)

Proof Let < be a faithful modular weak partial order in terms of which Czp is defined
using (Def Cp from <), and let < be the semantically related faithful total preorder

in terms of which Cgg is defined using (Def Cg from <).
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1. Suppose that o« Crp 5. By part (2) of proposition 5.5.4, & Cpr . Suppose
further that o Zgp B, i.e. f Cgr «, and that ¥ 3. Then ¥ « (by part (4) of
proposition 5.5.4), and by corollary 5.2.2 it follows that for every y € Min<(—0)
and every x € Min<(—«a), x =< y. Because ¥ 3 there is thus a v € Min<(—=p)
such that for every u < v, u € M(a) N M(S). Combined with a Cgrp [ this
means that for every w =< v, w € M(=f) N M(—«a) or w € M(S). Therefore
z € M(a — ) for every z < v, and so @« — 3 ULgg B, i.e. B Cprp a — f.
Conversely, if F 3 then o Cgp S follows vacuously. If o Cgg 5, i.e. f Lgg a,
there is a y € Min<(—«) such that € M(f) for every < y. So y < u for every
u € Min<(—f) and therefore « Crp (. Finally, suppose that 8 Cpp o — 3, i.e.
o = [ Zgg B. Then thereisay € Min<(—f) such that x € M(a — ) for every
z <y, and so Min<(—f) = Min<(—f) C M(—«). So for every v € M(—/3), there
is a u € M(—a) such that u < v, i.e. o Cgg f.

2. Suppose that « Cpp [ and that o Zpg 8. By a Lgp [ thereis ay € Min<(—f)
such that = € M(«) for every z < y. So z € M(«a) N M(B) for every z < y, and
from o Cgp S it thus follows that there is a v =< y such that v € M(—a). So
u € M(a — () for every u < v and thus a —  ZLgrg a. Conversely, if « Crp
then o« Cpp [ by part (2) of proposition 5.5.4. And if @ —  Zpp « then
there is a y € Min<(—«) such that x € M(a — ) for every x < y. Therefore
z € M(a) N M(B) for every z < y. So u £ y for every u € M(=f), from which

a Cgp O follows easily.

O

Theorem 5.5.7 also shows that the identities (Def Cgpp from Cgrg) and (Def Cgrp
from Cpp) are interchangeable. That is, if we start with either an RE-ordering or an
EE-ordering, and then apply (Def Cgp from Cgp) and (Def Cgp from Cgg) in the
appropriate order, we end up with the same ordering that we started with. It is thus
appropriate to think of refined entrenchment as an alternative to the EE-orderings.
Indeed, in view of theorem 5.5.7, there is a one-to-one correspondence between the
RE-orderings and the EE-orderings, obtained by applying the two identities (Def Cpp
from Cpp) and (Def Crp from Cpp).

The close relationship between the RE-orderings and the EE-orderings raises the

question of whether the two notions ever coincide. One part of the answer to this
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question is easy. Whenever a faithful preorder < is both a total preorder and a modular
weak partial order, the EE-ordering and the RE-ordering defined in terms of < using
(Def Cp; from <) are, by definition, identical. Now, it is easy to see that this is the

case only when =<, restricted to the countermodels of K, is a linear order.

Definition 5.5.8 For a belief set K, a K-linear order < is a faithful total preorder
such that <= N (U\ M(K)) x (U\ M(K))) is a linear order. O

Proposition 5.5.9 Let < be any K-linear order. The binary relation defined in terms

of < using (Def Cg from <) is an EE-ordering and an RE-ordering.

Proof Follows immediately from the fact that < is both a faithful total preorder and

a faithful modular weak partial order. O

In general, there may be instances of faithful total preorders, or faithful modular weak
partial orders, as the case may be, that are not K-linear orders, but that nevertheless
define the same EE-orderings (or RE-orderings) as some K-linear order. More inter-
esting, no doubt, is that, at least in the finitely generated propositional case, if an
EE-ordering cannot be defined in terms of a K-linear order using (Def Cp from <),

then it is not an RE-ordering, and vice versa.

Proposition 5.5.10 Let L be a finitely generated propositional language with a valu-

ation semantics (V,IF).

1. Let Cgrp be an RE-ordering that cannot be defined in terms of a K-linear order

using (Def Cg from =<). Then Cgg is not an EE-ordering.

2. Let Cgg be an EE-ordering that cannot be defined in terms of a K-linear order
using (Def Cg from =<). Then Cgp is not an RE-ordering.

Proof 1. By definition, Czp can be defined in terms of a faithful modular weak
partial order <, that is not a K-linear order, using (Def Cg from <). That means
there are at least two distinct countermodels « and y of K such that « ||< y. Let
a, be a wif that axiomatises z and let a, be a wif that axiomatises y. (By our
choice of L, there are such wffs.) So Min<(a,) = {2} and Min<(a,) = {y}, and
thus Min<(a,) € M(oy), Min<(oy) € M(ay), and Minc(ay) ||< Min<(oy).
By part (iii) of corollary 5.5.6 it then follows that -, ||c,, —oy, and so Cgp

cannot be an EE-ordering.
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2. Assume that Cgp is an RE-ordering. Then it follows, as in part (i), that Cpgp
cannot be an EE-ordering; a contradiction.
a

5.5.2 Postulates for refined entrenchment

In this section we present a description of the RE-orderings in terms of postulates,
and give a representation theorem to prove that the postulates do indeed provide a

characterisation of the RE-orderings. The postulates are given below.
(RE1) Cgp is transitive
(RE2) If o F 8 then o Cpp
(RE3a) If a, 0 € K then o Cpp a A S, or B Cre a A f,

or both « = f ZLrg a and f — a Lgge S
(RE3b) If « > yCprp athen « — fCrpaor f— v Cpp
(RE3c) If « » v Crg oo then a Lgg for f— v Cgp 0
(RE3d) If @« - v Cgrp a then S Lgg v or @« = 3 Crp «
(RE4a) If o ¢ K and § € K, then « Cpp
(RE4b) If o, ¢ K, then a Crg fiff KU{a} E
(RE5) If o Cgp B for all «, then E

To a certain extent, the postulates for refined entrenchment follow the same pattern as
the postulates for the EE-orderings, and this is reflected in the labelling scheme we use.
(RE1), (RE2) and (RE5) are identical to (EE1), (EE2), and (EE5) respectively. And
while (RE3a) bears a vague resemblance to (EE3), it is a bit more difficult to describe
the intuition associated with (RE3b), (RE3c) and (RE3d). Technically though, they
seem to be necessary for a complete description of the relationship between the wifs
in K. (EE4) gives a complete description of how an EE-ordering treats the wifs that
are not in K, while the handling of such wffs by the RE-orderings are described by the
two independent postulates, (RE4a) and (RE4b). (RE4a) describes the relationship
between wifs in K" and wffs not in K, while (RE4b) is a prescription for the treatment of
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any two wifs, neither of which are in K. To obtain the desired representation theorem,

we need the following two lemmas.

Lemma 5.5.11 If C is a relation on L that satisfies (RE1) to (RE5) then the relation
Crr defined as: a« Cpp B iff « C B or a — B IL «, satisfies (EE1) to (EE5).

Proof For (EE1), suppose that &« Cpp 5 and 8 Cpp . Thatis, « C fora — [ £ «,
and S C v or 8 — v £ f. This can be divided into four cases: (i)  C 8 and § C v,
(i) aC fand f —- v [Z 3, (ili) C vyand « - B £ a, and (iv) @« — [ £ a and
g — v £ B. For (i), a C ~ follows from (RE1). For (ii), (iii), and (iv), @« = 7 £ «
follows from (RE3c), (RE3d), and (RE3b) respectively. So in all four cases, either
aCyora— v« Thatis, « Cgg v. (EE2) follows from (RE2) and (EE3) follows
from (RE3a). For (EE4), suppose that K # L, and let o ¢ K. Assume there is a
such that o Zggp B. That is, £ f and o — 8 C a. By (RE4a) 8 ¢ K, and so,
by (RE4b), K U {a — S} F «. But this means a € K; a contradiction. Conversely,
suppose that & € K. So -« ¢ K, and -« C « by (RE4a). And since a — —a = —«,
we have that a [Z ma and @ — —a C «. That is, a« Lgp —«. For (EE5), suppose that
¥ 8. By (RE5), T Z  and by (RE2), T — SC T. That is, T Zpp 5. 0

Lemma 5.5.12 Let T be a relation on L that satisfies (RE1) to (RE5). If Cry is
defined as: a Cpp B iff a C 8 or a — B L a, and Cgry is defined as as: a CErp B iff
FBoraCggf or 8 Cgg a— 3, then C = Cgg.

Proof By lemma 5.5.11, Cgg is an EE-ordering, and thus a total preorder. By keeping
in mind that o Cpp 8 iff 8 Lk o, noting that (¢« — ) — =« V 3, and combining

the definitions of T and Cgy, it suffices to show that

F 3, or
aCpiff ¢ fLaand f— aC B, or
a—fZPand aV LCa— S

So suppose that a C 3, ¥ 3, and either 5 C « or § — « [Z . We have to show that
a— fIZ Fand aV P C a— (. Assume that « — § C . There are two cases.
Either f C a or f — a I£ . In the former case, « — 3 C f C a. By (RE3c) it thus
follows that o IZ § or § — § C 3, contradicting « C  and ¥ 8 combined with (RE5).
In the latter case, note that « C f C a — ( by (RE2), and since (a« — ) = a = «,
(¢ =» B) - a C a — 5. By (RE3c) we then have that « — S IL 5, 0or f — a C (; a
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contradiction. So we have shown that a — § [Z 5. Now assume that oV £ a — (.
By (RE2),a C B C a— 8. Andsince a = (o — ) - «a, (a - ) > a C a — 3.
By (RE3b) it then follows that (¢« — ) - f C a — 5, or f§ — a C . And since
(¢ = B) = B = aV f, it has to be the case that f — a T . But since we have, by
supposition, that § C « or § — « [£ (3, this means that § C a. From f — o C S it
also follows by (RE3c) that f Z o or « - o C a. So o — « C «, and by (REb), F «.
But this contradicts # 3, a C 3, and (RE5). O

We are now in a position to prove that the postulates given above provide a charac-

terisation of the RE-orderings.

Theorem 5.5.13 FEvery binary relation on L defined in terms of a faithful modular
weak partial order using (Def Cg from <) satisfies (RE1) to (RE5). Conversely, every
binary relation on L that satisfies (RE1) to (RE5) can be defined in terms of a faithful

modular weak partial order using (Def Cg from <).

Proof Let Czg be a binary relation on L defined in terms of a faithful modular weak
partial order using (Def Cg from <). The required result follows from proposition 5.5.4
and lemma 5.5.5. For the converse, let C be a relation on L that satisfies (RE1) to
(RE5). Now define a relation Cpp on L as follows: « Cpp fif a CE for a — S L a.
By lemma 5.5.11, Cgg is an EE-ordering, and by theorem 3.3.1, there is thus a faithful
total preorder < from which C g can be obtained using (Def Cg from <). By theorem
5.5.7, the faithful modular weak partial order semantically related to < defines the
RE-ordering Cgrp using (Def Cgp from Cgg). And by lemma 5.5.12, C and Cgp are
identical. a

5.5.3 Refined entrenchment and AGM contraction

Just as in the case of the EE-orderings and AGM contraction, the RE-orderings and

AGM contraction are interdefinable; in this case using the following two identities:
(Def Cgp from ~) aCgrp fiffa > e K ~aAp

allre B — «, or

(Def — from Cgp) BEK—aiffBEKand{
a¢ K
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Definition 5.5.14 An RE-ordering and an AGM contraction are semantically related
iff they can be defined in terms of the same faithful modular weak partial order using
(Def Cp from <) and (Def ~ from <). O

Theorem 5.5.15 Suppose that the RE-ordering Crp and the AGM contraction — are

semantically related.
1. CgrE can also be defined in terms of — using (Def Crp from ~).

2. — can also be defined in terms of Crp using (Def — from Crg).

Proof 1. Let < be a faithful modular weak partial order in terms of which Cgrg
and — are defined using (Def Cp from <) and (Def ~ from =<). Now suppose
that « = ¢ K —a Af. So thereisay € M(K)U Min<(—(a A ()) such that
y € M(an-p). If ye M(K) then z € M(«) for every x < y and so a Lp 3.
And similarly, if y € Min<(—(a A 3)) then € M(«a) for every x < y and so
« Zge . Conversely, suppose that o Zgg . Then there is a y € Min<(—f)
such that x € M(«) for every x < y. Soy € M(a) and y € Min<(—(a A B)),
and thus « - ¢ K — a A p.

2. Follows from theorems 3.3.4 and 5.5.7.
O

And as in similar cases discussed before, the identities (Def Ty from ~) and (Def —
from Cgp) are interchangeable. That is, if we start with either an AGM contraction or
an RE-ordering, and apply (Def Cgg from ~) and (Def — from Cgg) in the appropriate
order, we end up with the same AGM contraction or RE-ordering. In fact, we can
extend the interchangeability of identities further by noting that the identity (Def —
from Cpp), when applied to the EE-ordering Cp, and the identity (Def — from Cgp),
when applied to the RE-ordering C iz which is semantically related to C g, both yield

exactly the same AGM contraction —.

Corollary 5.5.16 Let the RE-ordering Crg, the EE-ordering Cgg, and the AGM
contraction — be semantically related. Then — can also be defined in terms of Crg

using (Def — from Crg), as well as in terms of Cpp using (Def — from Cpp ).

Proof Follows easily from proposition 3.3.4, and theorems 5.5.15 and 5.5.7. a
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In the case of a finitely generated propositional language, the definition of AGM con-
traction in terms of the RE-orderings can be simplified considerably. Consider a faithful
modular weak partial order < on the interpretations of such a finite L, and let Cyp
be the RE-ordering defined in terms of < using (Def Cg from <). From part (10) of
proposition 5.5.4, it follows that for every «, there is a € [a|c,, such that v = 3 for

every v € [a]z,,. That is, every equivalence class [a] contains a logically weakest

ErE
wif. We use "o 'gg to denote a canonical representative of the logically weakest wiffs
in [|c,,, and show below that if o, 5 € K, then f € K —a iff f = aF "a'gp. That
is, if v is in K, then checking whether a wif § € K is retained in K — « is a matter of

checking whether 5 — « entails a logically weakest wif in [o]c,,.

Proposition 5.5.17 Let L be a finitely generated propositional language, < a faithful
modular weak partial order, — the AGM contraction defined in terms of < using (Def
~ from =), and Cgg the RE-ordering defined in terms of < using (Def Cg from <).
If o, € K then f € K —a iff f = a F "at,, (where "a kg is a canonical

representative of the logically weakest wffs in [o]c,, ).

Proof By theorem 5.5.15, if o, € K, then § € K — «a iff @ rr f — «. Since
aF B — «, it follows from part (3) of proposition 5.5.4 that o Cgrp 8 — «, and this
result can thus be rewritten as follows: If o, f € K, then f € K —«iff f — o € [a]c,,.
Now suppose that o, 5 € K. If f € K — «, then  — « € [q]

is logically weaker than every wif in [a]|c,,, f = a F "o’

1 [
Cre» and since "o ',

Crp- Conversely, if § —
a F "o, then, by part (3) of proposition 5.5.4, f — &« Cgg "a'c,,. Furthermore,

since "a 'z, € [a]c,,, we get that "a ', Cge «, and so, by the transitivity of C g,
f — a Cgrp a. And because a F  — «, it follows from part (3) of proposition 5.5.4
that « Cgrp B — . Thus f — « € [a]c,,, and it follows from the result above that

g e K —a. O

5.5.4 A comparison with generalised entrenchment

Since the EE-orderings are all instances of the LR-orderings of Lindstrom and Rabi-
nowicz, the one-to-one correspondence between the EE-orderings and the RE-orderings
provide an indirect relationship between RE-entrenchment and certain instances of
LR-entrenchment. But we can also obtain a different connection by noting that the
RE-orderings all satisfy the postulate (LR3).
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Proposition 5.5.18 Every RE-ordering Cpp satisfies (LRS).

Proof Suppose a Crp 8 and a Cgrg v, let < be a faithful modular weak partial order
from which Cgp is defined, using (Def Cp from <), and pick a y € M(—=(8 A 7)). So
y € M(—=p) or y € M(—7). In the former case it follows from o Cgpr 5 that there is
an x € M(—«a) such that x < y. And in the latter case it follows from « Cpp v that
there is an # € M (—«) such that x <y. So o Crg B A 7. O

Since the LR-orderings require that all the wifs not in K be equally entrenched, the RE-
orderings do not qualify as instances of the LR-orderings. However, the RE-orderings
conform to the conditions imposed by the LR-orderings on the wifs in K. In this sense,
there is an LR-ordering corresponding to every RE-ordering. On the other hand, the
following example shows that some LR~orderings do not correspond to any RE-ordering,

even when we restrict ourselves to just the wifs in K.

Example 5.5.19 Consider the propositional language L generated by the two atoms
p and ¢ with the valuation semantics (V,IF), where V' = {11,10,01,00}. Now, let
K = Cn(p A q), and consider the LR-ordering C; x defined as follows:

(BeLifadK,
pANqgEfifa=pAgora=p<+rqora=por

a=qora=-pVyg,

aC if <
Cirf pVqgEpfifa=pVay,
pV-qgEpBifa=pV g,
\ aeLif Ffj.

Figure 5.4 contains a graphical representation of C;z. An inspection of figure 5.4
reveals that T is indeed an LR-ordering, but it can be verified that the part of T,z
restricted to the elements of K does not coincide with the restriction of any RE-ordering
Cgre to K. O

We now turn to a comparison of Rott’s GEE-orderings (see section 5.4.2) and the RE-
orderings. Observe firstly that, since the EE-orderings are total preorders, taking the
converse complement of an EE-ordering C g is the same as taking its strict version
Cre- In the case of the RE-orderings, this is not the case, though. One way to obtain
a comparison of the RE-orderings with the GEE-orderings is to check whether the
RE-orderings satisfy the following translations of the GEE postulates into assertions

about the converse complements of the GEE-orderings:
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PAa,p < ¢,p,q, V|

L,=pAg,pA=g,—pA-g,-(p<q),pV g

Figure 5.4: A graphical representation of the LR-ordering used in example 5.5.19. The
ordering is obtained from the reflexive transitive closure of the relation determined by
the arrows. Every wif in the figure is a canonical representative of the set of wiffs that

are logically equivalent to it.

(CGEEl) TC T

(CGEE2?1) If yC wand f E y then S C «
(CGEE2)) If BC v and v F a then S C «
(CGEE3?T) If GAyC athen fCaor yC o
(CGEE3)) If SC athen BC aAf
(CGEE4) If K #Cn(L) thena C Liff a ¢ K
(CGEEY) If f € K and f C « then o € K
(CGEE5) If T C « then F «

(CGEE5') f TC fand C awthen T C «

It is easily verified that the RE-orderings satisfy (CGEEL), (CGEE21) and (CGEE2]),
the three postulates regarded by Rott as minimal conditions of rationality for every

relation designed to formalise the concept of epistemic entrenchment. Furthermore,
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they also satisfy (CGEE3]), (CGEE4’), (CGEE5) and (CGEES5'), but do not satis-
fy (CGEE31) or (CGEE4). They do satisfy the left-to-right direction of (CGEE4),
though.

Proposition 5.5.20 The RE-orderings satisfy the postulates (CGEE1), (CGEE2T),
(CGEE2|), (CGEES|), (CGEEY'), (CGEES5) and (CGEES ). Furthermore, they do
not necessarily satisfy (CGEESY) or (CGEEY4), but they do satisfy the left-to-right
direction of (CGEE/).

Proof Let < be a faithful modular weak partial order in terms of which Cgg can be
defined using (Def Cg from <). (CGEEL) follows from (RE2), and (CGEE27) and
(CGEE2]) both from (RE1) and (RE2). For (CGEE3]), suppose that 5 Cgp o and
pick any y € M (=(aAB)). Soy € M(—p) or y € M(—«). We have to show that there
is an < y such that x € M(=p). If y € M (=), this follows from the reflexivity of
<, and if y € M(—a), it follows from the fact that § Crp a. (CGEE4") follows from
(RE4a), (CGEES) from (RE2) and (RE5), and (CGEEY') follows from (RE1).

To show that the RE-orderings do not always satisfy (CGEE31), let K = Cn({p <>
q}) and consider the RE-ordering Cgp, with respect to K, which is defined as follows:

([ BeLifa¢K,
e Kifa=p<+q,
alrrp fift ¢ pogERiIfa=p—q,
qg—pFEpifa=qg—p,
| FAif Fa.

It is readily verified that Cgp is indeed an RE-ordering. By letting o = p > ¢,
B =4q < q, v =p < q, and observing that # A v = «, we see that Crg violates
(CGEE31).

To show that the RE-orderings do not always satisfy (CGEE4), it is sufficient to
observe that the entailment relation F is an RE-ordering with respect to the belief set
Cn(T). Finally, that every RE-ordering satisfies the left-to-right direction of (CGEE4)
follows from (RE4a). O

As observed above, the converse complement of an EE-ordering is the same as its
strict version. It might therefore be instructive to determine whether or not the strict

versions of the RE-orderings are instances of the GEE-orderings. It turns out that the
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strict RE-orderings satisfy (GEEL), (GEE21), and (GEE2]), but do not always satisfy
(GEE37) and (GEE3]).

Proposition 5.5.21 Let Cgrp be the strict version of an RE-ordering. Then Crp sat-
isfies (GEE1), (GEE2T) and (GEE2] ), but does not, in general, satisfy either (GEE31)
or (GEES3)).

Proof (GEE1) is trivial. (GEE271) and (GEE2]) both follow from (RE1) and (RE2).
To show that (GEE37) and (GEE3]) do not always hold, consider the LR-ordering
C .k in example 5.5.19. It is easily verified that C, ; is also an RE-ordering, defined in
terms of the faithful modular weak partial order < using (Def Cp from <), where <

is defined as follows:
<= {(v,7) |z € Uy U{(1L,y) | y € U} U{(10,00), (01, 00)}.

Figure 5.5 contains a graphical representation of < and the RE-ordering C g defined
in terms of < using (Def Cp from <). Note that the LR-ordering in example 5.5.19
is identical to Cggr. As noted in example 5.5.19, Cpg violates both (GEE31) and
(GEE3)). O

With regard to the supplementary postulates, the strict RE-orderings satisfy all but
the left-to-right direction of (GEE4).

Proposition 5.5.22 The strict version C"rp of an RE-ordering satisfies the right-
to-left direction of (GEE4) (but not the left-to-right direction), as well as (GEE/'),
(GEE5) and (GEEY').

Proof (RE4b) ensures that the left-to-right direction of (GEE4) does not always hold,
and (RE4a) ensures that the right-to-left direction holds. (GEE4’) follows from (RE4a),
and both (GEE5) and (GEE5Y') follow from (RE2) and (RE5). O

The results above seem to suggest that the GEE-orderings and the RE-orderings have
quite different intuitions associated with them. Whereas the GEE-orderings consitute
a proper generalisation of the EE-orderings, the RE-orderings should be seen as al-
ternatives to the EE-orderings. This is highlighted when the link with contraction is
investigated. Rott applies (Def — from Cpp) to the GEE-orderings to obtain a set of
contractions that is a strict superset of AGM contraction. In contrast, (Def — from

Cre) applied to the RE-orderings yields precisely the set of AGM contractions.
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///gm\\\ //?vq

10 01 ‘—@\/q)q‘

p;pV q|

11 P q,pAq

PA¢ g ~(p<q),L,pA-g,—pV g, pAg,p

Figure 5.5: A graphical representation of the faithful modular weak partial order <
used in in proposition 5.5.21, as well as the RE-ordering defined in terms of < using
(Def Cp from =<). Both orderings are obtained from the reflexive transitive closure
of the respective relations determined by the arrows. Every wff in the representation
of the RE-ordering is a canonical representative of the set of wifs that are logically

equivalent to it.

5.5.5 Refined G-plausibility

We have seen in theorem 3.3.1 that the duals of the EE-orderings (the GE-orderings
of Grove) can be defined in terms of the faithful total preorders using (Def C¢ from
=<). In a similar manner, by applying (Def C from <) to the faithful modular weak
partial orders, we can obtain a set of orderings that are dual to the RE-orderings. We

shall refer to them as the RG-orderings.

Definition 5.5.23 An RG-ordering is a binary relation on L obtained in terms of
a faithful modular weak partial order using (Def Cg from <). We say that a GE-
ordering and an RG-ordering, defined respectively in terms of a faithful total preorder
and its semantically related modular weak partial order, using (Def Cq; from <), are

semantically related. O
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From the definitions of the RE-orderings and the RG-orderings it is clear that they can
be defined in terms of one another using (Def Cg from C;) and (Def Cg from Cg). By
virtue of (Def Cg from Cp), the results about the RE-orderings can thus be translated
into results about the RG-orderings. While such an exercise would serve little purpose
in most cases, it is our intention to concentrate on two aspects pertaining to the use of
the RG-orderings. The first is a comparison of the suitability of the RG-orderings and
the GE-orderings as orderings of plausibility. The second aspect involves the definition
of AGM revision in terms of the RG-orderings. The results provided in the proposition

below will be used in the discussion of these two aspects.

Proposition 5.5.24 Let Cro be the RG-ordering defined in terms of the faithful mod-
ular weak partial order < using (Def Cg from <). Then Cre satisfies the following

properties.

1. Cge is a preorder (that need not be total).

2. Suppose that the GE-ordering Cgr and the Cgie are semantically related. If
a Egg f then a Egg B.

3. If a F 8 then 8 Cgg a.
4. F~aiff for all g € L, B Cga a.
5. If K is satisfiable then K = [T]c,,-
6. If K Fa and K ¥ (§ then a Cgrg 5.
7. If K ¥ —p and K F =y then 8 Crg 7.
8. If KU{a} ¥ L then K U {a}F g iff f Cge a.
Proof The proofs are similar to that of proposition 5.5.4 and are omitted. O

These properties reveal that the RG-orderings are finer grained versions of the GE-
orderings. They are preorders like the GE-orderings, but they need not be total. For
every satisfiable belief set K, they partition the set of wifs into four disjoint sets, and
not three, as the GE-orderings do. The logically invalid wifs are all equivalent and
strictly above all other wffs, followed by the rest of the K-refuted wifs, just as with
the GE-orderings. However, whereas the GE-orderings lump the K-established wffs
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together with the wiffs that are K-undecided, the RG-orderings distinguish between
these two sets. In particular, the wffs in K are all equivalent and strictly lower than all
other wffs, while the K-undecided wifs are strictly below all K-refuted wffs. Finally,
the K-undecided wffs are not all comparable. Instead, any RG-ordering restricted to
the K-undecided wffs (or, in fact, restricted to all wifs except those that are K-refuted)
is exactly the inverse of entailment relative to K. So the only part of any RG-ordering
that is not completely specified by K itself, is the ordering restricted to the wifs that
are not logically invalid, but are nevertheless K-refuted.

In view of these results, the RG-orderings seem to be more suitable as plausibility
orderings than the GE-orderings. This is due mainly to the fact that they are finer
grained versions of the GE-orderings. Unlike the GE-orderings, an RG-ordering (with
respect to K) does not regard the wffs in K and the K-undecided wffs as equally
plausible, or equally close to the belief set K. Instead, all the wffs in K are seen as
more plausible than the K-undecided wffs, a result that surely is more in line with the
intuition of plausibility. More important, perhaps, is that the added structure of the
RG-orderings also extends to the K-refuted wiffs, enabling us to give a definition of
revision that is both simpler and more intuitively appealing than (Def x from Cgp).

The intuition underlying the use of the RG-orderings to define AGM revision can
be described as follows. When revising a belief set K with a wif o, K *« should consist
of a set of wifs that entails «, while still being satisfiable. Now, the set consisting of
the wffs that are precisely as plausible as «, certainly entails « (since it includes «).
So if this set is satisfiable, all the wifs in it should be included in K xa. As a result, we
should choose K x« to consist of all the wifs entailed by the set of wifs that is precisely
as plausible as a. That is, AGM revision can be defined in terms of the RG-orderings

as follows:

(Def * from Cpi;) K xa = Cn([a]gm)

Theorem 5.5.25 Let < be a faithful modular weak partial order and let Cra be the
RG-ordering defined in terms of < using (Def T from <). The revision defined in
terms of < using (Def x from <) can also be defined in terms of Crg using (Def x

from Cre).

Proof It suffices to show that for all o, 8 € L, [a]-, . F B iff B € Th(Min<(a)). So
suppose that [o]- ~F 8. That is, 8 € Th(({M(y) | v € [alc,,})- By corollary
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5.5.6 and theorem 2.3.5, Min<(a) = Min<(y) for every v € [a]-, .. So Min<(a) C
(WM (y) | v € [elg,,}, and thus 3 € Th(Min<(«)). Conversely, suppose that 3 €
Th(Min<(«)). Clearly, we also have that o A f € Th(Min<(«)). So, for every y €
M («) there is an x € M(«a A ) such that < y, which means that a A f Cre a.
Furthermore, because o A 8 F «, it follows from part (3) of proposition 5.5.24 that
aCreaApB. SoaAf =c,, o and thus [a]ERG F S O

For the sake of completeness, we include two identities that can be used to define the
GE-orderings and the RG-orderings in terms of each other. That these two identities
can indeed be used for this purpose follows easily by applying (Def Cg from Cg), (Def
Cpg from Cgg), (Def Crp from Cge), (Def Crp from Cgg) and (Def Cg from Cg).

(Def Cgp from Crip) aCop fiff  Cre S or ~aA B Ere o

(Def Cre from Cgp) a Cre Biff E = or a Cap B or f Ege ~a A B

5.6 Other alternatives

In this section we take a brief look at ways to remove the minimality and maximality
conditions on the EE-orderings (see section 2.3). Two proposals in which both these
conditions do not feature are the GEE-orderings of Rott, considered in section 5.4.2,
and the expectation orderings of Gérdenfors and Makinson [1994]. The expectation
orderings are required to satisfy the postulates (EE1), (EE2) and (EE3), but not (EE4)
and (EE5), and can thus be seen as the EE-orderings without the minimality and
maximality conditions imposed on them. They are used to define the expectation

based consequence relations, discussed in section 4.4.1, as follows:
(Def |~ from C) appgiff g € Cn({a} U{y | -a C v})

Interestingly enough, Géardenfors and Makinson point out that the expectation based
consequence relations can also be defined in terms of the EE-orderings using (Def
from C). So if the interest in the expectation orderings is motivated solely on their
relationship with the expectation based consequence relations, we might as well stick
to the EE-orderings.

Let us now take a closer look at these two conditions individually. We first consider

the maximality condition — the requirement that the most entrenched wffs are nothing
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but the logically valid wffs. The most obvious way to remove this requirement is
to remove the corresponding postulate (or postulates). Thus, for the EE-orderings
it is a matter of removing (EE4), for the LR-orderings the removal of (LR5), and
for the GEE-orderings the removal of (GEE5) and (GEE5Y'). But there is also an
elegant semantic way in which to consider this issue. Intuitively, the objection to this
maximality condition is that some of the beliefs of an agent might be so entrenched as
to be on the same level as the logically valid wifs. It is reasonable to regard these wifs
as being entrenched to such an extent that they cannot be dislodged from the belief set
of the agent. As such, they should rather be seen as part of the knowledge of the agent.
We can achieve the desired effect by moving to a new semantics for L in which these
wifs are logically valid. This new semantics is obtained from the current one by taking
the new set of interpretations as the set of models of these wifs. That is, if B is the
set of beliefs that should be regarded as knowledge, we replace the current semantics
(U,IF) by the new semantics (M (B),IFg), where IFg is just the satisfaction relation I+
with the first coordinates restricted to M (B).

We now turn to the minimality condition — that all wifs not in K should be
equally entrenched and strictly less entrenched than the wffs in K. The objection to
this requirement is, of course, concerned with the insistence that all wifs not in K
be equally entrenched, and not with the decision to place the wiffs that are not in K
strictly below the wifs in K. In fact, it seems reasonable to require that all versions of
entrenchment should satisfy (RE4a) on page 115.% This is the condition termed stability
by Rabinowicz [1995], and is clearly satisfied by all the versions of entrenchment that

we have considered so far.

With regard to the issue of the comparability of the wffs not in K, we can distinguish
between three approaches. The first is to apply the same conditions that are being
placed on the comparability of wifs in K. Thus, for the EE-orderings it is a matter of
applying (EE3) to the wifs not in K as well, and replacing (EE4) by (RE4a), while such
a suggestion applied to the LR-orderings merely involves the replacement of (LR4) by
(RE4a).

81f there is no explicit mention of a belief set, the extraction of a suitable one from the entrenchment
ordering should be performed in such a way as to ensure the satisfaction of (RE4a). For example,
Rott’s basic GEE-orderings do not refer to a belief set, but the belief set obtained from a GEE-ordering

Ceer is taken as the set {a | L Capr a}.
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A different suggestion due to Rabinowicz [1995], and one that relates specifically to
the EE-orderings, is to use their semantically related GE-orderings (obtained using (Def
Cg from Cp)) to distinguish between the wifs not in K. As we have seen in section 5.3,
this corresponds to Spohn’s R-orderings. For a satisfiable belief set K, an R-ordering
Cr partitions the wffs of L into three classes: Those that are K-believed (the wifs in
K), those that are K-disbelieved (the K-refuted wifs), and those that are K-neutral
(the K-undecided wffs). The K-neutral wffs are all equally entrenched, strictly less
entrenched than those wifs that are K-believed, but strictly more entrenched than the
K-disbelieved wifs. Note, however, that the relative ordering of the K-believed wifs
is a mirror image of the relative ordering of the K-disbelieved wffs, and vice versa.
That is, if @ and 8 are both K-believed, or if both are K-disbelieved, then oo Cy [ iff
-8 Cr —a. The R-orderings thus involve the imposition of a kind of symmetry between
the ordering of the belief set and the disbelief set of an agent that seems difficult to
justify.

As a result, we propose to generalise this idea as follows. Instead of combining
an EE-ordering Cpp and the particular GE-ordering obtained in terms of Cgzp using
(Def Cg from Cp), we combine Cpp and any GE-ordering (with respect to the same
belief set K). To be more specific, given any EE-ordering Cpp and any GE-ordering
Cqe, both with respect to the same belief set K, we define a combined entrenchment

ordering C¢ in terms of Cgp and Cgop as follows:

alrg fifa,pfeK,
(Def C¢ from Cpp and Cep) aCe fiff ¢ fCgpaifa,f ¢ K,

a ¢ K and § € K otherwise
The combined entrenchment orderings retain the partitioning of the R-orderings, as well
as the property that all K-neutral wffs are equally entrenched, but have the advantage
of not being subject to the requirements of symmetry between the belief set and the
disbelief set of an agent.

We conclude this section with some thoughts on the way refined entrenchment
handles the comparability of wifs not in K. Although the RE-orderings are able to
distinguish between the entrenchment of wifs not in K, this ability is little more than a
reflection of the underlying entailment relation = and does not seem to express a genuine
difference in the entrenchment of such wifs. For a more satisfactory description of the
relative entrenchment of such wffs, we have a choice between the two proposals related

to the minimality condition, applied to the RE-orderings. The application of the first
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proposal involves doing away with (RE4b), and applying (RE3a) to all wifs, and not
just those in K. The second proposal involves the RE-orderings and the RG-orderings.
Given any RE-ordering Cpr and any RG-ordering C g, both with respect to the same
belief set K, we define a CR-ordering Ccp in terms of Crp and Cge using (Def Co

from Cpp and Cgp).

Definition 5.6.1 A binary relation on L is a CR-ordering, with respect to a belief set
K, iff it is defined in terms of an RE-ordering with respect to K, and an RG-ordering
with respect to K, using (Def C¢ from Cpp and Cgp). O

From the properties of the RE-orderings and the RG-orderings, it follows that for a

satisfiable belief set K, every CR-ordering Cg partitions the wifs of L into five classes:

1. The logically valid wiffs are all equally entrenched, and more entrenched than all
other wifs.

2. The wifs that are K-believed, but not logically valid, are strictly less entrenched

than the logically valid wiffs, and more entrenched than all other wifs.

3. The K-neutral wifs are less entrenched than the K-believed wifs and more en-
trenched than the K-disbelieved wifs. Moreover, the CR-ordering restricted to

the K-neutral wifs corresponds to entailment relative to K.

4. The K-disbelieved wifs that are not logically invalid are less entrenced than the
K-believed and the K-neutral wifs, but more entrenched than the logically invalid

wis.

5. And finally, the logically invalid wffs are all equally entrenched, and less en-
trenched than all other wffs.

5.7 Unifying epistemic and refined entrenchment

From the discussion on refined entrenchment it is clear that the RE-orderings are in-
tended as alternatives to the EE-orderings. This view is supported by the results
about the connection between the RE-orderings, the EE-orderings and AGM contrac-
tion. The main difference between the RE-orderings and the EE-orderings is that the
RE-orderings are not all total preorders. And while this renders the RE-orderings
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more appropriate in certain respects, it has its downside as well. For in embracing
the RE-orderings at the expense of the EE-orderings, we also discard the property of
being able to compare all wifs in all but some limiting cases. The question that arises
is thus whether it is possible to obtain a unified view of entrenchment, encompassing
both refined entrenchment and epistemic entrenchment. From a semantic viewpoint,
there is a positive answer to this question. It involves the use of a set of faithful pre-
orders which strictly includes the faithful total preorders and the faithful modular weak

partial orders.

Definition 5.7.1 A preorder < on a set V is called layered iff for every z,y,z € V, if
z < z and either z =< y or z [|< y, then z < y. O

Layered preorders appeal to the same intuition that underlies the total preorders,
the modular weak partial orders and the modular (strict) partial orders. The idea is
that the elements of V' are arranged in levels, with elements in different layers being
comparable. The difference between all these types of orderings concerns the way in
which elements in the same layer are treated. So, while the total preorders regard all
elements in the same layer as comparable, and the modular weak partial orders take
all distinct elements in the same layer as incomparable, the layered preorders provide
a compromise between these two extremes: they allow for both the comparability and
the incomparability of elements in the same layer. Using this intuition, it is clear that
every layered preorder is uniquely associated with a modular weak partial order and a
total preorder. (And in fact, every total preorder and every modular weak partial is a

layered preorder.)

Definition 5.7.2 A modular weak partial order < on a set X, a total preorder < on
X, and a layered preorder < on X are semantically related iff < can be defined in
terms of < using (Def < from <) and < can be defined in terms of < using (Def <
from <). O

It is easily verified that a faithful layered preorder and its semantically related faithful
total preorder and faithful modular weak partial order are minimal-equivalent (see
definition 3.3.6).

Proposition 5.7.3 A removal and a revision defined in terms of a faithful layered

preorder 3 using (Def ~ from <) and (Def x from <), can also be defined in terms
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of its semantically related faithful total preorder <, and its semantically related faithful
modular weak partial order <, using (Def ~ from <) and (Def x from =<).

Proof Follows from the fact that Min<(a) = Min<(a) = Min<(a) for every a € L.
([

As a result we can use either the faithful layered preorders, or the faithful modular

weak partial orders, or the faithful total preorders to characterise AGM theory change.

Corollary 5.7.4 Let X be a faithful layered preorder, let < be the faithful modular
weak partial order obtained in terms of = using (Def < from <), and let < be the
faithful total preorder obtained in terms of = using (Def < from <).

1. The AGM revisions defined in terms of <, 3, and < using (Def * from <) are

1dentical.

2. The AGM contractions defined in terms of <, 3, and < using (Def ~ from <)

are identical.
Proof Follows from theorem 3.2.6 and proposition 5.7.3. O

From an information-theoretic point of view, the faithful layered preorders provide us
with a degree of freedom that is lacking in both the faithful total preorders and the
faithful modular weak partial orders. It allows us to regard some infatoms as being
incomparable with respect to entrenchment, and others to be equally entrenched. As
a result, the faithful layered preorders can be used to define a class of entrenchment

orderings that generalises both the RE-orderings and the EE-orderings.

Definition 5.7.5 A binary relation Cgrp is a GRE-ordering iff it is defined in terms
of a faithful layered preorder < using (Def Cp from <). We say that a GRE-ordering,
an RE-ordering, and an EE-ordering defined respectively in terms of a faithful layered
preorder, its semantically related total preorder, and its semantically related modular

weak partial order, using (Def Cp from <), are semantically related. O

From theorem 3.3.1, definitions 5.5.3 and 5.7.5, and the fact that the faithful total
preorders and the faithful modular weak partial orders are instances of the faithful
layered preorders, it immediately follows that the EE-orderings and the RE-orderings

are all instances of the GRE-orderings. We conclude with a list of properties of the
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GRE-orderings. The obvious question, whether there is a set of postulates that gives
a precise description of the GRE-orderings, seems to be a non-trivial one. We leave
a proper investigation of this issue, and the quest for an appropriate representation

theorem, for future research.

Proposition 5.7.6 Let < be a faithful layered preorder, and let Carp be the GRE-
ordering defined in terms of < using (Def Cp from <). Then Cgrp satisfies the

following properties.
1. Cgre is a preorder (that need not be total).

2. Suppose that Cgre and an EE-ordering Crr are semantically related. If o Corp
B then a Cgg (.

3. Suppose that Cgre and an RE-ordering Crp are semantically related. If o Crp

then o Egre B.
4. If a E B then a Cgre B.
5. a Cgrp B for dll a iff E B.
0. If o« = [ then a Egre v iff B CEere v, and v Egre « iff ¥ Ecre B
7. If K is satisfiable then {a | nav € K} C [L]cp,-
8. Ifa¢ K and € K then o Carr S.
9. If -f € K and —y ¢ K then § Cgre 7.
10. If « ¢ K and K U{a} E B then o Care .
11. If @ =cipp B then a NG € [0]cgpe = [Bliers:

12. a Cgre a A B, or B CEgre a A\ B, or both o — 8 Lgrr a and 8 — o Lgre 5.

Proof The reflexivity and transitivity of Corge are trivial. To show that Core need
not be a total preorder, consider the example of a propositional language generated by

two atoms, p and ¢. Now let K = Cn(p) and consider the faithful layered preorder

{(z,2) |z €Ut U{(z,y) [z € M(K) and y ¢ M(K)}.
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It is easily verified that ¢ Zgrr —q and —q Zgre q. For (2) and (3), let < be a faithful
layered preorder in terms of which Corp can be defined using (Def Cg from <), let <
be the faithful modular weak partial order that is semantically related to <, and let <
be the faithful total preorder that is semantically related to <. Then (2) follows from
the fact that if z < y then z <y, and (3) from the fact that if x <y then z x y. (4)
is trivial. For (5), suppose that a Cgrp 8 for all a.. So in particular T Cgrpe [, which
can only be if M (=) = (). Therefore F 5. Conversely, if E 8 then M (=) = 0, from
which it follows vacuously that o Cgrp S for all a. (6) is trivial. For (7), suppose
that K is satisfiable and pick any « such that ~a € K. 1 Cgre o follows from
1 F « and part (4), and o Cgrp L from the faithfulness of <. For (8), suppose that
a ¢ Kand g€ K. So M(K)N M(—3) = 0, and since K has a model that satisfies
-, it follows from faithfulness that for every y € M(—f) there is an z € M(—«)
such that x < y. That is, a Cgreg . On the other hand, since K has a model y
that satisfies =«, and since all models of K satisty (3, it follows from faithfulness that
x € M(p) for every x < y, and thus § Lgrgr «. For (9), suppose that =5 € K and
-y ¢ K.  Cgre v follows from faithfulness. For the proof of (10), let v ¢ K and
suppose that K U {a} F . Now pick any y € M(—f). If y ¢ M(K) then, because
M(K)NM(—a) # 0, there is an x € M (K)NM (—«) such that z < y. Andify € M(K)
then, because M (K)NM(«) C M(5), y ¢ M(«), and there is thus an x € M (—«a) such
that © < y. So o Cere . For the proof of (11), suppose that o =¢,,,, . By part (4),
a A B Cgre o To show that o Carp ao A S, pick ay € M(—~a Vv —3). If y € M(=p)
then oo Cgrpe [ guarantees that there is an x € M(—«) such that x < y, and the case
where y € M(—«) is trivial. For the proof of (12), suppose that « Zgrp o A B and
B Zare a A B. Then there is a y € Ming(—a V —f) such that + € M(«) for every
r < y, and there is a v € Ming(—~a V =) such that v € M(J) for every u < v. So
y € M(a)NM(—=p) and z € M(a)NM(B) for every z < y. Similarly, v € M(—-a)NM ()
and v € M(«) N M(S) for every u < v. Since < is a layered preorder, it therefore has
to be the case that y || v. Soy € M(—-f) and z € M(8 — «) for every = < y. That
is, 8 = a Lgre (- And similarly for v, a — 8 Lgre . O

5.8 Summary

Entrenchment orderings play an important role in belief change. They are regarded

as more fundamental than theory change operations such as revision and contraction
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[Gérdenfors, 1988,p. 88], and are seen as suitable representations of the epistemic states
of an agent [Nayak, 1994a,b, Nayak et al., 1996], at least for the part pertaining to belief
change. While we are in agreement with the idea of entrenchment being more basic
than theory change operations, it should come as no surprise that our view concerning
the representation of epistemic states is rather different. We regard the faithful layered
preorders as more fundamental than entrenchment, a view that is supported by the
results in this chapter. In particular, we saw that the different kinds of entrenchment
orderings discussed all turn out to be have a semantic basis, and more specifically, are
rooted in (some subset of) the faithful layered preorders. This prompts the following
generalisation of definitions 3.3.8, 5.5.3 and 5.5.14.

Definition 5.8.1 An AGM contraction —, an AGM revision %, an EE-ordering C
a GE-ordering Cqp, an RE-ordering Cgp, and an RG-ordering C g are semantically
related iff there is a faithful total preorder < and a semantically related faithful modular

weak partial order < such that
1. — can be defined in terms of < (and <) using (Def ~ from <),
2. * can be defined in terms of < (and <) using (Def * from <),
3. Cprp can be defined in terms of < using (Def Cp from <),
4. Cgp can be defined in terms of < using (Def Cg from <),
5. Cre can be defined in terms of < using (Def Cp from <), and
6. Cre can be defined in terms of < using (Def Cg from <).

O

Figure 5.6 contains a summary of some the results related to faithful layered pre-
orders, and extends the results in figure 3.2 on page 58. Gérdenfors and Makinson
[1994,p. 244] advance the view that entrenchment orderings such as their expectation
orderings, are more fundamental than structures such as the faithful layered preorders.
Their argument is that placing an ordering on sets of states (or worlds or infatoms)
is epistemologically more advanced than placing an ordering on beliefs in the form
of wifs of L. Accordingly, they see the former as being derived from the latter, and

leave the question of how an agent obtains such an ordering on wffs to the field of
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(Def — from Cg) (Def Cgpl|from Cg)

(Def Crp from Crpp)

(Def Cpp from CrEg)

(Def EE‘ from Eg)

(Def Cg from Cg)

(Def —>from )

(Def E¢ from Cg) (Def L from Cg)

(Def C¢ from Cg)

(Def EGE‘ from ERG)

Figure 5.6: The relationship between minimal-equivalent faithful layered preorder-
s, AGM contraction, AGM revision, the EE-orderings, the RE-orderings, the GE-
orderings, the RG-orderings, and safe contraction in terms of regular virtually con-

nected hierarchies.
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cognitive science. While we agree that some kinds of orderings on wifs can be regarded
as more fundamental than orderings on worlds, it is difficult to see that such a view
can be applied to orderings on wiffs that are as highly structured as the entrenchment
orderings encountered in this chapter. In particular, it is difficult to escape the con-
clusion that the faithful layered preorders are used to derive orderings on wifs (in the
form of the GRE-orderings), especially when adopting an information-theoretic point
of view. Of course, this still leaves open the question of how to obtain such orderings
on infatoms. One way to achieve this might indeed be in terms of priority orderings
on wifs, in the spirit of Nebel’s epistemic relevance orderings [1990, 1991, 1992]. But
such orderings have a completely different character than orderings of entrenchment,
since they disregard the logical relationship between wifs.

Finally, in this chapter we have concentrated on suitable properties for entrench-
ment orderings, but we have paid little attention to how these entrenchment orderings
ought to be used. In the next chapter, our attention will be shifted to the latter ques-
tion. More specifically, we show how the EE-orderings and the RE-orderings can be

used to define withdrawals which differ from AGM contraction.
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Chapter 6

Withdrawal

Believe it or not.
R.L. Ripley

Title of newspaper column

Although AGM theory contraction occupies a central position in the literature on be-
lief change, there is one aspect about it that has created a fair amount of controversy.
It involves the inclusion of (K-6), the postulate known as Recovery. The Recovery
postulate is part of the AGM trio’s formal expression of the principle of Information-
al Economy, the idea that an agent should try to keep the loss of information to a
minimum.

In this chapter we undertake a detailed investigation of withdrawals, the removals
obtained when Recovery is dropped from the basic AGM contraction postulates (see
section 2.1). We commence with a motivation for the move from contraction to with-
drawal by reviewing the main objections levelled at recovery, and then proceed with
a description of the withdrawal operations found in [Levi, 1991, 1998, Hansson and
Olsson, 1995, Rott and Pagnucco, 1999, Fermé, 1998, Fermé and Rodriguez, 1998].
Along the way, we also present a new addition to the family of withdrawal operations;
systematic withdrawal. We define systematic withdrawal semantically, in terms of the
faithful modular weak partial orders (see definition 5.5.1), and show that it can be
characterised by a set of postulates.

In a comparison of withdrawal operations we show that AGM contraction, system-

atic withdrawal and the severe withdrawal of Rott and Pagnucco [1999] are intimately

139
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connected by virtue of their definition in terms of sets of layered faithful preorders.
These semantic constructions, together with similar semantic definitions of the EE-
orderings (see theorem 3.3.1) and the RE-orderings (see definition 5.5.3), are then used
to show that AGM contraction, systematic withdrawal, severe withdrawal, the EE-
orderings, and the RE-orderings are all interdefinable; indeed interchangeable. The
close connection between these constructions can be traced back to a shared feature.
They are all defined in terms of faithful layered preorders; a result that is summarised

in figure 6.7 on page 199.

6.1 To recover or not to recover

At a first glance, the Recovery postulate seems to be a reasonable requirement to
impose on theory removal. It requires the changes to a belief set K resulting from an
a-contraction to be small enough so that an a-expansion will be sufficient to recover all
the discarded information. In other words, information is a valuable commodity, and it
makes good sense to effect as little change as possible when circumstances dictate that
our set of beliefs should be modified. Viewed as such, recovery is a formalisation of the
principle of Informational Economy. And while this is clearly a useful principle, it can
have undesirable consequences if it is allowed to become the overriding concern. This
is the background against which the objections levelled at recovery should be seen.
The Recovery postulate has been criticised by various authors, and for several
different reasons.! One of the reasons most frequently cited stems from the extension
of theory change to base change. In base change, the set of wifs on which contractions
and revisions are performed, termed the base, need not be a belief set. A base is taken
to contain the “basic” beliefs of an agent, with the wffs logically entailed by the base
being seen as “derived” beliefs. Under the assumption that only wifs in the current base
are allowed to be retained after a (base) contraction — an assumption which underlies

most approaches to base change — it is easy to find counterexamples to Recovery.

Example 6.1.1 Let L be the propositional language generated by the two atoms p
and ¢ with the valuation semantics (V,IF), where V' = {00, 01, 10, 11}. Contracting the
base {p, ¢} by pV ¢ clearly has to result in the empty base. Expanding with p V ¢ now

!Those objections to the Recovery postulate raised by Tennant [1994, 1997] which are valid, are
restatements of those in the references cited below.



6.1. TO RECOVER OR NOT TO RECOVER 141

yields the new base {p V ¢}, and it is thus not the case that {p,q} C Cn(0) +p V g,
as (K—6'), applied to bases, would have it. (Recall from section 2.1, that (K—6') is an

alternative formulation of the Recovery postulate.) a

The retention of Recovery on the knowledge level (see page 3) is thus regarded as an
obstacle to the acceptance of base change operations.? This argument, found in [Makin-
son, 1987, Fuhrmann, 1991, Hansson, 1992a, 1993c, 1996, Niederee, 1991], is certainly
compelling if one accepts the requirement that a base contraction operation may only
result in a new base that is a subset of the original one. But a number of researchers
have defined base contraction operations that aren’t bound by this restriction, and
as a result, the theory contraction operations associated with these base contraction
operations do satisfy Recovery ([Nebel, 1989, 1990, 1991, 1992, Nayak, 1994a, Meyer
et al., 1999a], and chapter 8).> The rejection of Recovery on these grounds thus boils
down to a question of the kind of base contraction one is willing to accept.

A different argument against Recovery, one that operates purely on the theory
change level, can be found in [Hansson, 1991, 1992a, 1996, Lindstrém and Rabinowicz,
1991], and to a certain extent, in [Niederee, 1991] as well. A general formulation of
this argument is presented by Lindstrom and Rabinowicz [1991]. They point out that
the following is a derived property of any removal that satisfies the six basic AGM
postulates:

If « € K and o F (3 then o € (K — 3) + (5.

That is, it is impossible to get rid of a wiff o in K by first contracting and then
expanding with a wif that is logically weaker than «. This argument is made concrete
by the following two convincing counterexamples to Recovery, due to Hansson [1991,
1992a], and also occurring in [Hansson, 1996, 1999].

Example 6.1.2 [ read a book about Cleopatra, in which the claim is made that she
had a son and a daughter. I subsequently discover that the book is fictional, which
leads me to remove my belief that Cleopatra had a child. However, on consulting a
history book I discover that Cleopatra indeed had a child, and I thus expand my belief

set with this assertion.

Indeed, in [Alchourrén et al., 1985], where the AGM postulates are phrased so as not to deal
exclusively with belief sets, the Recovery postulate, in the form of (K—6'), is taken to hold only for
belief sets.

3A theory contraction operation — is associated with a base contraction operation ~ iff Cn(B ~
a) = Cn(B) — «a.
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Let L be a propositional language generated by the two atoms p and ¢q. Let p denote
the assertion that Cleopatra had a son, and ¢ the assertion that she had a daughter.
Then K = Cn(p,q). The removal of the belief that she had a child is formalised as
K — (pV q). Since p,q € K, Recovery requires that K — (pV ¢q) + (pV q) = K. So
expanding my belief set with the assertion that Cleopatra did, after all, have a child,
will ensure that [ again entertain the belief that she had a son and the belief that she

had a daughter; a conclusion which seems unreasonable in this context. O

Example 6.1.3 [ have reason to believe that George is a mass murderer, and therefore
a criminal. Then I receive information which leads me to give up my belief that George
is a criminal. Since all mass murderers are criminals, I also have to give up my belief
that George is a mass murderer. Then I receive new information which leads me to
accept the belief that George is a shoplifter.

To formalise this example, let L be a propositional language generated by the three
atoms p, ¢ and r. Let p denote the assertion that George is a mass murderer, ¢ the
assertion that George is a criminal, and r the assertion that George is a shoplifter.
Clearly, it is appropriate to use a semantics for L in which p F ¢ and r F ¢. Letting
K denote my initial set of beliefs, we have that ¢ € K. Now, giving up my belief that
George is a criminal results in the new set of beliefs K — ¢q. By Recovery we then have
that (K —¢q)+¢=K, and sincerF ¢, K =(K —q)+qC (K —q) +r.

So, since I previously believed George to be a mass murderer, I can’t regard him as

a shoplifter without again believing that he is a mass murderer as well. a

These counterexamples strongly suggest that concerns other than the retention of in-
formation should also play a role during the removal of beliefs. Such considerations
also form the gist of Levi’s criticism of Recovery [1991]. He argues that anything other
than the use of maxichoice contraction (see section 2.2) already constitutes a radical
departure from the requirement that as much information as possible be retained, and
takes issue with AGM’s restriction of the permissible withdrawals to those that can be
defined in terms of the intersection of maxichoice contractions using (Def — from M)
(see section 2.2). We discuss these matters in more detail in section 6.3.6.

Niederee [1991] considers a third reason for rejecting the Recovery postulate. This
involves an extension to multiple withdrawal, in which a withdrawal from a belief set
by a set of wifs, instead of just a single wff, is performed. He provides some plausi-

ble postulates for multiple withdrawal, and shows that multiple withdrawal operations
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satisfying these postulates cannot be regarded as “extensions” of (single wif) with-
drawal operations that satisfy Recovery (where “extension” is given a precisely defined
meaning).

Despite the objections against Recovery, its inclusion yields some desirable proper-
ties as well. Firstly, the principal argument against recovery is that removal operations
satisfying it, sometimes retain too much information. Yet, as Makinson points out
[1987], full meet contraction (see section 2.2), which is a particularly cautious form of
withdrawal, satisfies Recovery. In contrast, if Recovery is simply discarded, it permits
removals that clearly remove too much information. Witness, for example, the specific
withdrawal in which withdrawing any wif a € K, except a logically valid «, yields
the set of logically valid wffs. And observe also that it is the inclusion of Recovery
which ensures that the attempted removal of a logically valid wif from K results in
retaining all of K. Furthermore, although Hansson’s counterexamples show that there
are circumstances under which Recovery ought not to hold, it does not address the
question of whether there is any situation in which Recovery should hold. But such
examples do exist, as shown by Nayak [1994a]. Finally, Makinson [1997] points out that
counterexamples to Recovery are presented with an implicit assumption of a particular
pattern of justification among the beliefs held. He argues that such counterexamples
show that Recovery is indeed inappropriate for belief sets augmented with additional
structure of some kind, but that Recovery seems to be free of intuitive counterexamples
in the idealised situation where a belief set is taken as a “naked” theory, without any
extra-logical structure.

In summary then, it seems excessive to insist that every withdrawal should satisfy
Recovery in order for it to be regarded as rational. Moreover, the advantages of Recov-
ery discussed above are not so much arguments for its retention as they are arguments
against its complete dismissal. It thus seems reasonable to investigate withdrawal op-
erations that do not always satisty Recovery, but that, nevertheless, retain its desirable

features. It is to this task that we now turn.

6.2 Basic withdrawal

In chapter 2 we saw that there is a distinction to be drawn between basic AGM theory
contraction and AGM theory contraction (which satisfies the supplementary postulates

as well). The latter, which also satisfies the supplementary AGM contraction postu-
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lates, is more principled in the sense that it imposes restrictions on the relationship
between belief sets resulting from the contraction by different wifs (of a fixed belief set
K). And from a semantic point of view, we saw in chapters 3 and 5 that (principled)
AGM contraction involves the use of the faithful layered preorders.

We shall see below that a similar distinction holds for withdrawal. We consider
two versions of withdrawal that can be considered as basic, at least in the sense that
they do not satisfy (K—7) and (K—8). In section 6.3 we switch our attention to more

principled forms of withdrawal.

6.2.1 Saturatable withdrawal

For the purposes of constructing appropriate withdrawal operations, it is useful to start
with a method for constructing all those withdrawals for which the withdrawal of every
logically valid wif leaves the current belief set unaltered. That is, those belief removals

satisfying (K—1) to (K—5), together with the following postulate:

(Failure) If F o then K —a =K
Definition 6.2.1 A withdrawal is called proper iff it satisfies Failure. a

Proper withdrawal can be characterised with the aid of Levi’s saturatable contractions
[1991].

Definition 6.2.2 A belief set K’ is a saturatable contraction with respect to K and «
iff K’ C K and Cn(K'U{—a}) € LLa. We denote the set of saturatable contractions
with respect to K and a by sc(K, «). O

Recall from definition 2.2.1, that L1« is the set of maximal subsets of L that do not
entail .. So every element K’ of L La corresponds to an interpretation u, in the sense
that Th(u) = K'. (But, in general, the same element of L1« might be determined
by more than one interpretation — interpretations which are elementarily equivalent,
but which might be non-isomorphic.) Note further that there are no saturatable con-
tractions with respect to K and « if F «, and if a ¢ K, there will only be saturatable
contractions in some cases.

To get a feel for the intuition underlying the use of the saturatable contractions,
it is instructive to view them semantically. The set of saturatable contractions with

respect to a belief set K and a wff « is obtained by adding single models of —a;, together
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with any subset of models of «, to the models of K, and then taking the corresponding

theory.
Proposition 6.2.3 Suppose a € K and ¥ .
1. If v € M(—a) and W C M(«), then Th(M(K)UW U {z}) € sc(K, ).

2. If K' € se(K,a), then there is an v € M(-a) and a W C M(«) such that
K'=Th(M(K)JUWU({x}).

Proof For the proof of (1), suppose that x € M(—«) and W C M(«). It suffices to
show that Cn(Th(M(K) UW U{z})U{-a}) € LLa. Since M(K)UW C M(«) and
r € M(—a), it follows by lemma 1.3.5 that

M(Th(M(K)UW U {z})) N M(=a) = M(Th(M(K) U {z})) N M(~a).

Since a € K, it follows from lemma 1.3.4 that Th(z) = Th(M (K)U{z}))NM (-«). And
by proposition 3.2.1, there is an X € L1« such that Th(z) = X. So Cn(Th(M(K) U
WU {z})U{-a}) =Th(z) € LLa.

For the proof of (2), suppose that K' € sc¢(K,a). So Cn(K'U {-a}) € LLa. By
proposition 3.2.1 there is an # € M (—«) such that

Th({z}) = Cn(K' U {=a}) = Th(M(K') N M(~a)).

Now let W = M (K")NM («). We show that K’ = Th(M (K)UWU{z}). For the left-to-
right inclusion, note that M (K) C M(K') and x € M(K'), and so M(K)UW U{z} C
M(K'). For the right-to-left inclusion, pick any f € Th(M(K) U W U {z}). So
M(K)uW uU{z} C M(p), and it suffices to show that M(K")\ (M(K)UW U {z}) C
M(B). Pick any y € M(K') \ (M(K)UW U {z}). By the choice of W, y € M(—a),
and thus y € M(K'U {-a}). And since Th({z}) = Cn(K' U {—a}), it follows that
y € M(PB). O

The removals permitted by Levi are those obtained by taking the intersection of any
subset of the saturatable contractions with respect to K and «, where o € K\ Cn(T).
(Hansson and Olsson [1995] refer to these removals as partial meet Levi-contraction
operators.) Semantically, this can be accomplished by using the saturatable selection

functions.
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Definition 6.2.4 A function ssi : L — pU is a saturatable selection function iff the
following holds:

1. If « = 8 then ssi(a) = ssg(B),

2. if F « then ssg(a) =0,

3. if a ¢ K then ssk(a) C M(K), and

4. if ¥ a and « € K then ssg(a) N M(—a) # 0.

O

There is a close correspondence between the semantic selection functions of definition
3.2.2, and the saturatable selection functions. As is the case with the semantic selection
functions, we add the elements of ssg(«) to the models of K to obtain the models of
K ~ «a. The differerence is that the saturatable selection functions, unlike the semantic
selection functions, allow us to include, as models of K ~ «, some countermodels of K

that are also models of «.

Definition 6.2.5 A removal is a saturatable withdrawal iff it can be defined in terms

of a saturatable selection function ssyx using (Def ~ from smy) (see section 3.2). O

Hansson and Olsson [1995] show that the proper withdrawals are precisely the satu-

ratable withdrawals.*

Theorem 6.2.6 A remowval ~ is a proper withdrawal iff it is a saturatable withdrawal.

6.2.2 Sensible withdrawal

It is generally acknowledged that the set of all withdrawals (and even the set of all
proper withdrawals) allows for too much generality. And from the discussion in section
6.1, it seems reasonable to cut down on the set of all proper withdrawals by trying
to weaken the Recovery postulate in some appropriate fashion. However, attempts
to do so have proved to be quite difficult. For example, Hansson [1991] proposes the

following two properties:

4Hansson and Olsson’s constructions are phrased directly in terms of Levi’s saturatable contrac-
tions, and not in terms of the saturatable selection functions, but by virtue of proposition 6.2.3, the
required correspondence is easily established.
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(Relevance) If f € K \ K — «, then there is an X C K such that K — o C X and
a ¢ Cn(X), but o € Cn(X)+

(Core-retainment) If 5 € K\ K —«, then there is an X C K such that o ¢ Cn(X),
but o € Cn(X) + S

Core-retainment is clearly weaker than Relevance, and intuitively, it might seem as if
Core-retainment, and perhaps Relevance as well, are weaker than Recovery. However,
Hansson shows that they both imply Recovery in the presence of (K—1) to (K—5).
Based on these results, Hansson conjectures that “a reasonable contraction operator
without the Recovery property does not seem possible”. Indeed, the difficulty in con-
structing plausible withdrawal operations on belief sets that do not satisfy Recovery
has led some researchers to view Recovery not necessarily as a fundamental postulate
of theory contraction, but rather as an emerging property [Hansson and Rott, 1995].
Recently, Fermé and Rodriguez [1998] have succeeded in the provision of a weaker

version of Recovery.

(Proxy Recovery) If K # K — « then there is a § € K such that § ¢ K — « and
KC(K—-a)+f

It is easily established that Proxy Recovery is a weaker version of Recovery. If Recovery

is satisfied, Proxy Recovery holds by taking § = a.

Definition 6.2.7 A withdrawal is called sensible iff it satisfies Failure and Proxy Re-

covery. ([

It is easily verified that the basic AGM contractions form a strict subset of the sensible
withdrawals, which in turn, form a strict subset of the proper withdrawals. (Fermé
[1998] provides an example proving the second strict inclusion.)

Fermé and Rodriguez characterise sensible withdrawal in terms of Fermé’s semi-
contraction [1998]. The construction of semi-contractions is justified as follows. It is
well-known, and easily verified, that if — is a basic AGM contraction, then @ — (§ €
K — « for every f € K\ K — «. But in some counterexamples to Recovery, this proves
to be undesirable. Consider, for instance, example 6.1.2 again. One way of stating the
problem with this example is that the wifs (pV ¢) — p and (pV q) — ¢ are required to
be in K — (pV ¢). Fermé’s basic idea is to remove undesirable wifs such as these from

the resulting belief set. This is done with the aid of semi-selection functions.
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Definition 6.2.8 A semi-selection function is a function s from L to L such that
s(X)e X if X #0, and s(0) =T. 0

For any basic AGM contraction —, a semi-selection function picks out, for every K \
K — a, the consequent 5 of a wif @ — fin K — «, such that f € K\ K — «. This is
equivalent to picking out the conjunction of a finite number of consequents [; of wifs
of the form a — §; in K — «, where every 3; is in K \ K — a.. Semi-contraction is then

defined as follows:
(Def ~ from — and s) K ~a=(K—-a)N(K — (a = s(K \ K — a)))

Definition 6.2.9 A removal function is a semi-contraction iff it can be defined in
terms of a basic AGM contraction and a semi-selection function using (Def ~ from —
and s). O

The following representation theorem of Fermé and Rodriguez [1998] establishes the

relationship between sensible withdrawal and semi-contraction.
Theorem 6.2.10 A remowval is a sensible withdrawal iff it is a semi-contraction.

While sensible withdrawal does indeed provide us with a withdrawal operation that is
more permissive than basic AGM contraction, but not as permissive as proper with-
drawal, there are indications that it is not principled enough to be regarded as an
appropriate form of withdrawal. The following example shows that sensible withdraw-
al does not always satisfy the supplementary postulates, (K—7) and (K—8); not even
when we restrict ourselves to the sensible withdrawals defined in terms of AGM con-

tractions (which do satisfy the supplementary postulates).

Example 6.2.11 Let L be the propositional language generated by the three atoms

p, ¢ and r, and let (V,IF) be the valuation semantics for L where
V' = {000, 001,010,011, 100,101,110, 111}.
Let K = Cn{p,q,r} and let < be the faithful total preorder defined as follows:

(yeVifz =111,
y € {000,001,010,011,100,101,110} if # € {011,101},
z < yiff { y e {000,001,010,100,110} if z = 110,
y € {000,001,010,100} if z = 100, and
L v € {000,001,010} if = € {000,001, 010}.
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000+~—001+=—010

100

Figure 6.1: A graphical representation of the faithful total preorder < used in example
6.2.11. The ordering is obtained from the reflexive transitive closure of the relation

determined by the arrows.

Figure 6.1 contains a graphical representation of <. Let — be the AGM contraction
defined in terms of < using (Def ~ from <), and let s be any semi-selection function
such that

It is readily verified that such an s exists. Now, let ~ be the semi-contraction defined
in terms of — and s using (Def ~ from — and s). By theorem 6.2.10, ~ is a sensible
withdrawal.

To show that ~ violates (K—7), take ¢ V r as «, =q V r as 3, and observe that
K~ (gVr)=CnlpA(g ¢ 1), K~ (nqVr)=CnlpAg), and K ~ ((qV
rYAN(—gVr) =K ~1r=Cn(pA(qVr)). To show that ~ violates (K—8), take
q as a, p — q as [, and observe that K ~ (p — ¢q) = Cn((p V q) A1), and that
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K~(qN(p—q)=K~qg=Cn(pAr). O
The failure of (K—7) and (K—8) can be traced back to the semi-selection functions

and the undesirable amount of freedom they allow in choosing a wif in K \ K — «.

6.3 Principled withdrawal

In the light of the failure of sensible withdrawal to satisfy (K—7) and (K—8), the
challenge before us is to define a type of withdrawal that is truly principled in nature,
like AGM contraction, but without the requirement that Recovery should hold. To
obtain such an approach to withdrawal, it is necessary to take a closer look at the
intuition associated with AGM contraction.

As we have seen, the inclusion of the Recovery postulate in the AGM framework
is justified by an appeal to the principle of Informational Economy [Gérdenfors, 1988|.
When epistemic states are viewed as belief sets, this view dictates that informational
economy should be measured in terms of set-inclusion, thus providing a restatement
of the principle of Conservatism. If the principle of Informational Economy had been
the overriding concern, it would have implied that the belief set resulting from an «-
contraction of K should be a maximal subset of K that does not imply «; that is, an
a-remainder (see definition 2.2.1). But it is easily seen that this involves a restriction
to maxichoice contraction (see page 22), a special case of AGM contraction which
Alchourrén and Makinson [1982] have shown to be too strong for a general account of
theory contraction.

Since AGM contraction is more than just maxichoice contraction, it follows that the
principle of Informational Economy is not the only requirement in question, but rather
one of several equally important guidelines. In particular, as Rott and Pagnucco [1999]
argue in their excellent survey of withdrawal, the respective roles of the principles of
Indifference and Preference in the construction of AGM contractions are as important
as that of the principle of Informational Economy. We shall see below that in defining
AGM contraction, the principle of Informational Economy has, to some degree, already
given way to the principle of Indifference. It is our contention that, for a description of
principled withdrawal, it is necessary for this process to take its full course. That is,
we propose that both the principles of Indifference and Preference should take strict
precedence over the principle of Informational Economy. We adopt an information-

theoretic point of view, and use the faithful layered preorders on the infatoms of L as
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the machinery for constructing withdrawal operations. The principles of Indifference,
Preference, and Informational Economy are then applied, in a consistent manner, to
different subsets of the faithful layered preorders, yielding different forms of principled
withdrawal.

Let us first consider, in detail, the way in which these three principles are combined
to obtain AGM contraction. In this case, the application of the principle of Informa-
tional Economy is twofold. Its influence is felt in the requirement that some mechanism
should be used for distinguishing between the level of entrenchment of infatoms. This
requirement is implemented by the use of a faithful total preorder. Secondly, the princi-
ple of Informational Economy restricts the application of the remaining two principles
to content bits of o during an a-contraction. (This is where it still takes precedence
over the principle of Preference and, to some extent, over the principle of Indifference.)
The principle of Preference then ensures that any content bit ¢ of o which is regarded
as at most as entrenched as a content bit j of «, will receive at most as much consid-
eration for removal from K as j. Consequently, only the worst content bits of « are
considered for removal. And finally, since the worst content bits of « are all seen as
equally entrenched, the principle of Indifference ensures that they will all be removed
from K. So, in this sense at least, the principle of Indifference holds sway over the
principle of Informational Economy.

It is our view that the role of the principle of Informational Economy should be
reviewed in order for both the principles of Indifference and Preference to take complete
precedence over it. In this view, its application only results in the use of the faithful
layered preorders to distinguish between the level of entrenchment of infatoms. Guided
by the two remaining principles, the set of infatoms removed from K then contains all
the infatoms that are at most as entrenched as the worst content bits of c. We shall
see that the application of these three principles in the manner described above, leads

to the development of a number of different forms of principled withdrawal.

6.3.1 Severe withdrawal

Rott and Pagnucco [1999] use the faithful total preorders to define the set of severe

withdrawals.? Recall from section 5.1 that the downset of a wif « is defined in terms

5Actually, they use Grove’s systems of spheres, but it is easily extendable to the slightly more
general case that we consider.
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of a faithful preorder using (Def V< from <). The downset of « contains all the
interpretations that are at least as low down in the ordering as the minimal models of

«. Downsets are used to define severe withdrawal as follows:

(Def ~ from V<) K ~a=Th(M(K)UV(-a))

Definition 6.3.1 A removal is a severe withdrawal iff it is defined in terms of a faithful

total preorder using (Def ~ from V<). 0

Viewed information-theoretically, it should be apparent that (Def ~ from V<) is an
application, in terms of the faithful total preorders, of the principles of Indifference,
Preference, and Informational Economy in the manner described above.

Rott and Pagnucco show that severe withdrawal is characterised by the following

set of postulates.®

(K-1) K—a=Cn(K-a)

(K72) K a CK

(K-3) If « ¢ K then K—a =K

(K—4) If ¥ o then o ¢ K—«

(K=5) If « = 8 then K—a= K—f3

(K=6) If F o then K—a =K

(K=7) If # o then K—a C K—(a A f)

(K-=8) If 3¢ K—(a A B) then K—(aAB) C K—p3

Theorem 6.3.2 [Rott and Pagnucco, 1999] A removal — is a severe withdrawal iff it
satisfies (K—1) to (K=38).

The postulates for severe withdrawal differ from those for AGM contraction only on the
sixth and seventh postulates; the remaining ones are identical to their AGM contrac-
tion counterparts. (K—6), which replaces Recovery, is the postulate we have referred

to as Failure. (K—7) is a much stronger requirement than the corresponding AGM

6Pagnucco [1996] originally gave a different characterisation of severe withdrawal.
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contraction postulate (K—7). It is a kind of monotonicity property, requiring that the
removal of weaker wifs should always result in smaller belief sets. Rott and Pagnucco
regard this as an intuitively plausible postulate which follows from the application of
the principles of Indifference and Preference. In section 6.3.5, we argue against the
inclusion of this postulate, showing that it has some undesirable consequences, and
that (K—7) is a consequence of the principles of Indifference and Preference only when

they are applied to the faithful total preorders.

6.3.2 Systematic withdrawal

In this section we introduce a set of withdrawals that are closely related to the severe
withdrawals. Their construction is based on an application of the principles of Indif-
ference, Preference and Informational Economy in a manner identical to that used in
the construction of severe withdrawal. The only difference is that they are obtained

using the faithful modular weak partial orders, instead of the faithful total preorders.

Definition 6.3.3 A belief removal =+ is a systematic withdrawal iff it is defined in

terms of a faithful modular weak partial order using (Def ~ from V<). O

The difference between systematic withdrawal and severe withdrawal lies in the dif-
ference between the downset (see definition 5.1.1) of a wif « obtained from a total
preorder and that obtained from a modular weak partial order. In the latter case, the
downset consists of the minimal models of « as well as all the interpretations strictly
below them (which are all, of course, countermodels of «). The former case includes
all the interpretations mentioned above, as well as the countermodels of o on the same
level as the minimal models of . In section 6.3.5 we shall see that this seemingly minor
technical difference accounts for some fundamental differences between these two forms
of principled withdrawal. For the moment, we provide a characterisation of systematic

withdrawal in terms of a set of postulates.
(K+1) K +a=Cn(K + «a)

(K+2) K+aCK

(K+3) Ifa ¢ K then K +a=K

(K+4) fFathena ¢ K+«
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(K+5) Ifa=pfthen K +a=K+f

(K+6) If F o then K +a =K

(K+7) fye K+ (aAv) thenye K+ (aAB A7)

(K+8) If ¢ K+ (aAp) then K =~ (aANP) C K+ f3

(K+9) Ifae K,avpfe K+aand f ¢ K+« then a € K + (aAp)
(K+10) If Faand f € K +athen a ¢ K+ (a A )

Theorem 6.3.4 A removal + is a systematic withdrawal iff it satisfies (K+1) to
(K=10).

Proof The left-to-right direction follows from proposition B.1.2 in appendix B. For the
converse, suppose that ~ satisfies (K+1) to (K+10). Now define — in terms of ~ using
(Def — from ~) on page 160. By lemma B.1.4 in appendix B, — is a severe withdrawal.
So there is a faithful total preorder < from which — can be obtained using (Def ~ from
V<). Let < be the faithful modular weak partial order which is semantically related
to <. By proposition 6.3.20, the systematic withdrawal + obtained from < using (Def
~ from V%) can also be defined in terms of — using (Def = from —) on page 162. And

by lemma B.1.5 in appendix B, =+ is identical to ~. O

The first five postulates coincide with the first five AGM contraction postulates, and
the first six coincide with the first six postulates for severe withdrawal. (K+7) is a much
weaker version of (K—7). If a wif y is entrenched enough in the belief set K so that it is
retained when at least one of v or « has to be discarded, then it should also be retained
when at least one of 7y or any wff logically stronger than « has to be discarded. (K+8) is
identical to (K—8) and (K—8). (K+9) and (K+10) both introduce more restrictions on
the relationship between withdrawals by different wffs. (K+-9) gives conditions under
which a wff o should be retained and (K+-10) gives conditions under which a should
be discarded.

6.3.3 Revision-equivalence

With the definition of severe withdrawal and systematic withdrawal, we now have,

together with AGM contraction, three types of principled withdrawal at our disposal
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which, as it turns out, are very closely related. For a proper comparison of this relation-
ship, it is instructive to commence with the description of a feature which Makinson

[1987] refers to as revision-equivalence.

Definition 6.3.5 Two withdrawals ~ and = are revision-equivalent iff (K ~ —a) +
a= (K~ -a)+a. O

In other words, two withdrawals are revision-equivalent iff the revisions they define in
terms of the Levi identity (Def * from ~), are identical. From Makinson [1987] we ob-
tain the following results concerning the revision-equivalence of basic AGM contraction

and (basic) withdrawal.

Theorem 6.3.6 1. A reuvision-equivalent class of withdrawals contains a unique ba-

sic AGM contraction.

2. The basic AGM contraction — 1is the maximal element in the equivalence class
[—] of withdrawals that are revision-equivalent to —. That is, for every ~ in [—],
K~aCK —a«a for every a € L.

To bring severe withdrawal into the picture, we need to restrict ourselves to the revision-

equivalent classes which contain the AGM contractions.

Definition 6.3.7 A revision-equivalent class is called principled iff it contains an AGM

contraction. O

Note that a withdrawal in a principled revision-equivalence class need not satisfy (K—7)
and (K—8). A case in point is the sensible withdrawal in example 6.2.11.

Rott and Pagnucco [1999] provide the following results.

Theorem 6.3.8 1. Every principled revision-equivalent class contains a unique se-

vere withdrawal.

2. The severe withdrawal — is the minimal element in the (principled) equivalence
class [—] of withdrawals that are revision-equivalent to — and that satisfy (K—S8).

That is, for every ~ in [—] that satisfies (K—8), K—a C K ~ « for every a. € L.7

It should come as no surprise that the revision-equivalence of an AGM contraction and
a severe withdrawal is closely tied to their semantic definitions in terms of faithful total

preorders.

"This is a result derived from Observation 7 in [Rott and Pagnucco, 1999].
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Definition 6.3.9 An AGM contraction and a severe withdrawal are semantically re-
lated iff they can be defined in terms of the same faithful total preorder using (Def ~
from <) and (Def ~ from V<) respectively. O

Theorem 6.3.10 An AGM contraction and a severe withdrawal are semantically re-

lated iff they are revision-equivalent.

Proof Follows from lemma 1.3.5 and the fact that every principled revision-equivalence

class contains a unique AGM contraction and a unique severe withdrawal. O

In fact, it is easily established that the very notion of principled revision-equivalence

hinges on the use of minimal-equivalent faithful layered preorders (see definition 3.3.6).

Proposition 6.3.11 Suppose ~ and ~ are two withdrawals which are in the same
principled revision-equivalence class, and let x be the AGM revision obtained in terms
of ~ and = using (Def x from ~). Furthermore, let < be any faithful layered preorder
in terms of which x is defined using (Def x from <). Then, for every o € K \ Cn(T),
there is a W C M(«) and a W2 C M(«) such that

K~a=Th(M(K)U Min<(~a) UW[
K ~ a = Th(M(K) U Min(~a) UW?).

Proof Follows from lemma 1.3.5. O

The significance of proposition 6.3.11 is that it enables us to regard a set of minimal-
equivalent faithful layered preorders as the basis for obtaining a principled revision-
equivalent class of withdrawals, and allows us to see every withdrawal in a principled
revision-equivalence class as “independent” of the other members in the class. For
example, Rott and Pagnucco show that the smallest withdrawal — in a principled
revision-equivalent class [~] can be defined in terms of the severe withdrawal in [—] as

follows:

Cn(a)NK-aifa € K\ Cn(T),

(Def — from =) K — a = .
K otherwise

But — can also be defined, “independently” of —, in terms of a faithful total preorder

< as follows:
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Th(M(K)U Min<(—a) U M(a))
(Def — from <) K —a =< ifac K\Cn(T),

K otherwise

Proposition 6.3.12 Let — be the severe withdrawal defined in terms of a faithful total
preorder < using (Def ~ from V<). The withdrawal — defined in terms of = using
(Def — from =) can also be defined in terms of < using (Def — from =<).

Proof We only consider the case where « € K \ Cn(T). Then
Cn(a) NK—a
= Th(M(K-a)U M(a))

(
(
= Th(M(K)UV<(—a)UM(a)) by (Def ~ from V)
h(M(K) U Min<(—«) U M(c)) from (Def V).

I
~

O

The withdrawal — defined in terms of a faithful total preorder using (Def — from <) is in
gross violation of the principles of Indifference, Preference and Informational Economy.
From an information-theoretic point of view, it removes all the content bits of —« from
K during a withdrawal of «, regardless of how entrenched they are. As such, it is not
an appropriate candidate for principled withdrawal. It is most likely examples such
as these which prompted Lindstrém and Rabinowicz [1991] to advance the thesis that
any reasonable withdrawal should lie somewhere between AGM contraction and severe
withdrawal. To be more precise, in a principled revision-equivalence class containing
the AGM contraction — and the severe withdrawal —, we should regard as reasonable,
only those withdrawals ~ for which K —a C K ~ o C K —a for every o € L. Following
a suggestion by Rott [1992a, 1995], we refer to this proposal as the LR interpolation

thesis.

Definition 6.3.13 A withdrawal is reasonable iff it satisfies the LR interpolation the-

sis. O

Note that being a reasonable withdrawal is not a guarantee of principled behaviour.
Some such withdrawals, such as the sensible withdrawal in example 6.2.11, do not

even satisfy (K—7) and (K—8).® From an information-theoretic point of view, the LR,

81t is easily verified that the sensible withdrawal in this example is indeed reasonable.
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interpolation thesis requires an a-withdrawal to be effected by removing from K, any
subset of the content bits of ~a that are at most as entrenched as the least entrenched
content bits of «, together with these least entrenched content bits of a. So, while
it does not guarantee an adherence to the principles of Preference and Indifference
with regard to C(—a) (the content bits of =), it ensures the satisfaction of these
two principles in terms of C'(«) (the content bits of «) and it goes some way towards
satisfying these principles when comparing elements of C'(«) and C'(—).

We are now in a position to bring systematic withdrawal into the picture as well.
It is perhaps to be expected that every principled revision-equivalence class contains
a unique systematic withdrawal. And this is indeed the case, as the next proposition

shows.

Proposition 6.3.14 FEvery principled revision-equivalence class contains a unique sys-

tematic withdrawal.

Proof Pick any principled revision-equivalence class. By theorem 6.3.6, it contains
a unique AGM contraction — which, by proposition 5.7.3, can be defined in terms of
a faithful modular weak partial order <. By lemma 1.3.5, the systematic withdrawal
+, defined in terms of < using (Def ~ from <), is revision-equivalent to —. Now
assume there is a different systematic withdrawal ~ in this revision-equivalence class.
By theorem 6.3.4, it can be defined in terms of a faithful modular weak partial order
< using (Def ~ from V<), where < is not minimal-equivalent to <. And then <
defines an AGM contraction — in terms of (Def ~ from <) which, though revision-
equivalent to ~, differs from —. But this contradicts the uniqueness of — in the given

revision-equivalence class. g

It is easily seen that systematic withdrawal is also reasonable (that is, it satisfies the

LR interpolation thesis).

Proposition 6.3.15 FEvery systematic withdrawal belongs to a principled revision-

equivalence class, and is reasonable.

Proof Consider any systematic withdrawal <. By definition, there is a faithful mod-
ular weak partial order < in terms of which =+ is defined using (Def ~ from V<). By
lemma 1.3.5, the AGM contraction defined in terms of < using (Def ~ from <) is
revision-equivalent to -, and it thus follows that + belongs to a principled revision-

equivalence class. Furthermore, from theorem 6.3.6, K +~ a C K — « for every a € L.
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Now consider the faithful total preorder < obtained in terms of < using (Def < from
<), and let — be the severe withdrawal defined in terms of < using (Def ~ from V).
Then K—~a C K + o for every o € L, and by lemma 1.3.5, — is revision-equivalent to

~+. So =+ satisfies the LR~interpolation thesis; i.e. it is reasonable. O

In the context of revision-equivalence, the relationship between AGM contraction, sys-
temic withdrawal, severe withdrawal, and the faithful layered preorders defining these

different forms of principled withdrawal, is summarised in the following corollary.

Corollary 6.3.16 Consider a principled revision-equivalence class R of withdrawals.

1. There is a minimal-equivalence class M of faithful layered preorders such that,
for every faithful layered preorder < in M and every withdrawal ~ in R, K ~
a=Th(M(K)U Min(—~a) UW), where W C M(«).

2. R contains a unique AGM contraction —, a unique systematic withdrawal + that

is also reasonable, and a unique severe withdrawal —.
3. For every withdrawal ~ in R, K ~ a C K — « for every « € L.

4. For every withdrawal ~ in R which satisfies (K—8), K—a C K ~ « for every
ae€ L.

5. The AGM contraction — can be defined in terms of every faithful layered preorder
< in M, using (Def ~ from <).

6. The systematic withdrawal + can be defined in terms of every faithful modular

weak partial order < in M, using (Def ~ from V).

7. The severe withdrawal — can be defined in terms of every faithful total preorder
< in M, using (Def ~ from Vx).

Proof Follows from proposition 6.3.11, theorems 6.3.6 and 6.3.8, propositions 6.3.14,
6.3.15, and 5.7.3, theorem 6.3.4, and theorem 6.3.2. O
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6.3.4 Reasonable withdrawal

This section is devoted to an investigation of the relationship between various reason-
able withdrawals, with particular emphasis on AGM contraction, systematic withdraw-
al and severe withdrawal. We have seen that AGM contraction and severe withdrawal
both occupy special positions in the revision-equivalence classes. The former provides
an upper bound for reasonable withdrawal, and the latter a lower bound. As a result
both can be defined in terms of the remaining reasonable withdrawals. In particular,

— can be obtained from any revision-equivalent reasonable withdrawal ~ as follows
(Def — from ~) K —a=KnN (K ~ a) + —a)

And = can be obtained from any revision-equivalent reasonable withdrawal ~ in one

of two ways:”

feKn~(anp)if ¥,

(Def — from ~) 3 € K-« iff '
B € K otherwise

N{K ~(@nB)|BeL}if #a,

(Def — from ~ (v2)) K—a = .
K otherwise

Proposition 6.3.17 Let — and — be an AGM contraction and a severe withdrawal
respectively, that are revision-equivalent. Suppose that ~ is a reasonable withdrawal

that is revision-equivalent to — (and —). Then
1. — can be defined in terms of ~ using (Def — from ~),
2. — can be defined in terms of ~ using (Def — from ~), and

8. = can be defined in terms of ~ using (Def — from ~ (v2)).

Proof Let < be a faithful total preorder in terms of which — is defined using (Def
~ from <). By corollary 6.3.16, — can be defined in terms of < using (Def ~ from
V<). Since ~ is reasonable, and therefore revision-equivalent to —, there is, by lemma
1.3.5, a W, € M(«) such that K ~ o = Th(M(K) U W, U Min<(—«)), for every
a € K\ Cn(T). We only consider the cases where ¥ a.

9Since (Def = from ~) and (Def = from ~ (v2)) define the same severe withdrawal when applied
to any reasonable withdrawal, any further results involving (Def — from ~) should be seen as results

involving (Def — from ~ (v2)) as well.
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1. Follows from lemma 1.3.5.

2. If 3¢ K ~ (A f3) then B ¢ K—(a A f3), since ~ is reasonable and revision-
equivalent to —. So there is a y € M(K) U V<(~(a A () such that z € M(=f),
and therefore y € Min<(—(a A 3)). Therefore x A y for every v € Min<(—«),
and thus 8 ¢ K—a. Conversely, if 3 ¢ K—a then y € M(—3) for some y €
M(K)UV<(—«), and there is thus an © € Min<(—(aAB)) such that z € M(—-03).
Therefore 5 ¢ K ~ (a A B).

3. fy ¢ N{K ~ (aAB)| B €L} then there is a 5 € L such that v ¢ K ~ (a A S).
And then v ¢ K—(a A ), since ~ is reasonable and revision-equivalent to —.
So there is a z € M(K) U V<(=(a A B)) such that M(—y). But then v ¢ K—a,
since y A « for every y € Min<(—«) and every € Min<(—(aAB3)). Conversely,
if v ¢ K—a then v ¢ K—(a A ) by part (2), from which the required result

follows.

O

And as a corollary of proposition 6.3.17, the identities (Def — from ~) and (Def — from

~) are interchangeable when restricted to AGM contraction and severe withdrawal.!

That is, starting with an AGM contraction or a severe withdrawal, and applying these

two identities in the appropriate sequence, brings us back to where we started.

Definition 6.3.18 An AGM contraction —, a systematic withdrawal <, and a severe
withdrawal — are semantically related iff there is a faithful total preorder < and a

semantically related faithful modular weak partial order < such that
1. — is defined in terms of < (and <) using (Def ~ from <),
2. + is defined in terms of < using (Def ~ from V<), and
3. = is defined in terms of < using (Def ~ from V).

O

0Part (1) of proposition 6.3.17 can be traced back to [Makinson, 1987]. Also, proposition 6.3.17,
when restricted to AGM contraction and severe withdrawal, and corollary 6.3.19, albeit in a slightly
different guise, can be found in [Rott and Pagnucco, 1999].
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Corollary 6.3.19 If an AGM contraction and a severe withdrawal are semantically

related, then they can also be defined in terms of each other using (Def — from ~) and
(Def = from ~).
Proof Follows from proposition 6.3.17 and corollary 6.3.16. a

Since systematic withdrawal is reasonable, it follows from proposition 6.3.17 that every
systematic withdrawal + defines a revision-equivalent AGM contraction — using (Def
— from ~), and a revision-equivalent severe withdrawal — using (Def — from ~).
Being reasonable, = lies somehere between — and —, so to speak. (In fact, it lies much
“closer” to severe withdrawal, in terms of set-inclusion.) Nevertheless, it is possible to
define systematic withdrawal in terms of both AGM contraction and severe withdrawal.
In particular, < can be defined in terms of — as follows:

(avpeK—(anf)and a ¢ K — (aAB)
(Def = from —) fe K+aiff { if Fa, ¥3,ac K,

| B € K otherwise

And + can be defined in terms of — as follows:

(avpeK aand a ¢ K23

(Def + from —) fe K +aiff { if Fa, ¥FBanda € K,

| B € K otherwise

Proposition 6.3.20 Let — be an AGM contraction, let +— be a systematic withdrawal,

and let = be a severe withdrawal. Suppose that —, +~ and — are semantically related.

1. + can also be defined in terms of — using (Def <+ from —).
2. <+ can also be defined in terms of — using (Def + from —).

Proof Let < be a faithful total preorder in terms of which — and — are defined using
(Def ~ from <) and (Def ~ from V<) respectively, and let < be the faithful modular
weak partial order that is semantically related to <. We only consider the case where
Fo Fpfand a € K.

1. Suppose that § € K + a. Then V<(—a) C M(S) and so Min<(—~(a A ) C
M(aV ) and Min<(—a) = Min<(—=(aAB)). Therefore oV € K —(aAf) and
a ¢ K—(aAp). Conversely, suppose that VvV € K—(aAf) and o ¢ K—(aAfS).
So Min<(—a) C Min<(—(aAB)) and thus V<(—a) C V< (=(aAp)) C M(aVp),
from which it follows that § € K + a.
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2. Suppose that f € K + «. Then V<(—a) C M(B), and so V<(—a) C M(aV j),
and thus a V 8 € K—a. Furthermore, y A z for every x € Min<(—«) and
every y € Min<(—f), and so o ¢ K—/. Conversely, suppose that aV 3 € K—«a
and o ¢ K—3. Then V<(-a) C M(a V (), which means Min<(—a) C M(f).
Furthermore, V(=) € M(«), and so y £ x for every x € Min<(—«a) and every
y € Min<(—3). Therefore V. (—a) \ Min<(—a) C M(f) and thus f € K + .

O

And as a corollary of propositions 6.3.17 and 6.3.20, the identities (Def — from ~)
and (Def + from —) are interchangeable when applied to AGM contraction and sys-
tematic withdrawal. Similarly, the identities (Def — from ~) and (Def + from —) are

interchangeable when applied to severe withdrawal and systematic withdrawal.

Corollary 6.3.21 Let — be an AGM contraction, let + be a systematic withdrawal,

and let — be a severe withdrawal. Suppose that —, = and — are semantically related.
1. — and + can also be defined in terms of one another using (Def — from ~) and
(Def <+ from —).
2. — and + can also be defined in terms of one another using (Def — from ~) and
(Def + from —).

6.3.5 Systematic withdrawal vs. severe withdrawal

Systematic withdrawal and severe withdrawal are motivated by similar concerns. In-
deed, they apply the principles of Indifference, Preference and Informational Economy
in the same manner, and the method of construction used is identical; they differ only
in the choice of faithful layered preorders to apply to (Def ~ from V<). As a re-
sult, they have many features in common. Firstly, both these forms of withdrawal are
special cases of Cantwell’s [1999] fallback-based withdrawal. Moreover, it is easily ver-
ified that systematic withdrawal and severe withdrawal satisfy (K—7), and that severe
withdrawal, like systematic withdrawal, satisfies (K+7) and (K+10).

Proposition 6.3.22 Every systematic and every severe withdrawal satisfies (K—17),
and every severe withdrawal satisfies (K+7) and (K+10).
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NN
NN

Figure 6.2: A graphical representation of the faithful total preorder < and the seman-
tically related faithful modular weak partial order < used in example 6.3.23. In both
figures, two interpretations x and y are in the relevant faithful preorder iff (x,y) is in

the reflexive transitive closure of the relation determined by the arrows.

Proof For severe withdrawal, note that (K—7) follows easily from (K—7), and that
(K+7) follows easily from (K—7) if ¥ «. For the remaining part of (K=7), suppose
that F « and that v € K—a Av. By (K=5), v € K=v and thus F v by (K—4). And
then v € K—a A B A~ by (K=1). The proof that severe withdrawal satisfies (K=-10)
is identical to the proof that systematic withdrawal satisfies (K=+-10). It can be found
in appendix B, proposition B.1.2.

Let <+ be a systematic withdrawal defined in terms of the faithful modular weak
partial order < using (Def ~ from V<). To prove that + satisfies (K—7), it suffices
to show that M(K) U V<(=(a A f)) € M(K)U V<(—a) U V<(B). Pick any z €
M(K)UV<(—(anp)). We only consider the case where x ¢ M(K). If v € M(~(aAp))
then, from (Def V<), v € Min<(—(a A 8)). Therefore either x € Min<(—«) or
x € Min<(—f). And since Min<(—a) C V<(—a) and Minc (=) € V<(=p), it
follows that v € V<(—a) UV<(=f). On the other hand, if z € M(a A ) then there is
any € Min<(—(aApB)) such that x < y. Now, either y € Min<(—a) or y € Min<(—f).
In the former case, + € V<(—«) and in the latter case z € V<(—f). O

And at the risk of illustrating the obvious, the next example shows that neither sys-

tematic withdrawal nor severe withdrawal satisfies the Recovery postulate.
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Example 6.3.23 Let L be the propositional language generated by the two atoms
p and ¢, and let (V,IF) be the valuation semantics for L, with V' = {00,01,10,11}.
Furthermore, let K = Cn({p,q}). Now, let < be the faithful total preorder defined as

follows:

yeVitz =11,
rx 2yiff ¢ ye {01,10,00} if x € {01,10}, and
y = 00 if 7 = 00,

and let < be the associated faithful modular weak partial order defined in terms of
< using (Def < from <). Figure 6.2 contains graphical representations of < and <.
Let — be the severe withdrawal defined in terms of < using (Def ~ from V<), and
let + be the systematic withdrawal defined in terms of < using (Def ~ from V<). So
V<(=(pvq)) = V<(=(pVq)) =V and thus K~ (pVq) = K+(pVq) = Th(V) = Cn(T).
But K=(pV¢q)+ (pVq)=(K+(pVq)+(pVgq =Cn(pVq) C K, thus invalidating
Recovery. O

The close relationship between systematic and severe withdrawal raises the question
of whether the two notions ever coincide. Part of the answer to this question is easy.
Whenever a faithful layered preorder < is both a total preorder and a modular weak
partial order, the severe withdrawal and the systematic withdrawal defined in terms of
< using (Def ~ from V<) are, by definition, identical. It is easy to see that this is the

case only when = is a K-linear order (see definition 5.5.8).

Proposition 6.3.24 Let < be any K-linear order. The belief removal defined in terms

of < using (Def ~ from V<) is a severe withdrawal as well as a systematic withdrawal.

Proof Follows immediately from the fact that < is both a faithful total preorder and

a faithful modular weak partial order. O

Furthermore, if a severe withdrawal cannot be defined in terms of a K-linear order
using (Def ~ from V<), then it is not a severe withdrawal, and vice versa; at least for

the finitely generated propositional languages.

Proposition 6.3.25 Let L be a finitely generated propositional lanaguage with a val-

uation semantics (V,IF).

1. Let = be a severe withdrawal that cannot be defined in terms of a K -linear order

using (Def ~ from V<). Then ~ is not a systematic withdrawal.
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2. Let + be a systematic withdrawal that cannot be defined in terms of a K-linear

order using (Def ~ from V<). Then + is not a severe withdrawal.

Proof 1. Assume that — is a systematic withdrawal. Now, let < be a faithful total
preorder in terms of which — is defined using (Def ~ from V<), and let < be
the faithful modular weak partial order defined in terms of < using (Def ~ from
V<). By corollary 6.3.16, the systematic withdrawal <+ defined in terms of <
using (Def ~ from V) is revision-equivalent to —, and it thus follows that + is
equal to —. By supposition, < is not a K-linear order, which means there are at
least two distinct countermodels, z and y, of K such that x =< y and = ||< y.
Now, let a be a wif such that M («) = {z}. (By our choice of L, there is such an
«.) Then V<(a) # V<(a) and thus K——a # K + —a; a contradiction.

2. The proof is similar to that of part (1) and is omitted.
([

Notwithstanding the similarities between systematic and severe withdrawal, there are
fundamental differences between them as well. We now come to a number of prop-
erties that are indicative of the major differences. Interestingly enough, the intuitive
plausibility of all these properties are, in some way or another, related to the following

simple example.'!

Example 6.3.26 While reading about Cleopatra, I have come across one source claim-
ing that she had a son, and another claiming that she had a daughter. Now consider

the following three situations.

1. If I attend a talk about the life and times of Cleopatra, and the speaker, an
expert on the subject, says something which prompts me to retract the belief
that Cleopatra had a son, it seems reasonable to retain the belief that she had a

daughter.

2. Similarly, if the speaker leads me to retract the belief that Cleopatra had a
daughter, I should retain the belief that she had a son.

3. And finally, suppose that the speaker relates an incident which is specific enough

to cast doubts on my belief that she had a son and a daughter, but is too vague

1 This is a variant of example 6.1.2.
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to indicate whether she didn’t have a son, didn’t have a daughter, or perhaps,
did not have any children at all. In these circumstances, intuition dictates that
I should retain the belief that she had a child, without committing myself to a

belief about it being a son or a daughter.

To formalise this example, let L be a propositional language generated by the two atoms
p and ¢g. Let p denote the assertion that Cleopatra had a son, and ¢ the assertion that
she had a daughter. Then K = Cn(p,q). The three different situations described

above are then formalised as follows:
K ~p=Cn(q), K ~q=Cn(p),and K ~ (pAq)=Cn(pVq).

It is easily verified that the systematic withdrawal in example 6.3.23 is able to accom-
modate example 6.3.26, but as we shall see below, the adherence to (K—7) ensures that

severe withdrawal disallows this type of withdrawal. O

Let us now consider each of the relevant properties indicating the differences between
systematic withdrawal and severe withdrawal. The first one is the property expressed
by (K—=7). That it is not satisfied by systematic withdrawal, unlike severe withdrawal,
is evident by considering the systematic withdrawal in example 6.3.23, and noting that
g € K+ p, but that ¢ ¢ K = (p A q). Rott and Pagnucco [1999] argue in favour of
(K=7) by making an appeal to the principles of Indifference and Preference. Observe
that an a A S-withdrawal forces us to get rid of at least one of o or 3. If «v is given
up, they argue, we can obtain an a-withdrawal by abandoning the same beliefs as
when withdrawing a A . And if 3 is given up, we might have to remove even more
beliefs. Information-theoretically, this can be justified as follows. If « is given up
during an o A S-withdrawal, the worst content bits of o A f is at least as entrenched
as the worst content bits of . But the content bits of a are also content bits of a A 3,
and the worst content bits of o A § can thus not be more entrenched than the worst
content bits of . From the principles of Indifference and Preference it then follows
that an a-withdrawal should result in the removal of exactly the same infatoms as an
a A f-withdrawal. On the other hand, if £ is given up during an a A S-withdrawal, it
follows by similar reasoning that the worst content bits of a A 5 and of 3 are all equally
entrenched, with the worst content elements of o at least as entrenched, and possibily
more entrenched. Consequently, the principles of Indifference and Preference dictate

that an a-withdrawal should remove at least as much infatoms as an a A S-withdrawal.
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A careful analysis of the argument advanced above makes it clear that it relies
heavily on the assumption that two infatoms can never be incomparable. In other
words, it assumes the existence of a faithful total preorder to measure the relative
entrenchment of infatoms. But the moment this restriction is relaxed to, say, a faithful
modular weak partial order, the postulate (K—7) is not sanctioned by the same appeal
to principles of Indifference and Preference. This can, perhaps, best be illustrated by
example 6.3.26. Even though both p and ¢ are given up during a p A g-withdrawal, we
don’t want either a p-withdrawal or a g-withdrawal to remove as much information as
a p A g-withdrawal.

The next property we consider is that expressed by the postulate (K+9). Unlike
systematic withdrawal, it is not satisfied by severe withdrawal, a result which can
be verified by noting that for the severe withdrawal — in example 6.3.23, p € K,
pVqgée K-pand ¢ ¢ K—p, but p ¢ K—(p A q). Intuitively, we can justify (K+9)
as follows. If a VvV 8, but not [, is retained after an a-withdrawal, it is an indication
that [ is more easily dislodged from K than «. Consequently, we should retain «, and
discard 3, when having to withdraw a A .

Rott and Pagnucco [1999] show that severe withdrawal satisfies the following prop-

erties:
(Inclusion) Either K~a C K—for K—3C K—a
(Decomposition) Either K—(aA )= K—a or K—(aAf)=K-_3

(Converse conjunctive inclusion) If ¥ a, ¥ 3, and K—(a A 3) € K—J3 then 3 ¢
K-«

(Expulsiveness) If ¥ o and ¥ 3 then either « ¢ K—B or 8 ¢ K—a

Rott and Pagnucco regard it as regrettable that severe withdrawal satisfies Expulsive-

ness, in particular, and write as follows:

“Expulsiveness is an undesirable property since we do not necessarily want
sentences that intuitively have nothing to do with one another to affect
each other in belief contractions. This is the bitter pill we have to swallow

if we want to adhere to the principles of Indifference and Preference.”

We contend that it is the use of the faithful total preorders, and not these two prin-

ciples that are the problem. This is made abundantly clear by noting that systematic
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withdrawal does not satisfy Expulsiveness. In fact, by considering the systematic with-
drawal in example 6.3.23, and taking p as «, and ¢ as [ in the four properties above,
we see that systematic withdrawal doesn’t satisfy any of the four properties above.
Example 6.3.26 is thus evidence of the undesirability of these properties.

An analysis of the properties above creates the impression that, at least in some
respects, severe withdrawal removes too much information from a belief set. This
impression is strengthened by noting that severe withdrawal, unlike systematic with-

drawal, includes the following particularly severe instance of proper withdrawal:

Cn(T)ifae K\ Cn(T),

K otherwise

(Def —) K—a = {

Proposition 6.3.27 The belief removal — defined in (Def —) is a severe withdrawal,

but not a systematic withdrawal.

Proof It is easily verified that — is defined in terms of the faithful total preorder <

using (Def ~ from <), where < is defined as follows:

[ yeUitze M(K),
r 2y iff .
y € U\ M(K), otherwise

and — is thus a severe withdrawal. Now assume that — is also a systematic withdrawal.
Clearly — is revision-equivalent to itself, and by corollary 6.3.16 it then follows that
there is no other systematic withdrawal that is revision-equivalent to —. Now, let < be
the faithful modular weak partial order that is semantically related to <. Since < is
minimal-equivalent to <, it follows from corollary 6.3.16 that the systematic withdrawal
+ defined in terms of < using (Def ~ from <) is revision-equivalent to —, and it is

easily verified that = is not equal to —; a contradiction. O

At the beginning of this section we saw that systematic withdrawal and severe with-
drawal sometimes coincide. A related question is whether these two forms of with-
drawal ever coincide with AGM contraction. It turns out that full meet contraction
(see page 22) is the only case for which systematic withdrawal and AGM contraction

are identical. (See section 3.3.2 for a semantic description of full meet contraction.)

Proposition 6.3.28 Full meet contraction is the only AGM contraction that is a sys-

tematic withdrawal.
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Proof The full meet contraction — can be defined in terms of the following faithful
modular weak partial order using (Def ~ from <): z < y iff x = y, or v € M(K)
and y ¢ M(K). It is therefore, by definition, a systematic withdrawal. Next we show
that — is the only belief removal that is both an AGM contraction and a systematic
withdrawal. Pick any systematic withdrawal <+ other than —. So K — a # K + «
for some & € K\ Cn(T). If K —a ¢ K + «, then there is a f € K — « (and thus
f € K) such that § ¢ K + «. Since K — a = Th(M(K) U M(—«)), there is therefore
an ¢ € M(K + «) such that z € M(a A —f). And thus f ¢ K + a + «, which is
a violation of Recovery. So suppose that K — a C K + a. Now let < be a faithful
modular weak partial order in terms of which + is defined using (Def ~ from V).
Since K — a = Th(M(K) U M(—«)), it follows from K —a C K + « that there is a
f € Th(M(K) U V<(—a)) such that y € M(—f) for some y € M(—«). So ¥ oV 3,
and since Min<(—a) C V<(—a), Min<(—~a) N Min<(—~(aV () = 0, which means that
Ming(—a) < Minz(—(aV ()).'? By smoothness, Min<(—«) # (), and there is thus an
r € M(—a A ) such that x < z for every z € Min<(—(aV 3)). So v € V<(=(aV B))
and thus o ¢ K + (aV ) + (a V ). So + does not satisfy Recovery, and is therefore

not an AGM contraction. O

With the exception of some cases involving a few trivial belief sets, though, severe

withdrawal and AGM contraction always produce different results.

Proposition 6.3.29 Let K be such that for some o, € K, ¥ «, ¥ 3 and o # [.

Then severe withdrawal and AGM contraction never coincide.

Proof Pick any severe withdrawal — and let < be a faithful total preorder in terms
of which = can be defined using (Def ~ from V). If Min<(=(a > 8)) € M(«) then
Vi(=(aV=p)) € M(B) and so 8 ¢ K—(aV =) + (a vV =), which is a violation
of Recovery The remaining two cases, where Min<(— (a < ) € M(p), and where
Minz(=(a + B)) € M(a) and Min<(—(a <> 8)) € M(j3), are similar. O

We conclude this section with a suggestion prompted by a remark from Hans Rott
[personal communication] that it seems difficult to come up with yet more appropriate
forms of principled withdrawal. It turns out that there is a semantic way to describe

another set of reasonable withdrawals, all of which exhibit principled behaviour. The

2See section 1.3 for an explanation of the convention of applying <, < and =< to sets of interpre-
tations.
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method of constructing this set relies on the principles of Indifference, Preference and
Informational Economy, and they are employed in a manner identical to that used in the
construction of severe and systematic withdrawal. It differs only from the constructive
modellings of systematic and severe withdrawal in the choice of permissible faithful

preorders.

Definition 6.3.30 A belief removal is a methodical withdrawal iff it is defined in terms

of a faithful layered preorder using (Def ~ from V). O

Since the set of faithful layered preorders includes the faithful modular weak partial
orders and the faithful total preorders, methodical withdrawal includes both system-
atic and severe withdrawal. However, it excludes the AGM contractions which do not
coincide with systematic withdrawal. It is our contention that methodical withdrawal
constitutes a class of withdrawals that deserve further study. We provide a tenta-
tive first step in this direction with a result involving some properties of methodical

withdrawal.

Proposition 6.3.31 Methodical withdrawal satisfies (K—1) to (K—=5), (K—17), (K—8),
(K+7) and (K+10).

Proof The proofs are similar to those for systematic and severe withdrawal, and are
omitted. a

From theorem 6.3.8 it thus follows that methodical withdrawal is also reasonable.

6.3.6 Informational value

In section 6.2.1 we saw that proper withdrawal, as characterised by Levi’s saturatable
withdrawals, is too general to be regarded as principled. In particular, it contains many
removals which do not satisfy (K—7) and (K—8). These, of course, include the basic
AGM contractions that are not AGM contractions.

Levi [1991] provides two methods for obtaining a more principled form of proper
withdrawal. The basic tenet of the constructions is that it is not the loss of information
that should be minimised, but rather the loss of informational value. In order to achieve
this, it is necessary to provide a measure )V on the belief sets that are subsets of the

current belief set K. He considers two monotonicity conditions of V:
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(Strong monotonicity) If X C Y then V(X) < V(Y)
(Weak monotonicity) If X C Y then V(X) < V(Y)

Levi sees strong monotonicity as too strong a requirement to impose on V, arguing
instead for the imposition of weak monotonicity. This is referred to as a measure of

3 The intuition is that some information may have

undamped informational value.!
no informational value, and that the addition of such information should leave the
informational value of a belief set unchanged. His first method uses undamped infor-
mational value. To determine the belief set resulting from an a-withdrawal of K, he
finds the saturatable contractions with respect to K and « that minimises the loss of
informational value, and takes their intersection. That is done as follows with the aid

of a measure of undamped informational value V:

{X € sc(K,a) | V(X) >V(Y) VY € se(K,a)}
(Def ~ from V) K ~a=4 ifae K\ Cn(T),

K otherwise

Definition 6.3.32 A withdrawal is called informational valued iff it defined in terms

of a measure of undamped informational value V using (Def ~ from V) O

As Levi observes, this method is problematic from a decision-theoretic point of view,
since the belief set obtained from an a-withdrawal may not represent a minimal loss

in informational value.

Example 6.3.33 Let L be the propositional language generated by the atoms p and
q, and let (V;IF) be the valuation semantics for L. Now let K = Cn(p), and let
V(Cn(p)) =1, V(Cn(pV q)) = V(Cn(pV —¢)) = 2, and V(Cn(T)) = 0. It is easily
seen that K ~ p = Cn(T) for the withdrawal ~ defined in terms of V using (Def ~
from V). And yet

V(Cn(T)) = 0 < V(CnlpV ) = V(CnlpV ) = 5

Choosing either Cn(p V q) or Cn(p V —=q) would thus have resulted in a loss of infor-
mational value of 1, while the choice of Cn(T) represents a loss of informational value
of 1. O

13 Actually, Levi’s measure of undamped informational value, as proposed in [Levi, 1991], is required

to be a probability measure. We stick to the watered-down version used by Hansson and Olsson [1995].
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To rectify this undesirable behaviour, Levi switches to damped informational value. A
measure Vp of damped informational value is determined in terms of a measure V of

undamped informational value as follows:
(Def Vp from V) Vp(X) =min{V(Y) € s¢(K,a) | Y C X}

In other words, the damped informational value of a belief set X C K is equal to
the minimum undamped informational value of the saturatable contractions contained
in X. Levi’s second method then defines proper withdrawals in terms of damped
informational value using (Def ~ from V). It is easily established that the proper
withdrawals defined in terms of V and V), using (Def ~ from V), where V) is obtained
in terms of V using (Def Vp from V), are identical. The advantage in using damped
informational value is that it can be motivated from a decision-theoretic point of view.
Hansson and Olsson [1995] show that informational valued withdrawal satisfies (K—7)
and (K—8). In this sense, then, it is a principled form of withdrawal.

Levi [1998] has recently expressed some doubts about the appropriateness of infor-
mational valued withdrawal, as it has been presented thus far. He presents an example
which is representative of a class of informational valued withdrawals satisfying Re-
covery, which he sees as counterintuitive [Levi, 1998,p. 37]. Furthermore, he points
out that the undamped and damped informational value of some belief sets (such as
the saturatable contractions) are the same, but that it differs for others. As a result,
he proposes the use of a second version of damped informational value. The removal-
s defined in terms of this version of damped informational value using (Def ~ from
V) is dubbed mild contraction. It turns out that mild contraction coincides exactly
with severe withdrawal. This is one of the reasons why Levi favours severe withdrawal
over systematic withdrawal. He argues that his construction of severe withdrawal (or
mild contraction) in terms of undamped informational value (version 2) provides a
decision-theoretic motivation; something that systematic withdrawal does not appear

to possess.

6.4 Withdrawal and entrenchment

As discussed in chapter 5, entrenchment orderings on wifs are intended to provide a
measure of the extent to which a particular belief of an agent is entrenched in its belief

set. As such, these orderings can be useful in the construction of withdrawals. In
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this regard, we have already seen how AGM contraction can be defined in terms of
two forms of entrenchment; the EE-orderings of section 2.3, and the RE-orderings of
section 5.5. In fact, we saw in section 5.8 that the EE-orderings, the RE-orderings
and AGM contraction are interchangeable in terms of the relevant identities. In this
section we show that this interchangeability can be extended to include systematic and
severe withdrawal as well. It will be convenient to generalise the notion of semantic
relatedness found in definitions 5.8.1 and 6.3.18.

Definition 6.4.1 An AGM contraction —, an AGM revision %, an EE-ordering Tz, a
GE-ordering Cs i, an RE-ordering C gp, an RG-ordering C gq, a systematic withdrawal
<+, and a severe withdrawal — are semantically related iff there is a faithful total

preorder < and a semantically related faithful modular weak partial order < such that
1. — is defined in terms of < (and <) using (Def ~ from <),
2. x is defined in terms of < (and <) using (Def * from =),
3. Cpp is defined in terms of < using (Def Cp from <),
4. Cgp is defined in terms of < using (Def Cg from <),
5. Cgg is defined in terms of < using (Def Cg from <),
6. Cre is defined in terms of < using (Def C¢ from <),
7. + is defined in terms of < using (Def ~ from V<), and
8. — is defined in terms of < using (Def ~ from V).
a

Note that, for the remainder of this chapter, we shall fequently make use of lemma
5.2.1 without explicitly referring to it, as has been the convention in chapter 5.

Let us begin with sharper versions of results by Rott and Pagnucco [1999], showing
that severe withdrawal and epistemic entrenchment are interdefinable by means of the

following two identities:

Kﬁ{6|aEEE6} lfOZEK\CTL(T),

Def = from C K-a=
( Cer) { K otherwise
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(Def Cpp from —) aCpp ifa ¢ K—BorE B

Proposition 6.4.2 If an EE-ordering Cpi and a severe withdrawal — are semantically

related, they can also be defined in terms of one another using (Def Cpgp from —) and
(Def; from Cgp).

Proof Let < be a faithful preorder in terms of which Cgp and — are defined using (Def
C g from <) and (Def ~ from V<). We only consider the case where «, 5 € K\Cn(T).
Observe that 8 € K—a« iff there is a y € Min<(—a) such that z € M(S) for every
x =y, iff 8 Lgg «, iff @ Cgg B. And then observe that o Cgg [ iff for every
y € Min<(—p) there is an x € M(—a) such that z <y, iff « ¢ K—p. O

Proposition 6.4.2 thus also shows that the identities (Def — from C ) and (Def Cpp
from —) are interchangeable. Note that (Def Cpp from —) and (Def — from Cgp)
provide a very elegant method for moving between severe withdrawal and epistemic
entrenchment. Barring some limiting cases, a wif 3 is in the belief set resulting from a
severe a-withdrawal iff # is more entrenched than a.

Interestingly enough, Rott and Pagnucco [1999] show that (Def Cgp from —) and
(Def C g from ~) are equivalent when applied to severe withdrawals. This observation
prompts us to show that the application of (Def Cgpp from ~) to any two revision-

equivalent reasonable withdrawals yields the same EE-ordering.

Proposition 6.4.3 Let ~ and =~ be two reasonable withdrawals that are revision-
equivalent. The EE-orderings defined in terms of ~ and =~ using (Def Cgp from ~)

are identical.

Proof Let — and — be the unique AGM contraction and severe withdrawal respective-
ly, that are revision-equivalent to ~ and =. It suffices to show that the EE-orderings
defined in terms of ~ and — using (Def Cgp from ~) are identical. So let T, be
the EE-ordering defined in terms of — using (Def Cgp from ~), and let EéE be the
EE-ordering defined in terms of — using (Def C g from —). Since (Def Cpp from —)
and (Def Cpp from ~) yield identical EE-orderings when applied to severe withdrawal,
EEE can also be defined in terms of — using (Def Cgp from ~).

First we show that T, and E;E are identical. Let < be a faithful total preorder
in terms of which — and — can be defined using (Def ~ from <) and (Def ~ from V%)

respectively. By corollary 6.3.16 there is such a <. By proposition 6.4.2, EEE is the
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EE-ordering defined in terms of < using (Def Cp from <), and by proposition 3.3.4,
C g is the EE-ordering defined in terms of < using (Def Cg from =<). So EéE and
C . are identical.

Now, let L%, be the relation on L defined in terms of ~ using (Def Cgp from ~).
We only consider the case where ¥ a A 5. If a Ty, f then @« ¢ K — a A 3. Since
~ is reasonable, & ¢ K ~ «a A and thus a C}, 5. Furthermore, if @ T3, 5 then
a ¢ K ~ aAfB. Since ~ is reasonable, @ ¢ K—a A 8 and thus « EéE . And since

Crnp and Eé p are identical, the required result follows. O

When using (Def Cgrp from ~), we obtain a result for reasonable withdrawal and

refined entrenchment which is similar to proposition 6.4.3.

Proposition 6.4.4 Let ~ and =~ be two reasonable withdrawals that are revision-
equivalent. The RE-orderings defined in terms of ~ and ~ using (Def Crg from ~)

are identical.

Proof Let — be the unique AGM contraction and — the unique severe withdrawal
that are both revision-equivalent to ~ and &. Furthermore, let < be a faithful total
preorder in terms of which — and — can be defined using (Def ~ from <) and (Def
~ from V<) respectively. By corollary 6.3.16 there is such a <. Moreover, let < be
the faithful modular weak partial order that is semantically related to <. By theorem
5.5.15 we know that the RE-ordering T, defined in terms of < using (Def Cg from
<) can also be defined in terms of — using (Def Ty from ~). Below we show that the
binary relation EI:%E on L defined in terms of — using (Def Cgp from ~) is identical
to Crp- The required result then follows in a manner that is similar to the proof of
proposition 6.4.3.

Suppose that « Cpp f. Then o = € K—aAf and so M(K)UMin<(—~(aApB)) C
M(a — B). From this it follows that for every z < y, where y € Min<(—=(a A B)),
x € M(a — B3). That is, Vi(=(a A B)) € M(a — 3), and thus o — 8 € K=(a A f)
from which it follows that « EéE B. Conversely, if a EéE Bthen o — B € K—(aAp).
But this means that « - € K — (a A ) and so o Ty, S. O

Y

A result similar to proposition 6.4.2 holds for severe withdrawal and refined entrench-

ment when (Def Crp from ~) and the identity below are used:

KO{B|BZREaand5—>aEREﬁ}ifJ?fa,

Def = from C K-a=
( Cre) { K otherwise
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Proposition 6.4.5 If an RE-ordering Crp and a severe withdrawal — are semanti-
cally related, then they can also be defined in terms of one another using (Def Crp
from ~) and (Def = from Crp).

Proof Let < be a faithful total preorder in terms of which — can be defined using (Def
~ from V<), and let < be the semantically related faithful modular weak partial order.
The validity of the application of (Def — from Crg) follows easily from proposition
6.4.2 and theorem 5.5.7. For (Def Cpp from ~) we only consider the case where ¥ .
Observe that o Crp [ iff for every y € Min<(—f) there is an z € Min<(—«) such
that © <y, iff Vo(=(aAB)) C M(a = B),iff a = g € K—(aAp). O

Next is a similar result for systematic withdrawal and the EE-orderings, when using
(Def Cpp from ~) and the identity below:

aCprppaVpfand aCrp
(Def = from Cpp) fe K+ aiff  ifae K\ Cn(T),
g € K otherwise

Proposition 6.4.6 If the EE-ordering Cgr and the systematic withdrawal = are se-
mantically related, then they can also be defined in terms of one another using (Def +
from Cgg) and (Def Cgp from ~).

Proof Let < be a faithful total preorder in terms of which Cgg can be defined using
(Def Cg from <), and let < be the semantically related faithful modular weak partial
order. For (Def + from Cpp) we only consider the case where o« € K\ Cn(T). Suppose
that 3 € K + «. So, there is a y € Min<(—«) such that z € M(8) C M(a V ) for
every x < y. Furthermore, since Min<(—a) C M (), x € M(a V f3) for every x such
that y £ x. So x € M(«a V ) for every x < y, which means that o V 8 Zgp « and
thus that o Cpp oV . And since x € M (3) for every x < y, we have that o Cgp [.
Conversely, suppose that § ¢ K <+ a. So there is a y € M(K) U V<(—a) such that
y € M(—f). Suppose further that « Cpp [. Then there is an € M(—«) such that
r <y and thus y € Min<(—a). Soy € M(—(aV 3)) and y < 2 for every z € M(—a).
That is, a V 8 Cgg a, which means that a Zgr oV 5.

For (Def Cgp from ~), suppose that & Zgg S. So there is a y € Min<(—f)
such that + € M(«a) for every x < y. Then ¥ a A B, y € Min<(—~(a A §)), and so
M(K)UV<(~(aApB)) € M(e). That is o € K + (a A 3). Conversely, suppose that
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a € K+aAB. We only consider the case where # oA 5. Then M(K)UV<(=(aApB)) C
M (), and there is thus a y € Min<(—~(a A ) = Min<(—f) such that x € M(«) for
every « < y. Furthermore, since Min<(—(a A 3)) C M(«), z € M(«) for every x such
that y £ x. So z € M(«a) for every z < y and thus a Lgg f. O

Finally, we obtain a related result for systematic withdrawal and refined entrenchment

in terms of (Def Crp from ~) and the identity below.

{B| B %re @ and f — o Cgp a}
(Def =+ from Cpg) K +a=1 ifae K\ Cn(T),

K otherwise

Proposition 6.4.7 If the RE-ordering Cgrp and the systematic withdrawal = are se-
mantically related, then they can also be defined in terms of one another using (Def +
from Crg) and (Def Crp from ~).

Proof Let < be a faithful modular weak partial order in terms of which Crp and +
can be defined using (Def Cp from <) and (Def ~ from V). The proof for (Def Cgp
from ~) is identical to the part of the proof of proposition 6.4.5 concerning (Def Crp
from ~). For (Def + from Cgp), we only consider the case where o € K\ Cn(T).
Suppose that 3 € K + a. So there is a y € Min<(—a) such that € M(3) for every
r < y. That is, f Zrg . Note further that for every z € Min<(—a), z € M(S),
and so f — a Crp a. Conversely, suppose that § Zzr o and f — a Cgg a. From
[ ¥re « there is a y € Min<(—a) such that € M(J) for every < y, and from
f — a Cre « it follows that y € M(B) for every y € Min<(—ca). And therefore,
beK-=+a. O

6.5 Systematic withdrawal and entrenchment

Section 6.4 contains a plethora of results, providing strong links between severe with-
drawal, systematic withdrawal, the EE-orderings and the RE-orderings, in terms of
appropriate identities. But with the exception of the connection between severe with-
drawal and the EE-orderings, it is difficult to view these identities as intuitively plau-
sible descriptions of how these constructions relate to each other. This is not unlike
the connection between AGM contraction and epistemic entrenchment provided by the
identities (Def — from Cgp) and (Def Cgp from ~) in section 2.3. (Def — from Cgp)
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in particular, has been the subject of some scrutiny in the theory change literature.
With the exception of some limiting cases, it shows that a wif 5 is in the a-contraction
of K iff oV 3 is more entrenched than «. It is, of course, the use of « V 3, instead of
[ above, that is the source of concern. Blackburn et al. [1997], for example, attribute
the use of a vV f to “technical reasons”. Gérdenfors and Makinson [1988] provide a
motivation for its use, but it is somewhat difficult to understand, and depends on the
acceptance of the Recovery postulate. More recently, Gérdenfors has admitted that
the identity is somewhat counterintuitive [1992,p. 19].

In section 5.1 we gave a different characterisation of AGM contraction in terms of
the EE-orderings; one that, in our opinion, provides a closer match with the Gardenfors
intuition that contraction in terms of epistemic entrenchment is based on the idea of
being “forced to choose” between the removal of two wffs. In this section we intend to
provide an analogous match between systematic withdrawal and refined entrenchment.
We start by showing that the EE-orderings have too coarse a grainsize to provide a
suitable intuitive description of systematic withdrawal. This is followed by another
description of systematic withdrawal in terms of the RE-orderings; one which differs
from the one given in proposition 6.4.7. Finally, we show that for the finitely generated
propositional case, there is a graph based procedure for defining systematic withdrawal

in terms of refined entrenchment.

6.5.1 Systematic withdrawal and the EE-orderings

The reason that (Def — from Cgg) is seen as a somewhat counterintuitive definition
of AGM contraction in terms of the EE-orderings is that wffs that are less entrenched
than a wif a are sometimes retained during an a-contraction, as the next example

shows.

Example 6.5.1 Let L be the propositional language generated by the two atoms p
and ¢, and let (V,IF), with V' = {00, 01, 10, 11}, be the valuation semantics for L. Let
K = Cn(p) and define the EE-ordering T as follows:

pelifad¢ K,
pEBifa=pora=pV g,
pVqgEpBif a=pVg, and
FRifa=T.

aCpp B iff
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{a|pFao}=L\K

Figure 6.3: A graphical representation of the EE-ordering Cpp with respect to the
belief set K = Cn({p}). This EE-ordering is used in example 6.5.1. For every «, 3 € L,
a Cpp B iff («, ) is in the reflexive transitive closure of the relation determined by
the arrows. Each wif in this figure is a canonical representative of the set of wffs which

are logically equivalent to it.

It is easily verified that Cgp is indeed an EE-ordering. Figure 6.3 contains a graphical
representation of Cgg. It can be verified that the AGM contraction — defined in terms
of Cgp using (Def — from Cgg) yields K — (pV ¢q) = Cn(pV —q). So K — (pV q)
contains the wif p V —¢, a wif that is less entrenched than pV q. O

Our first result shows that, unlike AGM contraction, none of the wifs that are less

entrenched than « are in the belief set resulting from a systematic a-withdrawal.

Proposition 6.5.2 Suppose that the EE-ordering Cgg and the systematic withdrawal
+ are semantically related. If # o and f Cpp « then 8 ¢ K + «.

Proof Let < be a faithful total preorder in terms of which Cgg can be defined using

(Def Cg from <) and let < be its semantically related faithful modular weak partial
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order. Suppose that # « and f Cgrr a. Then a Zgg [ and there is thus a y €
Min<(—f) such that € M(«) for every x < y. So y < z for every z € Min<(—«).
Therefore V<(—a) € M(S) and thus § ¢ K + «. O

Proposition 6.5.2 describes the fate of the wiffs that are less entrenched than «, but
it gives no indication of what happens to the remaining wffs. The next result gives a

partial answer to this question.

Proposition 6.5.3 Suppose that the EE-ordering Cgp and the systematic withdrawal
<+ are semantically related. If « Cgg (B then € K + «.

Proof Let < be a faithful total preorder in terms of which Cgg can be defined using
(Def Cg from <), and let < be its semantically related faithful modular weak partial
order. Suppose that & Cgp 5. We only consider the case where ¥ 5. By (EE2), ¥ «,
and from  Zgp a it follows that there is a y € Min<(—«) such that z € M(3) for
every < y. So M(K)U V< (—a) C M(f) and thus f € K + a. 0

The wifs that are more entrenched than « will thus all be retained after a systematic
a-withdrawal. It therefore only remains to be seen what systematic withdrawal does
with the wifs that are as entrenched as . Unfortunately it seems that the EE-orderings

are too coarse to account for a proper description of how to handle these wifs.

Example 6.5.4 Consider the language L generated by the two atoms p and ¢, and let
(V,IF) be the valuation semantics for L, with V' = {00, 01, 10,11}. Let K = Cn({p, q}),
define the faithful total preorder < as follows

yeVitfz =11,
r2yiff ¢ ye{00,01,10}if x € {01,10}, and
y =00 if z = 00

and let < be the associated faithful modular weak partial order defined in terms of <
using (Def < from <). Now, let Cgp be the EE-ordering defined in terms of < using
(Def Cp from <) and let + be the systematic withdrawal defined in terms of < using
(Def ~ from V<). Figure 6.4 contains a graphical representation of < and Cgp. An
inspection of Cgp in figure 6.4 shows that the status of the wifs which are exactly as
entrenched as the wif we want to withdraw is somewhat ambiguous. To see this, note
that K + p = Cn({q}). So although the wffs pV ¢, p <> ¢, p A q, 7p V ¢, and q are

exactly as entrenched as p, some of them are in K =+ p, while others are not. O
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pv4]

10~——01 D,pV g, p < q,pNqg,7pVaq,q

{alprngFa} =L\ K

Figure 6.4: A graphical representation of the EE-ordering Cgp with respect to the
belief set K = Cn({p,q}), and the faithful total preorder from which it is obtained
using (Def Cp from <). These orderings are used in example 6.5.4. For every two
interpretations x and y, x < y iff (z,y) is in the reflexive transitive closure of the
relation determined by the arrows. Similarly, for every «, 5 € L, « Cpp (8 iff (o, 8) is
in the reflexive transitive closure of the relation determined by the arrows. Each wff
in the graphical representation of the EE-ordering is a canonical representative of the

set of wifs which are logically equivalent to it.

Interestingly enough, this example does not represent a phenomenon that is unique to
systematic withdrawal. The next proposition shows that systematic withdrawal and
AGM contraction differ only on those wffs that are less entrenched than the wif « to
be withdrawn. In other words, the type of problem highlighted in example 6.5.4 is one

that has been carried over from AGM contraction.

Proposition 6.5.5 Suppose that the EE-ordering Cgg, the systematic withdrawal =+,
and the AGM contraction — are semantically related. If B [/ pp « then f € K — a iff
e K-—+a.

Proof Let < be a faithful total preorder in terms of which Cgg and — can be defined
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using (Def Cp from <) and (Def ~ from <), and let < be its semantically related
faithful modular weak partial order. Suppose that 8 Zgg a. The right-to-left direction
follows from corollary 6.3.16. Now suppose that § € K — a. Pick any z € V(—a).
If v € M(K)U Min<(—ca) then x € M(3), so we suppose otherwise. Then x € M(«)
and z < y for every y € Min<(—a). Assume that ¢ M(f). Then v € M(a A —f),
and since o Cpp (3, there is a z < x such that z € M(—«), contradicting the fact that
r <y for every y in Min<(—a). O

Example 6.5.4 gives an indication that the EE-orderings have too coarse a grainsize to
provide an intuitively satisfactory description of systematic withdrawal. This undesir-
able behaviour can be traced back to the fact that the EE-orderings are total preorders;

a feature that has already been discussed at length in chapter 5.

6.5.2 Systematic withdrawal and the RE-orderings

We now come to an alternative description of systematic withdrawal in terms of refined
entrenchment. It turns out that refined entrenchment retains the intuitively desirable
results of section 6.5.1, and eliminates the counterintuitive results associated with the
EE-orderings described in that section. First, we show that the result of proposition

6.5.2 carries over to the RE-orderings.

Proposition 6.5.6 Suppose that the RE-ordering Cpgr and the systematic withdrawal
+ are semantically related. If ¥ o and B Crp « then 5 ¢ K + «.

Proof Let < be a faithful modular weak partial order in terms of which Crg and +
can be defined using (Def Cp from <) and (Def ~ from V<). Suppose that ¥ o and
f Cre a. So, for every y € Min<(—a) there is an © € Min<(—f) such that x < y.
This means that V<(—a) € M(f), and therefore that § ¢ K + a. O

So during an a-withdrawal, systematic withdrawal does not just guarantee the removal
of all the wifs that are less entrenched than «, but also those that are as entrenched
as a. It remains to be seen what happens to the remaining wffs; those are not at most
as entrenched as the wif o to be withdrawn. Note firstly that AGM contraction and

systematic withdrawal treat these wifs in exactly the same manner.

Proposition 6.5.7 Suppose that the RE-ordering Cggr and the systematic withdrawal
+ are semantically related. If B Lrg o then f € K —a iff f € K + a.
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p,pV—q] |pVa|l [-pVaq|

P q,pNq

{a|pAgFa}=L\K

Figure 6.5: A graphical representation of the RE-ordering Crp with respect to the
belief set K = Cn({pAq}). This RE-ordering is used in example 6.5.8. For every «, 5 €
L, a Cpp B iff (o, B) is in the reflexive transitive closure of the relation determined by
the arrows. Each wif in this figure is a canonical representative of the set of wffs which

are logically equivalent to it.

Proof Let < be a faithful modular weak partial order in terms of which Cxx and = can
be defined using (Def Cp from <) and (Def ~ from V<). Suppose that 8 Zgg o. By
corollary 6.3.16 we already have that K +~a C K —«. So suppose that § € K —«. Then
M(K) U Min<(—a) € M(S3) and it thus suffices to show that V<(—a) \ Min<(—«a) C
M(f). Now, since 8 ZLgrg «, there is a y € Min<(—«) such that € M(3) for every
x < y. It then follows easily that V(—«) \ Min<(—a) C M(fB). O

The next example shows that the wffs that are more entrenched than a are not always

retained after a systematic a-withdrawal.
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Example 6.5.8 Let L be the propositional language generated by the two atoms p
and ¢ and let (V1) be the valuation semantics for L, with V' = {00,01, 10, 11}. Now,
let K = Cn({p,q}), define the faithful modular weak partial order < as follows

yeVifr =11,

y € {01,00} if = = 01,

y € {10,00} if x = 10, and
y = 00 if z = 00,

x <y iff

and let Crp be the RE-ordering defined in terms of < using (Def Cp from <). Fig-
ure 6.2 contains a graphical representation of <, and figure 6.5 contains a graphical
representation of Cxp.

Now let + be the systematic withdrawal defined in terms of < using (Def ~ from
V<). It is easily verified that K < (p <> ¢) = Cn(pV ¢). Furthermore, an inspection of
figure 6.5 shows that p, ¢, =pV g and pV —q are all more entrenched than p <+ ¢. And
yet, none of these wffs are in K + (p < ¢). O

An inspection of the RE-ordering C g in figure 6.5 gives a clue as to why wifs that are
more entrenched than « are sometimes not retained when performing an a-withdrawal.
Observe in figure 6.5 that both p and ¢ are more entrenched than p A q. Retaining
both of them in K =+ (p A q) is out of the question (because it would then follow that
pAq€ K+ (pAq)). Furthermore, Cpp does not allow us to choose between p and ¢,
since they are incomparable in terms of Crg. The prudent course of action is then to

remove both. This argument can be formulated as a general principle involving sets of
wits.

Proposition 6.5.9 Suppose that the RE-ordering Cpgr and the systematic withdrawal
+ are semantically related. Now, suppose that o Trp 5, X U{f} F «, and both
a Cre vy and B ||c,p, v for every v € X. Then ¢ K + a.

Proof Let < be a faithful modular weak partial order in terms of which Cz and +
can be defined using (Def Cg from <) and (Def ~ from V). Assume that € K + «
and pick a v € X. Since o« Cgp 7, there is a y € Min<(—«) such that € M(y) for
every x < y. Furthermore, y € M(/3) because f € K + «. Now, since X U {5} F a and
y € M(—a A ), there is a 6 € X such that y ¢ M(6). And because /3 ||c,, J, there is
a v € Min<(—3) such that u € M(§) for every u < v. Therefore y £ v. Furthermore,
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from § € K + « it follows that v £ y. And because o Cpy 3, there is a w < v such
that w € M(—a). Since y € Min<(—a) and y ||< v, it has to be the case that w = v,
and therefore v € Min<(—«). And since v ¢ M(S), f ¢ K + «; a contradiction. O

Note that proposition 6.5.9 only guarantees that /5 is not in K =+ «, and makes no such
claim about the wffs in X as well, even though these wffs are all incomparable with
[ and more entrenched than «, just as § is. This can be explained by observing that
the wifs in X need not be incomparable with one another. In the special case in which
they are incomparable, it follows easily from proposition 6.5.9 that none of the wffs in
X are in K =+ « either.

A related result, and one that is of some importance for the results presented in
the rest of this section, holds for the set of wffs that includes not only those that are
more entrenched than a, but also those that are incomparable with «. For this result

we need the following lemma.

Lemma 6.5.10 Let < be a faithful modular weak partial order, Crp the RE-ordering
defined in terms of < using (Def Cg from <), and + the systematic withdrawal defined
in terms of < wsing (Def ~ from V<). If o € K, f Ugg « and [ ¢ K + «, then there
isay € M(—aAp) and a z € M(—a A =) such that x € M(a A B) for every x < y,
and © € M(a A ) for every x < z.

Proof Suppose that « € K, f Ugp « and f ¢ K + a. It follows from f ZLgp «
that there is a y € Min<(—a) such that © € M(3) for every < y. And therefore
y € M(—aAp)and x € M(a A S) for every x < y. Furthermore, because 5 ¢ K + «,
there is a z € M(K) U V<(—a) such that z € M(=3). If 2 ¢ Min<(—a) then, since
a € K, z < y, which violates the result that all interpretations strictly below y are
models of 3. So z € Min<(—«), and because y is also a minimal model of -« it follows
that z € M(—a A —f), and that © € M(a A ) for every z < z. 0

Proposition 6.5.11 Suppose that the RE-ordering C g and the systematic withdrawal

=+ are semantically related.

1. Ifa € K, B ULre o and ¢ K+, then there is a v Lpp « such that {5,v} E a.

2. If B Ure o, v Lre «, and {B,7} E «, then f ¢ K+« and v ¢ K + «.
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Proof Let < be a faithful modular weak partial order in terms of which Cz and +
can be defined using (Def Cp from <) and (Def ~ from V<). For the proof of (1),
suppose that f Zpp o and f ¢ K + a. Now consider the wif § — «a. It is clear
that {8, — a} F a. Since a € K, it follows from lemma 6.5.10 that there is a
y € M(—aAp)and a z € M(—a A —f) such that x € M(a A ) for every x < y, and
z € M(a A B) for every x < z. So z is a model of -« such that x € M(5 — «) for
every < z. That is, (f — a) Lgg «, and we have the desired result.

To prove (2), suppose that  Lgrg «, v Lrp o and {3,7} F a. Because  Lgp «,
there is a y € Min<(—c) such that x € M(S3) for every x < y, and because {3, v} F «,
y € M(—y). Similarly, from v Zrp « there is a 2 € Min<(—a) such that x € M(7y)
for every x <y, and z € M(—03). It thus follows that v ¢ K +aand f ¢ K +a. O

So proposition 6.5.11 tells us exactly which of the wffs that are not at most as en-
trenched as a wiff a in K will be retained when withdrawing « from K, and which
of these wifs will be discarded. It therefore places us in a position to formalise the

relationship between the systematic withdrawals and the RE-orderings.

Theorem 6.5.12 Suppose that the RE-ordering Crp and the systematic withdrawal

+ are semantically related. Then

f ¢ K and F «, or

f ¢ K and a ¢ K, or

B Cre v and F «, or

B Zre @ and 3y Zrp « such that {8,7} E «,

B¢ K+ aiff (6.1)

or equivalently,
g€ K and F «, or
peK+aiff § fe K anda¢ K, or (6.2)
B Lrr « and for every v Lgrp o, {B8,7} F a.

Proof The proof is mostly a combination of the results in propositions 6.5.11 and

6.5.6. It can be found in appendix B. O

In fact, we can do better. The next proposition enables us to sharpen the relationship

between systematic withdrawal and refined entrenchment.

Proposition 6.5.13 Suppose that the RE-ordering Cgg and the systematic withdrawal

<+ are semantically related.
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1. Ifo e K, o Cre B, and B ¢ K + «, then & Tre 7, ¥ |lcae 6, and {B,7} F «
for some v € L.

2. Ifa € K, a gy, B, and B ¢ K + o, then o |cpy v, Y llcee B, and {B,7} F «
for some v € L.1

Proof Let < be a faithful modular weak partial order in terms of which Czr and + can
be defined using (Def T from <) and (Def ~ from V<). The proofs are similar to those
of part (1) of proposition 6.5.11. For the proof of (1), suppose that a € K, o Cgp 5,
and f ¢ K + «a. Now consider the wiff 5 — «. It is clear that {3,8 — a} F a. By
lemma 6.5.10 there isay € M(—aAf) and a z € M (—a A=) such that z € M(aAp)
for every x <y, and x € M(aAp) for every x < 2. So z € M(—«a) and z € M (S — «)
for every x < z. That is, (f — «) Ereg «. Since M(=(f — «a)) C M(-a), it
also clearly follows that @ Cgrp (f — «), and so @ Crp (8 — «). To show that
(B = @) ||cpe B, note firstly that z € M(=f) and x € M(8 — «) for every z < z.
That is, (8 — «) Zgre . And then note that y € M(—(8 — «)) and xz € M(S) for
every < z. That is, f Lrg (8 — «).

For the proof of (2), suppose that o € K, a ||c,, B, and f ¢ K + a. Now
consider the wif 5 <> «a. It is clear that {3, <> a} F «. By lemma 6.5.10, there is
ay € M(—~aAp)and a z € M(—a A —f) such that z € M(a A B) for every z < y
and M (a A ) for every x < z. To show that 8 <> « ||c,, @, note firstly z € M(—«)
and x € M( < «) for every < z. That is, f <> « Zrr «. And then note that
since o Lrp B, there is a v € M(—/) such that u € M(«) for every u < v. Therefore
v ||< y, and so u € M(a A B) for every u < v. Sov € M(=(8 <+ «)) and u € M(«)
for every w < w. That is, « Zgg B <> o. Then, to show that <> a ||, 5, note that
z € M(—=p) and x € M(S <> «) for x < z. That is, f <> a Lgrg 5. And then observe
that y € M (—(8 <> «)) and x € M(p) for every x < y. That is, f Lgp (6 < «). O

We are now in a position to state the main result of this section.

11t can also be shown that if a € K, a ||c,, 3 and 8 ¢ K + a, then @ Cre 7, 7 llcas B, and
{B,7} E a for some . The proof is essentially the same as for part (1) of the proposition. While
such a result does not offer much insight from an epistemological point of view, it might be useful for

computational purposes.



6.5. SYSTEMATIC WITHDRAWAL AND ENTRENCHMENT 189

Theorem 6.5.14 Suppose that the RE-ordering Crp and the systematic withdrawal

=+ are semantically related. Then

( B¢ K and F «, or

f¢ K and o ¢ K, or

B Cre a and ¥ «, or
5¢K+aﬂ{cuhEﬂwdheLmMWMt (6.3)

o CRrE v, 6 ||ERE i and {/B,’}/} = @, Or
@ ||cpp B and 3y € L such that

( & ||ERE v 6 ||ERE Y and {BJ’V} = «,

or equivalently,

( B € K and F «, or
f €K and a ¢ K, or
a Cre [ and Vv € L such that

o CRrE Y and /B ||ERE Y {/87’}/}# @, Or
@ ||cgp B and Vy € L such that

[ @ ||ERE v and ||ERE 7> {577}# «.

BeK+aiff (6.4)

Proof The proof is mostly a combination of the results in propositions 6.5.11, 6.5.6
and 6.5.13. It can be found in appendix B. O

From theorem 6.5.14 it emerges that, barring the limiting cases where « is logically
valid or not in K, a wff 8 € K will only be removed during a systematic a-withdrawal

for one of the following reasons:
1. The wif 3 is at most as entrenched as a.

2. The wff 8 is irrelevant with respect to « (i.e. [ is not comparable with «) but
there is another wif v, which is irrelevant with respect to both a and [, and
whose inclusion in the resulting belief set together with [, will force us to include

« as well.

3. The wif § is more entrenched than « but there is another wff 7, also more en-
trenched than «, and irrelevant with respect to 3, whose inclusion in the resulting

belief set together with 3, will force us to include a as well.
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6.5.3 Representing systematic withdrawal graphically

Sections 6.4 and 6.5.2 provide interesting formal relationships between systematic with-
drawal and refined entrenchment, but they provide little insight into the possible use of
the RE-orderings to actually perform systematic withdrawal. In this section we show
that for the special case of the finitely generated propositional languages, it is possi-
ble to define a process for constructing systematic withdrawal from the RE-orderings.
This is important for computational purposes, but it is also of some epistemological
importance.

The first result shows that those wifs which happen to be at most as entrenched as

some discarded wif will also be discarded.

Proposition 6.5.15 Suppose that the RE-ordering Cgg and the systematic withdrawal
+ are semantically related. If f ¢ K + « then v ¢ K + « for every v Crg 3.

Proof Let < be a faithful modular weak partial order in terms of which Czg and +
can be defined using (Def Cp from <) and (Def ~ from V<). Suppose that § ¢ K +«
and pick any v Crp (. So there is a y € M (K + «) such that y € M (/). And since
v CEgre B there is an x € M (=) such that z < y. So x € M(K =+ «) and therefore
v¢ K+ a. O

In section 6.5.2 it was shown that systematic withdrawal requires a good reason for
removing a wif from K during an a-withdrawal. The next result is similar, providing

a different kind of justification for the removal of some of these wifs.

Proposition 6.5.16 Suppose that the RE-ordering Cgr and the systematic withdrawal
<+ are semantically related. If @ € K, v ||cpp @ andy ¢ K=, then thereis a B ¢ K+«
such that o« Cre 8 and v Cre S.

Proof Let < be a faithful modular weak partial order in terms of which Czz and +
can be defined using (Def Cp from <) and (Def ~ from V<). Pick any o € K and any
v such that v ||c,, @ and v ¢ K + a. We show that & Cre @V 7y, v Cge oV v and
aVy ¢ K—+a. Since M(a) C M(aVy)and M(y) € M(aVy), it immediately follows
that « Crg oV vy and v Crg oV 7. Since v ||c,, @, there is a y € Min<(—a) such
that © € M () for every x <y, and there is a v € Min<(—y) such that v € M(«) for
every u < v. Soy ||< v, & € M(y) for every x < y, and u € M(«) for every u < v.
Because v ¢ K + «, it then follows that there is a z € Min<(—«) N M(—y). And this
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means that « Vv ¢ K + «. Finally, note that for every x < y, € M(v) and thus
x € M(aV ). Therefore oV vy Lgg o, and then o Crg aV vy (because o Crp oV 7).
Il

Our next result relates specifically to the wifs that are more entrenched than a wif «
to be withdrawn, but that are nevertheless removed from K. It shows that, for the
finitely generated propositional languages, the structure of an RE-ordering can be used
in a natural way to find these wffs. To do so, we need the notion of a closest upper

gate with respect to a preorder on wifs.

1. aC B,

2. Yy such that a C v,y E B or B C v, and
3. Vv such that a C v C S,

36 such that a T 6 = S and 7 || 6

(Def cugr) B € cuge(w) iff

Definition 6.5.17 Let C be a preorder on L. The closest upper gate cugc (o) of a wif
«, with respect to C, is defined in terms of T using (Def cugr). O

Roughly speaking, the closest upper gate of a wff o (with respect to a preorder C
on wifs) is the first equivalence class (modulo C) of wifs encountered when moving
“upwards” from «, which are not incomparable with respect to any of the wifs “above”
«. We shall also have occasion to use the upset of a wif bounded by its closest upper

gate.
(Def Or) Oc(e) ={y|aCyC p for some 5 € cug(a)}

Definition 6.5.18 Let T be a preorder on L The upset O () of a wif a bounded by
cugr (@) is defined in terms of T using (Def Or). O

The next lemma contains useful results about closest upper gates for RE-orderings. It
shows that every closest upper gate (except for the empty set) is indeed an equivalence
class modulo the RE-ordering, and that in the finitely generated propositional case,

every wif, except for the logically valid ones, has a non-empty closest upper gate.

Lemma 6.5.19 Let Cre be an RE-ordering.

1. Iffp e CUYERp (a) then CUIC R (a) = [5]ERE‘15

15See section 1.3 for an explanation of the meaning of [8]c -
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2. If L is a finitely generated propositional language, then cugc,, (o) =0 iff E c.

Proof For the proof of (1), suppose that g € cuge, («), pick a v € cugr,,(«), and
assume that v ¢ [B|c,,. From (1) and (2) in (Def cug-), 8 Cre v or v Cgre 3, and
therefore 5 Crp v or v Cre . We suppose that v Crg 8. By (3) in (Def cugr) there
is thus a ¢ such that o Cgg 6 and v ||, 0. But since v € cugr,, (o) this contradicts
(2) in (Def cugr). A similar argument holds if 3 Cgrg 7, and so cugr,, (@) C [B]lcis-
Now pick any v € [f]c,,- It then follows easily from (Def cugr) that v € cugr,, (o),
and 50 [l s € cuge ().

For the proof of (2), note firstly that if F o then « Zgg 7y for every 7, and by (1)
in (Def cugr), cugc,, (o) = 0. On the other hand, suppose that ¥ o and assume that
cuge () = 0. We show that for every J satisfying (1) and (2) in (Def cugc), there
is a v Crp [ also satisfying (1) and (2) in (Def cugr), thus contradicting the fact that
L is a finitely generated language. To do so, note firstly that every § that satisfies (1)
and (2) in (Def cugr) does not satisfy (3). That is, for every / that satisfies (1) and
(2) in (Def cugr), there is a v such that &« Trr v Cre [ and for every ¢ for which
a Cre 0 Cre B, either v Crp 0 or 6 Cre . So, if we can show that v Cxrp ¢ for
every ¢ such that a Crg ¢ but ¢ Zgp 3, we will have shown that ~ satisfies (1) and
(2) in (Def cugr). Pick any ¢ such that o Crg ¢ but ¢ Zgg . Then either 5 Cry ¢
or ¢ ||cp, B- But since oo Crp ¢, and since [ satisfies (2) in (Def cugr), it cannot be
the case that ¢ ||c,, 8. So B Cgre ¢, and since v Cgrg f3, it follows that v Cre ¢,

which means we are done. O

Before we can prove our next result, we need the following technical lemma.

Lemma 6.5.20 Let L be a finitely generated propositional language, < a faithful mod-
ular weak partial order and Crp the RE-ordering defined in terms of < using (Def
Cg from =) by <. Now let o and B be such that M(B) = {x | Yy € Min<(—a),
y £ x}. For every vy such that o Crp v Cre B, there is a y € M(—~a A B A7) and a
z € M(—aNBA—y) such that © € M(aABAY) for every x <y, and x € M(aAB A7)

for every x < z.

Proof If F « the result holds vacuously, and we thus suppose that # «. Pick a vy
such that & Trr v Cre . Since v Ugg o there is a y € Min<(—«a) such that
x € M(vy) for every v < y. Combined with the definition of 5 it thus follows that
y € M(—aANBAy)and x € M(aABAy) for every x < y. Furthermore, since 8 Lgg 7y
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there is a z € Min<(—y) such that © € M(f) for every < z. And since o Cgp 7y
there is a w € M(—a) such that w < z. But then w € M (/) and so it follows from the
definition of § that w € Min<(—c). Therefore w = z and v € M(«) for every v < z.
So z € M(—a A B A —y), and because we have already seen that z € M(y) for every
z <y, it follows that x € M(a A S A7) for every z < 2. O

The next result shows that for the finitely generated propositional languages, the wifs
that are more entrenched than a wff « to be withdrawn, but that are not in the resulting

belief set, are precisely those that lie between « and the closest upper gate of a.

Proposition 6.5.21 Let L be a finitely generated propositional language and suppose

that the RE-ordering Cpgr and the systematic withdrawal + are semantically related.
Ifa Creg vy theny ¢ K+ iff v € Ocpp(a@).

Proof Let < be a faithful modular weak partial order in terms of which Cz and +
can be defined using (Def Cp from <) and (Def ~ from V<). If & a the result follows
vacuously and so we suppose that  «. It suffices to show that for some 5 € cugr,,(a)
and every 7 such that o Crp v, v ¢ K + « iff v Cre f. Now pick any /8 such that
M(B) = {x | Vy € Min<(—a),y £ x}. Since L is a finitely generated propositional
language, there is indeed such a . We start by showing that 8 € cugc,, (o).

1. Pick any y € M(—f). By the definition of 3, z < y for every z € Min<(—«), and
there is thus an € M(—«) such that x < y. Therefore & Crp . On the other
hand, pick any y € Min<(—«). By the definition of § it follows that x € M(5)
for every x <y, and thus § Zzg «.

2. Pick any v € L such that a Crr v and suppose that § Zrg v. So there is a
y € M(—vy) such that x € M(p) for every x < y. Therefore y € M (S5 A —y). By
the definition of 5, u < v for every v € M(—f) and u € M(B), and so y < v
for every v € M(—f). That is, for every v € M(—[3) there is a u € M(—y) such
that v < v, which means that v Czpr 5. So for every v € L such that o Crp 7,

¥ Ere Bor BCgrg 7.

3. We show that & Cprg o <> v Cge B and v ||c,, @ < v for every 7 such that
« Cre 7 Cre B. Pick any y € M(—(a <> 7). If y € M(—«) then clearly
there is an € M(—a) such that z < y. Otherwise y € M(—y) and since
a Cgrr v there is an ¢ € M(-a) such that z < y. So @ Cgp a <> 7. On
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the other hand, by lemma 6.5.20 there is a z € M(—a A § A =) such that
x € M(aANB A7) for every z < z. So z € M(—«) and for every z < z,
x € M(a <> 7). That is, @ +> v Zgr a. And therefore o Crp o <> (. Pick
any w € M(—f). By lemma 6.5.20 there is a y € M(—-a A A7) such that
x € M(aAB A7) for every x < y. By the definition of /3 it follows that u < w for
every u € M(f). So y < w and because y € M(=(« <> 7)) it follows that there
is an x € M(—=(a <> 7)) such that < w. That is, @ <> v Crg #. On the other
hand, y € M (—(a <> 7)) and for every z <y, x € M(f). That is, f Lrp o <> 7.
And therefore a <+  Cgi S. It remains to be shown that v ||z,, « < 7. By
lemma 6.5.20 there is a y € M(—a A f A ) such that x € M(a A S A7) for
every x < y. Soy € M(—(a <> 7)) and for every = < y, x € M(vy). That is,
v Lre « <> 7. Furthermore, by lemma 6.5.20 there is a z € M(—a A S A =)
such that z € M(a A B A7) for every x < z. So z € M(—y) and for every
x <y,x € M(aw +> 7). That is, « <> v Zgg . So, for every v € L such that

aCreYCre B, 0« Cre @ > Y Cre S and v ||c,, @ ¢ 7.

We have thus shown that § € cugr,,(«). Now we show that for every v such that
aCgre v, Y ¢ K+ aiff y Cgre 5. Pick any 7 such that o Cgg . For the left-to-right
direction, suppose that v ¢ K + «. That is, there is a z € M(K + «) such that
z € M(—y). Since M(K + a) € M(B), it follows that x € M(f3) for every z < z, and
thus that § Zgg 7. Now pick any y € M (—[3). By the definition of 3, z < y. And since
z € M(—y), there is an x € M (=) such that z < y. So v Cgg (. For the right-to-left
direction, suppose that v Crg (. Since 5 Lgrg v there is a y € M(—y) such that
x € M(p) for every x < y. Soy € M(fS) and by the definition of 5, v € M(«a) for
every v < y. And since a Cpp 7, there is a w € M(—«a) such that w < y, from which
it then follows that w = y and thus y € M(—-a). So y € M(—a A S A =) and by the
definition of 3, y € Min<(—«). Therefore v ¢ K =+ . O

We are now in a position to prove the main result of this section.

Theorem 6.5.22 Let L be a finitely generated propositional language and suppose that

the RE-ordering Cgp and the systematic withdrawal < are semantically related. Then

f ¢ K and either a ¢ K or F «, or
there is a v € O, () U {a} such that 5 Cgrg 7.

BgéK%aiff{
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Proof Let < be a faithful modular weak partial order in terms of which Cz and +
can be defined using (Def Cp from <) and (Def ~ from V<). For the proof in the
left-to-right direction, suppose that f ¢ K + «, and assume that either § € K, or
a€ K and ¥ . If f € K then K # K + « (because f ¢ K + «), and it thus follows
from (K+3) and (K+-6) that « € K and ¥ a. So in both cases, a € K and ¥ a. Now, if
[ Cre o then there is indeed a v € O, (a) U {a} such that 3 Cgp 7. So we suppose
that / Zrr «. This means that either 3 ||c,, o or @ Cre B. In the latter case it
follows from proposition 6.5.21 that 8 € Or,,(a). In the former case it follows from
proposition 6.5.16 that there is a v ¢ K + « such that & Cre v and 8 Cgp v. And by
proposition 6.5.21, v € O, ().

For the proof in the right-to-left direction, note firstly that if « ¢ K and § ¢ K then
¢ K-+aby (K+3), and if = o and 5 ¢ K then 5 ¢ K+« by (K+6). So we suppose
that ¥ o, o € K and that there is a v € O, (a)U{a} such that 3 Crg 7. If v = o, it
follows from proposition 6.5.6 that 5 ¢ K +«. Otherwise o Cgp v Cre cugr,,(«). By
proposition 6.5.21, v ¢ K + « and by proposition 6.5.15 we then have that § ¢ K + «.

([

Theorem 6.5.22 provides us with the following description of systematic withdrawal in
terms of refined entrenchment. Consider the non-trivial case where « is in K, but is not
logically valid. To obtain the belief set resulting from an a-withdrawal, we partition L
into three sets; those that are at most as entrenched «, those that are more entrenched

than «, and those that are incomparable with c.
1. None of the wifs that are at most as entrenched as « are in K <+ «.

2. The wifs that are more entrenched than «, but that aren’t in K + « are precisely
those that are between « and the closest upper gate of ce. These wifs are clustered
right above «, and are strictly less entrenched than the wifs above o that are in
K +a.

3. The only wiffs that are incomparable with «;, but that are not in K =+ «, are those
that are less entrenched than one of the wifs which are removed from K even

though it is more entrenched than .

A particularly attractive feature obtained from this analysis is that the wiffs that aren’t

in the resulting belief set when withdrawing a from K, are all clustered together in
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the refined entrenchment ordering. We conclude this section with a brief description
of how the results of theorem 6.5.22 can be used to define a graph-based procedure for
computing systematic withdrawal. The basic idea is to view every refined entrenchment
ordering Crp as a directed acyclic graph (DAG), with the equivalence classes of wifs
(modulo Cgp) as the vertices of the DAG, and with the arcs between vertices obtained
from Cpp. Consider the non-trivial case where o € K\ Cn(T). The wifs not in K +«
are obtained from the DAG associated with Crr as follows: Start from the vertex
v containing « and follow all the paths leading out of v to the first vertex w where
these paths all meet. The vertex w contains cugr,, (). Now consider all the vertices
that were visited before reaching w (including v but excluding w) and do a backward
traversal of the paths leading into these vertices. The wifs not in K <+ « are precisely
those contained in the vertices visited on these backward traversals. This process is

made concrete in the following example.

Example 6.5.23 Let L be the propositional language generated by the two atoms p
and ¢, let K = Cn(p A q), and let Crp be RE-ordering defined as follows:

peLlifa¢ K, and

C iff
®Crs f {a#ﬁifoaeK.

Figure 6.6 contains a graphical representation of Crpr. Let + be the systematic with-
drawal defined in terms of Cgp using (Def + from Cgg). It can be verified that
K+ (p <> q) = Cn(pV q). This result can also be obtained by viewing figure 6.6 as
a DAG. We start from the vertex v containing p <+ ¢ and follow all the paths leading
out of v until we reach the first vertex w where all these paths meet. The vertex w is
the one containing the wif T, and it also contains all the wffs in cugr,,(p <> ¢). The
vertices visited before reaching w are the vertex v itself and the vertices containing the
wifs p V =¢ and —p V q. Now we do a backward traversal of all the paths leading into
these three vertices. The vertices visited on these backward traversals are the boxed
ones. The only remaining vertices are w (which contains the wff T) and the vertex
containing p V ¢q. So the wifs in K + « are precisely those that are logically equivalent
topVqandto T. O
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{a|pANqEa}=L\K

Figure 6.6: A graphical representation of the RE-ordering Crp with respect to the
belief set K = Cn(pAq). This RE-ordering is used in example 6.5.23. For every «, €
L, a Cgp B iff (o, ) is in the reflexive transitive closure of the relation determined
by the arrows. Each wif in this figure is a canonical representative of the set of wffs
that are logically equivalent to it. This graphical representation can also be seen as
the directed acyclic graph (DAG) obtained from Cgp.

6.6 Summary

We close this chapter with a graphical summary of the connections between various
forms of principled withdrawal and entrenchment orderings. It can be found in figure
6.7. As in previous chapters, it is difficult to escape the conclusion that they all have
a semantic basis, and more particularly, are rooted in some subset of the faithful lay-
ered preorders. Finally, these semantic constructions bear testimony to two important

principles, one of which was already noted by Rott and Pagnucco [1999,p. 33]. The



198 CHAPTER 6. WITHDRAWAL

underlying semantic structures employed to define a particular form of withdrawal or
entrenchment are obviously important. But whether two different structures define
the same construction depends, to some extent, on the way these structures are used.
And conversely, the same structure might very well be used in a number of different
ways, depending on the precedence given to different principles, resulting in distinctly

different constructions.
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(Def ERE fI‘OI'I’l EE’E)
CrE Crp

(Def EEE from ERE)

(Def\Crp from ~) (Def Cgg from|~)

(Defl — from Crp) (Def — from C

(Def EE‘E‘ filom N)

(Def LrE from =)

(Def + from Crp) (Def = from|Cgg)

(Def ~ ffom V<)

(Def CrE from ~) (Def Cgp from ~)

Figure 6.7: The relationship between minimal-equivalent faithful layered preorders,
AGM contraction, the EE-orderings, the RE-orderings, systematic withdrawal and

severe withdrawal.



200 CHAPTER 6. WITHDRAWAL



Chapter 7

Iterated belief change

After people have repeated a phrase a great number of times,

they begin to realize it has meaning and may even be true.

H.G. Wells (1866-1946)

AGM theory change has proved to be very useful as an abstract account of effecting
change in the epistemic state of an agent. As such, it provides a good platform from
which to launch investigations into aspects of belief change which are not dealt with

in the AGM framework. Makinson [1997] states this viewpoint as follows:

“But it is through such simple, idealized representations of belief sets that
we have begun to obtain the insights needed to tackle more complex ones
without getting lost in intricacies and overheads. Having acquired a fairly
good understanding of the former over the decade since the AGM account

appeared in 1985, we can now profitably give more attention to the latter.”

In the light of this statement, it should come as no surprise that investigations into
various extensions of AGM theory change have become more frequent in recent years.
Iterated belief change, the problem of dealing with a sequence of changes to the epis-
temic state of an agent, is an aspect of belief change which falls into this category, and
is the focus of this chapter. Since most recent advances in this area have focused on
finitely generated propositional languages, we shall, for the rest of this chapter, assume
L to be such a language with a valuation semantics (V,IF). We discuss the gener-

al frameworks for iterated revision provided by Williams [1994], Darwiche and Pearl
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(1994, 1997], and Lehmann [1995], and take a brief look at a framework for iterated
withdrawal. Furthermore, we consider revision operations proposed by Boutilier [1993,
1996], Williams [1994] and Papini [1998, 1999].

One of the most important lessons to be learnt from the study of iterated belief
change is that belief change operations are performed on the level of epistemic states,
and not belief sets. Inspired by this insight, we discuss a generalised version of revision
in which epistemic states are merged. We propose some basic properties for such
merging operations, and consider a few particular merging operations. Amongst those
we consider are Nayak’s version of iterated revision [1994b, 1996] and the framework

for arbitration proposed by Liberatore and Schaerf [1998].

7.1 Transmutation

Recent advances in iterated belief change have benefitted substantially from ideas ini-
tially proposed by Spohn [1988, 1991], and generalised by Williams [1994]. It is thus
appropriate that we commence with a discussion of these. Williams [1994] proposes a
framework for belief change based on Spohn’s ordinal conditional functions (see section
5.3). It is a generalisation of withdrawal and revision in two respects.

Firstly, the informational inputs are not wffs, but ordered pairs of the form (o, n),
where « € L\ {f | 8 = L or 5 = T} and n is a natural number. To be more
precise, Williams proposes to use pairs of the form (W, n), where ) C W C V and n
is an ordinal, but since we assume L to be a finitely generated propositional language,
every such a W is axiomatisable by a single wff (which is satisfiable but not logically
valid). Furthermore, since V' is finite, we restrict ourselves to those OCFs with ranges
consisting of subsets of w, the set of natural numbers.!

Secondly, transmutations are operations on ordinal conditional functions (OCFs),
and not on belief sets. Recall from section 5.3 that, for an OCF k, K, denotes the
the set Th({v | k(v) = 0}), and that K, can therefore be regarded as the belief set
associated with k. Furthermore, recall that an OCF assigns the number 0 to at least

one valuation, from which it follows that K, is satisfiable. And moreover, recall that

!Having made these simplifications, it is tempting to augment the domain of OCFs to include the
empty set as well, and set k() = w for every OCF k. In such a case we would be dealing with
Spohn’s [1991] natural conditional functions. However, for the sake of simplicity we shall resist this

temptation.
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a wif in K, is said to be believed with a firmness of n iff k(M (—«a)) = n.

Williams defines a transmutation of the OCF k as any function
*: (LN (Cn(T)U{B|p=1}) xw—=K,
where KC is the set of all OCFs (with ranges consisting of subsets of w) such that:
L (k% (a,n))(M(~a)) = n

Th({ve M(a) | k(v) =r(a)}) if n >0,

2. Kysx(amn) = { Th({v | k(v) =0 or (v € M(—a) and k(v) = k(—a)}) otherwise

So a transmutation of the current OCF k by («,n) yields a new OCF £’ in which « is
believed with a firmness of n. Furthermore, if n > 0, we can think of a transmutation
as a revision, while it can be regarded as a contraction if n = 0. This view is justified by
noting that K/, the belief set associated with &', is generated by the minimal models
of o (with regard to ) if n > 0, and by the minimal models of «, together with the
models of K, if n = 0.

Williams considers the construction of two transmutations. The first one is Wolf-
gang Spohn’s [1988] conditionalisation, which has turned out to be a particularly in-
fluential contribution to the enterprise of iterated belief change. Indeed, as mentioned
above, transmutation was proposed as a generalisation of Spohn’s conditionalisation,
and the latter has also served as inspiration for the general framework of Darwiche
and Pearl discussed in section 7.3. The OCF k % (a,n), referred to as the (a,n)-

conditionalisation of k, is defined as follows:

(M(a)) if v e M(),

(Def % from k) k% (a,n)(v) = { k(v) — k(M (—a)) + n otherwise

In other words, the models of « are shifted “downwards” without affecting the distances
between them, so that the minimal models of « are assigned the number 0, while the
models of -« are shifted “upwards” without affecting the distances between them, so
that the minimal models of -« are assigned the number n. It is easily established that
for a fixed OCF k € K and a fixed n > 0, the revision * defined in terms of x using

(Def * from r) below is an AGM revision:?

2As Darwiche and Pearl [1997,p. 15] have noted though, viewing a revision * as a function from
Bel x L to Bel means that (Def x from x) may yield different results for different OCFs corresponding

to the same belief set, thus violating the functionality of x.
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K.*xa=
(Def * from k)

Cn(l)xa=K,x«
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K, if Fa,
Kyisan) if « Z L and ¥ a,
Cn(L) otherwise

Similarly, for a fixed OCF x € K, the removal ~ defined in terms of x using (Def ~

from k) below is an AGM contraction:

K.,~a= {
(Def ~ from k)

K., if Foora=_1
and
K 5(ay0) otherwise

OTL(_L) ~ Q= K/ﬁé(a,l)

The second transmutation that Williams considers is known as adjustment. The basic

idea is that an (o, n)-adjustment should be the transmutation that leaves the current

OCF as undisturbed as possible;

an appeal to the Principle of Minimal Change. The

(e, n)-adjustment x of the OCF k is defined as follows:

(Def x from k) kx (a,n)(v) =

((0ifn=0,ve M(~a), and k(v) = £(~a),
k(v) if n =0 and (v e M(a) or k(v) # k(—a)),
0if 0 <n, v e M(a), and k(v) = k(a),
k(v) if 0 <n, v € M(a), and k(v) # r(a),
nif 0 <n < k(—a), ve M(—a),

and x(v) = k(~a),

k(v)if 0 < n < k(—a), v € M(—a),

and k(v) # k(—a),

nif 0 <n, n> k(-a), ve M(—a),

and x(v) <mn,

k(v) if 0 <n, n > k(-a), ve M(—a),
and k(v) > n

S

\

This definition looks quite complicated, but it can be broken down into three mutually

exclusive cases:

1. If n = 0, the only difference between k and x x (a, n) is that the minimal models

of = (with respect to k), are all assigned the number 0 in x % (o, n).
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2. If n > 0 and the number that x assigns to the minimal models of —« (with respect
to k) is greater than n, then the only difference between k and k% (o, n) is that
the minimal models of -« (with respect to x) are all assigned the number n in

K* (a,n).

3. If n > 0 and the number that x assigns to the minimal models of —a (with respect
to k) is less than or equal to n, then the only difference between x and k% («, n)
is that the models of -« for which k assigns numbers less than n are all assigned

the number n in & x (o, n).

We shall see below that it only takes a small modification to apply the intuitions
underlying conditionalisation and adjustment to iterated belief change based on AGM

revision.

7.2 AGM and iterated belief change

It is by now widely accepted that AGM theory change is not able to deal with issues
of iterated belief change in an adequate manner [Alchourrén and Makinson, 1985,
Géardenfors, 1988, Levi, 1988, Boutilier, 1993, 1996, Nayak, 1994b, Nayak et al., 1996].
This statement can be interpreted in at least two ways. In the static view adopted
by Freund and Lehmann [1994], theory revision® is described as an operation with two
arguments; a belief set K, and a wif o with which to revise K.* So the operation x
represents a process of revision which is fixed right from the start, so that an a-revision
of a belief set K will always yield the same result, regardless of how an agent arrived at
K. The static view therefore dooms an agent to picking, for every belief set K, a single
epistemic state to associate with /', and to using only that epistemic state to guide its
reasoning whenever its set of beliefs corresponds to K. Thus, for example, if the two
belief sets K and (K * «) % 5 happen to be identical, it will always be the case that
K xvy = ((K *a) ) *7. It is, essentially, the postulate (K«5) which requires of us to
treat iterated revision in such a static manner. In this view, a proper account of iterated
revision is just the natural next step in the move from basic AGM theory revision to

AGM theory revision. While basic AGM revision fixes both arguments of the revision

3Since most researchers restrict themselves to treatments of revision when it comes to iterated

belief change, we shall do the same, for the most part.
“See also [Areces and Becher, 1998]
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operation x, AGM revision (which also satisfies the supplementary postulates) fixes
the first argument, the belief set, and allows the second argument, the wff with which
to revise, to vary. And iterated revision is then seen as the next step, where the first
argument is also allowed to vary. The static view thus advocates the introduction of
additional postulates in the style of the AGM revision postulates in order to obtain an
appropriate account of iterated revision.

There is a dynamic view of iterated revision as well, in which the revision process
depends on more than just the belief set to be revised. In this view, the revision
procedure used to revise the belief set K x o may very well differ from the one used
when revising K. As a result, for example, K * v and ((K * «) % [3) * v need not be
identical when K and (K # «) % ( are. Strictly speaking, this view is incompatible
with AGM revision, and more particularly, with (Kx5). But this is merely because
the notation used in the AGM postulates does not reflect the fact that revision is an
operation on epistemic sets, and not on belief sets (or stated differently, that belief
sets do not have enough structure to serve as appropriate representations of epistemic
states). And as we shall see, it only requires a slight reformulation of the AGM revision
postulates to do away with the incompatability brought on by (Kx5).

Although the static view of revision might serve as a first approximation, it seems
reasonable to conclude that a proper rational account of iterated revision can only be
found by embracing the dynamic view, and more particularly, the move from revision
as an operation on belief sets, to revision as an operation on epistemic states. That
revision ought to be seen as an operation on epistemic states, becomes apparent when
observing that AGM theory change is in clear violation of the principle of Categorical
Matching. It (AGM theory change) delivers a belief set as a result of a change operation,
but requires an epistemic state, consisting of a belief set together with some kind of
selection mechanism (such as a faithful layered preorder) to perform these change
operations. Furthermore, it is easy to construct examples demonstrating that two
agents with different epistemic states containing the same belief set, will sometimes
follow different revision strategies. Below we provide such an example, which is a

slight modification of an example presented in [Darwiche and Pearl, 1997]. °

Example 7.2.1 Two jurors in a murder trial possess different biases; both jurors

5The example of Darwiche and Pearl assumes that the two jurors have the same belief set, even
though juror number one believes that C is definitely innocent and B might be guilty, while juror
number two believes that B is definitely innocent while C might be guilty.
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believe that A is the murderer, and both believe that only A, B or C could have
committed the crime (a classic case of an alphabet murder mystery). But whereas
juror number one would more easily regard C as the murdering type than B, juror
number two would more easily consider B to be guilty than C. Both jurors thus have
the same belief set. Some surprising evidence now comes to light; A has produced a
reliable alibi. Clearly juror number one would now believe C to be the murderer, while

juror number two would believe that B is the murderer. O

Finally, it is worth observing that even when adopting the dynamic view, AGM revision
is not completely noncommittal when it comes to iterated belief change. Indeed, by way
of the two supplementary postulates (Kx7) and (Kx8), it does place some constraints
on the way iterated theory revision may be performed, although these constraints are
fairly mild. Observe that (Kx3) and (Kx4) ensure that an a-expansion and an «-
revision are identical whenever =« is not in the belief set K. Consequently, as Freund
and Lehmann [1994] have shown, the following is a property derived from (Kx3), (Kx4),
(K«7) and (K%8).

(K«9) If -0 ¢ K+ a then (Kxa)*xf=Kx(aAp)

So AGM theory revision, in the form of (Kx9), provides us with a sufficient condition
for insisting that the belief set resulting from a simultaneous revision of two wifs v and
[ (that is, an a A S-revision) be identical to the belief set obtained from an a-revision

followed by a [-revision.

7.3 Iterated DP-revision

In two influential recent papers Darwiche and Pearl [1994, 1997] have made an impor-
tant contribution to the study of iterated belief change. Of particular significance is
the shift they make in [Darwiche and Pearl, 1997] from revision as an operation on
belief sets to an operation on epistemic states. Although they do not define the notion
of an epistemic state explicitly, they work on the assumption that we can extract from
every epistemic state a belief set K (®). Formally, they see a revision % as a function
from £ x L to €, where £ is the set of all epistemic states. To accommodate the move

to epistemic states, the AGM revision postulates are modified appropriately.®

6 Actually, Darwiche and Pearl modify the postulates of Katsuno and Mendelson (see section 3.2.1),
but our account here is the obvious translation to the AGM revision postulates.
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(Ex1) K(® % a) = Cn(K(® % a))

(Ex2) a € K(® % a)

(Ex3) K(®xa)C K(®)+a

(Ex4) If ~a ¢ K(®), then K(®) +a C K( % )

(Ex5) If ® = ¥ and o = 3 then K(® % a) = K(¥ % f3)
(Ex6) K(® % a)=Cn(L) iff F —a

(Ex7) K(®xaAf) CK(®xa)+0

(Ex8) If =8 ¢ K(® % a), then K(® % a)+ 5 C K(®%aA )

With the exception of (Ex5), these postulates are just obvious translations of the
corresponding AGM revision postulates. (Ex5) is an appopriate weakening of (Kx5).
It requires a revision by two pieces of logically equivalent evidence to yield identical
belief sets when the epistemic states to be revised are identical, and not merely when
the belief sets contained in these epistemic states are identical. Note that (Ex5) does
not require a revision by two logically equivalent wffs to yield the same epistemic
state; it only insists that the belief sets associated with these epistemic states be
identical. This is quite surprising, especially since, in the words of Darwiche and Pearl

“...the entire

[1997,p. 2], an epistemic state contains, in addition to the belief set,
information needed for coherent reasoning, including, in particular, the very strategy
which the agent wishes to employ at that given time”. Moreover, since (Kx5) is a formal
expression of the principle of the Irrelevance of Syntax, one would expect (Ex5) to be
an expression of the same principle in the more general context of revision on epistemic

states. It thus seems as if the following postulate would have been more appropriate:
(Ex9) f &=V and a = then @ xa =V %[

We shall not pursue this matter further, except to note that replacing (Ex5) with
(Ex9) is compatible with the results in the remainder of this section.

Darwiche and Pearl provide a representation result that is analogous to theorem
3.2.6.
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Theorem 7.3.1 Suppose we associate with every epistemic state ®, a K(® )-faithful
total preorder <g, and let % be any revision such that K(® % «) can be defined in
terms of <¢ using (Def x from <), for every ® € €. Then % satisfies (Ex1) to (Ex8).
Conversely, suppose that % is a revision which satisfies (Ex1) to (Ex8). Then every
epistemic state ® can be associated with a K(®)-faithful total preorder <¢ so that, for
every ® € £, K(® x «) can be defined in terms of <¢ using (Def x from <).

Observe that if the antecedent in (Ex5) had been the requirement that K(®) = K(V),
we would have been obliged to consider only those sets of faithful preorders for which
<¢ = =<y whenever K(®) = K (V). As it stands, though, we are free to associate with
an epistemic state @, any K (®)-faithful total preorder.

Since we are dealing with the finitely generated propositional case, it is easily ver-
ified that for a given revision % satisfying (Ex1)—(E%8), every epistemic state ® is

associated with a unique K (®)-faithful total preorder.

Proposition 7.3.2 Let x be a revision that satisfies (Ex1) to (Ex8) and pick any
® € £. There is a unique K(®)-faithful total preorder <¢ in terms of which K(® % «)
can be defined using (Def x from <).

Proof By theorem 7.3.1, <4 exists. Assume there is a different K (®)-faithful total
preorder < in terms of which K(® % «) can be defined using (Def * from <). That
is, for some u,v € V, either u <¢ v and u ;(4> v,oru <g v and u ﬁq> v. Now pick an
a such that M(«) = {u,v}. (Since L is finitely generated, there is such an «.) Then
Min<, () # Min<,(«), contradicting the assumption that K (® % a) can be defined
in terms of both < and <g using (Def x from <). O

Armed with proposition 7.3.2, we shall deviate slightly from the presentation of Dar-
wiche and Pearl by taking an epistemic state ® to be an ordered pair of the form
(K(®),<4). This is a potentially dangerous move, since it is at odds with the possi-
bility that different epistemic states may be associated with the same belief set and
faithful total preorder; a possibility that Darwiche and Pearl make provision for. Nev-
ertheless, it will aid in the readability of the results discussed below.

Having made the move to revision operations on epistemic states, Darwiche and
Pearl argue that (Ex1)—(Ex8) are too weak to provide a satisfactory account of iterated
revision. Their argument is based on the application of the principle of Minimal Change

which provides the underlying rationale for AGM revision. Where iterated revision
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on epistemic states is concerned, it seems necessary to apply this principle to more
than just the object-level beliefs of an agent. Semantically speaking, the faithful total
preorder <¢ determines the models of K(® % «) uniquely, but does not place any
restrictions on the relative ordering of the countermodels of K(® % «). Darwiche
and Pearl propose that the principle of Minimal Change should be brought into play
to minimise any change in the relative ordering of interpretations in the epistemic
state resulting from a revision. From an information-theoretic point of view, this can
be interpreted as an attempt to retain the relative credibility (or entrenchment) of
infatoms. Their proposal involves the addition of the following postulates (the DP-
postulates) to (Ex1)-(Ex8):

(DPx1) If o Bthen K((® % B) ¥ a) = K(® % o)
(DP%2) If o F ~Bthen K((® % B) % a) = K(® % o)
(DP%3) If § € K(® % ) then 8 € K((® % ) % )
(DPx4) If <3 ¢ K(® % o) then -3 ¢ K((® % B) ¥ )

Definition 7.3.3 A revision on epistemic states is a DP-revision iff it satisfies (Ex1)—
(Ex8) and (DPx%1)-(DPx4). O

(DPx1) states that if an agent obtains more specific information after learning that g
is the case, then (3 should be ignored. (DP%2) requires that any information contra-
dicting newly obtained information should be ignored. On a contrapositive reading,
(DP%3) insists that if an agent obtains the information (3, but loses it immediately
when acquiring the new information «, then # would never have formed part of the
beliefs of the agent if it had acquired o immediately. And if an agent hasn’t completely
ruled out [ after obtaining «, then (DP4) requires that first obtaining  and then «
would also mean that 3 is not completely ruled out. In other words, as Darwiche and
Pearl put it, information cannot contribute towards its own demise.

That the DP-postulates do indeed minimise changes in the relative ordering of
interpretations can be seen from the following representation theorem, courtesy of
Darwiche and Pearl. They prove that each one of the postulates (DPx1) to (DPx4)

can be represented semantically as follows:

(DPRx1) If u lF cand v IF o then u < v iff u <ggq v
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(DPRx%2) If ulF ~cvand v IF =« then u <¢ v iff u <gpgq v
(DPR%3) If ulF cand v IF = then v <¢ v only if u <ggq v

(DPRx%4) If ulF cand v IF =« then u < v only if u <ggq v

Theorem 7.3.4 [Darwiche and Pearl, 1997] Let % be a revision that satisfies (Ex1)
to (E%8). Then %

DP x1
DP % 2
DP % 3

(
satisfies E
(DP %4

) (
; iff it satisfies E
) (

(DPRx1) ensures that the relative ordering of the models of « is preserved after an
a-revision; an application of the principle of Minimal Change to the models of a.
Similarly, (DPRx%2) requires that the relative ordering of the countermodels of « is
preserved after an a-revision, which is a case of applying the principle of Minimal
Change to the countermodels of a. (DPR%3) and (DPRx4) together ensure that any
change in the relative ordering of a model u of o and a countermodel v of « will involve
u moving lower down than v. As such, they also involve, to some extent, an application
of the principle of Minimal Change.

A DP-revision by a wif « thus involves a “downward shift” of the models of «,
while maintaining the relative orderings of the models of o and the countermodels of
a respectively. DP-revision can therefore be seen as a qualitative version of Spohn’s
conditionalisation. Indeed, Darwiche and Pearl mention that the inspiration for these

postulates came from Spohn’s conditionalisation.

7.3.1 Minimal change

While (DPRx1)—-(DPRx4) together impose considerable restrictions on the permissible
ways of performing iterated revision, it is not in absolute accordance with the principle
of Minimal Change. This is evident from the observation that there is a remaining case
which is not covered by (DPRx1)—(DPRx4); disallowing the upward shift of a model
of a relative to a countermodel of a.. A blanket restriction of this kind would, of course,

be incompatible with (Ex1)-(E%8), since the minimal models of o will then not always
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be permitted to occupy the lowest level in the ordering resulting from an «-revision.
The closest we can come to an absolute adherence to the principle of Minimal Change
is to preserve the relative ordering of all interpretations, except for those in Min<, (c).

This idea is expressed by the following property:
(CBRx) If u ¢ Min<, (o) and v ¢ Min<,(«) then u <¢ v iff 4 <ggq v

Darwiche and Pearl show that this property is a semantic expression of the following

postulate:
(CBx) If ma € K(® % ) then K((® % ) % a) = K(® % «)

Theorem 7.3.5 [Darwiche and Pearl, 1997] Let % be a revision that satisfies (E%1)
to (Ex8). Then % satisfies (CBx ) iff it satisfies (CBR% ).

It is easily seen that (CBRx) implies (DPRx1)-(DPR4) but that the converse doesn’t
hold. In fact, when added to (Ex1)-(E%8), (CBx) describes a unique revision, having

the following semantic definition:
K(® % a) =Th(Min<,(«)) and

(Def x) . .
, veVifue Ming, (),
U Spxq v iff - )
u =g v and v ¢ Min<,(«) otherwise
The revision defined in terms of (Def %) was first proposed by Boutilier under the names
“natural revision” [Boutilier, 1993] and “minimal conditional revision” [Boutilier, 1996].
From theorem 7.3.1 it follows that minimal conditional revision satisfies (Ex1)—(Ex8),
and from theorem 7.3.4 that it satisfies (DPx1)-(DPx%4). It can also be seen as a
qualitative version of adjustment, one of the transmutation methods of Williams which

was discussed in section 7.1.

7.3.2 Conditional beliefs

Darwiche and Pearl also justify the DP-postulates in terms of conditional beliefs. An
agent is said to hold a conditional belief o > [ iff the belief S is in the set of beliefs
that the agent holds after an a-revision. Note that while o and 8 are taken as wifs
of the language L, the conditional belief a > 3 is not, and > should thus be seen

as a meta-connective. As Boutilier [1993, 1996] has shown, epistemic states can also
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be represented as (appropriately chosen) sets of conditional beliefs. It is simply a
matter of associating with an epistemic state ®, the following set of conditional beliefs:
{a> |5 € K(® % «)}. We say that the conditional belief o> § is in the epistemic
state @, written as a > € O, iff § € K(® % «). The DP-postulates can be rephrased

in terms of conditional beliefs as follows:

(CDPx1) If aF fthen a>vye (% f) iffa>ye ®
(CDPx%2) If aF —fthena>ye (Pxp)ifa>ye®
(CDPx%3) If a> € ® then a> e (P %)

(CDPx4) If a> -3 ¢ ® then a> -3 ¢ (O % j3)

In this reading, the DP-postulates can be justified by an application of the principle
of Minimal Change to conditional beliefs. (CDPx1) and (CDP%2) ensure that cer-
tain sets of conditional beliefs will remain unchanged, (CDP%3) requires that certain
conditional beliefs be retained, and (CDPx4) forbids the addition of certain condi-
tional beliefs. More precisely, (CDPx1) requires that the conditional beliefs in ® with
antecedents that are logically stronger than a wif 3, should be exactly those in the
epistemic state obtained from ® by a f-revision. Similarly, (CDPx%2) requires that the
conditional beliefs in ® with antecedents that contradict a wiff 3, should be exactly
those in the epistemic state obtained from ® by a [S-revision. And (CDPx%3) requires
that a conditional belief should not be given up after a revision by its consequent, while
(CDPx4) insists that a conditional not in the current epistemic state should not be
added after a revision by the negation of its consequent.

As the name suggests, Boutilier’s minimal conditional revision can also be justi-
fied by reference to conditional beliefs. Observe firstly that (CBx) can be given the

following reading in terms of conditional beliefs:
(CCBx%) If -ac®xPthena>yedifa>ye ®xf
In other words, (CCBx) states that if « is incompatible with ® x 3 then ® and ® % 3

should contain exactly the same conditional beliefs with o as antecedent. Boutilier
[1996,pp. 277-278] has shown that minimal conditional revision is the revision satisfy-
ing (Ex1)-(E%8), which causes the minimum disturbance with regard to conditional
beliefs. With such a strict adherence to the principle of Minimal Change, it is thus
well worth considering whether minimal conditional revision should be regarded as the

way to perform iterated revision. We discuss this issue in section 7.3.3.
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7.3.3 Is iterated DP-revision rational?

Darwiche and Pearl provide a number of convincing examples in justification of their
account of iterated revision. Some of these serve as counterexamples, indicating that
(Ex1)—(E%8) do not rule out all counterintuitive forms of iterated revision, thus paving
the way for the introduction of additional postulates. Others are used as evidence in
corroboration of the more abstract claims intended as justification for adding the four
DP-postulates. While the latter examples form part of a powerful case in favour of
regarding all DP-revisions as rational, they cannot be used as part of an argument that
the only rational iterated revisions are DP-revisions. And indeed, there are indications
that (DP%2), in particular, will eliminate some perfectly plausible forms of iterated
revision.” Cantwell [1999] shows that the following variant of the controversial Recovery
postulate for AGM contraction (see chapter 6) is a derived property of any revision
satisfying (Ex1)—(E%8) and (DP%2):

(Revision Recovery) If K(®) # Cn(L) and o € K(®) then K((® % —a) % «) =
K(®)

As a result, the counterexamples levelled against Recovery can also be used to argue
against the inclusion of (DP%2). Here, for instance, is a modified version of example

6.1.2 to show that Revision Recovery is counterintuitive.

Example 7.3.6 [ read a book about Cleopatra, in which the claim is made that she
had a son and a daughter. I subsequently discover that the book is fictional, which leads
me to adopt the belief that Cleopatra did not have a child. However, on consulting a
history book I discover that Cleopatra indeed had a child, and I thus revise my belief
set with this assertion.

Let L be a propositional language generated by the two atoms p and ¢. Let p
denote the assertion that Cleopatra had a son, and ¢ the assertion that she had a
daughter. Then K(®) = Cn(p,q). The adoption of the belief that she did not have a
child is formalised as ® % —(p V ¢). Since p V ¢ € K(®), Revision Recovery requires
that K((®x—(pVgq))x(pVq)) = K(P). So revising with the assertion that Cleopatra
did, after all, have a child, will ensure that I again entertain the belief that she had a
son and the belief that she had a daughter; a conclusion which seems unreasonable in

this context. O

"In section 8.4.1, we show that recent developments concerning base change also call the appropri-
ateness of (DPx1) into question.
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In fact, as Cantwell [1999] observes, Revision Recovery seems to be even more problem-
atic than Recovery, since revision usually involves greater changes in epistemic states
than contraction.

We now turn to a different kind of question regarding the rationality of DP-revision.
We have seen that Boutilier’s minimal conditional revision causes the minimum dis-
turbance in the current epistemic state, resulting in the strongest possible adherence
to the principle of Minimal Change. This raises the question of whether minimal con-
ditional revision should, perhaps, be regarded as the only rational form of revision on
epistemic states. Darwiche and Pearl [1997] provide a convincing argument against
such a view, indicating that the importance of the principle of Minimal Change should

not be overestimated. It is based on the following example.

Example 7.3.7 We encounter a strange new animal and it appears to be a bird, so
we believe the animal is a bird. As it comes closer to our hiding place, we see clearly
that the animal is red, so we believe that it is a red bird. To remove any further
doubts, we call in a bird expert who takes it for examination and concludes that it is
not really a bird, but some sort of mammal. The question is now whether we should
still believe that the animal is red. Intuitively, it seems that we should, but minimal
conditional revision rules that we may not believe that the animal is red. This can
be verified by using the propositional language generated by the two atoms b and r to
represent our knowledge. Let b represent the assertion that the animal is a bird, let r
represent the assertion that it is red, let (V,IF) be the valuation semantics for L with
V' ={00,01,10,11}, and let % be the minimal conditional function defined using (Def
x%).8 Let & = (K(®), <) be the epistemic state representing the situation before we
see the bird. Then K(®) = Cn(T) and <¢ = V x V. Furthermore, it can be verified
that K(((® x b) x r) % —b) = C'n(-b). a

The problem can be approached from various angles, but Darwiche and Pearl provide a
particularly convincing analysis in terms of conditional beliefs. It is easily verified that
the conditional belief —b > r is not, and should not be, in the epistemic state ® x b.
Bearing in mind that minimal conditional revision effects the minimal permissible
change on the conditional beliefs in an epistemic state, =b > r will not be in the

epistemic state (® x b) x r either. But this is counterintuitive. Since the colour of the

8We assume that the first digit in the pairs of zeroes and ones denotes the truth value of b, and
the second one the truth value of r.
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animal is independent of it being a bird or not, we should persist in believing that it
is red. In general then, the requirement of minimal conditional revision that the set of
conditional beliefs should remain as stable as possible, may impact on the persistence
of some object-level beliefs, yielding counterintuitive results.

Although minimal conditional revision is clearly too restrictive to be the only form of
rational revision on epistemic states, it is perhaps worth considering a special case under
which it does seem reasonable to ensure that minimal changes occur in an epistemic
state ®; when the wif with which to revise is compatible with ®. This can be expressed

as a weakened form of the postulate (CB).
(WCB) If =8 ¢ K(®) and —a € K(® % (), then K((® % ) % a) = K(® % «)
And predictably, (WCB) can be expressed semantically as follows:

(WCBR) If -8 ¢ K(®), u ¢ Min<,(3) and v ¢ Min<, (), then u <¢ viff u <gxp v

Proposition 7.3.8 Let % be a revision satisfying (Ex1)-(Ex8). Then % satisfies
(WCB) iff it satisfies (WCBR).

Proof Observe firstly that by theorem 7.3.1, K(® % «) = Th(Min<,(«)). Now sup-
pose that (WCB) holds, that =8 ¢ K(®), and pick any u,v € V such that u ¢
Min<,(8) and v ¢ Min<, (). Let abe such that M(a) = {u,v}. (Since L is finitely
generated, there is such an «.) Then —a € K(® % ), and K((® % ) % ) = K(® x* )
by (WCB). But then Min<,,, (o) = Min<,(«), from which it follows that u <g v
iff u <pxs v. Conversely, suppose that (WCBR) holds, that =4 ¢ K(®), and that
- € K(® % 3). By (WCBR) it follows that u <¢ v iff u <¢xs v for every u,v € V
such that u ¢ Min<,(3) and v ¢ Min<,(8). And since M(a) N M(K(® % () = 0,
we have that Min<,(a) = Min<,,,(«). Therefore K(® % a) = K((® % 8) % a). O

While the weakened form of minimal conditional revision, obtained by replacing (CB)
with (WCB), might seem appealing at first, it does not escape the problems associated
with full minimal conditional revision, as one might have hoped. Example 7.3.7 in

particular, is also applicable to any revision satisfying (Ex1)—-(Ex8) and (WCB).

7.3.4 Iterated DP-withdrawal

Recall from page 7 that Levi’s commensurability thesis sees revision as a two-step pro-

cess involving a removal followed by an expansion. Taking this view seriously requires
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of us to provide an account of iterated removal and iterated expansion on epistemic
states as well. Unlike the case for revision, it seems reasonable to require of an ex-
pansion @ on epistemic states to be in strict adherence to the principle of Minimal

Change. The following semantic property is a rephrasing of (CBR) for expansion.
(ER®) Ifu¢g M(K(®® «)) and v ¢ M(K(® @ «)), then u <¢ v iff u <gpgpq v

Combined with the obvious requirement that K(® @ «) = K(®) + «, we thus have the

following unique method for expanding epistemic states.
K(®® a)=K(®)+ a and

(Def @) :

veVifue M(K(®)+ a),

U Rpgq U iff )
u =<¢ v and v ¢ M(K(®) + «) otherwise

Obtaining a suitable account of removal on epistemic states is less straightforward. It
will, of course, depend on the particular type of removal which we regard as appropriate,
although results in chapter 6 indicate that it would have to be some form of reasonable
withdrawal (see definition 6.3.13). For now, we restrict ourselves to a generalisation of
AGM contraction and severe withdrawal to epistemic states.” An AGM contraction ~

on epistemic states is required to satisfy the following postulates:
(Ex1) K(®~a)=Cn(K(® =~ «))

(Ex2) K(® =~ a) C K(P)

(E~3) If « ¢ K(®) then K(® ~ a) = K

(Ex~4) If ¥ a then a ¢ K(® = «)

(Ex5) If ® =V and a = f§ then K(® ~ o) = K(¥ =~ 3)

(E~6) If « € K(®) then K(® ~ a) + a = K(P)

(Ex7) K(P~a)NK(®d~p) CK(®=~(aAp))

9Not too much should be read into this restriction. It is based on a purely practical consideration;
the current representation of an epistemic state ® as a belief set K(®) and a K(®)-faithful total
preorder. A representation using K (®)-faithful modular weak partial orders, for example, would have
resulted in a restriction to AGM contraction and systematic withdrawal.
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(Ex8) If ¢ K(® =~ (aAf)) then K(® =~ (aAf)) C K(® =~ f)

Definition 7.3.9 A removal on epistemic states is an AGM contraction iff it satisfies
(Ex1)—(E~S). O

For the generalisation of severe withdrawal, we also need the following postulates.
(EA6) If F a then K(®&a) = K(P)
(EA8) If ¥ a then K&¢ C K&(a A f)

Definition 7.3.10 A removal on epistemic states is a severe withdrawal iff it satisfies
(Ex~1)-(E~5), (EX6), (ExT) and (EAS). O

The following results are then easily obtained.

Theorem 7.3.11 1. Let =~ be any removal such that K(® ~ «) can be defined
in terms of =g using (Def ~ from <), for every ® € £. Then =~ is an AGM
contraction. Conversely, suppose that =~ is an AGM contraction. For every
¢ c &, K(®~ a) can be defined in terms of <¢ using (Def ~ from <).

2. Let = be any removal such that K(®P=«a) can be defined in terms of <¢ using
(Def V< from <), for every ® € €. Then = is a severe withdrawal. Conversely,
suppose that = is a severe withdrawal. For every ® € £, K(®&«) can be defined
in terms of <¢ using (Def V< from =<).

Proof 1. Follows from theorem 3.2.6.

2. Follows from definition 6.3.1 and theorem 6.3.2.
O

It is also easy to verify that, on the level of belief sets, the roles of the Levi identity

(Def # from ~) and the Harper identity (Def — from *) remain unchanged.

Corollary 7.3.12 Let = and = be removals, and % a revision such that, for every
decf,

o K(® =~ «) can be defined in terms of <¢ using (Def ~ from <)

o K(®Xa) can be defined in terms of <¢ using (Def ~ from V<)
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o K(®x ) can be defined in terms of <¢ using (Def * from <)
Then, for every a € L,
1. K(®xa)=(K(®)~«a)+a=(K(P®)~a)+a, and
2, K(®~ a) = K(® % —a) N K(®).
Proof Follows from proposition 3.2.8 and theorem 6.3.10. O

An adherence to Levi’s commensurability thesis then seems to suggest the lifting of

the Levi identity to the level of epistemic states in the following manner.
(Def % from ~) dxa= (P~ —a)da

The next two results show that, where AGM contraction and revision on epistemic

states are concerned, this seems to be right choice.

Proposition 7.3.13 Let =~ and =~ be remowvals such that, for every ® € &,
e K(® ~ «a) can be defined in terms of <¢ using (Def ~ from <)
o K(PXa) can be defined in terms of <¢ using (Def ~ from V).

Let % and % be the revisions defined in terms of (Def % from =) using ~ and =

respectively.
1. For every a € L, K(® % a) = K(®%a) = (K(®) ~ —a) +a = (K(®)&-a) + a.
2. Both % and % satisfy (Ex1)-(Ex8).

Proof 1. Follows easily from theorem 6.3.10 and the definition of &.

2. Follows easily from part (1) and proposition 3.2.8
(]

Given the connection between withdrawal and revision on the level of belief sets, the
following postulates for withdrawal on epistemic states are obvious analogues of the

semantic DP-postulates for revision.

(DPR~1) If ulF mavand v IF —a then u <g v iff U g v
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(DPR~2) If u lF cand v IF o then u <g v iff u <gng v
(DPR~3) If ulF mavand v IF « then u <¢ v only if u <gaa v

(DPR~4) If u lF mavand v IF « then u <¢ v only if u <gaa v

For AGM contraction, (Def % from ) provides the expected link between these pos-

tulates and the DP-postulates for revision.
Proposition 7.3.14 Let =~ be any AGM contraction and let % be the revision defined
in terms of &~ using (Def % from =).
1. If = satisfies (DPR~1) then % satisfies (DPR%1).
2. If ~ satisfies (DPR~2) then % satisfies (DPRx2).
3. If ~ satisfies (DPR~3) then % satisfies (DPRx3).
4. If = satisfies (DPR~4) then % satisfies (DPR% /).
Proof Follows from theorem 7.3.11, proposition 7.3.13, and proposition 3.2.8. O

Interestingly enough, though, we do not get a similar result when defining revision in
terms of severe withdrawal. As the next example and the proposition following it show,
the revision obtained from a severe withdrawal on epistemic states satisfies (DPx1),
(DP%3) and (DPx4), but not (DP%2).

Example 7.3.15 Let L be the propositional language generated by the atoms p and
q, with the valuation semantics (V,IF), where V' = {00,01,10,11}. Let ~ be any
severe withdrawal satisfying (DPRa1)-(DPR~4) such that the following holds for the
epistemic states ® and ¥, where ¥ = & =~ —(p A q):

eV if u = 00,
K(®) = Cn(—p A —q) and u =g v iff Y o ‘
v e {01,10,11} if u € {01,10,11},

K(¥)=Cn(T)and <y = V xV, and

veVifu=11,

KT ®pAq) =Cn(pAq) and u < v iff
( PAQ) (PN q) DU (pAg) { v € {00,01,10} otherwise
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~a myv =Ua(pAg)

l=—11+~—1 01 ~—00+~—10
! ! 01 00 11 10

00 11

Figure 7.1: Graphical representations of the faithful total preorders <¢, <y, and
=wa(prg) Used in example 7.3.15. Two interpretations v and v are in a faithful to-
tal preorder iff (u,v) is in the reflexive transitive closure of the relation determined by

the arrows.

Figure 7.1 contains graphical representations of <g, =g, and Sggpag- It is easily
verified that such a severe withdrawal = exists, but that the revision x defined in
terms of ~ using (Def % from =) does not satisfy (DPR%2). In particular, it follows
that 00,10 € M(=(p A q)), but it is not the case that 10 <g 00 iff 10 <gx(pag) 00. O

Proposition 7.3.16 Let = be any severe withdrawal and let % be the revision defined

in terms of &~ using (Def % from ).
1. If & satisfies (DP=1) then * satisfies (DPx1).
2. If &= satisfies (DP~3) then % satisfies (DPx3).

3. If & satisfies (DP=4) then % satisfies (DPx/).

Proof These results follow easily by observing that, for every o € L, the total pre-
orders <gn-q and <gxqare identical when restricted to elements of V\ M (K (® ~ —a)).
O
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The results on iterated withdrawal suggest another reason for dropping (DPR%2) as a
reasonable propery of iterated revision; its incompatibility with Levi’s commensurabili-
ty thesis when applied to severe withdrawal on epistemic states. Semantically speaking,
this incompatibility can be traced back to the fact that, unlike AGM contraction, a
severe —a-withdrawal of an epistemic state ® may result in the inclusion of models of
-« to the models of K(®). This results in the loss of information pertaining to the
relative ordering of such elements of M (—«) in <g, rendering a subsequent expansion
unable to preserve the ordering of all models of —a in K(® % «). It can therefore be
shown that the application of (Def % from =) to any form of reasonable withdrawal
on epistemic states, except for AGM contraction, will result in a revision which does
not satisfy (DP%2).

7.4 Iterated L-revision

Lehmann [1995] considers iterated belief revision in the context of finite sequences of
revisions. He extends the notion of a revision % on epistemic states to a revision by
a finite sequence of wifs. We use the Greek letter o to denote such a finite sequence.
® x o then refers to the iterated revision of ® by the wffs in o, and if o is the empty
sequence, ¢ x o is just the epistemic state . Concatenation of sequences is denoted by
e, and a wff « is identified with a sequence of length one. So the sequence cve o consists
of the wif a followed by the wifs in o, and o e a consists of the wifs in o followed by
the wif a.

Considering only sequences of satisfiable wits, Lehmann proposes the following pos-

tulates for iterated revision.

(Lx1) K(®) = Cn(K(®))

(Lx2) a € K(® % a)

(Lx3) K(®x0a) C K(®) +a

(Lx4) If o € K(®) then K(® % 0) = K(® % (0 e 0))
(Lx5) If o § then K(® % (Boceo)) = K(® % (ae0))

(Lx6) K(®) #Cn(L)
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(Lx7) K(® % (~aea)) C K(?)+ «
(Lx8) If 73 ¢ K(® % «) then K(®x (vefe0)) =K(Px(aeaNfeo))

Definition 7.4.1 A revision on epistemic states is an L-revision iff it satisfies (Lx1)
to (Lx8). O

It follows easily from Lehmann’s results that every L-revision also satisfies (Ex1) to
(Ex8), (DPx1), (DP%3) and (DP%4). In fact, (Lx1), (L%2), (L%3) and (Lx6)
correspond exactly to (Ex1), (Ex2), (Ex3) and (Ex6) respectively.'® (Lx4) states
that superfluous revisions are useless and should have no effect on subsequent revisions.
While this may be a reasonable constraint under certain circumstances, it is a very
strong restriction to impose on all rational iterated revisions. The main reason for this
is that (Lx4) is at odds with the notion of corroborating evidence; the idea that one’s

belief in an assertion is strenghtened by repeated observations confirming that it holds.

Example 7.4.2 Suppose that an agent obtains evidence that « is the case, followed
by evidence that [ is the case. If subsequent evidence obtained makes it clear that
exactly one of a or # holds, it seems difficult to decide between « and . If one is
inclined to trust more recent evidence, it is perhaps reasonable to entertain the option
that it is J that holds. On the other hand, suppose that the agent obtains evidence
that « is the case, followed by evidence that 3 is the case, which, in turn is followed by
confirmation that « is the case. If subsequent evidence now makes it clear that exactly
one of o or S holds, it seems reasonable to believe that « is the case, mainly because
our initial belief in v was corroborated by confirming evidence that « holds. But such

a conclusion is prohibited by (Lx4). O

(Lx5) is a strengthening of (DPx1). It requires of an agent, when obtaining more
specific information following (3, not just to discard the influence of 8 in obtaining the
resulting belief set, but also in all subsequent revisions. (L7) is a weakened version
of (DPx%2). Given the rest of Lehmann’s postulates, it is equivalent to the following

postulate:

(Lx9) K((® % —a)xa) C K(®x*a)

Proposition 7.4.3 Let % be a revision satisfying (L% 1)-(L%6) and (L%8). Then %
satisfies (Lx7) iff it satisfies (L% 9).

10Since we only revise with sequences of satisfiable wffs, (L%6) is indeed equivalent to (Ex6).
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Proof Suppose that % satisfies (L%7). Then Lehmann’s Lemma 3 [1995,p. 1537]
shows that x satisfies (Ex4). If ma € K(®) then K((® % —a) % a) = K(® % «) by
(L%4). And if —~a ¢ K(®) then

K((® % —a) % «)
C K(®)+aby (Lx7)
C K(®x«)by (Ex4).

The converse follows immediately from (L3). O

In the presence of (Lx5), (L%8) is a strengthening of (Kx9), the postulate for AGM
revision on belief sets which follows from (Kx7) and (K8).!" This can be seen from

Lehmann’s result that (L%8) is equivalent to the following postulate whenever (Lx5)
holds.

(L%10) If =3 ¢ K(® % o) then K(® % (a e fo0)) = K(D % (a A ea))

As mentioned above, any L-revision also satisfies (DP%3). In fact, Lehmann shows

that such a revision satisfies the following strengthened version of (DP%3).
(Lx11) If p € K(® % «) then K(®? % (ve0)) =K(P % (feaeo))

Since every L-revision also satisfies (Ex1)-(E%8), it follows by theorem 7.3.1 and
proposition 7.3.2 that we can associate with every epistemic state ®, a unique K (®)-
faithful total preorder <4 such that K(® % «) can be defined in terms of <g using
(Def x from <), for every @ € L. Observe, though, that it is not possible to represent
every epistemic state ® as an ordered pair of the form (K (®), <¢). This becomes clear
once we realise that every epistemic state is associated with a unique finite sequence of
wifs, since there are only a finite number of such ordered pairs, but an infinite number
of epistemic states.

We conclude this discussion with a brief note concerning a representation theorem
proved by Lehmann. He provides a method, involving the widening ranked models, of
constructing precisely the L-revisions. It involves the use of an implausibility ranking
over sets of valuations. Lehmann warns that it is just a technical tool, though, and

that it should not be seen as a description of the epistemic states of an agent.

UTehmann [1995,p. 1537] claims that (L%8) does not represent any strengthening of the postulates
(Ex1)—(Ex%8), but this is clearly incorrect. In section 7.5.1 we show that Papinis’s P, -revision satisfies
(Ex1)—(Ex%8), but does not satisfy (L%8), and in section 8.4.2 we give another example of a revision
on epistemic states which satisfies (Ex1)—(E%8), but does not satisfy (L%8).
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7.5 Observation-based revision

Papini [1998, 1999] has recently proposed that iterated revision be viewed in the context
of sequences of observations made by an agent. The basic idea is that the history of the
agent’s observations should be taken into account in some or other way. She considers
the two particular constructions which lie on opposite sides of the spectrum when
assessing the reliability of observations. The remainder of this section is devoted to a

description of these revision operations.

7.5.1 Py-revision

The intuition associated with AGM revision on belief sets contains the assumption
that the wff a with which to revise a belief set K, takes precedence over the infor-
mation currently contained in K. A generalisation of revision to epistemic states can
accommodate this assumption in a wide variety of ways. From an information-theoretic
point of view, though, it is fair to say that any such a generalisation needs to reflec-
t the requirement that no content bit of —« may become more entrenched (or more
credible) relative to the content bits of a; a requirement that is captured by (DPx3)
and (DPx4). The strongest expression of this requirement is the insistence that an
a-revision should result in an epistemic state where the content bits of o are all more
entrenched than the content bits of —a. In model-theoretic terms, it means that an
a-revision of the epistemic state ® should result in an epistemic state in which the
total preorder <4, places the models of « strictly below the countermodels of —a. It

can be formulated as follows:
(PRx) If u € M(«) and v € M(—a), then u <gxq v

This is the idea underlying one of Papini’s approaches to iterated revision. In such an
approach, the more recent observations of the agent are to be taken more seriously. She

provides the following semantic definition of revision on the level of epistemic states:'?
K(® %y o) = Th(Min<, («))

(Def %) ,
u =<¢vifu,ve M(a)or u,ve M(—a),

U <px,q v iff
e { u € M(«), otherwise

12Papini’s construction uses polynomials on the naturals numbers, but it is easily seen that her
definition corresponds to the one we give here.
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Definition 7.5.1 The revision on epistemic states defined in terms of (Def ) is

referred to as P -revision and denoted by ... O

Papini shows that . is a DP-revision (i.e., it satisfies (Ex1)-(E%8) and (DPx1)-
(DPx4)). It turns out that %, can be characterised precisely by adding the following
postulate to (DPx1) and (DP%2):

(Px) If a # =3 then K((® % o) % ) = K(® % (a A B))

Theorem 7.5.2 The Py -revision %, is the only revision satisfying (Ex1)-(E%8),
(DPx1), (DP%2), and (Px).

Proof From theorem 7.3.1 it follows easily that s satisfies (Ex1)—(E%8), and from
theorem 7.3.4 it clearly follows that s satisfies (DPx1) and (DP%2). Furthermore, it
is easily verified that s is the only revision satisfying (Ex1)—(E%8), (DPx1), (DP%2),
and (PRx). It thus suffices to show that for every revision satisfying (Ex1)-(Ex8)
and (DPx1), the postulates (Px) and (PR%) are equivalent.

Pick any revision % satisfying (Ex1)-(Ex8) and (DPx1), and suppose that x
does not satisfy (PRx). Then there is an @« € L, a u € M(«a) and a v ¢ M(«)
such that v <gy, u, for some epistemic state . Now let 3 be such that M(S) =
{u,v}. Then Min<, (oA B) = M(a A B) = {u}, and so K(® % a A f) = Cn(a A B).
On the other hand, either Min<,  (8) = {v} or Min<,, (8) = {u,v}. But then
K((® % o) % 8) # K(® % (a A ) by theorem 7.3.1, and so % does not satisfy
(Px). Conversely, suppose that x satisfies (PRx). Now pick any «, 8 € L such that
a ¥ —3. By (PRx) it follows that Min<,, (8) € M(«), and so Min<,, (8) =
Minx,, (o A (). Furthermore, theorem 7.3.4 guarantees that % satisfies (DPRx1),
and so Minz,(a A B) = Minz,, (oA fp) = Minz,, (f), from which it follows by
theorem 7.3.1 that K ((® % «) x ) = K(® % (a A f)). 0

Observe that (Px) requires of iterated revision and simultaneous revision to yield iden-
tical results whenever oo and 3 are compatible. In other words, an a-revision followed
by a f-revision should be the same as an aA S-revision. This can be seen as a strength-
ening of the postulate (Kx9), which was discussed in section 7.2. Such a property seems
too strong for a general account of revision, although its reformulation in the context

of nonmonotonic reasoning (see section 4.5) is one of the implicit assumptions made



7.5. OBSERVATION-BASED REVISION 227

about most nonmonotonic consequence relations in the literature. Future research in
nonmonotonic reasoning will hopefully take this into account.

A consequence of (Px) which is perhaps unexpected, is the following property.'3
(Weak Symmetry) If a ¥ —f then K((® % a) % ) = K((® % () % «)

Weak Symmetry suggests that it does not matter which of the observations a and
[ are made first, as long as a and [ are compatible. At a first glance this seems
at odds with Papini’s intuition that more recent observations are deemed as more
accurate, but closer inspection reveals this not to be the case. In fact, although the
most recent observation is seen as more accurate than the previous one, both these
observations are accorded higher prominence than any of the preceding observations.
And as long as they are compatible, we should therefore expect the order in which
these two observations were made, to be of no consequence; at least on the level of
belief sets.

The intuition that Papini attaches to her construction seems to be in line with
Lehmann’s L-revision, and one would therefore expect it to satisfy all of Lehmann’s
postulates. However, as we shall see below, this turns out not to be the case. Since
Papini’s construction is a perfectly reasonable way of performing iterated revision, it
would seem that some of Lehmann’s postulates are a bit too restrictive.

Since (Lx1)—(L%3) correspond exactly with (Ex1)—(Ex3), the former are satisfied
by P-revision. Py -revision also satisfies (L7), since the latter is a weakened version
of (DPx%2). These, however, are the only of Lehmann’s eight postulates that Pp-
revision satisfies. Papini allows unsatisfiable belief sets, which violates (L%6). For the
remaining three of Lehmann’s postulates, the following examples show that P -revision

does not satisfy them.

Example 7.5.3 Let L be generated by the atoms p and ¢, with V' = {00,01, 10, 11}.
Let ® be an epistemic state such that K(®) = Cn(p A ¢) and <4 is defined as follows:

veVifu=11,
u =g viff § ve{00,01,10} if u € {01,10},
v =00 if u = 00.

13That (Px) implies Weak Symmetry follows immediately by noting that o F =3 and 8 F -« are

equivalent.
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Figure 7.2: A graphical representation of the K (®)-faithful total preorder <4 used
in example 7.5.3. For two interpretations u and v, u <g¢ iff (u,v) is in the reflexive

transitive closure of the relation determined by the arrows.

Figure 7.2 contains a graphical representation of <¢. Now let % be the revision defined
using (Def % ). It is readily verified that K ((® % p) % —(p <> q)) = Cn(p A —q), but
that K(® %5 —(p <> q)) = Cn(=(p <> q)). And since p € K(®), this is a violation of
(Lx4). O

Example 7.5.4 Let L be generated by the atoms p and ¢, with V' = {00,01, 10, 11}.
Let @ be an epistemic state such that K(®) = Cn(p) and <4 is defined as follows:

veVifue {10,11},
u =g viff { ve{00,01}if ue {00},
v=01if u = 01.

Figure 7.3 contains a graphical representation of <¢. Now let % be the revision defined
using (Def ). It is readily verified that K (((® %5 pV q) %5 p) %5 —p) = Cn(—pAq),
but that K((® %, p) %. —p) = Cn(—p A =¢). And since p E pV g, it is a violation of
(Lx%5). 0

Example 7.5.5 Let L be generated by the atoms p and ¢, with V' = {00,01,10, 11},
let @ be an epistemic state such that K(®) = Cn(T) and <¢ =V x V, and let % be
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Figure 7.3: A graphical representation of the K (®)-faithful total preorder <4 used
in example 7.5.4. For two interpretations u and v, u <¢ iff (u,v) is in the reflexive

transitive closure of the relation determined by the arrows.

the revision defined in (Def %.). It is readily verified that

K(((® %5 p) %5 q) % ~(p <> q)) = Cn(-pAq)

but that
K(((® %0 p) %5 p A q) %5 2(p < q) = Cn(p A —q).
And since ~q ¢ K(® % p) = Cn(p), this is a violation of (L%8). 0

7.5.2 P4-revision

Papini also presents an operation that can be seen as dual to Py-revision. Instead
of letting the most recent observations carry the most weight, the situation is now
reversed, with the most recent observations considered to be the least reliable. This

revision operation is defined as follows:

[ _ {ujq,vifueM(a)orvgéM(a),
U <px o v iff ]

u <¢ v, otherwise
(Def %q)
Th(Mmjwqa(T)) if K(®)# Cn(Ll),

Cn(L) otherwise

K(@%qa):{
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Definition 7.5.6 The revision % defined in terms of (Def %) is referred to as P-

revision. O

Semantically speaking, a P4-revision of the epistemic state ® by « has the following
effect on <g. The relative ordering of valuations on different levels of <¢ are main-
tained, but each level is split into two by placing the models of « strictly below the
models of —~a. The resulting belief set is then obtained from the minimal models in
this new ordering, provided that the original belief set was satisfiable.

The intuition associated with P 4-revision differs markedly from that normally as-
sociated with AGM-style revision, and it is not surprising that P4-revision does not
satisfy all of (Ex1)—(E%8). Papini shows that it satisfies (Ex4), (E%5), (Ex7), and

the following weakened version of (Ex3):
(WEx%3) If ~a ¢ K(®) then K(® % o) C K(®) + a

Furthermore, although it does not satisfy (Ex2), (Ex6), or (Ex8), she shows that
P -revision satisfies the following dual versions of (E%2), (Ex6) and the following

weakened version of (E%8):

(DE%2) K(®) C K(® x* «)

(DEx%6') If K(® % ) =Cn(L) then K(®) = Cn(Ll)

(WE%8') If -4 ¢ K(®%a«) and f € K(®PxaAf), then K(Pxa)+ C K(®PxaAp)

That P4-revision does not satisfy (Ex2) is to be expected, since it regards the most
recent observation as the least reliable of all observations made thus far. The postulates
(DE%2'), (DEx%6') and (WE%8') are all in line with this view. (DE%2’) requires all the
wifs in @ to be retained after a revision of ®, and (DEx6') states that an a-revision of
® will result in the unsatisfiable belief set only if ® contained the unsatisfiable belief
set to begin with. (WEx6') differs from (E%8) only in adding to the antecedent of
(Ex8) the requirement that 5 € K(® % a A [).

We conclude this section by showing that the results above can be sharpened some-
what. Firstly, it is easily shown that P-revision satisfies both (Ex1) and (Ex3).
Moreover, we can improve on (DEx6') and (WE%8'). We show that the converse of
(DEx%6') also holds, and that the requirement added to the antecedent of (E%8) can

be replaced with one that is, in our view, more natural.
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(DE%6) K(® % a) = Cn(L) iff K(®) = Cn(L)

(WEx%8) If -8 ¢ K(® % «) and ~« ¢ K(®), then K(® % a) + 5 C K(® % aAfj)
Proposition 7.5.7 P4-revision satisfies (Ex1), (Ex3), (DEx6) and (WE%S8).

Proof (Ex1) follows immediately from the semantic definition of P4-revision. For
(Ex3), we only need to consider the case where - € K(®) because Papini has
shown that P-revision satisfies (WE%3), and the result then follows immediately. For
(DEx6), we only need to show the right-to-left direction, and this follows immediately
from (Def % ). For (WEx%8), suppose that = ¢ K(®x«) and ~a ¢ K(®P). So K () #
Cn(Ll). Since ~a ¢ K(®) it follows from (Def %) that K(® % ) = Th(Min<,(«))
and thus that K(® x «) + f = Th(Min<,(a) N M(B)). Furthermore, it follows from
-3 ¢ K(® % «) that Min<, (o) N M(B) #0. So ~(a A ) ¢ K(®P) and it thus follows
from (Def %) that K(® % a A ) = Th(Min<,(a A B)) = Th(Min<, (o) N M(f)).
Therefore K(® % o) + = K(® % a A f). 0

7.6 Merging epistemic states

While both of Papini’s constructions may formally be viewed as revision operations,
P 4-revision does not quite conform to the intuition associated with revision. The rea-
son for this is twofold. Firstly, revision has thus far referred to operations in which the
wif with which to revise is fully accepted into the resulting belief set, and P 4-revision
thus represents a significant departure from this assumption. Secondly, the informal
description of P4-revision, coupled with properties such as (DE%2) and (DEx6), sug-
gests that it may also be seen as an operation in which a wif is being “revised” by an
epistemic state, and not the other way around. The problem with the latter view, of
course, is the asymmetry built into a revision on epistemic states; its first argument
is an epistemic state, while its second argument is an element of L. To obtain the re-
quired symmetry, it is necessary to generalise the notion of revision. Instead of revising
an epistemic state by a wif, we consider the process of revising an epistemic state by
another epistemic state. In fact, since we wish to include cases where the second epis-
temic state is not regarded as more reliable than the first, it is more appropriate to refer

to the merging of epistemic states, an area of research which has already received some
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attention by Borgida and Imielinski [1984], Baral et al. [1991, 1992], Subrahmanian
[1994], Liberatore and Schaerf [1998], Konieczny and Pino-Pérez [1998].

Formally then, a merge operation ® is a function from £ x € to € (where € is the
set of all epistemic states).

It is not our intention to provide a detailed discussion of merging here. At this
stage, we merely wish to argue that merging is an area of research which needs to
be investigated more thoroughly, and to put forward some basic properties with which
every merge operation should comply. We also consider some specific merge operations,
one if which bolsters the claim that revision on epistemic states is indeed a special case

of merging.

7.6.1 Basic properties of merge operations

Intuitively, the merging of epistemic states is intended to be a coherent fusion of the
information contained in both. There is no assumption that one of the epistemic states
is deemed to be more reliable than the other. Instead, merging is intended to cover
the whole spectrum; from the case where the first epistemic state takes absolute pri-
ority over the second one, to the case where the second epistemic state has complete
precedence over the first one. Our point of departure in this investigation is the as-
sumption that every epistemic state ® has associated with it a belief set K(®) and a
K (®)-faithful total preorder <¢. The information contained in two epistemic states ®
and ¥ to be merged, does not just refer to the beliefs contained in K(®) and K(®),
but also to the information contained in the orderings <4 and <y. Observe that the
idea is still one of a minimal model semantics. Given the fact that <¢gy has to be
a K(® ® U)-faithful total preorder, this assumption is built into the definition of an
epistemic state.

With these guidelines in mind, we propose the following general properties for

merging:

(®1) K(Q)NK(¥) C K(®® ¥)

(®2) K(®2® V) C Cn(K(®)U K(¥))

(®3) If K(®) # Cn(L) and K(V¥) # Cn(L) then K(® ® ¥) # Cn(L)

(®4) If K(®) = K(Q) and K(¥) = K(T) then K(®® ¥) = K(®®Y)
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These four properties involve the belief set obtained from a merge operation. (®1)
provides a lower bound on the resulting belief set. It states that the new belief set
has to contain those beliefs associated with both epistemic states to be merged. (®2)
on the other hand, provides an upper bound for the resulting belief set. It may not
contain any belief which does not occur in at least one of the two epistemic states
to be merged. (®3) requires that the resulting belief set be unsatisfiable only if at
least one of the belief sets associated with the two epistemic states to be merged are
unsatisfiable. And (®4) is an expression of the principle of the Irrelevance of Syntax,
applied to the belief sets associated with epistemic states.

The next two properties are concerned with the faithful total preorder resulting

from a merge operation.
(®5) If u < v and u <y v then u <pgy v
(®6) If u <pgy v then u <p v or u <y v

Both (®5) and (®6) are motivated by the intuition that the merging of two epistemic
states ® and ¥ depends, in the first place, on the information contained in & and W.
(®5) states that information contained in both ® and ¥ should also occur in & @ W.
(®6) is almost the converse of (®5). It asserts that information contained in ® @ ¥

must have been obtained from either & or W.

7.6.2 Constructing merge operations

In this section we take a brief look at the construction of some merge operations. The
first two we have in mind represent the two extremes on the spectrum of merging. They
involve the cases where one of the two epistemic states to be merged takes complete

precedence over the other, and can be defined as follows:
(Def @, ) o, ¥ =9
(Def ®,) ¢, ¥ =V

It is easily verified that the merge operations defined using (Def ®_,) and (Def ®.)
both satisfy (®1)-(®6).
The next two merge operations to be presented can also be seen as opposites. In

this case though, it involves a preference for one epistemic state over the other which
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is of a less extreme kind. For their definition, we need to broaden the definition of the

minimal models of a wff to apply to sets of interpretations.

Definition 7.6.1 For a binary relation <onV,and W C V, we let Min<(W) = {v | v

is <-minimal in W}. O

So Min<(W) is the set of <-minimal elements in W. The two merge operations are

defined as follows:

[ K(®®q W) = Mins, (M(K(®))) -
(Def ®4)

| u <egqu viff u < vor (u=<, vand u <y v) |

[ K(®®, W) = Minz, (M(K(¥))) '
(Def ®.)

| U Zpgpw v iff u <y vor (u=<, vand u <g v) |

These two merge operations can perhaps best be described as lexicographic orderings
of the faithful total preorders associated with the epistemic states; ®, ensures that
U orders <¢ lexicographically, while ®. ensures that ® orders <y lexicographically.

Again, both these merge operations satisfy (®1)—(®6).

Proposition 7.6.2 The merge operations @4 and Q. defined using (Def @) and
(Def ®. ) respectively, both satisfy (@1)-(®6).

Proof For (®1) and (®2), observe that M (K (®))NM (K (V)) C Min<,(M(K(®))) C
M(K(®)) and that M(K(®)) N M(K(¥)) C Min<, (M(K(¥))) € M(K(¥)). For
(®3), note that if K(P®4¥) = Cn(L) then M(K(®)) =0, and if K(P®, V) = Cn(L)
then M(K(V)) = 0. (®4) is trivial. For (®5), suppose that u <¢ v and u <y v. If
u <o v then u <pg v v, and if v =<, v then v <gg v v since u <y v. The case for
®p is similar. For (®6), suppose that u <g¢g_ v v. Then it has to be the case that
u < v and so (®6) holds for ®4. The case for ®; is similar. O

The merge operation ®. defined using (Def ®;) corresponds to a proposal of Nayak
[Nayak, 1994b, Nayak et al., 1996]. His FPO (fixed point ordering) revision operation
is a generalisation of AGM revision based on modified versions of the EE-orderings (see
2.3), but it is clear from his semantic description [Nayak, 1994b] that it is, essentially,

the same construction as ®.. Furthermore, Papini’'s Py-revision can be seen as a
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special case of ®, while her P4-revision can be seen as a special case of the merge
operation ® defined using (Def ®). It is simply a matter of associating with every
wif a the unique Cn(«a)-faithful total preorder in which the countermodels of « are all
on the same level. That is, every wif « is associated with the epistemic state ¥, where
K(¥,) =Cn(a) and u <y, viffu € M(a) or v € M(—a). It then follows immediately
that ® @, UV, = ® %, avand P ®, V¥V, = ¢ %, « for every & € £ and every o € L.

Finally, we propose a class of merge operations which regard the two epistemic
states to be merged as equally important; at least on the level of belief sets. Revesz
[1993] uses the term “arbitration” for merge operations conforming to this intuition.
Information-theoretically, our proposal draws a distinction between two cases. Firstly,
if the two epistemic states ® and ¥ to be merged are compatible on the level of belief
sets, the belief set resulting from an arbitration of ® and ¥ are obtained by pooling
the content bits of K (®) and K (V). Secondly, if & and ¥ are incompatible on the level
of belief sets, the belief set resulting from an arbitration of ® and ¥ is built up using
those infatoms that are content bits of K(®) as well as K (¥).

K(®)N K (D) if K(®)UK(¥)F L,

(Def K(@))) K(@@)\Ij) - { Cn(K(®)U K (V)) otherwise

Definition 7.6.3 A merge operation ® on epistemic states is an arbitration iff the
belief set K (®®W) associated with the arbitration of two epistemic states can be defined
using (Def K (®)). 0

Arbitration, as defined above, is only concerned with belief sets, and therefore it does

not satisfy (®5) or (®6). However, it does satisfy the remaining properties for merging.

Proposition 7.6.4 FEvery arbitration satisfies (®1) to (®4).

Proof Pick any arbitration ®. (®1), (®2) and (®4) are trivial. For (®3), observe
that if K(®®¥) = Cn(L) then K(®) UK (V) E L and thus K(®@¥) = K(®)NK(¥).
And K(®)NK(¥) =Cn(l) iff K(®) = K(¥) = Cn(L). O

Liberatore and Schaerf [1998] propose a class of merge operations which is similar in
spirit to definition 7.6.3. They provide the following eight postulates for arbitration

operations.

(LS®1) K(987¥) = K(¥RP)
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(LS®2) K(®®W¥) C Cn(K(®) U K(¥))
(LS®3) If K(®) UK (¥) ¥ L then Cn(K(®) U K(¥)) C K(dRT)
(LS®4) K(PRT) = Cn(L) iff K(®) = K(¥) = Cn(L)
(LS®5) If K(®) = K(Q) and K(¥) = K(T) then K(®dRV) = K(QTY)
K(®®9Q) or
(LS®6) If K(¥) = K(Q) N K(Y) then K(®R¥) =< K(®RY) or
K(®®Q) N K(®3T)
(LS®7) K(®)N K(¥) C K(®RW)
(LS®8) If K (®) # Cn(L) then K(®) U K(®dRV) ¥ L
We show that an arbitration, in the sense of definition 7.6.3, satisfies all eight of these
postulates.
Proposition 7.6.5 Every arbitration ® satisfies (LS®1) to (LS®S8).
Proof (LS®1)-(LS®5) and (LS®7) are trivial. Now pick any arbitration ®. For
(LS®6), pick any ¥,Q, T € £ such that K (¥) = K(Q) N K(T). We need to consider
four cases. First we consider the case where both K(®)UK (Q2) ¥ L and K(®)UK(Y) ¥
1. Then K(®®Q) = Cn(K(® ) K(Q)) and K(®®Y) = Cn(K(®) U K(Y)). So
K(®®Q) N K(23Y)
= On(K(®)U K(2) N Cn(K(2)UK(T))

= On(K(®)U (K(2) N K(T)))

= On(K(®)U K(V))
= K(®®Y) since K(®) U K (V) ¥ L.

Next we consider the case where both K (@)U K (2

( F L and K(®)UK(Y)E L. Then
M(K(®)) N M(K(2)) = M(K(®)) 0 M(K(T)) =

)

)

=
&

=

o

n

]
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Therefore K (®) U K (¥) E L. Furthermore, K (®®Q) = K(®) N K(Q) and K(®®Y) =
K(®)Nn K(Y), and so
K(®®Q) N K(®3TY)

= (K(®)nK(Q2) N (K(®)NK(T))
— K(®)NK(©Q) N K(T)
— K(®)NK(¥)
= K(®®V) since K(®) U K (V) F L.
Finally, we consider the case where K(®) U K(2) F L and K(®) U K(Y) ¥ L. (The

remaining case, where K(®) U K(Q) ¥ L and K(®) U K(Y) F L, is similar.) Then
K(®)UK(¥) ¥ L and so

~

K(P®V)
= On(K(@) U K(V))
= On(K(@) U (K@) N K(Y >>>
= COn ((K(@) U K@) (K(@) U K(T))
= Cn(K(®)UK(Y)) since K(@) U K(Q) FL

= K(®®TY) since K(®) U K(T) ¥ L.

For (LS®8), suppose that K(®) # Cn(L). If K(®) U K(¥) ¥ L then K(®®¥) =
On(K(®) U K(¥)) £ Cn(L) and so K(®®V) U K (®) ¥ L. And if K(®) U K(¥) F L
then K (V) = K(®) N K(¥) and since K (®) # Cn(L), it follows that K (W) U
K(®) ¥ L. O

Finally, observe that there are some similarities between the properties for merge op-
erations that we have proposed, and the postulates of Liberatore and Schaerf. In
particular, (®1) and (LS®7) are identical, (®2) and (LS®2) are identical, (®4) and
(LS®5) are identical, and (®3) corresponds to the one direction of (LS®4). The re-
maining postulates of Liberatore and Schaerf seem to be specifically concerned with
arbitration, and are thus not suitable as properties for the more general notion of a
merge operation. On the other hand, (®5) and (®6) are concerned with the faith-
ful total orders associated with epistemic states, and have no counterparts among the
postulates of Liberatore and Schaerf, which are only concerned with the belief sets

associated with epistemic states.
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7.7 Conclusion

Questions concerning iterated belief change can be traced back to a violation of the
principle of Categorical Matching in the AGM approach to belief change. The latter
requires an epistemic state to perform belief change operations, but delivers just a
belief set. The AGM postulates can thus be seen as constraints placed on just one
part of the epistemic state of an agent. This realisation has prompted various authors
to extend the AGM postulates in order to place constraints on the other parts of an
epistemic state as well. While the work of Spohn [1988, 1991] has been instrumental
in this regard, the account provided by Darwiche and Pearl [1994, 1997] is arguably
the most influential. Although some of the postulates they provide seem too strong,
their decision to associate with every epistemic state a unique faithful total preorder
has proved to play a central role in the understanding of their constraints on epistemic
states pertaining to theory revision.

A semantic consideration of epistemic states also promises to have a significant
impact on the investigation of the merging operations of section 7.6. Much work
still needs to be done in this area, but the work of Nayak [1994b], Nayak et al. [1996],
Liberatore and Schaerf [1998] and Konieczny and Pino-Pérez [1998] have opened fruitful

areas of investigation.



Chapter 8

Infobase change

It is undesirable to believe a proposition when
there is no ground whatsoever for believing it true.

Bertrand Russell

We have seen in section 7.2 that frameworks for belief change which operate on the
level of belief sets are not rich enough in structure to provide a proper treatment of
change operations. In particular, from the work of Darwiche and Pearl [1994, 1997], it
has emerged that belief change ought to be described on the level of epistemic states.
While the proposal of Darwiche and Pearl is an important contribution to the enterprise
of belief change on an abstract level, it does not address the equally important question
of what it is that prompts an agent to adopt a particular epistemic state in a given
situation. In this chapter we investigate an approach to find a solution to this problem
using structures that we refer to as infobases.

The assumption underlying infobase change is that an agent obtains information
(in the form of wffs of L) which is to be stored in an infobase; a finite sequence of
wifs consisting of information obtained independently from different sources. Infobases
thus have more structure than finite sets of wifs.! From this description it might seem

as if infobase change is a slightly generalised instance of base change, the proposal to

!This chapter is an expanded version of the paper by Meyer et al. [1999a]. In that paper we took
an infobase to be a finite set of wifs, but acknowledged at the same time that such a representation

is not entirely satisfactory.
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replace change operations on belief sets with change operations on arbitrary sets of
wifs (known as belief bases). While it is indeed possible to classify infobase change as
such, the phrase “base change” has become so synonymous with the particular kind of
base change championed by Fuhrmann and Hansson in particular, that it is perhaps
more appropriate to regard infobase change as an altogether different kind of belief
change. Section 8.1 contains a brief discussion of base change. It is not intended as
a comprehensive introduction to the field, but is included primarily for purposes of

comparison with infobase change.

8.1 Base change

The realisation that belief sets do not have a rich enough structure to serve as appro-
priate models for epistemic states (see section 7.2) has led some researchers to regard
AGM theory change as an elegant idealisation of a more general theory of belief change
in which belief sets are replaced by arbitrary sets of wifs (known as belief bases).? The
intuition is that some of our beliefs have no independent standing, but arise only as
beliefs derived from our more basic beliefs. And if our reason for believing such a
derived belief disappears, then so should the belief. Martins and Shapiro [1988] refer
to this process as disbelief propagation. It is also known as reason maintenance [Doyle,
1979], and is the principle underlying Fuhrmann’s [1991] filtering condition, which we
encounter in section 8.2.3.

A belief base B is taken to consist of such basic beliefs, with B being associated
with the belief set K (and K being the belief set associated with a belief base B) iff
Cn(B) = K. The classic example in the base change literature (perhaps analogous to

the Tweety example in nonmonotonic reasoning) is Hansson’s hamburger example.

Example 8.1.1 [Hansson, 1989] “On a public holiday you are standing in the street
in a town that has two hamburger restaurants. Let us consider the subset of your belief
set that represents your beliefs about whether or not each of these two restaurant is
open.

When you meet me, eating a hamburger, you draw the conclusion that at least

one of the restaurant is open (a V b). Further, seeing from a distance that one of the

2 Although the original AGM postulates are not exclusively concerned with belief sets, the major
results in Alchourrén et al. [1985] only hold for belief sets.
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two restaurants has its lights on, you believe that this particular restaurant is open
(a). This situation can be represented by the set of beliefs {a,a VvV b}. When you have
reached the restaurant however, you find a sign saying that it is closed all day. The
lights are only turned on for the purposes of cleaning. You now have to include the
negation of a, i.e. —a, into your belief set. The revision of {a,a V b} to include —a
should still contain a V b, since you still have reason to believe that one of the two
restaurants is open.

In contrast, suppose you had not met me or anyone else eating a hamburger. Then
your only clue would have been the lights from the restaurant. The original belief
system in this case can be represented by the set {a}. After finding out that the
restaurant is closed, the resulting set should not contain a V b, since in this case you

have no reason to believe that one of the restaurants is open.” a

The difference in the treatment of the belief bases {a} and {a,a V b} is attributable to
the fact that a Vv b is an explicit belief with independent standing in {a,a V b}, while
it is a mere derived belief of the belief base {a}. The two belief bases should therefore
treat an a-contraction differently even though Cn(a) = Cn(a,a V b).

One of the basic principles of base change is that it is sensitive to syntax. What
is usually not made explicit, though, is that such an assertion can be interpreted in
many ways. In the context of belief change, this sensitivity to syntax usually refers to

the following two properties:

1. Belief bases offer a finer-grained approach than belief sets in the sense that two

different belief bases may both be associated with the same belief set.

2. Contraction is interpreted on the symbol level and not on the knowledge level
(see page 3). In particular, this means that a base contraction ~ is expected to
satisfy the property of Inclusion, which requires that B ~ o C B, and not merely
that Cn(B ~ a) C Cn(B).

Observe that there are other ways for base change to be sensitive to syntax as well.
To name just two, a change effected by two logically equivalent wifs may be treated
differently, or belief bases containing different but logically equivalent wifs may be
treated differently.

Even though base change is more sensitive to syntax than theory change, it is not

intended to be totally oblivious to knowledge level matters. For example, a base change



242 CHAPTER 8. INFOBASE CHANGE

operation ~ is expected to satisfy the property that o« ¢ Cn(B ~ «) whenever ¥ «,
which involves the belief set associated with the base B ~ « as well.

Descriptions of base change usually subscribe to some form of Levi’s commensu-
rability thesis (see page 7), and contraction is thus defined explicitly, while revision
is defined in terms of some analogue of the Levi Identity (the identity (Def ~ from
x)). Both Fuhrmann [1991] and Hansson [1989, 1992a, 1993b] define versions of base
contraction which can be viewed as generalisations of theory contraction in which the
contraction of belief sets is a special case. Accordingly, their methods for construct-
ing these base contraction operations are appropriate generalisations of methods for
constructing (basic AGM) theory contractions. Fuhrmann generalises the entailment
sets used to construct safe contractions (see section 2.4), while Hansson generalises the
remainders used to construct partial meet contractions (see section 2.2).

Base contractions are operations on belief bases, but it has been pointed out by
Nebel [1989] and Fuhrmann [1991], amongst others, that there is a theory contraction
— associated with every base contraction ~, which can be obtained as follows: Cn(B)—
a = Cn(B ~ «).® In this way it is possible to provide a knowledge level analysis of
base contraction, and to make (indirect) comparisons between base contraction and
theory contraction.

One of the first observations to be made in this regard concerns the controversial
Recovery postulate for theory contraction. Given the symbol level interpretation of
base contraction, a simple example suffices to show that Recovery does not hold for

the associated theory contractions.

Example 8.1.2 Let B = {p} and let ~ be a base contraction. Given the restrictions
that B ~ a C B and that « ¢ Cn(B ~ «) if ¥ «, it has to be the case that
B~ pVq=1. Therefore Cn(B) # Cn(B ~ pV q) +pV q even though pV ¢ € Cn(B);

a violation of Recovery. O

With the emphasis on the syntactic structure of a belief base, it has been remarked by
Gérdenfors and Rott [1995,p. 87] that a semantic characterisation of base change seems
to be out of the question. It is possible, though, to obtain an indirect semantic char-

acterisation of bases change, by focussing on the theory change operations associated

3This construction only makes sense for a fixed belief base B, though, since the same belief set
may be associated with different belief bases, which may violate the assumed functionality of theory

contraction.
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with base change operations. Hansson [1996] provides postulates and representation
results for the theory contractions associated with some base contraction operations.

A different (though not completely unrelated) view of base change is that more
emphasis should be placed on knowledge level matters, and that a belief base should
be thought of as providing more structure to its associated belief set. The idea is
that the added structure of a belief base can be used, in one way or another, to
pick an appropriate associated theory change operation, from which the base change
operation can then be constructed. This is the view encountered in Nebel’s [1989,
1990, 1991, 1992] description of base contraction. Nebel himself describes his own
work as a knowledge level analysis of base change. In concentrating on knowledge
level matters, his construction violates one of the cornerstones of base contraction; the
property of Inclusion, which requires of a base contraction ~ to satisfy B ~ a C B.
This violation has resulted in these operations being labelled as pseudo-contraction by
Hansson [1993a, 1999].

In conclusion, observe that if one is interested in moving towards a realistic rep-
resentation of the epistemic states of agents, it seems reasonable to insist that such a
representation be finite. Such a move is sometimes held up as a reason for preferring
base change to theory change. But to do so, is to disregard the distinction between an
arbitrary finite representation of a particular belief set, and a set of finite wffs occurring
in a belief base because of their independent standing. For example, recall from section
3.2.1 that Katsuno and Mendelzon use single propositional wifs to represent belief sets.
But since the particular wff representing a belief set is unimportant, their work should

be classified as research about theory change, and not about base change.

8.2 Constructing infobase change

Infobase change is similar in spirit to the knowledge level approach to base change
favoured by Nebel [1989]. The basic idea is to use the assumption of independence of
the wifs in an infobase I B to construct the structures necessary for performing theory
change. Both the current infobase and the obtained theory change operations are then
used in the process of determining how to modify the existing infobase when confronted
with new information, resulting in an operation which produces a new infobase from
the current one.

An infobase will be represented as a list of wifs enclosed by square brackets. For
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example, the infobase I B containing the three wffs p, ¢ and p, in that order, will be
denoted as [p, ¢, p|]. Although infobases are sensitive to the order in which wffs occur,
as well as to their syntactical form, we shall see that these superficial qualities can be

done away with by employing the notion of element-equivalence.

Definition 8.2.1 Two infobases I B and IC' are element-equivalent, written as I B ~
1C, iff for every [ occurring in I B such that ¥ (3, there is a unique logically equivalent
wit v occurring in IC', and for every v occurring in /C' such that ¥ ~, there is a unique

logically equivalent wff 3 occurring in IB. O

The intuition is that element-equivalent infobases contain exactly the same information.

For any finite sequence o of wffs, we let |o| denote the number of wifs occurring in
o, and we use the symbol e to denote concatenation by a single wif. Thus, if 0 = [p, ¢|,
then |o| = 2, [p,q| ® p denotes the sequence [p, q,p|, and |0 @ p| = 3. The converse of
concatenation (removing the last wif from a finite sequence o) will be denoted by % .
In other words, if o = [p, ¢, 7] then & = [p,q]. Furthermore, in our discussion of the
construction of infobase change operations it will frequently be necessary to refer to
the (finite) set of wifs occurring in a finite sequence of wifs 0. We denote this set by

S(o). Thus, for any finite sequence o of wifs, S(o) = {f | § occurs in o}.

Definition 8.2.2 An infobase I B is associated with a belief set K (and K is associated
with IB) iff Cn(S(IB)) = K. O

For any two finite sequences o and 7 of wifs, 7 is a subsequence of o iff for every wif in
7 there is a unique occurrence of the same wif in 0. 7 is an ordered subsequence of o

iff 7 is a subsequence of o and the wffs in 7 occur in the same order in both 7 and o.

In our description of infobase change, we subscribe to Levi’s commensurability
thesis, by viewing infobase contraction as more primitive than infobase revision, and
preferring to define infobase revision in terms of infobase contraction by means of
an infobase change analogue of the Levi Identity (see definition 2.1.1). Formally, we
consider infobase change operations (which include contraction and revision operations)
as functions from ZB x L to ZB, where ZB is the set of all infobases. We shall also
frequently assume the existence of a fixed infobase I B, and consider infobase I B-change

operations as functions from L to ZB.



8.2. CONSTRUCTING INFOBASE CHANGE 245

8.2.1 Infobase contraction

To construct an infobase contraction, we first use the structure of the infobase I B to
obtain an S(IB)-faithful total preorder (see definition 3.2.5). The theory contraction
obtained from the S(IB)-faithful total preorder is taken to be the theory contraction

associated with the infobase contraction that we aim to construct.

Definition 8.2.3 For every infobase I B, a theory contraction — is associated with an
infobase I B-contraction © iff Cn(IB) — a = Cn(IB © «) for every a € L. O

Using the intuition associated with an infobase, we order the interpretations in U
according to the number of wifs of I B they satisfy; the more they satisfy, the “better”

they are deemed to be, and the lower down in the ordering they will be.

Definition 8.2.4 For v € U, we define u;g, the I B-number of wu, as the number of
wifs # in IB such that ¥ 3 and u € M(5). O

This ordering is used to obtain an appropriate S(IB)-faithful total preorder in terms
of I B as follows:

(Def < from IB) u < v iff vig < usp

Definition 8.2.5 We refer to the faithful total preorder <;p defined in terms of an
infobase I B using (Def < from IB) as the I B-induced faithful total preorder. O

The construction of the I B-induced faithful total preorders is perhaps best justified
from an information-theoretic point of view (see section 3.1). Suppose that the infobase
1B represents the information that an agent has obtained from its sources. Since the
wifs in B are assumed to have been obtained independently, every occurrence of an
infatom 7 as a content bit of one of these wifs, corroborates the claim that ¢ forms part
of the content bits of the belief set Cn(S(IB)) of the agent. From definition 3.1.3 on
34 it can be verified that a wff 3 is satisfied by an interpretation w iff the infatom i,
associated with u is a content bit of =3. So, with <;5 seen as an ordering on infatoms,
it follows that being higher up in <;p corresponds to more occurrences of an infatom
as the content bit of some wfifs in I B, which is in line with the view of a faithful
total preorder as an ordering of entrenchment or credibility on infatoms (see 3.2, page
44). Note also that since logically valid wffs have no content bits, their presence in

an infobase is superfluous since they do not contribute towards the entrenchment or
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credibility of any of the infatoms. This explains why the definition of [ B-numbers
disregards the logically valid wiffs in infobases.
The I B-induced faithful total preorder is used to construct a theory contraction as

follows:
(Def —;5 from IB) Cn(S(IB)) —pa =Th(M(S(IB))U Minx,,(—«))

Definition 8.2.6 The theory contraction —;p defined in terms of an infobase I B using

(Def —;p from IB) is referred to as the I B-induced theory contraction. O

It is easy to verify that the IB-induced faithful total preorder is indeed an S(IB)-
faithful total preorder and by theorem 3.2.6 it thus follows that the I B-induced theory
contraction is an AGM theory contraction. Associating the IB-induced theory con-
traction with the infobase IB-contraction allows us to determine which wifs in IB

should be retained and which cannot be retained, after a contraction of IB.

Definition 8.2.7 The set of a-discarded wifs (of an infobase I B) is defined as IB~* =
{eSUB)| B¢ Cn(S(IB))—rpa}. Werefer to S(IB)\IB~“ as the set of a-retained
wifs (of IB). O

Clearly the a-retained wffs are precisely the wifs in /B that should be retained when
contracting I B by «. Unlike the dominant approaches to base contraction discussed
in section 8.1, however, we don’t simply expunge the a-discarded wffs, but instead
opt to replace them with appropriately weakened wifs. (It is only when the weakened
version of such a wif is logically valid that we can think of the wff as being completely
discarded.) The strategy is to retain as much of the information contained in a wif as
possible, even if not all the information in the wif can be retained. This is in line with
the intuition that infobases consist of independently obtained wifs. Of course, these
weakened wffs cannot be chosen in an arbitrary fashion. Since the I B-induced theory
contraction —;p has already been identified as the theory contraction to be associated
with the infobase I B-contraction, the weakened wifs, together with the a-retained wffs,
have to generate the belief set Cn(S(IB)) —5 a.

In deciding on an appropriate method for the weakening of the a-discarded wifs,
it is necessary to strike the right balance between a coherentist approach, emphasising
knowledge level matters, and a foundationalist approach, emphasising the indepen-
dence of the wifs occurring in IB (see page 2). The following example serves to make

these matters concrete.
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000
100 010 001
110 101 011
111

Figure 8.1: A graphical representation of the I B-induced faithful total preorder <;p,
with IB = [p,q,r]|. For every u,v € U, u <;p v iff (u,v) is in the reflexive transitive

closure of the relation determined by the arrows.

Example 8.2.8 Let L be the finitely generated propositional language generated by

the three atoms p, ¢, and r, with a valuation semantics (V,IF), where
V' = {000, 001,010,011, 100,101, 110, 111}.

Consider the infobase IB = [p, ¢, r]. Figure 8.1 gives a graphical representation of the
I B-induced faithful total preorder <;5. Because p, ¢ and r each represents indepen-
dently obtained information, a (p A ¢)-contraction of IB should have no effect on r.
That is, when contracting I B by p A ¢, the resulting infobase should contain weakened
versions of the two (pAgq)-discarded wifs p and ¢, and should contain the (pAg)-retained
wif r itself. But what should the weakened versions of p and ¢ look like?

An application of the coherentist approach on a local level suggests that, in order to
minimise the loss of information, one should add only the minimal models of =(pA¢q) to
the models of both p and ¢, and let the corresponding wffs be the appropriate weakened
versions. Since Min<,,(—(p A q)) = {101,011}, the weakened version of p would be
logically equivalent to p V (¢ A r) and the weakened version of ¢ would be logically
equivalent to g V (p A T).

On the other hand, the foundationalist approach, which stresses the independence

of the wifs in I B, suggests that the presence of r should have no effect on the weakened
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versions of p and ¢. In this view, the wff p V ¢ (or any wff logically equivalent to it)

would be a suitable choice for the weakened versions of both p and gq. O

There does not seem to be a definite answer to the question of which one of these
two approaches to infobase change is the “correct” one. They should rather be seen
as opposites on a whole spectrum of possibilities The coherentist approach can be
described as the case where all the wifs in I B play a role in determining the weakened
versions of the a-discarded wifs, while the foundationalist approach ensures that only
the set of a-discarded wifs themselves is involved in the construction of their weakened
versions. Given these two opposites, it also seems perfectly reasonable to allow for any
set of wifs in between (i.e., containing the a-discarded wifs and included in S(IB)) to

be involved in the construction of the weakened versions of the a-discarded wifs.

Definition 8.2.9 Given an infobase IB and a wif «, a set R is said to be (IB,«)-
relevant iff IB~* C R C S(IB). O

Our goal is to ensure that, in the process of obtaining the weakened versions of the
a-discarded wifs, the effect of the wifs not in the (I B, «)-relevant set R are neutralised.
To do so, we should not just add the <;g-minimal models of —«, but also any other
models of =« that behave exactly like the <;g-minimal models with respect to the

wifs in R, but that might differ from the <;g-minimal models on the truth value of
the wifs in S(IB) \ R.

Definition 8.2.10 For X C L and u,v € U, u is X -equivalent to v, written u =x v,
iff for every x € X, u € M(x) iff v € M(x). O

Observe that, for the (IB,p A g)-relevant set R = {p, ¢} in example 8.2.8, it follows
that 100 and 010 are R-equivalent to the minimal models 101 and 011 respectively,
and adding them to the models of p (and ¢) as well, results in weakened versions of p
and ¢ that are logically equivalent to p V ¢, which is in line with the foundationalist
intuition described above.

In general, we obtain the weakened version of every a-discarded wif § as follows.
We need some appropriate set of interpretations that can be added to the models of
[ to obtain the set of models of its weakened version. Once we have decided on an
(I B, a)-relevant set R, we use the set of minimal models of -« as our starting point and

then try to expand it so that only elements in R have any influence, thus neutralising
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the possible influence of any of remaining wifs in /B. This is accomplished by including

all the models of =« that are R-equivalent to some minimal model of —a.

Definition 8.2.11 Let R be any (/B, «)-relevant set. For every u € Min<,,(—a), we
let NE(—a) = {v € M(—a) | v =g u}, and we let

Nip-a)= | N

ueMin<, 5 (~a)
We refer to NJ,(—a) as the (R, a)-neutralised models of IB. 0

We take the (R, «)-neutralised models as the set of interpretations to be added to the
models of each a-discarded wif. We can think of the (R, «)-neutralised models as a set
of interpretations in which the influence of the wffs not in R has been removed, but in
which the wiffs in R have the same impact as on the minimal models of —a.

To summarise, we intend to obtain the infobase resulting from an «-contraction
of the infobase I B by weakening the a-discarded wffs in the manner described above,
and keeping the a-retained wifs as they are. It turns out that there is an elegant way
to provide a uniform description of this process. In doing so, we describe infobase
contraction as a process in which all the wifs in the current infobase are replaced with
weaker versions, but where the “weaker” version of every a-retained wif turns out to

be logically equivalent to the wif itself.

Definition 8.2.12 Let R be any (I B, «)-relevant set. For every 5 € S(IB), we let

NE () = U NE(-a).
u€Minx, 5 (—a)\M(B)
We refer to Nj(-a) as the (R, o, 8)-neutralised models of IB). 0

The next proposition shows that an a-retained wif 5 has no (R, «, 8)-neutralised mod-
els, and that, for an a-discarded wif 3, adding the (R, a, #)-neutralised models to the

models of 5 has the same effect as adding the (R, a)-neutralised models.
Proposition 8.2.13 Let R be any (IB, «)-relevant set.
1. If B € S(IB)\ IB~® then Nj(—-a) = (.

2. If B € IB~* then M(B) U Nf(—~a) = M(3) U Ny (—a).



250 CHAPTER 8. INFOBASE CHANGE

Proof 1. Suppose that § € S(IB)\ IB~®. Then € Cn(S(IB)) —;p « and thus
Minx,, (—a) € M(3). And therefore

N (=a) = U NE(=a) = 0.

uEMin< 5 (ma)\M(B)

2. Suppose that g € IB~“. The left-to-right inclusion is immediate. For the right-

to-left inclusion we have to show that

U Nf(=a) € M(B).

ueMinx, 5 (~a)NM(B)

So pick any u € Minx,,(—a) N M(B) and v € NF(—a). Then v =g u and since
f € R, it follows that v € M ([).
([

Proposition 8.2.13 allows us to describe an a-contraction of an infobase I B by adding
to the models of a wif 3 in I B, the set Néz(—'a), and replacing 8 with an axiomatisation
of this set of interpretations. Of course, such a description only makes sense if these
sets of interpretations can be axiomatised by single wffs. While this is immediate for
the finitely generated propositional logics, the next result shows that it also holds in

the more general case.

Definition 8.2.14 Let R be any (IB, a)-relevant set, and for 8 € S(IB), let IBj be
the set containing every ordered subsequence C' of IB such that |C| = u;p for some
u e (Minx,, (—a) N M(S(C))) \ M(B) (where usp is the I B-number of u). We define

the a-weakened version of 3, with respect to R, as

winB) =8V [\ ((AS@O\NESUB\NR)) A (A\~(R\SO)) Aa)

CelB%

O

Proposition 8.2.15 Let R be an (IB,«)-relevant set. For every o € L and every
g e S(IB), M(wgB,a)(ﬁ)) = M(B) U NF(~a).

Proof Define IBj as in definition 8.2.14. If IBj = () then it follows easily that
Minz,,(—a) \ M(3) = 0, which means that Minx,,(-~«) C M(S) and therefore
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that Njf(-a) = 0. So we only need to consider the case where IB§ # (. Then
every u € Minx,,(—a)\ M(3) is a model of S(C) for some C' € IBf. Pick any
C € IB§ and any u € (Min<,,(~a)NM(S(C)))\ M(3). Observe that every model of
S(C) U {—a} is a <;p-minimal element of M (—«a), which ensures that every element
of (R\ S(C))\ Cn(T) is false in all the models of S(C) U {—a}. We record this result

formally.
vy € (R\S(C))\ Cn(T), Yo € M(S(C)U{~a}), v ¢ M(y) (8.1)

We show that M ((S(C)\ (S(IB)\ R)) U=((R\ S(C))\ Cn(T))U{-a}) = NE(-a).
From (8.1) it follows that u ¢ M(y) for every v € (R\ S(C)) \ Cn(T) and therefore
that

we M((S(C)\(SUB)\ R)) U=((R\S(C)\ Cn(T)) U{-a}).

Now pick any v € M ((S(C)\ (S(IB)\ R)) U~((R\ S(C))\ Cn(T)) U {—a}) and any
p € R. We only consider the case where p # T. If p € S(C) then clearly u € M (p)
iff v € M(p), so suppose p ¢ S(C). Then by (8.1) again, u ¢ M(p). Furthermore,
since v € M(=((R\ S(C)) \ Cn(T))), it follows that v ¢ M(p) and thus that v €
M(p) iff v € M(p). Finally, it is clear that v € M(—a). We have thus shown that
v € NE(=a). Conversely, pick any v € NE(—«). Clearly v € M(—a), and since
we M((S(C)\(SUB)\ R)) U=((R\S(C)\ Cn(T)) U{-a}), sois v.

It is clear that M ((S(C)\ (S(IB)\ R))U~—-((R\ S(C))\ Cn(T))U{—-a}) is ax-
iomatised by the wif

()& = (A S\ (SUB)\ R)) A (A ~((R\S(C)\ Cn(T)) A-a

and it thus follows that M((—a)f) = NJ(—a). So we have shown that if 1B§ # 0),
then

¥C' € IBS, Fu € (Minx,, (~a) N M(S(C))) \ M(8) and (8.2)
YC € IB}, Yu € (Minz,, (~a) N M(S(C))) \ M(B),
M ((~a)E) = N (-a). (8.3)

We now show that Nj(a) = M (\/CGIBE(—-a)g), from which the required result fol-
lows. Pick a v € Njf(—a). There is a u € Min,,(—a)\ M(3) such that v € NJ*(-a),
and by (8.3) it follows that for some C' € IB§, v € NF'(-a) = M ((-)&). So clearly

veM (\/CEIB% (—u)g). Conversely, pick any v € M (\/CE[B% (—-a)g). Then v is a
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model of (—a)& for some C' € IB§. By (8.2) there is a u € (Min<,,(—a)NM(S(C)))\
M(3), and by (8.3), N (-a) = M ((ma)§). So v € Nf(—a) and thus v € Nf(-a). O

We are now almost in a position to define basic infobase contraction.
Definition 8.2.16 A function rs : ZB x pL — ppL is a relevance selection function
iff

1. IB*Crs(IB,a) C IB,

2. if @ = f then rs(IB,a) = rs(IB, 3), and

3. if IB ~ IC (that is, IB and IC are element-equivalent) then rs(IB,a) =

rs(1C, a).
([

Intuitively, a relevance selection function indicates which of the wifs in /B should

play a role in determining the weakened versions during a contraction. Observe that
rs(IB,«) is (IB, «a)-relevant.

Definition 8.2.17 1. An infobase change operation © is a basic infobase contrac-
tion iff there is a relevance selection function rs such that, for every IB € ZB and
every a € L, IBOa is obtained by replacing every wif 5 in I B with wﬁg%a)(ﬁ),

the a-weakened version of 3 with respect to rs(IB, «).

2. For every IB € ZB, an infobase [ B-change operation O;p is a basic infobase
1 B-contraction iff it can be obtained from an infobase contraction © by fixing
the infobase I B. That is, iff IB ©;p a« = IB © « for every a € L.

([

We conclude this section with an example illustrating the partial construction of some

basic infobase contractions.

Example 8.2.18 Let IB = [p,q|. Figure 8.2 contains a graphical representation of
the I B-induced faithful total preorder <;5. Then

Cn(S(IB)) =15 p = Cn(q), IB"” = {p}

1B) ={[q]}, 1B} = 0,

Cn(S(IB)) =15 (p A gq) = Cn(pV q)

IB~0"0 = {p,q}, 1B} = {[g]} , and 1B} = {[p]}
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Now observe that w(Iﬁ;;) (p) =pV (T A=pA-p) =T and that w(IIBBj;)(q) =qV.LlL=q

Furthermore, since S(IB) = B~P", note that

S(IB —PAq

G @) = w{s () =pV (g A-pA=(pAg)) and
S(IB —pAq

G (@) = wll (@) =aV (pA-gA-(pAQ).

It can be verified that both wfl(éz)/\q) (p) and wz(éi%q)(q) are logically equivalent to pVgq.

There is thus at least one basic infobase contraction © such that
IBop= [w{ﬁ;;) (P), w(ip ) (q)] ~[T,q|

and
IBO (p A q) = |wlfime @), wlfmi(@)] ~ pVapva.

Furthermore, observe that wfl(éi)) (p) =pV(¢gA—pA-—-p)=pVqand that wfl(éz))(q) =
qV L = q. So there is least one infobase contraction @ such that
S(IB S(IB
IBO' p= [w(I(B,p)) (p), w(I(B,p))(q)] ~[pVq,q
and
S(IB S(IB
IBE (pAg) = [w(I(B,p)Aq) (p), w(I(B,p)Aq)(Q)] ~[pVagpVdl.
a

8.2.2 Properties of basic infobase contraction

In the discussion of infobase contraction thus far, it has been implied that the a-
weakened versions of the a-discarded wffs are appropriate choices for weakened versions
of these wifs, and that the IB-induced theory contraction is the theory contraction
associated with every basic infobase I B-contraction. The first point has already been
dealt with in the previous section. For the second point, we first present a preliminary
result, indicating that for every (IB,a)-relevant set R, the models of the a-retained
wifs that are also (R, a)-neutralised models, are precisely the <;g-minimal models of

Q.

Lemma 8.2.19 If R is an (I B, a)-relevant set, then

Nfy(=a) N M(S(IB)\ IB™) = Min, ,(-a).
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Figure 8.2: A graphical representation of the I B-induced faithful total preorder <;p,
with IB = [p,q|. For every u,v € U, u <rp v iff (u,v) is in the reflexive transitive

closure of the relation determined by the arrows.

Proof By definition, S(/B)\ IB~* C Cn(S(IB)) —rp a and thus
M(S(IB))U Minx,,(—«) C M(S(IB)\ IB™%).

Furthermore, Minz,, (—a) C Nfy(—a), and so Minx,,(—«) C Nfs(~a) N M(S(IB)\
IB~*). Conversely, pick any v € N (=a) N M(S(IB) \ IB~®). That is, v satisfies
all the a-retained wffs, v is a model of =« and there is a <;g-minimal model u of
-« that satisfies exactly the same wifs in R as v does (which includes the a-discarded
wifs). Because u € Minx,,(—«), it follows from the definition of —;5 and IB~“ that
u also satisfies all the wifs in S(/B) \ IB~®. So u and v satisfy exactly the same wffs

occurring in /B, which means that v € Min<,,(—a). O

The result above is used to prove that the I B-induced contraction —;p is the theory

contraction associated with every basic infobase I B-contraction.
Proposition 8.2.20 Let © be any basic infobase contraction. Then
Cn(S(IB)) —pa=Cn(S(IB O «)).

Proof Let rs be the relevance selection function used to define ©. By propositions
8.2.13 and 8.2.15,

M(S(IBoa)=| (N (M(B) U N}“;UB’(”(W)) N M(S(IB)\ IB~®)

peIB~—«
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= UNEIBD) (o) | 0 M(S(IB)\ IB™®)

ﬂEIB o
- (M ) U NTIB) a)) N M(SIB)\ 1B~
= M(S(I (N;;(IB’“)(W) N M(S(IB)\ IB*O‘))

= M(S(IB)) U Minx,,(—~«) by lemma 8.2.19,
and thus Cn(S(IB)) —p a = Cn(S(IB 0 a)). 0

Since one of the basic tenets of infobase change is that knowledge level issues matter,
one would not expect syntax to play too big a role in the construction of infobase
change operations. We show that the syntactic form of the wffs in an infobase, as well

as form of the wif with which to contract, are irrelevant.

Proposition 8.2.21 Let © be a basic infobase contraction, and suppose that IB ~ IC
and B=. Then IBo [~ I1C © 1.

Proof Let rs be the relevance selection function used to obtain ©. Since IB and IC
are element-equivalent, u;p = u;c for every v € U, and so the I B-induced faithful total
preorder is exactly the same as the IC-induced faithful preorder. By the properties of
a relevance selection function, it then follows that Ny’ ®?(=8) = N9 (=), So,
by propositions 8.2.13 and 8.2.15, w(f}, 5 (8') = w(f;,.,(7') for every " in 1B and every
7" in IC such that ' =4/, from which the required result follows. a

8.2.3 Infobase contraction and reason maintenance

In section 8.1 it was pointed out that base change came about as an attempt to perform
reason maintenance, the process in which the removal of a basic belief forces the removal
of the consequences of the basic belief as well, unless the latter wffs can be derived from
other basic beliefs. In the context of infobase change, the wiffs in an infobase I B are
viewed as such basic beliefs of the belief set associated with I B. Reason maintenance
would thus ensure that the contraction of IB by a wff o in I B results in the removal
of all the wifs that are dependent on « for being in Cn(S(/B)). Fuhrmann [1991]
has given a precise meaning to the idea of a wif being dependent on « (for being in
Cn(S(IB))).

4Fuhrmann works with belief bases and not infobases, and our definition of I B-dependence is thus

a slight generalisation of the notion he defines.
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Definition 8.2.22 A wif § € L is IB-dependent on « iff « € S(IB) and 3 €
Cn(S(IB)), but 8 ¢ Cn(S(IB) \ {a}). 0

The next result shows that basic infobase contraction incorporates reason maintenance.

Proposition 8.2.23 Let © be a basic infobase contraction. If 3 is I B-dependent on
a then 5 ¢ Cn(S(IB © «)).

Proof Since g € Cn(S(IB)), but § ¢ Cn(S(IB)\ {a}), there has to be a model u of
S(IB)\{a} in which both a and 3 are false. So u € M (—«) and u ¢ M(S(IB)). Now,
there is only one wff in IB, namely «, that is false in u (although IB may contain
multiple instances of «). So any interpretation v for which v;5 > wu;p, has to be a
model of S(IB) and hence of o. Therefore u € Min<,,(—a), and because u ¢ M(3),
it follows that § ¢ Cn(S(IB)) —ip«. So 5 ¢ Cn(S(IB © «)) by proposition 8.2.20. O

Of course, the contraction of IB by a wiff a in IB is not the only way to remove
« from the infobase IB. In the light of this, it seems reasonable to inquire whether
the wifs that are I B-dependent on « will also be discarded if « is discarded during
the contraction of IB by some wff other than « itself. That is, if « is in I B and
a ¢ Cn(S(IB © 1)), will it be the case that 8 ¢ Cn(S(IB © 7)) for every ( that is
IB-dependent on «? This property is known as Fuhrmann’s [1991] filtering condition.
It is easy to see that basic infobase contraction can violate the filtering condition. For
example, it is readily verified that for any basic infobase contraction, the contraction
of the infobase IB = [p A ¢] by p results in an infobase in which p A ¢ is replaced by
the wif wg(lz)) (p A q) which is logically equivalent to p — ¢. And since wfl%z)) (pAgq)is
clearly I B-dependent on p A ¢, the filtering condition is violated. But such a violation
is to be expected. Given the intuition associated with infobases, the filtering condition
is clearly too strong a requirement to impose. For the filtering condition requires that
for any infobase contraction ©, Cn(S(IB ©)) = Cn(T) for any singleton infobase
IB, and any v € Cn(S(IB)) (where ¥ v), thus leaving no room for weakening the wif
in I B to anything but a logically valid wff.

8.2.4 Infobase revision

Basic infobase revision is defined by an appeal to the following infobase analogue of
the Levi Identity:
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(Def ® from ©) IB®a = (IB©O —a) e«

Definition 8.2.24 An infobase change operation ® is a basic infobase revision iff it

can be defined in terms of a basic infobase contraction © using (Def ® from ©). O

Given this connection, it is to be expected that basic infobase revision satisfies prop-
erties that are similar to those proved in sections 8.2.2 and 8.2.3. The next corollary

shows that this is indeed the case.

Definition 8.2.25 A theory revision * is associated with an infobase IB-revision ®
(for some infobase IB) iff Cn(IB) x « = Cn(IB ® «) for every a € L. O

(Def %5 from IB) Cn(S(B)) *;p @ = Th(Min<,,(®))

Definition 8.2.26 The theory revision *;g defined in terms of an infobase I B using

(Def *;5 from IB) is referred to as the I B-induced theory revision. O

From theorem 3.2.6 it follows that the I B-induced theory revision is an AGM theory

revision.

Corollary 8.2.27 Let © be a basic infobase contraction, and let ® be the infobase
revision defined in terms of © using (Def ® from ©).

1. If IB=IC and = then IB® a~ IC ® .
2. Cn(S(IB® a)) =Cn(S(IB)) %5 .

3. If B is IB-dependent on «, then 8 ¢ Cn(S(B ® —a)).

Proof 1. Follows from proposition 8.2.21.

2. Follows from proposition 8.2.20, by noting that Min<,,(«) C M(S(IB)) if ~a ¢
Cn(S(IB)), and by recalling that Cn(S(IB)) *;p « = Th(Min<,,()).

3. Follows from part (2) of this corollary, and by an argument similar to the proof
of proposition 8.2.23.
(Il
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Part (1) of corollary 8.2.27 shows that basic infobase revision is insensitive to the
syntactic form of the wffs in an infobase, as well as to the syntactic form of the wff
with which to revise, part (2) shows that the theory revision associated with a basic
infobase revision is the I B-induced revision function, and part (3) shows that basic
infobase revision can be said to perform reason maintenance.

It is also possible to provide a result for infobase change which is reminiscent of the
Harper Identity (the identity (Def — from x)).

Proposition 8.2.28 Let ® be a basic infobase revision, and let © be an infobase
change operation such that IBO« = B ® ~a. Then © s a basic infobase contraction.

Proof Follows from the fact that there is a basic infobase contraction @' such that
IB® —~a = (IB©Q ——a)e~a and that o = = O

To conclude this section, we provide an example to show that infobase change is able to

accommodate Hansson’s hamburger example (example 8.1.1) in an appropriate fashion.

Example 8.2.29 Let L be the propositional language generated by the two atoms p
and ¢ with a valuation semantics (V,IF), where V' = {00,01,10,11}. We let p denote
the assertion that the restaurant whose lights are on is open, and we let ¢ denote
the assertion that the second restaurant is open. Now, let IB = [p,pV ¢q] and let
IC = [p|. Since IB~™" = {p}, it follows from propositions 8.2.13 and 8.2.15 that
for avery basic infobase revision ®, there is a # in IB ® —p such that § = p V q.
Furthermore, since IC~"7 = [C, it follows that for every basic infobase revision
®, IC ® —-p ~ [T,-p| =~ [-p]. As our intuition suggests, revising IB by —p yields
an infobase containing p V ¢ (or something locially equivalent to it). In contract, a
revision of /C by —p does not contain such a wff. Nor, for that matter, does p V ¢

follow logically from the infobase resulting from a —p-revision of IC'. O

8.3 Related approaches

Infobase change relies heavily on the IB-induced faithful total preorders, which are
obtained by counting the number of wifs in an infobase I B. As such, its roots can be
found in the work of Dalal [1988], Borgida [1985], Satoh [1988], Weber [1986], Winslett
[1988], all of whom use the idea of distinguishing between interpretations based on

the number of propositional atoms that they satisfy (at least in the propositional
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case). However, these approaches do not distinguish between different infobases (or
belief bases) generating the same belief set, and are thus more properly classified as
instances of theory change for the same reasons that Katsuno and Mendelzon’s work
is seen as research on theory change, rather than research on base change (see section
8.1 page 243).

As discussed in section 8.1, base contraction is usually associated with the require-
ment that the belief base resulting from a base contraction ought to be a subset of the
original belief base. Two notable exceptions to this are the base contraction operations
of Nebel [1989, 1990, 1991, 1992] and Nayak [1994a], which allow wffs into the resulting
belief base that were not in the original belief base. In this section we compare these

two approaches with infobase change.

8.3.1 Nebel’s approach

Nebel’s base change operations in [Nebel, 1990, 1991, 1992] make use of an epistemic
relevance ordering on the wifs in the belief set generated by the base, which is taken
to denote relative epistemic importance. This is a generalisation of the case considered
in [Nebel, 1989], which can be seen as the special case where all wifs in the base have
equal epistemic weight. Since the latter is closer to infobase change, we shall mainly
concern ourselves with the work in [Nebel, 1989].

Nebel’s construction of base contraction functions uses the maximal subsets of a
set X that do not entail . It can thus be seen as a generalisation of the construction
of the partial meet functions (see section 2.2). For every X C L, let X | «, the set of

remainders of X after removing «, be defined as
Xla={Y CX |YFEaandforevery Z C L such that Y C Z C X, Z | «}.

Nebel defines the base contraction ~, in a somewhat opaque fashion, as

V CA(BV{-a})if £ a,
BrQJO[ = Ce(Bla)
B, otherwise.

This construction is justified by a closer look at the theory contraction associated with
~. He defines a B-faithful weak partial order < as: x < yiff (Th(x)NB) 2 (Th(y)NB),
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and then obtains a Cn(B)-contraction — from < as follows:®
Cn(B)=a = Th(M(B) U Min<(—~«)).

He then proceeds to show that — is the Cn(B)-contraction associated with ~ (i.e.
Cn(B)~a = Cn(B~«)), and that — satisfies (K—1) to (K—7), but does not, in general,
satisfy (K—8).

A comparison of Nebel’s Cn(B)-contraction — (which is obtained from <) with the
IB-induced contraction (where B is a belief base and IB an infobase) shows that the
intuitions employed in both cases are very similar. But whereas < is defined in terms of
the satisfaction of maximal subsets of B, the I B-induced faithful total preorder relies
on the satisfaction of the maximum number of wits in /B. While this difference allows
for Nebel’s — to be defined for infinite bases as well, it ensures that — does not always
satisfy (K—8), while the I B-induced contraction does. Below we provide an example
in which it seems desirable for a base contraction operation to satisfy (K—8), at least

under the assumption of the independence of the wffs in a belief base B.

Example 8.3.1 Let B={pV q,—pV q,p} and let ~ be a base contraction in which
the wifs in B are regarded as being independently obtained. A contraction with p A ¢
would force us to remove at least one of p and ¢ from Cn(B), and since p € B but
q ¢ B, it seems reasonable to require that if one of the two is retained, it should be p
and not ¢q. So, regardless of whether p is being retained, ¢ should not be an element of
Cn(B ~ (pAq)). Furthermore, since pV ¢ is explicitly contained in B, a contraction of
B by p A ¢ should not remove pV ¢, and we should thus have pV g € Cn(B ~ (pAq)).
Finally, although the presence of both pV ¢ and —p V ¢ in B suggests that p and ¢ are
independent (since p V ¢ is logically equivalent to —p — ¢, and —p V ¢ to p — ¢), this
is, to some extent, offset by the presence in B of both p and —p V ¢. The inconclusive
evidence regarding the independence of p and ¢, coupled with the fact that p itself is
in B, then suggests that p should be an element of Cn(B ~ ¢). It is easy to see that
the failure of the intuition expressed above would amount to a violation of (K — 8).
By taking « as p and [ as ¢, it is easily seen that Nebel’s C'n(B)-contraction function

~ ~

~ violates (K-8) (pV ¢ € Cn(B)—(p A q), but pV q & Cn(B)—q). O

Nebel also considers a modification of — that satisfies (K—8) (which allows him to set

B~ equal to some element of B | «) but it presupposes a linear order on the wifs

5Nebel’s construction of the theory contraction function — is phrased in terms of partial meet
functions, but it is easily seen that it can also be phrased semantically, as we have done.
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in B, which is a very strong restriction indeed. The restriction is relaxed to a total
preorder in [Nebel, 1990, 1991, 1992], but then (K—8) does not hold in the general
case.

We have thus far considered the Cn(B)-contraction — in detail, but have said very
little about ~ itself. From some comments made in his conclusion, it seems that
Nebel regards the set of wifs B~«a merely as a convenient finite representation from

[13

which the belief set B—« can be generated, and nothing more. He writes: “...iterated
contractions were ignored because they present serious problems.”, and “Choosing the
‘right’ form of the premises seems to be one of the central tasks before any kind of belief
revision can be applied”. The latter statement seems to suggest that B~a cannot be
seen as a base with the wffs contained in it being epistemologically more important
than the wifs in Cn(B~«), a view that is also supported by his proposal for a base
revision *. He defines Bk« as (B~—a) A {a}, which means that the newly obtained
basic belief o occurs in B« as a conjunct of every wif in (B~—«). And there certainly
is no intuition of a weakening of the wifs contained in B, as with infobase change. For
example, if B = {p,q,r}, it can be verified that B~(p A ¢ A r) contains 24 elements
and is element-equivalent to the infobase [pV ¢,pV r,qV r,pV ¢V r]. In contrast,
consider the infobase contraction © obtained from the relevance selection function sr
where sr(IB,a) = IB~* for every IB € IB, and every a € L. It can be verified that,
for the infobase IB = [p,q,r], IB© (p A g Ar) contains three logically non-equivalent
wifs (weakened versions of each of the wffs in IB) and is element-equivalent to the
infobase [pV (g A7), qV (pAT),rV (DA Q)]

8.3.2 Nayak’s approach

In some ways, Nayak’s [1994a] approach to base change is more general than infobase
change since it accommodates infinite bases. (On the other hand, of course, infobases
have a richer structure than finite sets of wffs.) He takes Fuhrmann’s [1991] generalised
safe contraction as a starting point. When contracting a base B by « (a base contraction
which we denote by ~) he first finds the set E(«) of minimal subsets of B that entail
«. The idea is to construct a reject set R(a) (wifs of B that will be discarded),
consisting of wifs from every element of E(«). To ensure that the Cn(B)-contraction
associated with ~ satisfies (K—1) to (K—5), he assumes a choice function C from

©B to B that picks the “most rejectable” elements of any subset of B. Up to this
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point the construction corresponds roughly to Fuhrmann’s base contraction. However,
Fuhrmann’s version of the choice function does not have to conform to the stringent
restrictions that Nayak places on C. Furthermore, Nayak does not take the set Ry(«),
which consists of the most rejectable elements of all members of E(«), to be the reject
set, as Fuhrmann does. Instead, he uses C' to choose a particular subset of Ry(«), which
also happens to be an element of B | «, as the reject set R(«). B~« is then defined
as the wifs in B that are not rejected, together with weakened versions of the rejected
wifs. To be precise, B&a = B\ R(a) U{f — a | f € R(a)}. Nayak proves that the
Cn(B)-contraction function — associated with ~ satisfies all eight AGM contraction
postulates. The addition of the weakened versions of wffs in the reject set ensures that
— satisfies (K—6), but it is currently unclear whether it plays a role in the satisfaction
of (K—7) and (K—8) as well.

The strict conditions imposed on C, together with the insistence that the reject
set R(«) be an element of B | «, are akin to placing a linear order on B. This
means that Nayak’s base contraction function ~ is closely related to Nebel’s modified
version of the base contraction function ~, for which B~q is an element of B | a.
It is thus difficult to draw a direct comparison between ~ and infobase contraction,
mainly because the construction of ~ needs so much more extra-logical information. A
feature that Nayak’s base contraction does have in common with infobase contraction
concerns the wifs contained in the resulting base (or infobase) after a contraction has
taken place. Both retain a number of wffs and replace the wffs that are removed with
weakened versions. Currently, the closest we can come to a comparison is to give an
example showing that any reasonable modification to ~ which caters for situations
in which less extra-logical information is available will probably not always give the
desired results, at least not when the wifs in a base are assumed to be independent.
This does not, of course, suggest that infobase contraction will always be preferable to
such modified versions of Nayak’s approach. It merely serves to indicate that, given the
assumption of the independence of wifs, there are cases in which infobase contraction

is preferable to any modification that retains the spirit of Nayak’s original approach.

Example 8.3.2 Let B = {p, q}. The requirement that the reject set be a subset of B
seems to form an integral part of Nayak’s approach, which means that the reject set
R(p A q) has to be one of (), {p} or {¢}, irrespective of any restrictions on the choice
function C. The only candidates for BX(p A ¢) are thus {(p A ¢) = p,(p A q) — ¢},
{p,(pANq) — q} and {q,(p A q¢) — p}. Now, if p and ¢ have equal weight then the
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desired result when contracting B with pAq is {pV ¢} (or some set containing elements
that are logically equivalent to pV q), a set of wifs which Nayak’s approach is not able
to produce. In contrast, it was shown in example 8.2.18 that there is a basic infobase
contraction © for which [p,q] © (p A q) = [pV ¢,pV q]. In fact, it can be shown that

every basic infobase contraction yields the same result. O

8.4 Iterated infobase change

Although an infobase IB induces the unique theory contraction —;g, infobases do not
contain enough information to determine a basic infobase contraction or revision. To
do that, we also need a relevance selection function rs. Once rs is fixed, though, we
are dealing with a specific basic infobase contraction and revision, which allows for the
possibility of iterated infobase change. In this section we investigate whether iterated
infobase change measures up to the postulates supplied by Darwiche and Pearl (see
section 7.3) and Lehmann (see section 7.4). To do so, we have to work on the level of
epistemic states. Recall from section 7.3 that every epistemic state ® is assumed to have
associated with it a belief set K (®) and a K (®)-faithful total preorder <g. To bring
infobase change into this framework, we assume that it is possible to extract a unique
infobase I By from every epistemic state ®. This implies that K(®) = Cn(S(IBs))
and that <g is identical to the IBg-induced faithful total preorder <;p,. Further-
more, since Darwiche and Pearl operate under the assumption of a finitely generated
propositional language L with a valuation semantics (V,IF), we shall do the same for
the rest of this section.

Recall from our discussion of DP-revision in section 7.3 that in order to simplify
matters, we decided to equate every epistemic state ® with the ordered pair (K(®), <q¢).
With the incorporation of infobases into epistemic states, it is no longer possible to
adhere to this simplification. The reason is that infobases contain more information
than such ordered pairs. That is, while every infobase I B is uniquely associated with
the ordered pair (Cn(S(IB)), <i5), this ordered pair may be associated with different
infobases. For example, letting IB = [p,q] and IC = [p A q,pV q], it is easy to check
that Cn(S(IB)) = Cn(S(IC)), and that <75 and <j¢ are identical. Furthermore, the
fact that we only deal with finitely generated propositional logics makes it easy to see

that every ordered pair of this kind can be obtained from some infobase.

Lemma 8.4.1 For every ordered pair of the form (K, <) where K is a belief set and
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=18 a K-faithful total preorder, there is an infobase I B such < and <;p are identical,
and K = Cn(S(IB)).

Proof Pick any ordered pair of the form (K, <) where K is a belief set and < is a
K-faithful total preorder. Since L is a finitely generated propositional language, V'
contains a finite number of interpretations. The total preorder < thus partitions V'
into a finite number of subsets (blocks). Let us assume that there are n such blocks.
We assign each of them a unique index from 1 to n according to their relative positions
in <, leaving us with the n indexed blocks Py, ..., P,. Thatis, for 1 <i,j5 <n,: < jiff
for every v € P; and every v € P;, u < v. Now, for any W C V, let ay be some some
wif that axiomatises W. (Since L is finitely generated, such a wif always exists.) For
1 <i<n,let ; = ay where W = UlSjSi P;. We define an infobase IB as follows: if
1 € K, then IB contains exactly one instance of each of the wifs in { L} U{J, ., {5},
otherwise /B contains exactly one instance of each of the wifs in U1<i<n{ﬁ_i}?' It is
easily verified that < and <;p are identical, and that Cn(S(IB)) = K. 0

More importantly, perhaps, is the fact that the extra information contained in infobases

plays an important role in the process of infobase change, as the next example shows.

Example 8.4.2 Let © be the basic infobase contraction obtained from the relevance s-
election function rs, where rs(IB,a) = IB~“, for every IB € I3 and every « € L, and
let ® be the basic infobase revision defined in terms of © using (Def ® from ©). Now,
let IB = [p,q| and let IC' = [pAgq,p,q,pV q,p — ¢,q — p]. Clearly Cn(S(IB)) =
Cn(S(IC)) and it is also easy to see that <;p and <, are identical, and are repre-
sented graphically in figure 8.2. Yet, it can be verified that /B® (pA—q) =~ [p, T,p A —¢q]
and that IC ® (p A ~q) = [p,p,pVq,pV ¢, T,q—p,pA—q]. So IB® (p A —q) and
IC ® (p A —q) induce different faithful total preorders, as can be seen in figure 8.3. O

Having established that epistemic states need to have a richer structure than ordered
pairs of the form (K (®),=<4), we now turn to the definition of revision on epistemic

state in terms of basic infobase revision.

K(® % a)=Cn(IBs ® )
(Def x from ®)

Soxa = X(IBy®a)
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Figure 8.3: A graphical representation of the total preorders used in example 8.4.2.
On the left is the (IB ® (p A —=q))-induced faithful total preorder and on the right the
(IC ® (p A —q))-induced faithful total preorder. As usual, the applicable preorder is

the reflexive transitive closure of the relation determined by the arrows.

Definition 8.4.3 We refer to the revision on epistemic states defined in terms of a
basic infobase revision ® using (Def % from ®) as the ®-associated revision on epistemic
states. a

It is easily verified that the revisions on epistemic states associated with basic infobase

revisions all satisfy (Ex1) to (Ex8).

Proposition 8.4.4 Let ® be a basic infobase revision, and let % be the ®-associated

revision on epistemic states. Then % satisfies (Ex1) to (E%8).

Proof Follows from theorem 7.3.1 and part (2) of corollary 8.2.27. O

8.4.1 DP-revision

When placed in the framework for iterated belief change proposed by Darwiche and
Pearl, basic infobase revision yields favourable results. The revisions on epistemic
states associated with basic infobase revisions satisfy all but the first one of the four
DP-postulates. The satisfaction of these three DP-postulates rely on the following two

simple results.
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Lemma 8.4.5 Let ® be a basic infobase revision and let rs be the relevance selection

function from which ® is obtained.

1. If v € M(—«) then, for every B in IB, v € M(B) iffve M (w(i&?&;a)(ﬁ)).
2. For every B in IB, if v € M(f) then v e M (wflsgljl’;)a)(ﬁo

Proof By proposition 8.2.15, M (wflsgljg)o‘) (6)) = M(p)U NES(IB”O‘)(—'—‘&) for every
3in IB.

1. Follows from the fact that NES(IB’W)(—-—-&) C M(a) for every 3 in IB.

2. Follows from the fact that M (3) C M (wﬁgiﬁ)a)(ﬁ)).

O

Proposition 8.4.6 Let ® be a basic infobase revision, and let % be the ®-associated
revision on epistemic states. Then % satisfies (DP2)—(DP4), but does not necessarily
satisfy (DP1).

Proof To show that % does not necessarily satisfy (DP1), let L be generated by the
atoms p and ¢, with a valuation semantics (V,IF) where V' = {00,01,10,11}. Let
IBy = [p <> q,pV —q,—pV —q,q| and let ® be the basic infobase revision obtained
from the relevance selection function rs for which rs(IB,a) = IB~“ for every IB € IB

and every a € L. It can be verified that

IBs® (pVq) = [pV—=q,-pV—g-qpVq|,
K((®x(pVq)*xq) =Cn(S(IBs®(pVq) ®q)) =Cnlg), and

K(® % q) = Cn(S(IBs ® q)) = Cn(p A q).

SoqEpVq, but K((®x (pVq))*q) # K(P % q), which is a violation of (DP1).

For (DP2)—(DP4), it suffices, by theorem 7.3.4, to show that x satisfies (DPR2)-
(DPR4). Let rs be the relevance selection function from which ® is obtained and pick
any epistemic state P.

For (DPR2), observe that since [ B ® « is obtained by replacing every wff 5 in I Bg

with wf}ggjf’;)a) (B8) and then adding «, it follows from part (1) of lemma 8.4.5 that
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UrB, = UIByea (where urp, and urp,eq are the I Be-number and the (I B ® ov)-number
of u), for every u € M(—«). And since <g¢ is the I Bg-induced faithful total preorder,
and <y, is the (IBg ® «)-induced faithful total preorder, it then follows that u <¢ v
iff u <gpxq v for every u,v € M(—a). So (DPR2) is satisfied.

For (DPR3) and (DPR4), note that part (2) of lemma 8.4.5 ensures that u;p, <
UrBy@a- Combined with part (1) of lemma 8.4.5, it then follows for every u € M («) and
every v € M(—a), that if urp, > vip, then uip,ea > Vipgea- S0, for every u € M(a)
and every v € M(—a), if u <¢ v then 4 <gx, v, which means that (DPR3) holds.
Similarly, from parts (1) and (2) of lemma 8.4.5 it follows for every u € M(«) and
every v € M(—a), that if urp, > vip, then uip,ea > Vipyea- S0, for every u € M(a)
and every v € M(—«), if u <¢ v then u <gx, v; that is, (DPR4) holds. O

It is our contention that the violation of (DP1) by basic infobase revision is an indication
that this postulate is perhaps too restrictive to accommodate a wide range of rational

forms of revision. Below we give a realistic example in support of this claim. ©

Example 8.4.7 [ have a circuit containing two components; an adder and a multiplier.

I have made three independent observations about these components.

1. The adder is working.
2. The multiplier is working.

3. If the adder doesn’t work then the multiplier also doesn’t work.

Another observation now indicates that at least one of the two components is not
working. In trying to incorporate this new information, we have to discard (or weaken)
at least one of the first two observations. Moreover, we cannot retain both observations
(2) and (3), for they imply observation (1). So it seems reasonable to retain the belief
that the adder is working and the belief that a broken adder implies a broken multiplier.
Together with the new information that at least one of the components is broken, it
then follows that it is the multiplier that is broken.

This line of reasoning can be formalised by using a propositional language generated
by the two atoms a (indicating that the adder is working) and m (indicating that the
multiplier is working) with a valuation semantics (V,I), where V' = {00, 01,10, 11}.7

6This example was inspired by a similar one proposed by Darwiche and Pearl [1997,p. 12].
"We adopt the convention of letting the first digit denote the truth value of @ and the second digit

the truth value of m.
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My initial infobase then looks like this: IB = [a, m, —a — —m]. Figure 8.4 contains
a graphical representation of the I B-induced faithful total preorder <;p. It is easily
verified that for any basic infobase revision ®, Cn(S(IB ® —(a Am))) = Cn(a A —m),
which means that m should be discarded and that a and —a — —=m should be retained.
But what should the weakened version of the discarded wif m look like?

One reasonable option is to discard it completely, or, what amounts to the same
thing, to weaken it so that it becomes logically valid. Formally, this can be accom-
plished as follows. Let rs be a relevance selection function such that rs(IB,a A m) =
IB~(@"m) — Im}. Since IB~(¢"™ is (IB, a A m)-relevant, there is such an rs. Now
consider the basic infobase contraction © which is obtained using rs. It can be
verified that /B © =—(a Am) =~ IB© (a A m) = [a, T,ma — —m| and therefore
IB® —(a Am) ~ [a, T,ma — —m,(a Am)], where & is the basic infobase revision
defined in terms of © using (Def ® from ©). Figure 8.4 contains a graphical represen-
tation of the (/B ® —(a A m))-induced faithful total preorder.

To see that the revision % defined in terms of ® using (Def % from ®) violates
(DP1), note that an inspection of figure 8.4 shows that Cn(S(IB ® —a)) = Cn(-a),
but that Cn(S((IB®—(aAm))®-a)) = Cn(—aA—-m). So K((® % —-(aAm))x-a) #
K(® % —a) even though —a F —(a A m) where ® is an epistemic state such that
IBgy = IB. And this constitutes a violation of (DP1). O

There is a particular form of basic infobase revision which does satisfy (DP1), though.
It corresponds to what we have referred to as the coherentist approach to infobase

change on page 246 in section 8.2.1.

Definition 8.4.8 A coherentist basic infobase revision ® is a basic infobase revision
such that rs(IB,«) = IB for every a € L, for the relevance selection function rs from
which &® is obtained. O

To show that a coherentist basic infobase revision satisfies (DP1) we need the following

two lemmas.

Lemma 8.4.9 For every u € Minx,, (), NIP(a) C Ming,, (o).

Proof Pick any u € Ming,,(a) and any v € N!P(a). By definition, v € M(«), and
u and v satisfy exactly the same wffs in IB. So the I B-numbers of u and v are the

same, and therefore v € Min<,, (). O
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Figure 8.4: A graphical representation of the total preorders used in example 8.4.7.
On the left is the /B-induced faithful total preorder and on the right the (IB ® —(a A
m))-induced faithful total preorder. As usual, the applicable preorder is the reflexive

transitive closure of the relation determined by the arrows.

Lemma 8.4.10 If v € M(«) \ Minx,, () then, for every  in IB, v € M(B) iff
veM (w(lﬁgﬁa)(ﬂ))

Proof Pick any v € M(a) \ Minx,,(«a) and any § in IB. By proposition 8.2.15,
M(B)C M (w(IIBBFa) ([3)), and so v € M () implies v € M (wIB (5)) Conversely,

(IBa_‘OC)
suppose that v € M (w(lﬁgﬁa)(ﬂ)) By lemma 8.4.9, v ¢ N;”(a), and it therefore
follows from proposition 8.2.15 that v € M (f3). a

Proposition 8.4.11 Let ® be the coherentist basic infobase revision and let % be the

revision on epistemic states defined in terms of ® using (Def % from ®). Then %
satisfies (DP1).

Proof By theorem 7.3.4, it suffices to show that % satisfies (DPR1). Let ® be any
epistemic state. So <4 is the I Bg-induced faithful total preorder. We have to show
that u <¢ v iff u <ggq v for every u,v € M(«).

Recall from definitions 8.2.14 and 8.2.24 that [Bg ® « is obtained by replacing
every wif 5 in I By with w(lll?@ﬁa)(ﬂ) and then adding «. From lemma 8.4.10 it follows
that the (/B ® a)-number of u is one more than the IBg-number of u, for every
u e M(a)\ Ming, (o). So u =g v iff u Zgxq v for every u,v € M(a) \ Min<, («).
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Next, observe that the IBg-number of every u € Min<,(«) is greater than the
IBg-number of every v € M(«) \ Min<, (o). Moreover, by part (2) of corollary 8.2.27
it follows that M(S(IBe ® «)) = Min<,(«). So the (IBp ® a)-number of every
u € Min<, () is greater than the (/Bg ® a)-number of every v € M(«) \ Min<, (o).
Therefore u < viff u <gxq v forevery u € Min<, (o) and every v € M(a)\Min<, (),
and u =g v iff u <pxq v for every v € Min<, () and every u € M(«) \ Min<, ().

Finally, observe that elements of Min<,(c) all have the same IBg-number, and
since M (S(IBs ®r)) = Min<(«), the elements of Min<, («) all have the same (I B ®
a)-number as well. So u <¢ v iff u <exq v for every u,v € Min<, (), which means

we are done. O

8.4.2 L-revision

We turn now to Lehmann’s framework for iterated revision which was discussed in
section 7.4.% Since his postulates (Lx1), (L%2), (L%3) and (L%6) correspond exactly
to (Ex1), (Ex2), (Ex3) and (Ex6) respectively, it follows from proposition 8.4.4 that
the revision % on epistemic states obtained in terms of a basic infobase revision using
(Def x from ®) satisfy these four postulates of Lehmann. Furthermore, since (Lx7)
is a weakened version of (DP2) (see section 7.4, page 223), it follows from proposition
8.4.6 that x also satisfies (L %7). It does not necessarily satisfy (Lx4), (L%5) and
(L%8), though, as the following example shows.

Example 8.4.12 Let ® be the basic infobase revision obtained from the relevance

selection function rs for which rs(IB,«) = IB~® for every IB € ZB and every « € L.

1. Let IB = [pA—q,pVq]. Clearly IB®p ~ [pA—q,pV q,p]. It can be verified
that Cn(S((IB®p)®q)) = Cn(pAq), but that Cn(S(IB®q)) = Cn(q). Taking

p as « and ¢ as the sequence of wifs o, this is a violation of (Lx4).
2. Let IB=[p <« q,pV —q,—pV —q,—q|. It can be verified that

IB®q~[p<r q,pV—q,pV-qq],
IB®pVq~[pV—q-pV-g-qpVd,
(IBepVg®q=I[pVagq,

Cn(S(UB®pVq) ®q) ®—q)) =Cn(pA—g), and
Cn(S((IB® q) ® =q)) = Cn(=p A —q).

8Recall that Lehmann concerns himself only with revisions by satisfiable wifs.
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Taking p V q as (3, ¢ as «, and —¢q as the sequence of wifs o, this constitutes a

violation of (Lx5).
3. Let IB=[pVgq,pV —q|. Clearly

IB®p~[pVqgpV-gp,
(IB®p)®q¢=[pVqgpV—qgp,yql, and
IB@p)®pAqg=[pVag,pV—-qgppAq|.

It can be verified that

Cn(S((IB®p) ® ) ® =p)) = Cn(-p A gq), and
Cn(S((IB®p) ®pAq)®-p)) = Cn(-p).

With p as a, ¢ as /3, and —p as the sequence of wifs o, it follows that (L%8) is
violated.

O

An examination of this example suggests that, unlike the DP-postulates, (Lx4), (Lx5)

and (Lx8) are fundamentally incompatible with basic infobase revision.

8.5 Future research

This chapter has laid the foundation for a theory of infobase change, but it is clear that
much still needs to be done. Infobase change, as we have currently defined it, assumes
that the wffs contained in the infobase I B have equal epistemic weight. But there may
be good reasons for regarding some wifs in IB as epistemologically more important
than others, as the following example, which is part of an example by Hansson [1992b],

attests to.

Example 8.5.1 “A geography student sees one of his fellow students pick up a book
in the library. The title of the book is The University at Niamey. He asks, ‘Where is
Niamey?’, and receives the answer, ‘It is a Nigerian city’.

Next day, in an oral examination, the professor asks our student, ‘What do you know
about Niamey?’—It is a university town in Nigeria’—‘It most certainly isn’t’...the

student believes what the professor says, and adjust his beliefs accordingly.” O
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We use the propositional language generated by the atoms p and ¢ to represent the
situation above, where p denotes the assertion that there is university in Niamey, and
g denotes the assertion that Niamey is a town in Nigeria. So the infobase IB is [p, q]
and the student performs a p A g-contraction of IB. It is easy to verify that every
basic infobase contraction of IB by p A ¢ yields an infobase that is element-equivalent
to [pV q,pV ¢q] (see example 8.2.18). But, as Hansson [1992b] argues, it is reasonable
to assume that the result of the above contraction should be element-equivalent to [p].
This is because of the extra-logical assumption that information obtained in library
books is more reliable than information obtained from fellow students, which allows us
to retain p rather than q.

One way in which to represent such extra-logical information is in terms of orderings
of epistemic relevance on I B. Nebel [1990, 1991, 1992] requires of epistemic relevance
orderings to be total preorders on a base B. When applied to infobase change, the aim
would be to use an epistemic relevance ordering on an infobase I B to obtain a suitable
S(IB)-faithful total preorder. An appropriate infobase change operation would then
be constructed in a manner analogous to the way it is currently being constructed.

One of the main differences between infobase change and many approaches to base
change is illustrated by example 8.2.18, where a wff that is not contained in the infobase
IB = [p,q] finds its way into the resulting infobase /B © p A ¢. And while this
seems to be the correct solution in many respects, it is not quite in tune with the
intuition that the wffs in an infobase represent independently obtained beliefs. For it
seems counterintuitive to regard a wiff that is merely entailed by the wiffs in /B as an
independently obtained belief contained in IB © p A ¢. It is with this kind of example
in mind that Rott [1992a] writes as follows (In the quotation H represents the base

{p.q}):

“...Even after conceding that one of p and ¢ may be false, we should
still cling to the belief that the other one is true. But H' = {p V ¢} is
no base which can be constructed naturally from H—it certainly does not

record any explicit belief. We are faced with a deep-seated dilemma. ..”

Rott ultimately decides against the inclusion of such wifs, arguing that bases should

only contain explicit beliefs.” We conclude this section by arguing that a priority or-

9Hansson [1996] mentions the use of disjunctively closed bases (in which the disjunction 'V 3 of
every «, 3 € B is also in B) as a possible solution to problems of this kind. Unfortunately this ensures
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dering, similar in spirit to the epistemic relevance orderings, may provide an acceptable
solution. The idea is to split the infobase obtained from an infobase contraction into
two partitions; one containing the explicit beliefs and the other containing the intro-
spective beliefs. After an infobase contraction of the infobase I B by the wif «, the
explicit beliefs consists of the a-retained wifs of I B, while the introspective beliefs are
appropriately weakened versions of the a-discarded wit 8 of IB. Wffs that were, at
some stage, obtained directly from independent sources thus constitute the explicit
beliefs, while wffs such as the ones logically equivalent to p V ¢ in example 8.2.18 are
regarded as beliefs obtained by introspection during the contraction process, and are

thus to be seen as carrying less epistemic weight than the explicit beliefs.

that bases can’t be finite. And in any case, Hansson does not regard it as an acceptable solution,

warning that it should be seen as an interesting special case, rather than a required property of bases.
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Chapter 9

Conclusion

It can go on and on, or someone must write “The End” to it.

Gerald R. Ford, 38th US President

One of the most important issues in the area of knowledge representation is to find
appropriate representations of the epistemic states of agents equipped with the ability
to reason intelligently. In this dissertation we have concentrated on semantic represen-
tations of the part of an epistemic state pertaining to belief change. We chose the AGM
approach to theory change as our starting point, primarily because of its importance in
the study of belief change. Historically, AGM theory change has become synonymous
with a presentation in terms of postulates, as outlined in section 2.1, plus the following

four basic construction methods:

1. The method of partial meet contraction, which uses remainders [Alchourrén et al.,
1985].

2. The method of safe contraction, which makes use of entailment sets [Alchourrén
and Makinson, 1985, Rott, 1992b].

3. A construction method involving the EE-orderings of Gardenfors and Makinson
[1988] and Gérdenfors [1988].

4. A semantic method of construction, in terms of systems of spheres [Grove, 1988].

275
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The semantic method we have chosen to focus on is a slight variation on Grove’s systems
of spheres. It involves a set of total preorders on the set of interpretations of the logic
language under consideration, which we have chosen to refer to as the faithful total
preorders [see Katsuno and Mendelzon, 1991, Peppas and Williams, 1995].! While the
representation theorems involving these construction methods allow us to move from
any one construction method to any one of the others (at least in principle), it is, in our
view, difficult to escape the conclusion that the semantic methods are, in an important

sense, more fundamental than the others.

The use of faithful total preorders is model-theoretic in nature, and has been used
as such in our technical results. But it can also be given an information-theoretic
flavour in terms of the infatoms introduced in section 3.1. The basic idea is that the
bits of information making up the belief set of an agent are ordered according to their
entrenchment or credibility, and that any changes in beliefs are ultimately made with
this ordering in mind. It is our contention that such an information-theoretic view of

belief change provides an appropriate setting for further studies in belief change.

Not long after the inception of the research area known as nonmonotonic reasoning,
researchers started to point out connections between this field and the enterprise of
belief change. The link is provided by theory revision operations on the one hand,
and nonmonotonic consequence relations on the other. The basic idea is that results
obtained from an a-revision can be seen as the plausible (but nonmonotonic) conse-
quences resulting from the adoption of the evidence «, and vice versa. What is most
interesting from our point of view, is that a slight variation on expectation based non-
monotonic reasoning [Girdenfors and Makinson, 1994] can be constructed from the
faithful total preorders, thus leading to the claim that the processes involved in the-
ory revision and nonmononic reasoning are identical. While such results indicate a
formal connection between theory revision and nonmonotonic reasoning, it has been
argued that one should not attempt to extend this link to the epistemological level
as well [Gérdenfors and Makinson, 1994]. It is our view that both these areas can be
incorporated into a more general formal theory of cautious and bold reasoning, with
nonmonotonic reasoning being viewed as a form of reasoning which is bolder than the

type of reasoning encountered in theory revision.

'For some reason it seems that the use of systems of spheres is more popular in philosophical
circles, while artificial intelligence researchers prefer to use faithful total preorders.
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It is a curious feature of many a nonmonotonic reasoning system that, while the
examples used in justifying the formal construction have a dynamic quality to them,
the construction itself is viewed as the description of a static process. This behaviour
can only be explained by the (implicit) assumption that the adoption of two pieces
of evidence in sequence, yields results that are identical to that obtained from the
simultaneous adoption of the same bits of evidence. Using the connection between
nonmonotonic reasoning and theory revision, we have argued that this is too strong a
restriction to place on all forms of nonmonotonic reasoning. It is hoped that future

research on nonmonotonic reasoning systems will take this result into account.

Orderings of entrenchment on wifs are frequently advanced as appropriate repre-
sentations of the epistemic states of agents; at least with regard to belief change. We
have surveyed the forms of entrenchment found in the literature, and presented a novel
version of entrenchment — refined entrenchment — which is intended as an alternative
to the EE-orderings of Gérdenfors and Makinson [1988] and Gérdenfors [1988]. The
construction of refined entrenchment orderings involves the use of the faithful modular
weak partial orders, instead of the faithful total preorders, thereby ensuring the elimi-
nation of some of the undesirable properties of the EE-orderings. The use of the faithful
modular weak partial orders paves the way for the introduction of a more general set
of faithful orderings, the faithful layered preorders, from which both the EE-orderings
and the refined entrenchment orderings can be constructed. Using these results, we
have argued that such orderings on interpretations (and on their information-theoretic
counterparts) ought to be seen as more fundamental than the entrenchment orderings

on wifs generated from them.

One of the most controversial aspects of AGM theory change is the insistence on
the inclusion of the Recovery postulate (K—6). Those theory removal operations that
satisfy the first five basic AGM postulates have come to be known as withdrawal oper-
ations. In recent years, there have been a number of proposals aimed at constructing
rational forms of theory withdrawal that do not, in general, satisfy Recovery. Following
a survey of withdrawal operations, we have introduced a new member of this family,
dubbed systematic withdrawal. The method for constructing systematic withdrawal is
semantic in nature. It involves the faithful modular weak partial orders; the preorders
used in the construction of refined entrenchment. We have argued that systematic
withdrawal seems to retain the advantages of other forms of withdrawal, but does not

suffer from their undesirable properties. By applying the method used in the construc-
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tion of systematic withdrawal to the faithful layered preorders, we have obtained a set
of principled withdrawal operations which includes systematic withdrawal as well as
the severe withdrawal operations of Rott and Pagnucco [1999]. From our investigation
into withdrawal it seems reasonable to advance the thesis that any principled form
of withdrawal will be amenable to semantical construction, in terms of some kind of

ordering on interpretations (or infatoms).

Due to its violation of the principle of Categorical Matching, AGM theory change
has been shown not be suitable for a satisfactory description of iterated belief change.
In one of the most important recent advances in the field of belief change, Darwiche
and Pearl [1994, 1997] have shown that investigations of iterated belief change ought to
be conducted on the level of epistemic states. The main results about their proposed
framework rely on a semantic view of epistemic states, which states that it is possible to
extract from every epistemic state a unique faithful total preorder and a unique belief
set. Our investigation into iterated belief change consist of a survey of the proposed
frameworks of Darwiche and Pearl [1994, 1997] and Lehmann [1995], a discussion of
transmutation, which can be viewed as a generalised version of iterated belief change,
and a discussion about two revision operations recently proposed by Papini [1998,
1999]. Papini’s revision operations and work done by Nayak [1994b], Nayak et al.
[1996] and Liberatore and Schaerf [1998], coupled with the move to view revision as
an operation on epistemic states, have also served as inspiration for the proposal to
investigate operations involving the merging of two epistemic states. It seems difficult

to conduct an investigation into merging without incorporating the semantic view.

Most of the work in this dissertation is of a declarative nature. It addresses the ques-
tion of how an agent may employ the semantic structures extracted from an epistemic
state to perform belief change, but ignores, for the most part, the equally important
question of how an agent may arrive at a particular epistemic state. We have shown
how data structures called infobases can be used to achieve the latter objective. An
infobase is a finite ordered list of wffs. It is associated with a belief set — the set of
wifs entailed by the wiffs in the infobase, and the structure of an infobase is exploited
to induce a faithful total preorder. Every infobase is thus associated with a unique
belief set and a unique faithful total preorder; the two components of an epistemic s-
tate needed to perform theory change. While the basic idea of associating extra-logical
information with the structure of a set of wffs is nothing new, the particular method

we have employed ensures that faithful total preorders are obtained, and is a novel
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contribution. Although infobase change views knowledge level matters as important,
it is also concerned with appropriate issues on the symbol level. Unlike the process
that has become known as base change, infobase change involves the weakening of wifs

in an infobase, rather than the removal of some wifs.

In conclusion, we restate the three main questions with which this dissertation is

concerned and indicate to what extent answers have been provided for them.

1. How should an epistemic state (or at least the part pertaining to belief change)

be represented?

The work in this dissertation suggests that the answer to this question consists of
a single word; “semantically”. Much of the work done here indicates that an ordered
pair, consisting of a belief set and a layered preorder on a set of infatoms of the logic
language under consideration, is an appropriate representation of an epistemic state, at
least for belief change operations such as theory revision and theory withdrawal. And
while some of the later chapters, in particular chapter 8, suggest that richer structures
are needed for more realistic belief change operations, there is a clear indication that

such richer structures also need to be semantic in nature.
2. How does an agent use an epistemic state to perform belief change?

The most imporant issue that has been resolved in connection with this question is
that any belief change operation ought to produce, not just a belief set, but rather a
complete new epistemic state. Furthermore, it has become clear that, while the process
of identifying the belief sets associated with those epistemic states resulting from belief
change operations is well laid out (notwithstanding some variations in the methods for
doing so), much work still has to be done to determine the permissible ways of arriving

at complete epistemic states resulting from belief change operations.
3. How does an agent arrive at a particular epistemic state?
Our main contribution in providing an answer to this question is the use of infobases.

We assume that wifs in an infobase are independently obtained and then exploit the

structure of the infobase to aid in the construction of an appropriate epistemic state.
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The use of infobases in this fashion is just a first approximation, although it seems to

have the potential for developing into a full-fledged theory.

9.1 Future research

This dissertation provides guidelines for some promising areas of future research, some
of which have already been touched on in the relevant chapters. We briefly outline the
most interesting of these.

It seems worthwhile to explore the connections between the information-theoretic
semantics described in chapter 3 and other logic-oriented approaches such as that
of Barwise and Seligman [1997]. It is also possible that there might be a link with
algorithmic information theory in the sense of Shannon [1964, 1993] and Chaitin [1987].

Having accepted the importance of semantic structures for the construction of belief
change operations, it is tempting to re-evaluate some of the generalisations of AGM
theory change which do not admit semantic descriptions. This has, to some extent,
already been accomplished with base change, resulting in the definition of infobase
change. Another such area is that of multiple change; theory change operations involv-
ing sets of wifs instead of single wffs.? Some proposals for multiple contraction have
been made by Fuhrmann and Hansson [1994]. One of their proposals, package con-
traction, is constructed from generalised versions of the partial meet contractions (see
section 2.2). A closer look at this construction from a semantic point of view seems to
point to some inconsistencies in the choice of admissable belief sets when contracting
by certain sets of wifs, and also suggests a possible solution to this problem.

In recent years, considerable progress has been made in the area of iterated belief
change. The framework provided by Darwiche and Pearl [1994, 1997], in particular,
has provided an excellent starting point. However, much work still needs to be done
in this regard. Some recent results suggest that the first two DP-postulates may be
too restrictive. The challenge is thus to weaken these two postulates in an appropriate
fashion. One possibility is suggested by concentrating on the semantic versions of the
four DP-postulates. It involves the kind of restriction placed on the relative ordering
of interpretations which is found in (DPR4). The idea is that an a-revision need not

leave the relative order of the models of o unchanged, as (DPR1) requires. Instead, it

ZPeppas and Sprakis [1999] have recently provided a semantic description of Lindstroms’s [1991]

proposed version of multiple revision.
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only requires of model v of « that is strictly higher up in the ordering than a model u
of a, to be at least as high up as u after an a-revision. From an information-theoretic
point of view, this means that an a-revision may cause a content bit ¢ of =« to become
less entrenched, but ¢ may not become strictly less entrenched than any of the content
bits of -« which are currently at most as entrenched as 7. A similar weakening of
(DPR2) would require of a model u of -« that is strictly lower down in the ordering
than a model v of =, to be at most as high up as v after an a-revision. Information-
theoretically, this means that an a-revision permits a content bit ¢ of o to become more
entrenched, but ¢ may not become strictly more entrenched than any of the content bits
of a which are currently at least as entrenched as . It remains to be seen whether these

suggested properties will turn out to be appropriate postulates for iterated revision.

Further investigations into iterated belief change are also bound to have an impact
on research concerning multi-agent belief change [Kfir-Dahav and Tennenholtz, 1996],
and in particular, the merging of epistemic states [Borgida and Imielinski, 1984, Baral
et al., 1991, 1992, Subrahmanian, 1994, Liberatore and Schaerf, 1998, Konieczny and
Pino-Pérez, 1998]. Currently the major results in these areas seem to be focused on
the level of the belief sets associated with epistemic states. An area that needs to be
looked at is the establishment of a framework involving restrictions on the faithful total

preorders associated with epistemic states.

The faithful total preorders have played a major role in many of the belief change
operations described in this dissertation. As such it may be seen as a suitable point
of departure for the description of appropriate semantic structures to be used in belief
change. Two obvious generalisations of these orderings seem to be worthy of inves-
tigation: Firstly, the role of the faithful modular weak partial orders, both in the
construction of refined entrenchment and systematic withdrawal, is an indication that
one needs to move to a set of faithful preorders which includes both the faithful total
preorders and the faithful modular weak partial orders. A candidate which seems to
be appropriate is the set of faithful layered preorders. Encompassing both the faithful
total preorders and the faithful modular weak partial orders, it retains an important
characteristic shared by these two sets of preorders; the idea of layers of elements, with
elements on different levels being comparable. It is, essentially, this property which en-
sures the satisfaction of the postulates (KK—8) and (Kx8) in the context of AGM theory
change and the postulate known as Rational Monotonicity in the context of nonmono-

tonic reasoning. Secondly, while the faithful layered preorders may be sufficient for the
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definition of some belief change operations such as revision and withdrawal, it has been
pointed out by Rott [1991,p. 172], amongst others, that richer structures are needed
for others. A proposal that immediately springs to mind is to use structures along the
lines of Spohn’s [1988, 1991] ordinal conditional functions. (Observe that we may view
the faithful total preorders induced by infobases in this light, since these orderings are
obtained from the I B-numbers of the interpretations.) Considerable progress has been
made in this regard by Goldszmidt and Pearl [1996]. Amongst many other desirable
properties, their formalism is able to deal with observations with a varying degree of
firmness. They also provide a link with qualitative probabilities. It remains to be seen
whether their approach can be combined with the use of faithful layered preorders,
where elements on the same level (with the same ordinal assigned to them) need not
be seen as comparable.

With the exception of the I B-induced faithful total preorders, the use of semantic
structures for defining belief change has been of a declarative nature in this dissertation,
with not much attention being paid to the equally important question of how to extract
suitable semantic structures from the data structures at one’s disposable in order to
perform belief change. This question has received some attention in the nonmonotonic
literature [Geffner and Pearl, 1992, Geffner, 1992, Delgrande and Schaub, 1997], and
has also been addressed by Goldszmidt and Pearl [1996] in the context of belief change,
but much work still needs to be done.

Finally, we come to an extremely important general aspect which has received no at-
tention in this dissertation, and indeed, very little, in the research field of belief change;
implementational considerations and the computational complexity of proposed belief
change operations. While some researchers [Lehmann and Magidor, 1992, Gérdenfors
and Rott, 1995, Goldszmidt and Pearl, 1996, Greiner, 1999] have presented relevant

results, a more general picture has yet to emerge.
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Proofs of some results in chapter 3

A.1 Theorems 3.2.3 and 3.3.1

Theorem 3.2.3

1. A removal defined in terms of a semantic selection function using (Def ~ from
smg ) is a basic AGM contraction. Conversely, every basic AGM contraction can

be defined in terms of a semantic selection function using (Def ~ from smy ).

2. A revision defined in terms of a semantic selection function using (Def x from
smy ) is a basic AGM revision. Conversely, every basic AGM revision can be

defined in terms of a semantic selection function using (Def * from smg ).

Proof 1. Let smyg be a semantic selection function and let — be defined in terms
of smy using (Def ~ from smy). We construct a selection function sk such
that — is defined in terms of sk using (Def ~ from sg). By theorem 2.2.4
it then follows that — is a basic AGM contraction. Pick any o € L. If o ¢
K or if F a then sx(K1la) = {K} and by definition smg(a) = (), and thus
Nsg(KLla) = Th(M(K) U smg(a)). So we suppose that # « and o € K.
Then ) C smg(a) € M(—c«). By proposition 3.2.1 it follows that for every
u € smg(«), there is an A, € K1 « such that Th(M(K) U {u}) = A,. We let
sk (K La) be the set consisting of all these A,’s. That is,

sk(KLla)={A € Kla|3u € smg(a) such that Th(M(K) U {u}) = A}.

Since smg(a) # 0 it clearly follows that sk (K La) # 0. Furthermore, it is clear
that s (K La) € K1 a. We still need to show that Nsg (K La) = Th(M(K) U
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smy(«)). By proposition 3.2.1 we have that, for every u € smy(«), there is an
A € sg(KLa) such that Th(M(K) U {u}) = A, and for every A € sg(K La),
there is a u € smy(«) such that A = Th(M(K) U {u}), and therefore

(| Th(M(K)U{u}) =nNsk(K La).

uesmp (@)

So it suffices to show that

(| Th(M(K)U{u}) = Th(M(K) U smg()).

uesmpg (a)

Pick any 8 € (V,cgm(@) TRM(K)U{u}). Then u € M(B) for every u € smy(«)
and v € M(B) for every v € M(K). Therefore M (K)Usmg(a) C M(f3) and thus
p € Th(M(K)Usmg(a)). Conversely, suppose that 5 € Th(M(K) U smg(«a)).
Then M(K) U smg(a) € M(S) and therefore M(K) U {u} C M(S) for every
u € smg(a). So € Th(M(K)U{u}) for every u € smg (), which means that
e Th(M(K)U/{u}).

Conversely, pick any basic AGM contraction —. By theorem 2.2.4, there is a
selection function sk in terms of which — is defined using (Def ~ from sk ). We
construct a semantic selection function smy such that for every «, Nsy (K La) =
Th(M(K) U smg(a)). Pick any o € L. The cases in which o ¢ K or F « have
already been dealt with above, so suppose that ¥ « and o € K. Then () C
sk(K La) C K La. By proposition 3.2.1 it follows that for every A € sk (K La),
there is a us € M (—a) such that Th(M(K)U{us}) = A. We let smg(«) be the

set consisting of all these u,’s. That is,
smy(a) ={u € M(—«a) | A € sk (K La) such that Th(M(K) U {u}) = A}.

Clearly O C smg(a) € M(—«) and if « = 8 then smg(«) = smg(f). To show
that Nsk (K La) = Th(M(K) U smg(a)) we proceed exactly as above, which

means we are done.

. By theorem 2.1.6 and part (1) above, it suffices to show that the revision x,

defined in terms of a semantic selection function smy using (Def x from smy),
can also be defined in terms of — using (Def * from ~), where — is the removal

defined in terms of smg using (Def ~ from smg). So, ignoring the trivial cases,



Al

THEOREMS 3.2.3 AND 3.3.1 285

observe that if o € K and ¥ —«, then

(K — —a) +«
= Th(M(K)Usmg(—a)) +«
= Th(smg(—«)) by lemma 1.3.4.

Theorem 3.3.1

1. Every faithful total preorder defines a GE-ordering using (Def Cg from <). Con-

versely, every GE-ordering can be defined in terms of a faithful total preorder
using (Def Cg from <).!

2. Every faithful total preorder defines an EE-ordering using (Def Cg from <).

Conversely, every EE-ordering can be defined in terms of a faithful total preorder
using (Def Cg from <).

Proof 1. Let < be any faithful total preorder. We show that the relation Cgg on

L, defined in terms of < using (Def C¢ from <) is a GE-ordering. For (GE1),
pick any a, 3 € L and suppose that 5 Zgg «. That is, there is a y € M(«)
such that £ y (and thus y < z) for every x € M(f), and so o Cgp (. For
(GE2), suppose that o« Cgp 5 and f Cgg vy, and pick any y € M(y). There is an
x € M(p) such that z <y, and a z € M(«) such that z < z. By the transitivity
of <, z < y. For (GE3), suppose that o E §V v and assume that § Zgr o and
v Zgr a. So there is a y € M(«) such that y < x for every z € M(f), and
there is a v € M(«a) such that v < u for every u € M(y). Clearly y ¢ M (/) and
v ¢ M(y). If y < v then y ¢ M(7), which contradicts the fact that a F gV .
Similarly, if v < y then v ¢ M(f), contradicting the fact that o F §V . For
(GE4), suppose that K # Cn(L) and pick an o € L such that —« ¢ K. Then
M(K) N M(a) # 0, and it thus follows that = < y for every 8 € L and every
y € M(p); i.e. a Cgg B for every f € L. Conversely, suppose that a« Cgp
for every 8 € L. In particular then, o« Cgg T; i.e. for every y € U there is an
x € M(«) such that © < y. Because K # L, this means that M (K) N M («) # 0,

! This result fixes up some small inaccuracies of Grove [1988] and Boutilier [1992], and it sharpens
a result of Boutilier [1994].
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from which it follows that —« ¢ K. For (GE5), suppose that F —«. So M («) = (),
and it thus follows vacuously that g Cgg v for every § € L. On the other hand,
suppose that 8 Cgg a for every S € L. Then, in particular, L Cgg o, which has
to mean that M («) = (), and thus that F —a.

For the converse, let Cqp be a GE-ordering. We construct a faithful total preorder
=< in terms of which Cgp can be defined using (Def Cg from <). For any « € L,
let Aa={p €L |aClgg B} Grove [1988] refers to these sets as cuts. It is easy
to see that the set of cuts is totally ordered under set inclusion. Pick any two
wifs @ and $, and suppose that Aa € AB. Then Aa\ AB ={y|aCqr v Cgr
B} # 0, and so it follows that A C Aa. Now, for every z € U, let

Uz =|J{Ae|a€Land z € M(=(Aa))}.

So LI x is the largest cut that contains none of the wffs satisfied by z. We define
< as follows:

For every x,y e U,z <y iff Ux D U y.

First we show that < is a faithful total preorder. Cuts are totally ordered by
set inclusion, so it clearly follows that < is a total preorder. Now pick any
z,y € M(K). By (GE4), Uz =Uy ={a |-« € K} and so z < y. Furthermore,
if we pick a z ¢ M(K), then there is at least one —«v € K such that z IF a. So
LI = D U z, which means that x < z. To prove that < is smooth, it suffices to
show that for every o € L such that ¥ —a, Min<(«) # (. The following result
shows that there is an interesting connection between a cut C' and the set M (—C)

of all interpretations that satisfy none of the wffs in C'.
For every cut C' and every a € L, a € C iff M(=C) C M(—«). (A.1)

For the proof of (A.1), pick any cut C' and any « € L and suppose that a € C.
Then, by definition, M (—C') C M(—«). Conversely, suppose « ¢ C. If =C' ¥ —a,
then there is a model of =C' that satisfies o, and thus M(—-C) ¢ M(-«). So
suppose that -C' F —«. By compactness, there is a finite subset Cp;, of C' such
that =Cryy, F —ar, and so o F \/ Cryy,. By repeated applications of (GE3), it then
follows that for some § € Cpipn, 8 Cor @, and thus a € C, contradicting the

supposition.

Now, pick any a € L such that ¥ -, and let C, = | J{AB | @ ¢ AB}. So C,

is the largest cut not containing .. From (A.1) it follows that M (—C,) contains
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an interpretation y that satisfies o. We show that C, = U y. If Cy € Uy,
then U y C C,, which means there has to be a § € C, that is satisfied by y,
contradicting (A.1). So C, C U y. Conversely, since C, is the largest cut not
containing «, and since o ¢ U y, it follows that U y C C,. Now assume there
is an x € M(«), and thus o ¢ U z, such that x < y. Then Uz D Uy = C,,
contradicting the fact that C, is the largest cut not containing «. Therefore
y € Min<(o).

Finally, let C be the GE-ordering defined in terms of < using (Def Cg from =<).
We show that C = Cgp. Pick any o, 8 € L. If E = then by the definition of
C, o C f and, by (GE5), o Cgg 8. Furthermore, if F —a and o Cgp 3, then
by (GE5), F =f, and if F =a and « C f, it follows from the definition of C
that F —f. Hence, if F —a or F =, then a Cgp (8 iff  C (5. So we suppose
that ¥ —y and ¥ —d. By (A.1), there is a y € M(—¢,) that satisfies 3, and
an v € M(—¢,) that satisfies a. As above, it then also follows that Cs = U y,
Co = Uz, y € Ming(B) and that © € Min<(«). If o Cgp f, then Cg C C,
and thus U y C Ll x. So, by the definition of <, x < y, and therefore oo C 3. On
the other hand, if & C 3, it means that v < v for every u € Min<(«), and every
v € Min<(f3). So in particular, x < y, which means that Cs = Uy C U 2 = C,,
and thus that o Cgg .

2. Follows from part (1) and theorem 2.3.5.

A.2 Results used in the proof of theorem 3.2.6

This section contains the results used to prove that AGM contraction and AGM revision
can be characterised in terms of faithful total preorders. First we provide a “soundness”

result for AGM contraction.

Proposition A.2.1 FEvery remowval defined in terms of a faithful total preorder < using
(Def ~ from <) is an AGM contraction.

Proof For (K—1) to (K—6), it suffices, by theorem 3.2.3, to show that the func-
tion smg : L — pU obtained by setting smg(a) = Min<(—a) \ M(K) is a seman-

tic selection function. If o = § then Min<(—a) = Min<(—=f) and so smg(a) =
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smy(fB). Furthermore, if & ¢ K then there is an € M(K) such that x ¢ M(«).
So Min<(—a) C M(K) and thus smg(a) = 0. On the other hand, if F « then
Min<(—a) = 0 and thus smg(a) = (. So suppose that & € K and ¥ «. Then
M(K)NMin<(—a) = 0, but by smoothness, Min<(—a) # 0. So @ C smg(«). Finally,
smg (o) € M(—a) since Min<(—~a) C M(—a).

For (K—7), suppose that v € K — « and v € K — . That is,

M(Th(M(K) U Min<(—«))) € M(vy) and
M(Th(M(K) U Min<(—5))) € M(y).

If we can show that M (K) U Min<(—(a A B)) C M(vy), it follows that v € K —a A,
which means we are done. We already have that M(K) C M(vy), so it remains to
be shown that Min<(=(a A 3)) C M(y). Pick a v € Min(=(a A ()). It follows
that either v € M(—a) or u € M(—3). In the latter case, u € Min<(—f) and thus
x € M(y) since Min<(—f3) C M(y). A similar argument holds in the former case.
For (K—8), suppose that f ¢ K — (aAf). f aANf ¢ K, then K — (aAf) =K
by (K—3), and thus also K = K — 3 (because f ¢ K — (a A f) = K), from which
the result follows. So we suppose that a A § € K. Because f ¢ K — (a A f),
there is a u € M(K) U Min<(—(a A B)) such that u ¥ 3. But o A f € K, and so
u ¢ M(K), which means that u € Min<(—=(a A 3)). Now, pick a vy € K — (oA ), ..
M(K)UMin<(—(aApB)) € M(y). We have to show that M (K)UMin<(—3) C M(y).
We already have that M(K) C M(«). To show that Min<(—5) C M(y), pick a
v € Min<(—f) and assume that v ¢ M(vy). Because Min<(—(a A B)) C M(y), it
follows that v ¢ Min<(—(a A §)). But then v < v since u € Min<(—(a A f)),
contradicting the minimality of v in M (=03). O

To prove the “completeness” result for AGM contraction, we construct an appropriate

faithful total preorder.
Definition A.2.2 Let — be an removal, and let
Ming ={u ¢ M(K) | uve M(K — «) for some a}.

The canonical relation for — is the binary relation < on U containing just the ordered

pairs sanctioned by conditions 1 to 5 below.

1. For every u,v € M(K), u < v.
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2. For every u,v € U\ (M(K)U Ming), u < v.
3. For every u € M(K) and v ¢ M(K), u < v.
4. For every u € Ming and v € U\ (M(K)U Ming), u < v.

5. For every u,v € Ming, u < v iff forevery o € K, v € M(K —«) and u € M(-«)
implies v € M(K — «).

O

As we shall see below, the canonical relation for an AGM contraction — is a total

preorder on U with
e the models of K as the minimal elements,

e the elements that are neither models of K nor of some belief set obtained from

K via —, as the maximal elements, and
e the rest of the elements of U in between.
We also need the following technical lemmas.

Lemma A.2.3 [Alchourrén et al., 1985] If — is a basic AGM contraction then the
following is equivalent to (K—7): (K —a)NCn(a) C K — (a A p).

Lemma A.2.4 If ~ is a removal satisfying (K—1), (K—4), (K—6) and (K—8), then
either K ~ (aANB) CK ~a or K ~ (aAp) C K ~ (3 for every «, 5 € L.

Proof If  a A f then F o and F 3, and by (K-6), K ~ a = K ~ = K ~
(a A B) = K, from which the result follows. So suppose that ¥ a A . By (K—4),
aANf ¢ K—(aNp),and so by (K—1), eithera ¢ K ~ (aAf)or ¢ K ~ (aAfS).
The result then follows directly from (K—8). O

Lemma A.2.5 Let — be a basic AGM contraction. If « € K, u ¢ M(K) and u €
M(K — «) then u € M(—«).

Proof Suppose a € K, u ¢ M(K) and u € M(K — «). By (K-6), M((K — o) +
a) = M(K), and because M(K — o) N M(a) € M((K — «) + «), we have that
u ¢ M(K —a)N M(a) and therefore u € M(—«). O
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Lemma A.2.6 Let — be an AGM contraction, and let < be the canonical relation for
—. Ifae K\Cn(T) and u € M(K — «), then u < v for every v € M(-a).

Proof If u € M(K) then u < v for every v € U, so suppose that v ¢ M(K). Because
u € M(K — «a), u € Ming. Pick any v € M(—«). Because o € K, v € Ming or
ve U\ (M(K)UMing). In the latter case the result follows from the definition of
<. For the former case, pick any f € K such that u € M(—f) and suppose that
ve M(K — ). By lemma A.2.5, v € M(=3). We need to show that u € M (K — f3).
By lemma A.2.4, either M(K —a) C M(K —(aAp)) or M(K — ) C M(K —(aApB)).
In the former case, « ¢ K —(aAf) by (K—4) and in the latter case v € M (K —(aAfS)),
and because v € M(—a), a ¢ K — (a A ). So in either case o ¢ K — (a A ) and
thus, by (K—8), K — (o A ) C K — a. Now assume that v ¢ M (K — (). Then there
isay € K —f,and thus 5V vy € K — 3, such that u ¢ M (), which means, by lemma
A.2.3, that (BVy) € K —(aApB) C K —a. And because u € M (K — «), we have that
u I BV v, contradicting the fact that u € M (—=3) and u ¢ M (7). 0

Lemma A.2.7 The canonical relation < for an AGM contaction — is a total preorder.

Proof It suffices to consider only interpretations in Ming. For reflexivity, note that
forevery a € K,if v € M(K —«) and x € M(—«) then x € M (K —«). For transitivity,
pick any z,y,2z € Ming and suppose that x < y and y < 2. We need to show that
xr = z. Pickaa € K and suppose that z € M(K—a) and x € M(—a). By lemma A.2.5,
z € M(—«a). We show that z € M (K — «). Because y € Ming, there is a v € K such
that y € M (K — 7) and therefore, by lemma A.2.5, y € M (—y). Furthermore, because
v € K and a € K we have y A« € K. And because M (—(y A a)) = M(—y) UM (—«)
it follows that z,y,z € M(—(y A «)). By lemma A.2.4, M(K —«) C M(K —yA«) or
M(K—7) C M(K—vyA«). In the former case, 2 € M (K —vyA«) because z € M (K —a).
So because y € M(=(yAa)), yANa € K and y =< 2z, we have y € M(K —y A «). In
similar fashion, because x € M(=(y A«a)) and v < y, v € M(K — v A «). In the
latter case, because y € M (K — ), we have y € M(K — v A «) and then as before,
r € M(K — v A«). So either way v € M(K — v A «). To show that x € M(K — «),
pick any 8 € K — a. We show that x € M (). Because § € K — «, we also have that
BVae K —a,sobylemma A23 fVae K—-~vyAa. Soxl- [V a But because
xr € M(—«), we have that x € M ().

To show that < is a total preorder we still need to show that for every x,y € Ming,

x < yory =<z Pick any x,y € Ming, and suppose that © A y. Then there is an
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a € K such that y € M(K —«) and © € M(—«), but © ¢ M(K —«). By lemma A.2.6
it then follows that y < x. O

We are now ready to prove the “completeness result” for AGM contraction.

Proposition A.2.8 Every AGM contraction — can be defined in terms of a faithful
total preorder using (Def ~ from <).

Proof We show that the canonical relation < for — is such a faithful total preorder.
By lemma A.2.7, < is a total preorder. To show that < is faithful, we need only
show that < is smooth; the other conditions for faithfulness follow directly from the
definition of <. So pick any a. If ma ¢ K, the M («)-smoothness of < follows directly
from the definition of <, and if F =« then M(«) = (), and thus < is M (a)-smooth.
So suppose that —a € K, ¥ -« and pick any y € M(«). We need to show that there
is an z that is <-minimal in M («a) such that z < y. Because ¥ -« it follows from
(K—2) and (K—4) that M(K) C M(K — —«). So there is an x € M(K — —«) such
that + ¢ M(K). By lemma A.2.5, x € M(«) and by lemma A.2.6, x < y for every
y € M(a).

To show that — can be defined in terms of < using (Def ~ from <), it suffices to show
that M(K — o) = M(K) U Min<(—a) for every a € L. Clearly, if F o or a ¢ K, then
M(K)UMin<(—a) = M(K), so we need only consider the case where a € K\ Cn(T).
For the left-to-right inclusion, pick any v € M(K — «). If x € M(K) then clearly
r € M(K)U Min<(—a), so suppose that x ¢ M(K). By lemma A.2.5, x € M(—«).
By lemma A.2.6 it follows that for every y € M(—a), © < y. So z € Min<(—«) and
thus x € M(K) U Min<(—a).

For the right-to-left inclusion, note firstly that by (K—2), M(K) C M(K — «).
Now pick any = € Min<(—a). We need to show that 2 € M (K — «). Because ¥ «, it
follows from (K—4) that M (K —a)NM(—a) # 0. So pick any y € M (K —a)NM(—a).
By lemma A.2.6, y < z, and then z < y because © € Min<(—«). Now, v ¢ M(K)
because o € K and x € M(—«), and so z ¢ U \ (M(K) U Mink) because y € Ming
and z < y. So x € Ming and therefore, from part (5) of definition A.2.2, it follows
that x € M(K — «). O

We thus obtain the following representation theorem.
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Theorem 3.2.6

1. Every faithful total preorder defines an AGM contraction using (Def ~ from <).
Conwversely, every AGM contraction can be defined in terms of a faithful total
preorder using (Def ~ from <).

2. Every faithful total preorder defines an AGM revision using (Def x from =<).
Conversely, every AGM revision can be defined in terms of a faithful total preorder
using (Def x from <).

Proof 1. The proof follows directly from propositions A.2.1 and A.2.8.

2. Follows from theorem 2.1.6, part (1) above, and proposition 3.2.8.



Appendix B

Proofs of some results in chapter 6

B.1 Results used in the proof of theorem 6.3.4

Proposition B.1.1 Let < be a faithful modular weak partial order. The function

ssg 1 L — pU, defined as: ssi(o) = V<(—a), is a saturatable selection function.

Proof It follows trivially that o = 3 implies ssg(a) = ssg (), and that F « implies
ssk(a) = 0. Now suppose that o ¢ K. Then ¥ «, and it follows easily that ssk(a) =
V<(—a) € Min<(—a) C M(K). Finally, suppose that o € K and ¥ . By smoothness,
0 C Min<(o) € V<(ma), and so ssi(a) N M(—a) # 0. 0

Proposition B.1.2 Every systematic withdrawal satisfies (K+1) to (K+10).

Proof Let + be a systematic withdrawal, and let < be a faithful modular weak partial
order from which + is obtained using (Def ~ from V<). By proposition B.1.1 and
definition 6.2.5, + is a saturatable withdrawal and by theorem 6.2.6, it thus satisfies
(K=+1) to (K=+6). For (K+7), suppose that v € K + (aAv). We only consider the case
where # o and aAy € K. Then v € K by (K+2), Min<(—(aAy)) € M(—a)NM(y) and
V<(—a) € M(y). Now pick any z € Min<(—~(aABAY)) and any y € Min<(—(aAv)).
(By smoothness, neither Min<(—(a A B A y)) nor Min<(—=(« A 7)) is empty.) It is
clear that y £ 2. So V< (=(aABA7Y))\ Minc(=(aA S A7) € M(y). To show that
v € K+ (A B Av), it thus remains to show that Min<(—(aABAy)) € M(y). And if
this were not the case, there would be a z € Min<(—=(aABA7)) such that z € M(—y).
But then 2z € Min<(—=(a A 7)), thus contradicting Min<(—(aAvy)) C M(—~a) N M(y).

293
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For (K+8), suppose that § ¢ K-+ (aAf). We have to show that K+(aAp) C K+0.
Ifanp ¢ K, then by (K+3), K+ (aAf) = K, and thus also K = K + /3 (because [ ¢
K +(aApB) = K), from which the result follows. So we suppose that « A5 € K. Now,
pick an o« € K+ (aA ). Then M(K)UV<(=(aAB)) C M(«)and so M(K) C M(«)
and V<(=(a A B)) € M(«). We have to show that M (K) U V<(=f) C M(a). We
already have that M (K) C M(«). To show that V(<—f3) C M(«), it suffices to show
that V<(=8) C V<(=(a A §)). If we can show that Min<(—5) C Min<(—(a A 5)),
it immediately follows from (Def V<) that V<(=f) € V<(=(a A £)). So pick any
y € Min<(—f) and assume that y ¢ Min<(—(a A f)). Since y € M(=(a A §)),
it follows by the smoothness of < that there is an @ € Min<(—(a A §)) such that
x < y. Because y € Min<(—f3), it must be the case that x € M (-« A ), and since
< is a modular weak partial order it then also follows that Min<(—(a A 8)) C M(f).
Moreover, since y € Min<(—f) and since x < y it has to be the case that for every
v € Min<(—(a A f)) and every v < v, u € M(S3). But then Vo (~(a A ) € M(5),
contradicting the supposition that 8 ¢ K + (a A ). For (K+9), suppose that a € K,
aVp e K+aand f ¢ K+ a We only consider the case where ¥ «. Then
Min<(-a) € M(B), V<(ma)\ Min<(~a) € M(a), and V<(=a)\ Min<(~a) € M(S).
So Min<(—(aAB)) < Min<(—«), and therefore Vo (—(aA ) € M(«), from which it
follows that o € K + (a A 3).! For (K+10), suppose that ¥ o and € K + . Then
V<(—a) € M(f). Therefore Min<(—a) C Min<(—(aAf)) and thus o ¢ K + (oA B).

([

Lemma B.1.3 If¥ « and ~ is a removal that satisfies (K+1), (K+4), (K+5), (K+7)
and (K=8), then {B | e K ~ (aANp)}=({K ~ (aAP)|p €L}

Proof Suppose € K ~ (a A ). Now pick any 7. By (K=7), 5 € K ~ (a Ay Ap),
and by (K+4), a AyAB ¢ K ~ (a Ay A B). Therefore a Ay ¢ K ~ (e« Ay AP)
by (K+1), and so K ~ (a AyAB) C K ~ (A7) by (K+5) and (K+8), from which
it follows that f € K ~ (A ). So we have shown that {f | 8 € K ~ (a A )} C
(MK ~ (aAB) | B € L}. The converse is trivial. O

Lemma B.1.4 If ~ satisfies (K=1) to (K+10), the withdrawal — defined in terms of

~ using (Def — from ~) is a severe withdrawal.

1See section 1.3 for an explanation of the convention of applying < to sets of interpretations.
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Proof (K—1) to (K—6) follow easily from lemma B.1.3, and (K—7) follows easily from
(K+7). For (K—8), suppose that 3 ¢ K—(aAfB). If ¥ aABthen B ¢ K ~ (aABAB) =
K~ (aNAp). And if F a A B then 8 ¢ K, and thus § ¢ K ~ (a A ) by (K=+2). So in
either case, K ~ (aAB) C K ~ [ by (K+8). We need to show that K—(aAB) C K—J.
The case where E o A (8 is trivial, and so we suppose that ¥ a A 3. We only consider
the case where # 3. We need to show that {y | v € K ~ (aABAY)} C{y| K ~
(B A7)} Suppose that v € K ~ (a ABAY). f Ay ¢ K ~ (a AP A7), then
K~ (aNBAy) CK ~ (BA7) by (K+8),and so vy € K ~ (BA7). So we consider the
case where fAy € K ~ (¢ ABA7). Since v € K ~ (A A7), it follows from (K-+4)
that a A ¢ K ~ (e« A A7), and then by (K=+8) that K ~ (aABA7y) C K ~ (aAp).
Because K ~ (a A 3) C K ~ [ we then have that 5 Ay € K ~ [, and therefore
p € K ~ f3, contradicting ¥  and (K+4). O

Lemma B.1.5 Let ~ be a withdrawal satisfying (K=1) to (K+10). Now define the
removal — in terms of ~ using (Def — from ~), and define the removal = in terms of

~ using (Def = from —). Then ~ and + are identical.

Proof By combining (Def — from ~) and (Def = from —) it suffices to show that

aVBe K~ (aN(aVp))and a ¢ K ~ (aAp)
peK~aiff ¢ if Fa, B, ac K,
B € K otherwise.
We only consider the case where # o, ¥ f and o« € K. If § € K ~ a then aV f €
K~a=K~ (aA(aVp)) by (K+5), and o ¢ K ~ (a A ) follows from (K=10).
Conversely, if a vV € K ~ (aAN(aV p) = K ~ a,and a ¢ K ~ (a A ), then
e K ~aby (K+9). O

B.2 Theorems 6.5.12 and 6.5.14

Theorem 6.5.12 Suppose that the RE-ordering Cgr and the systematic withdrawal

+ are semantically related. Then

¢ K and F a, or

f¢ K and a ¢ K, or

B Cre o and ¥ «, or

B Zre @ and 3y Zrp « such that {3,7} F a,

b ¢ K+ aiff (6.1)
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or equivalently,

B € K and F a, or
BeK+aiff { pe€ Kand a¢ K, or (6.2)
B Zre « and for every v Lpp «, {8,7} E a.

Proof For the left-to-right direction of the proof of (6.1), suppose that § ¢ K +« and
that none of the first three of the four required possible cases hold. That is, suppose
that (f € K or ¥ o) and (f € K or @ € K) and (f Zrrg « or F «). This means
that (5 € K or (¥ o and o € K)) and (8 Lgg « or F «), which, in turn, means that
(e Kand B Ugg a)or (€ KandF a)or (Faand o € K) and 5 Lgp «) or ((# «
and o € K) and F «). Of these four cases, the fourth one is a logical contradiction,
while the second one contradicts the supposition that § ¢ K + « (since K +a = K
if F a by (K+6)). So it has to be the case that (8 € K and  Zgrg «) or ((¥ « and
a € K)and f ZLrg «). If € K and 8 ZLrp « then, since § ¢ K + «, we have that
K # K + «, from which it follows by (K+3) that @ € K. And thus, by part (1) of
proposition 6.5.11, it follows that there is a 7 Zgp a such that {3,v} E «. Similarly,
if (¥ o and o € K) and 8 Lgp « then, together with the supposition that § ¢ K + «,
it follows that there is a v Lgp « such that {$,v} F a. For the right-to-left direction,
note that if # ¢ K then it follows from (K+2) that f ¢ K + . If f Cgrp o and ¥ «
then by proposition 6.5.6, § ¢ K + «. Finally, if 8 Zrr « and there is a v Zgp « such
that {f,v} F «, then by part (2) of proposition 6.5.11, f ¢ K + «.

For the left-to-right direction of the proof of (6.2), suppose that f € K + « and
that neither of the first two of the required three possible cases hold. That is, suppose
that (8 ¢ K or o) and (8 ¢ K or € K). This means that § ¢ K or (¥ « and
a € K). If B ¢ K then, since f € K + «, it follows that K # K + «, and thus, by
(K+3) and (K=+6), that @ € K and ¥ «. So, regardless of which of the two possibilities
hold, it will be the case that o € K and ¥ «. Since f € K + « and ¥ «, it follows
from proposition 6.5.6 that § Lgrrp «. Now assume that there is a v Lrg « such
that {$,7} F a. Then, by part (2) of proposition 6.5.11, § ¢ K -+ «, contradicting
the supposition that 5 € K + «a. So it has to be the case that for every v Crp «,
{B,7} ¥ a. For the right-to-left direction, note that if § € K and F «, or f € K and
«a ¢ K, respectively, then by (K+6) or (K=+3) respectively, f € K + «. So we need
only consider the case in which these two possibilities do not hold. We have already

seen above that if neither of these two possibilities hold, then @ € K. Now suppose
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that § Zge «, and that {3, v} ¥ « for every v Zgp «. It then follows from part (1) of
proposition 6.5.11 that g € K + a. O

Theorem 6.5.14 Suppose that the RE-ordering Cggr and the systematic withdrawal

< are semantically related. Then

( B¢ K and E a, or
f ¢ Kand a ¢ K, or
B Cre aand F «, or
¢ K+aiff ¢ aCprgf and 3y € L such that (6.3)

o CRrE 7, ﬂ ||ERE Y and {577} = &, Or
@ ||cpp B and 3y € L such that

L @ ||ERE s B ||ERE Y and {ﬂ77} F «,

or equivalently,

( g€ K and F «, or
fe€K and a ¢ K, or
a Cre B and Vv € L such that

o CRrEe vy and 6 ||ERE Y5 {677}# @, Or
@ ||cpp B and Vy € L such that

L « ||ERE Y and 6 ||ERE Y, {677}# Q.

BeK +aiff { (6.4)

Proof To prove the left-to-right direction of (6.3), suppose that § ¢ K + « and that
none of the first three of the five required possible cases hold. That is, suppose that
(e Kor¥a)and (€ Kora € K) and (8 ZLgrg a or F «). This means that (5 € K
or (Faand o € K)) and (8 Zgr « or F «), which, in turn, means that ( € K and
B Urrg ) or (€ K and F «) or (P « and o € K) and  Zgp a) or (((¥ « and
a € K) and F «). The fourth possibility above is a logical contradiction, while the
second possibility contradicts the supposition that 5 ¢ K+« (since K = K+« if F «,
by (K=+6)). So it must be the case that (f € K and  Zgg o) or ((F « and o € K)
and 5 Zgp «). If 5 € K, then K # K + «, and by (K+3), @ € K. So in both cases,
a € K and 8 Lz . Now we can distinguish between two cases: Either a Ty 5 or
a Zgp (. In the former case it follows that o Crp 5, and from part (1) of proposition
6.5.13 it then follows o Cri 7, B ||c,, 7 and {5,7} F o for some v € L. In the latter
case we have that « ||, £ and it then follows from part (2) of proposition 6.5.13 in

that o ||c,p 7, B llcks 7 and {5, 7} E « for some v € L. For the proof in the converse
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direction note that if 5 ¢ K then it follows from (K+2) that § ¢ K +a. If f Cgp «
and ¥ «, it follows from proposition 6.5.6 that § ¢ K + «. If a Cgp [ and there is a
v such that o Cre 7, B ||lce, 7 and {B8,7} F «, it follows from part (2) of proposition
6.5.11 that 8 ¢ K + «. Similarly, if o ||c,, 8 and there is a vy such that « ||=,, 7,
B llcgs v and {B,7} E «, it follows from part (2) of proposition 6.5.11 that § ¢ K +a.

To prove the left-to-right direction of (6.4), suppose that § € K =+ «, and that
neither of the first two of the four required possible cases hold. That is, suppose that
(B¢ Kor¥a)and (8¢ K or o € K), which means that § ¢ K or (¥ o and a € K).
If 5 ¢ K then, because € K + «, it follows that K # K + «, and thus, by (K=6)
and (K+3), that # « and o € K. So in both cases, ¥ a and o € K. Since € K + «
and ¥ «, it follows from proposition 6.5.6 in that f Crr a. We distinguish between
two cases. Either o Cgp 3, or @ Lgp B. In the former case we get that a Crp S.
Now assume there is a 7 such that &« Crg v, 8 ||lcgs 7 and {8,7} F a. Then, by
part (2) of proposition 6.5.11, it follows that § ¢ K + «, contradicting the supposition
that € K + «. So it has to be the case that {3,7} ¥ « for every v such o Cgrp v
and f ||cpp 7- In the latter case, when oo Cgrp 5, a ||z, 8. Now assume there is
a v such that « ||c,, 7, B |lck, 7 and {B8,7} F a. Then, by part (2) of proposition
6.5.11, it follows that 8 ¢ K =+ «, contradicting the supposition that § € K + a. So
it has to be the case that {,v} ¥ « for every v such that a ||c,, v and 8 ||c,, 7-
For the converse direction, note that if 5 € K and F « (or f € K and o ¢ K), then
it follows from (K+6) (or (K+3)) that f € K + «. So we need only consider the case
in which these two possibilities don’t hold. We’ve already seen above that if neither
of these two possibilities hold, then «« € K. Now, suppose that o Cgg [ and that
{B,7} ¥ o for every 7 such that « Crp v and § ||c,, 7. Then it follows from part (1)
of proposition 6.5.13 that § € K + «. Similarly, if « ||c,, £ and {§,7} ¥ « for every
7v such that « ||c,, v and 8 ||c,, 7, then it follows from part (2) of proposition 6.5.13
that f € K + «. O
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List of identities

Def * from ~)
Def — from )
Def ~ from sg)
Def — from M)

O

ef si from €)
Def — from Cgg)
Def Cpp from ~)
Def * from Cgp)
Def Cg from Cg)
Def Cg from Cp)
ef K/a from Cp)

(
(
(
(
(
(
(
(
(
(
(
(Def — from Cg)
(
(
(
(
(
(
(
(
(
(
(

O

Def ~ from smy)
Def * from smp)
Def * from S)
Def * from <)
Def ~ from <)
Def * from B)

ef Cp from <)
Def Cg; from <)
Def Cgp from )
Def < from €)
Def — from <)

O

page 21
page 21
page 22
page 22
page 23
page 25
page 25
page 26
page 27
page 27
page 28
page 28
page 40
page 40
page 42
page 43
page 43
page 47
page 48
page 48
page 49
page 51
page 51
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Def € from <)

Def Cpp from Cg)
Def v, from P)
Def  from <)

Def E from )

Def p from sg)
Def  from x)

Def x from [v)

Def scr)

ef V2)

Def < from k)

Def C,, from k)

ef Cp from k)
Def Cg from <)
Def < from <)

Def < from <)

ef Crp from Cpp)
Def Cpp from Crp)
Def Cgp from ~)

O

O

O

Def * from Cyq)

ef EGE from ERG)

O O

ef ERG’ from EG’E)
Def  from C)

Def ~ from — and s)
Def ~ from V<)

)
D
=
|
=
%
|
~

Def — from ~ (v2))
Def + from —)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(Def + from —)

Def C¢ from Cgp and Cgp)

page 52
page 53
page 65
page 72
page 72
page 73
page 75
page 75
page 90
page 90
page 96
page 97
page 98
page 99
page 106
page 106
page 112
page 112
page 117
page 117
page 126
page 127
page 127
page 127
page 129
page 148
page 152
page 156
page 157
page 160
page 160
page 160
page 162
page 162
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O

ef —)

Def ~ from V)
Def VD from V)
Def = from IZEE)
Def IZEE from —)
Def — from Crp)
Def =+ from Cpp)
Def + from Cgp)
ef cugr)

ef Op)

Def % from k)

S O

Def * from k)

O

ef ~ from k)

Def % from k)

O

ef x)
ef @)
Def % from =)

O

O

ef %)

O

ef %)

O

ef ®_,)
ef ®4)

ef @)

of K(®))

Def < from IB)
Def —;p from IB)
Def ® from ©)
Def %75 from IB)
Def % from ®)

O O U

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

page 169
page 172
page 173
page 174
page 175
page 176
page 177
page 178
page 191
page 191
page 203
page 204
page 204
page 204
page 212
page 217
page 219
page 225
page 229
page 233
page 233
page 234
page 234
page 235
page 245
page 246
page 257
page 257
page 264
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equivalent
logically, 14
X-equivalent, 248
evidence, 60
expansion, 14
on epistemic states, 217
expectation state, 76

expectations, 72

faithful, 42, 45

fallback, 91
-based withdrawal, 163
families, 103

filtering condition, 256

fixed information, 60

fixed point ordering
revision operation, 234

foundationist, 2

FPO, see fixed point ordering

Gérdenfors triviality result, 82
GE-ordering, 26
GRE-ordering, 132
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hamburger example K-linear order, 114
Hansson’s, 240 KLM approach, 61

Harper Identity, 21 knowledge, 1

hierarchy, 28 knowledge level, 3

continuing down, 28
L, formal object language, 10

l-model, 65

L-revision, 223

continuing up, 28
regular, 28

virtually connected, 29
labelling function, 65

i-containing, 34 Levi Identity, 21
(IB, a)-relevant, see relevant limit assumption, 42
I B-dependent, see dependent LR-entrenchment, 102
I B-induced LR-ordering, 101
faithful total preorder, 245
theory contraction, 246 merging, 231
theory revision, 257 Minx, 42, 234
IB-number, 245 minimal-equivalent, 54
Inf, 33 model, 11
infatom, 32 modular
infobase change operations, 244 strict partial order, 67
infon, 33 weak partial order, 106
informational value, 171 multiple
damped, 173 change, 280
undamped, 172 revision, 280
interchangeable, 21, 25, 56, 113, 118, withdrawal, 142

140, 161, 163, 174, 175

N, 11
interpolation thesis, 157 PL

: : NE tralised
interpretation, 11 g+ S6C NEULIAUSE

: : : NE tralised
introspective beliefs, 273 113, 56 NEULTAUSE

. n_
irrelevance, 69

. . reasoning context, 86
iterated revision

dynamic view of, 206 refined epistemic state, 86
natural conditional function, 202
neutralised, 249

K., 96 nonmonotonic, 59

static view of, 205
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nonmonotonic reasoning
dynamic flavour of, 79
dynamic view of, 77

static view of, 80

OCF, see ordinal conditional function

ordinal conditional function, 96, 202

P, -revision, 226
P-revision, 230
partial meet Levi-contraction, 145
plausibility ordering
Grove, 26
Spohn, 98
plausible, 59
plausible consequence, 61
power order, 48
preferential model, 65
preorder, 14
B-faithful, 46
faithful, 42
KM-faithful total, 46
layered, 131
total, 14
principle of
Categorical Matching, 4
Conservatism, 5
Identity of Indiscernibles, 39
Indifference, 5
Informational Economy, 5
Irrelevance of Syntax, 4
Minimal Change, 4
Preference, 5
Reductionism, 3

propositional atoms, 11

INDEX

pseudo-contraction, see contraction

(R, «r, B)-neutralised, see neutralised
(R, av)-neutralised, see neutralised
R-ordering, see refined ordering
ranked model, 68
rational closure, 83
RE-ordering, see refined entrenchment
reason maintenance, 240
reasoning
cautious and bold, 87
refined entrenchment, 107
refined ordering, 99
relevance selection function, 252
relevant, 248
remainder, 22, 259
retained wffs, 246
revision
AGM, 20
basic AGM, 20
basic infobase, 257
multiple, 280
on epistemic states, 207
revision postulates
basic AGM, 20
supplementary AGM, 20
revision-equivalent, 155
revision-equivalent class
principled, 155
RG-ordering, 124

S(o), 244
satisfaction, 11
satisfiable, 13

scc, see strict cut
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selection function, 22
saturatable, 146
semantic, 40
semi-, 148

semantic content, 34

semantically related, 44, 50, 56, 106, 107,
118,124, 131, 132, 135, 156, 161,

174
semantics
infatom, 34
possible-worlds, 11
valuation, 12
classical, 38
semi-contraction, see contraction
smooth, 42
specificity, 83
sphere-semantics, 41
state description, 38
stopperedness, 42
strict cut, 90
subsequence, 244
ordered, 244
symbol level, 4
system of spheres, 41
system-7, 84

Th, see theory

theory, 13
determined by, 13
generated by, 34

transitively relational
binary relation, 73

transmutation, 203

transparent propositional language, 14

Truth Maintenance Systems, 2
Tweety, 59

U, set of interpretations, 11
urp, see I B-number
upset, 191

V', set of valuations, 11

valuation, 11

W-smooth, 42
weakened version of wif, 250
well-founded, 64
widening ranked models, 224
withdrawal, 19
fallback-based, 163
methodical, 171
multiple, 142
proper, 144
reasonable, 157
saturatable, 146
sensible, 147
severe, 152
on epistemic states, 218

systematic, 153

X-equivalent, see equivalent
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