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Abstrat

The ability to hange one's beliefs in a rational manner is one of many faets of the

abilities of an intelligent agent. Central to any investigation of belief hange is the

notion of an epistemi state. This dissertation is mainly onerned with three issues

involving epistemi states:

1. How should an epistemi state be represented?

2. How does an agent use an epistemi state to perform belief hange?

3. How does an agent arrive at a partiular epistemi state?

With regard to the �rst question, note that there are many di�erent methods for

onstruting belief hange operations. We argue that semanti onstrutions involving

ordered pairs, eah onsisting of a set of beliefs and an ordering on the set of \possible

worlds" (or equivalently, on the set of basi independent bits of information) are, in an

important sense, more fundamental.

Our answer to the seond question provides indiret support for the use of semanti

strutures. We show how well-known belief hange operations and related strutures

an be modelled semantially. Furthermore, we introdue new forms of belief hange

related operations and strutures whih are all de�ned, and motivated, in terms of

suh semanti representational formalisms. These inlude a framework for unifying

belief revision and nonmonotoni reasoning, new versions of entrenhment orderings

on beliefs, novel approahes to withdrawal operations, and an expanded view of iterated

belief hange.

The third question is one whih has not reeived muh attention in the belief hange

literature. We propose to extrat extra-logial information from the formal representa-

tion of an agent's set of beliefs, whih an then be used in the onstrution of epistemi

i



ii ABSTRACT

states. This proposal is just a �rst approximation, although it seems to have the po-

tential for developing into a full-edged theory.

Keywords: Belief hange, theory hange, theory revision, belief revision, epistemi

state, ontration, nonmonotoni reasoning, withdrawal, epistemi entrenhment, base

hange, base revision, base ontration.
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Chapter 1

Introdution

Of ourse not. After all, I may be wrong.

Bertrand Russell, on being asked whether

he would be prepared to die for his beliefs.

The omi strip on the opposite page onisely aptures the entral topi of this disser-

tation: that a rational intelligent agent is sometimes fored to adjust its urrent beliefs

in some appropriate fashion when onfronted with new information. The investigation

of the reasoning patterns involved in suh a task is known as the study of belief revision

or belief hange.

The ability to hange one's beliefs in a manner that an be desribed as rational

is one of many faets of the abilities of an intelligent agent. Central to the analysis

of reasoning is the (somewhat nebulous) notion of an epistemi state. An epistemi

state ontains, in one form or another, the knowledge and beliefs of an agent, together

with the information needed for oherent reasoning. This inludes, in partiular, the

strategies for performing belief hange. Our aim in this dissertation is to obtain a

lear piture of the part of an epistemi state involving belief hange. In doing so, it

is neessary to draw a lear distintion between an agent's knowledge and its beliefs.

We onsider the beliefs of an agent to be the information that it is willing to at on,

while knowledge omprises the beliefs that the agent refuses to retrat; at least until

some state hange takes plae. Belief, then, is defeasible knowledge, a view that is

ompatible with that of Moses and Shoham [1993℄.

1



2 CHAPTER 1. INTRODUCTION

This di�erene between belief and knowledge is also the basis of the di�erene

between belief hange and belief update. The former is onerned with hanges to

the epistemi state of an agent resulting from new information in a stati world. In

ontrast, the latter deals with hanges to epistemi states when the world desribed by

it hanges; hanges to epistemi states in a dynami world, if you will.

1

In our view,

the knowledge of an agent an only be substantially altered one a state hange has

taken plae (although knowledge an inrease monotonially without any hange in the

urrent state). By onentrating on belief hange, we operate under the assumption

that the knowledge of an agent is �xed.

In the ourse of researh into the area of belief hange, two di�erent (but not

neessarily inompatible) approahes have begun to emerge; the foundationist and o-

herentist approahes. The distinguishing feature of the foundationist approah is that

it assumes the existene of a set of basi beliefs whih need no justi�ation. All other

beliefs in a foundational system have a justi�atory pedigree. Every suh a belief an

be justi�ed in terms of other beliefs, whih in turn, an be justi�ed in terms of other

beliefs, until we eventually enounter the set of basi beliefs on whih the original be-

lief is ultimately based. The best known examples of foundational systems are Doyle's

[1979, 1992℄ Truth Maintenane Systems and their suessors, Reiter and de Kleer's

[1987℄ Assumption Based Truth Maintenane Systems. Approahes to base hange

[Fuhrmann, 1991, Hansson, 1989, 1992b, 1993, 1996℄ are also motivated by founda-

tionist ideas. The oherentist approah, on the other hand, sees the justi�ation for

beliefs in terms of the way they interat or \ohere" with other beliefs. In determining

whether a belief is justi�ed, one should thus look at its relationship with other beliefs.

A proper desription of belief hange demands that we speify an appropriate rep-

resentational formalism. For our purposes, a ertain family of logi languages with a

propositional struture will be suÆient. More details an be found in setion 1.3. For

onreteness, the reader may think of a propositional language generated by a (possibly

in�nite) number of atoms, and equipped with a lassial semantis. (See, for instane,

Enderton [1972℄ or Fitting [1996℄.) The beliefs of an agent, as well as any information

obtained, will be expressed in this language. The knowledge of an agent is equated

with the sentenes whose models establish the semanti framework within whih belief

1

Keller and Wilkins [1985℄ �rst pointed out the distintion between belief hange and belief update.

Subsequently, Katsuno and Mendelzon [1992℄ formalised this distintion and proposed an abstrat

framework for belief update.



3

hange ours. This implements the view of knowledge as those beliefs that an agent

refuses to retrat.

Having hosen an appropriate language, we now turn to the three basi issues on-

erning belief hange that we shall be addressing:

1. How should an epistemi state (or at least the part pertaining to belief hange)

be represented?

When addressing this question, observe that we are only onerned with that part

of an epistemi state whih involves belief hange. When we talk about representing

an epistemi state in a ertain manner, it should be understood that suh a represen-

tation an be extrated from the epistemi state.

We shall primarily be onerned with three representations of epistemi states; the

seond two being riher in struture than the �rst. The �rst representation is as a belief

set, a set of sentenes losed under logial entailment. Although suh a representation

ontains too little information to be appropriate, it plays an important role in the

establishment of abstrat patterns and properties. As suh, it is an extremely useful

�rst approximation. The next representation is as an ordered pair, onsisting of a belief

set and an ordering on a set of \possible worlds" assoiated with the logi language

under onsideration (or equivalently, as a belief set and an ordering on the basi bits

of information from whih any set of beliefs is built up). As we shall see, suh a view

of epistemi states has proved to be a signi�ant step forward in the study of belief

hange. Finally, epistemi states are often represented as ordered pairs onsisting of

a belief set and an epistemi entrenhment ordering on the sentenes of the language

under onsideration. While suh an ordering is, in a sense, equivalent to an ordering

on possible worlds, we shall argue that the latter is a more fundamental onstrution.

In doing so, we rely on the following priniple:

(Redutionism) Complex objets are built up from simpler objets.

A onsequene of the fat that these representations make use of belief sets, is the

assumption that agents believe all the logial onsequenes of their beliefs. Levi [1991℄

refers to this as the agent's epistemi ommitment, and suh agents are referred to as

logially omnisient. In this sense, we provide an analysis of belief hange on Newell's

[1982℄ knowledge level . Newell postulated the existene of a knowledge level above the
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symbol level , on whih there is no distintion between expliit information and derived

information. This implies the satisfation of Dalal's [1988℄ priniple of the Irrelevane

of Syntax:

(Irrelevane of Syntax) A belief hange operation is independent of the form of the

belief set involved.

The assumption of logial omnisiene is learly an idealisation, though, and future re-

searh on belief hange will, no doubt, inorporate results on the resoure-boundedness

of agents.

Regardless of the way in whih epistemi states are represented, however, it is

important that the following priniple is adhered to:

(Categorial Mathing) A belief hange operation performed on epistemi states

should produe an epistemi state.

While this priniple is almost too obvious to mention expliitly, muh of the researh

on belief hange has onentrated on operations that produe sets of beliefs, and not

epistemi states. We now turn to the seond issue.

2. How does an agent use an epistemi state to perform belief hange?

Let us �rst make it lear that, although there are psyhologial studies whih fous on

the way human agents perform belief hange and similar kinds of reasoning [Edwards,

1968, Einhorn and Hogarth, 1978, Ross and Lepper, 1980, Hoenkamp, 1988, Pelletier

and Elio, 1997℄, our interest lies in the development of a normative aount of belief

hange. That is, we are not (neessarily) onerned with the way in whih human

agents reason, but with the ways in whih all rational agents ought to reason.

An answer to the question of how to use an epistemi state to perform belief hange

will, of ourse, depend on the spei� belief hange operation to be performed. Never-

theless, there are some basi priniples underlying the appropriate use of information

ontained in epistemi states. The most important of these is the priniple of Minimal

Change [Harman, 1986℄.

(Minimal Change) Keep loss and addition to a minimum.

The basi idea is that the urrent epistemi state possesses a kind of inertia, and

that any hanges made to it ought to be only those that have to be made. We shall
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also enounter two more spei� versions of this priniple, known as the priniples of

Informational Eonomy and Conservatism:

(Informational Eonomy) Keep the loss of information to a minimum.

(Conservatism) Keep the set of beliefs as large as possible.

One of the main obstales to be enountered when attempting to satisfy priniples suh

as these, is that there may not be a unique way in whih to e�et minimal hange. In

suh an event, the use of the priniple of Indi�erene is frequently advoated.

(Indi�erene) Objets held in equal regard should be treated equally.

A related priniple, the priniple of Preferene, will play an important role in the

analysis of withdrawal, an important form of belief hange.

(Preferene) Objets held in higher regard should be a�orded a more favourable

treatment.

This brings us to the third issue.

3. How does an agent arrive at a partiular epistemi state?

This is a question whih has not reeived muh attention in the belief hange liter-

ature, and there are, most probably, quite a number of angles from whih it an be

approahed. We investigate one partiular proposal in this regard. Our idea is to use

�nite ordered sequenes of sentenes to represent the beliefs of an agent. The stru-

ture of this representational formalism is then exploited to aid in the onstrution of

epistemi states. On one level this is a violation of the priniple of the Irrelevane

of Syntax, but on other levels, this priniple is still being respeted. This proposal is

not intended as a broad investigation into the question posed in point (3). It is just

a �rst approximation, although it seems to have the potential for developing into a

full-edged theory.

Having outlined the three questions whih we intend to address, it is perhaps ne-

essary to mention that this dissertation does not ontain a desription of the ompu-

tational aspets of belief hange. This is not beause we regard it as unimportant.

On the ontrary, the algorithmi and omplexity-theoreti aspets of belief hange is
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perhaps the most important issue to be dealt with in future researh. But, although

some results dealing with these issues have reently begun to appear [Lehmann and

Magidor, 1992, G�ardenfors and Rott, 1995, Goldszmidt and Pearl, 1996, Greiner, 1999℄,

a more general piture has yet to emerge.

1.1 A brief history of belief hange

The quest for a detailed theory of belief hange is an old one. In 1907, for example,

James [1907,p. 59℄ already gave a detailed desription of a proess by whih we aquire

new beliefs. Among ontemporary researhers, Isaa Levi [1973, 1980, 1991, 1996℄ has

been ative in researh related to belief hange for three deades, and many of the ideas

being developed today an be traed bak to Levi's writings.

A major advane in the development of a detailed theory of belief hange ourred

during the �rst half of the 1980s. Known as the AGM approah to belief hange,

and named after its three originators, Carlos Alhourr�on, Peter G�ardenfors and David

Makinson, it was developed in a number of papers published in the late seventies and

the beginning of the eighties [G�ardenfors, 1978, 1982, 1984, Alhourr�on and Makinson,

1981, 1985, Alhourr�on et al., 1985℄. It forms the basis of most urrent researh on

belief hange, inluding this dissertation.

AGM belief hange is primarily onerned with three types of operations:

� A removal ours when information is removed from the urrent set of beliefs of

an agent.

� A revision ours when new information is inorporated into the urrent set of

beliefs in a way that ensures onsisteny.

� An expansion ours when new information is simply added to the information

urrently in the set of beliefs, regardless of the onsequenes.

Expansion turns out to be non-problemati, and is de�ned by adding the new informa-

tion to the agent's urrent set of beliefs, and then losing under logial onsequene.

It is the AGM proposals for removal and revision operations whih have proved to be

so inuential. Atually, AGM belief hange is mostly onerned with methods for on-

struting removal operations. This an be translated into the onstrution of revision

operations by the appliation of one of Isaa Levi's ideas. Levi laims that the only
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legitimate ways of transforming an epistemi state are expansion and removal [Levi,

1977℄, a view known as the ommensurability thesis [Levi, 1991℄. In this view, a revision

by a sentene � onsists of a removal of the negation of �, followed by an expansion

with �.

AGM belief hange is oherentist in nature. It subsribes to the priniple of Min-

imal Change in that it strives to make the minimal hanges neessary to an agent's

set of beliefs following a hange operation. Ironially, their version of revision, whih

is de�ned in terms of removal, has been aepted enthusiastially, while their propos-

al for removal, known as ontration, has met with some resistane [Makinson, 1987,

Fuhrmann, 1991, Lindstr�om and Rabinowiz, 1991, Niederee, 1991, Hansson, 1991,

1992a, 1993, 1996℄. In reent years, there have been a number of proposals for on-

struting removal operations that retain the advantages of AGM ontration without

su�ering from its disadvantages [Levi, 1991, 1998, Hansson and Olsson, 1995, Rott and

Pagnuo, 1999, Cantwell, 1999, Ferm�e, 1998, Ferm�e and Rodriguez, 1998℄.

Sine AGM belief hange is oherentist in nature, it is onerned with sets of beliefs

losed under logial onsequene without any justi�atory struture. It has been ar-

gued though [Alhourr�on and Makinson, 1982, Makinson, 1985, Hansson, 1989, 1992b,

Fuhrmann, 1991℄, that some of our beliefs have no independent standing, but arise

only as inferenes from our basi beliefs. This foundationist view has led to the devel-

opment of a generalisation of AGM belief hange, known as base hange, in whih the

emphasis is plaed on hanges made to the set of basi beliefs of an agent. While suh

an approah aommodates the idea of basi beliefs, it is, to a large extent, in violation

of the priniple of the Irrelevane of Syntax. It an thus be seen as operating on the

symbol level, thereby forfeiting an important harateristi of AGM belief hange: an

analysis of belief hange on the knowledge level. Interestingly enough though, it turns

out that by relaxing some widely held assumptions about base hange, it is indeed

possible to provide a knowledge level desription of base hange [Nebel, 1989, 1990,

1991, 1992℄.

AGM belief hange plaes the emphasis on sets of beliefs losed under logial on-

sequene. As suh, it is in violation of the priniple of Categorial Mathing. For,

although it needs more than just a set of beliefs to perform revision and ontration,

it onentrates only on the sets of beliefs obtained when performing suh hange op-

erations. This is one of the reasons why AGM belief hange is not able to provide a

proper aount of iterated belief hange, the desription of the proess of performing
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sequenes of hanges. One of the most important ontributions to the enterprise of

belief hange in reent years onerns the realisation that belief hange ought to be

desribed on the level of epistemi states, and not on the level of belief sets. This has

led to an inuential proposal by Darwihe and Pearl [1994, 1997℄ for a framework for

iterated belief hange. Their proposal has served to highlight the semanti methods

for onstruting AGM-style belief hange operations, for it presupposes the existene

of the semanti strutures used for onstruting AGM belief hange.

Finally, in this brief disussion we have onentrated on revision and removal, but

AGM belief hange has also been the inspiration for a number of other types of belief

hange suh as relational hange [Lindstr�om and Rabinowiz, 1991℄, multiple hange

[Fuhrmann and Hansson, 1994, Peppas and Sprakis, 1999℄ and multi-agent belief hange

[K�r-Dahav and Tennenholtz, 1996℄, with merging [Borgida and Imielinski, 1984, Baral

et al., 1991, 1992, Subrahmanian, 1994, Liberatore and Shaerf, 1998, Koniezny and

Pino-P�erez, 1998℄ as a speial ase of the latter.

1.2 A reader's guide

The next two hapters are mainly onerned with lassi AGM belief hange. Chap-

ter 2 is a survey of AGM belief hange, ontaining sets of rationality postulates for

revision and ontration, as well as a desription of the primary methods used in the

onstrution of suh operations. The one aspet whih is missing from this hapter is

a disussion of the semanti modellings of AGM belief hange. We regard the latter as

important enough to devote the whole of hapter 3 to it. The semanti onstrution

methods disussed in hapter 3 form the ornerstone of the results presented in the rest

of the dissertation. Besides the well-known semanti modellings in terms of orderings

on the interpretations of the logi language under onsideration, we propose that an

information-theoreti semantis be used, with orderings on the basi bits of information

available to an agent. While suh a semantis has very strong formal links with the

traditional possible-worlds semantis (they are dual to eah other in a sense that will be

made preise in propositions 3.1.5 and 3.1.6), we ontend that the information-theoreti

view is of use in the intuitive justi�ation of suh semanti onstrutive methods. By

summarising well-known results about AGM belief hange, we show that the methods

disussed in hapter 2, for onstruting AGM belief hange operations, an all be seen

as being obtained from the semanti method of onstrution. Although this is to be
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expeted, given the various representation results linking these methods to AGM belief

hange, it is diÆult to esape the onlusion that the semanti modelling is more

\basi", in a sense.

Chapter 4 explores the relationship between belief hange and nonmonotoni rea-

soning. As has been noted, the inuential semanti approahes of Kraus et al. [1990℄

and Lehmann and Magidor [1992℄ to nonmonotoni reasoning have muh in ommon

with the semanti onstrution of belief hange. So muh so, in fat, that it has been

laimed that the proesses involved in belief revision and nonmonotoni reasoning are

the same, although used for di�erent purposes [G�ardenfors and Makinson, 1994℄. We

show that these two areas an be uni�ed into a more general theory of bold and au-

tious reasoning. Furthermore, applying the view of belief hange as a dynami proess

to nonmonotoni reasoning, we argue that most approahes to nonmonotoni reasoning

operate under the impliit assumption that obtaining new piees of evidene sequen-

tially is equivalent to obtaining them simultaneously; a view that seems too strong to

be appropriate for a general theory of nonmonotoni reasoning.

Chapter 5 is onerned with one of the standard methods for onstruting AGM

belief hange; in terms of epistemi entrenhment orderings on sentenes of the logi

language to be used. We provide a survey of the �eld, and present a new form of

entrenhment | termed re�ned entrenhment | whih does not su�er from the same

drawbaks as the best known form of epistemi entrenhment [G�ardenfors and Makin-

son, 1988, G�ardenfors, 1988℄. Re�ned entrenhment is de�ned semantially, but it an

also be haraterised in terms of a set of rationality postulates. Chapter 6 is devoted

to the study of a family of removal operations whih are intended as alternatives to

AGM ontration; the withdrawal operations. We survey the �eld, and propose the

addition of a new member of this family, known as systemati withdrawal. It is de�ned

semantially (in terms of the same set of orderings used to de�ne re�ned entrenhmen-

t), but an also be haraterised in terms of a set of rationality postulates. Systemati

withdrawal seems to retain the advantages of most forms of withdrawal, while not be-

ing subjet to their disadvantages. Some of the results in hapters 5 and 6 suggest the

use of a general set of orderings on interpretations whih an be used to onstrut a

wide variety of entrenhment orderings and withdrawal operations.

In hapter 7 we investigate the issue of iterated belief hange. We disuss the

frameworks reently proposed by Darwihe and Pearl [1994, 1997℄ and Lehmann [1995℄,

as well as the work of Spohn [1988℄ (whih had served as inspiration for Darwihe
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and Pearl), and its generalised version in the form of the transmutations proposed by

Williams [1994℄. Both of the proposed frameworks for iterated belief hange operate

on the level of epistemi states, and both onentrate on revision. We show that the

extension of the proposal of Darwihe and Pearl to various forms of withdrawal asts

some doubt on the desirability of some of the restritions they impose, and we measure

a reently proposed version of revision [Papini, 1998, 1999℄ against these frameworks.

Inspired by the semanti approah of Darwihe and Pearl, as well as by the work of

Nayak [1994b℄, Nayak et al. [1996℄ and Liberatore and Shaerf [1998℄, we regard the

merging of epistemi states as a fruitful area for future researh.

Chapter 8 is an attempt at solving a problem that has not reeived its fair share

of attention in the belief hange literature; determining how an agent arrives at a

partiular epistemi state. Our proposal is to represent the information obtained by

an agent as ordered sequenes of sentenes, with eah one being seen as a piee of

information (or an observation) obtained from an independent soure. Suh a sequene

of sentenes is referred to as an infobase. The struture of infobases is used to indue

the semanti strutures neessary for performing belief hange. This proess determines

the appropriate belief set resulting from a hange operation, thereby operating on the

knowledge level. A seond phase then determines the infobase resulting from the hange

operation by weakening the sentenes ontained in the original infobase. While infobase

hange an be ompared with traditional approahes to base hange [Fuhrmann, 1991,

Hansson, 1989, 1992b, 1993, 1996℄, it has more in ommon with the pseudo-ontration

operations [Hansson, 1999,p. 334℄ of Nebel [1989, 1990, 1991, 1992℄.

Finally, hapter 9 summarises the results presented and points to open problems

and future researh. As the title suggests, the main thesis defended in this dissertation

is that semanti approahes to belief hange have proved to be most fruitful in the

past, and will ontinue to play suh a role in future.

1.3 Formal preliminaries

In our investigation of belief hange we assume a formal objet language L in whih the

beliefs of an agent are expressed. We take L to be losed under the usual propositional

onnetives :, ^, _, !, $, and to ontain the symbols > and ?. The well-formed

formulas (w�s) of L will be denoted by lower-ase Greek letters. Furthermore, we

assume L to be equipped with a two-valued model-theoreti semantis de�ning truth
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and falsity. A (possible-worlds) semantis for L is thus an ordered pair (U;), where U

is a (non-empty) set of interpretations of L, and  is a satisfation relation for L. That

is, for the relation  from U to L, u  � means that � is true in u, or that u satis�es �.

Elements of U will be denoted by lower-ase Latin letters. The satisfation relation 

is required to behave lassially with respet to the propositional onnetives. We use

> and ? as anonial representatives for the logially valid and logially invalid w�s

respetively. The set of models M(A) of any set of w�s A is the set of interpretations

satisfying all the w�s in A. That is M(A) = fu 2 U j 8� 2 A, u  �g. For � 2 L we

write M(�) instead of M(f�g). We refer to the set U nM(A) as the ountermodels of

A.

Suh a semantis allows us to de�ne the notion of semanti entailment in the

standard manner. Formally, semanti entailment is a binary relation from }L (the

powerset of L) to L, and is de�ned as follows: A � � i� M(A) � M(�). For � 2 L

we write � � � instead of f�g � �, and we abbreviate ; � � as � �. Intuitively,

A � � means that � follows logially from A. The only requirement that we plae on

� is that it satis�es ompatness : A � � i� A

F

� � for some �nite subset A

F

of A.

The entailment relation � is assoiated with a onsequene operation Cn. Formally,

Cn is a unary onsequene operation on }L, and is de�ned in terms of � as follows:

Cn(A) = f� j A � �g. So, intuitively, Cn(A) onsists of all the beliefs that follow

logially from A. Whether one uses Cn or � is a matter of preferene and onveniene,

sine it is lear that � an also be de�ned in terms of Cn as follows: A � � i�

� 2 Cn(A).

It should be obvious that the logis we onsider inlude all lassial propositional

logis and lassial �rst-order logis (with the �rst-order languages restrited to losed

w�s). In fat, every logi we onsider an be \onverted" into a propositional logi,

based on a propositional language PL, in the following sense. De�ne the set of atoms

A

PL

of the propositional language PL in terms of L as A

PL

= L nN

PL

, where

N

PL

=

(

� 2 L

�

�

�

�

�

� = ?, � = >, � = :�, or � = � � ,

where � 2 f_;^; ;$g and �;  2 L

)

.

So A

PL

is the set of w�s of L not having one of the propositional onnetives as its

main onnetive. We refer to A

PL

as the propositional atoms of L. Now, for every

interpretation u 2 U we de�ne a valuation val

u

: A

PL

! fF; Tg as: val

u

(�) = T i�

u  �, and we let the set of valuations V of PL be V = fval

u

j u 2 Ug. A satisfation

relation 

V

from V to PL is then obtained reursively from V in the standard way:
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1. For every v 2 V , v 

V

> and v 1

V

?.

2. If � 2 A

PL

, then v 

V

� i� v(�) = T .

3. If � = :� then v 

V

� i� v 1

V

�.

4. If � = � _  then v 

V

� i� either v 

V

�, or v 

V

, or both.

5. If � = � ^  then v 

V

� i� both v 

V

� and v 

V

.

6. If � = � !  then v 

V

� i� either v 1

V

�, or v 

V

, or both.

7. If � = � $  then v 

V

� i� either both v 

V

� and v 

V

, or both v 1

V

�

and v 1

V

.

Sine the languages PL and L are idential, the set of valuations V also provides an

aeptable semantis for L. This is easily veri�ed by observing that the semantis

(V;

V

) for L generates exatly the same entailment relation � as the semantis (U;)

for L. (Atually, the inlusion of 

V

is redundant, sine it an be obtained from V .)

In fat, in any equivalene lass ontaining every semantis for L that generates the

same entailment relation �, (V;

V

) oupies a unique position, sine it is the only

semantis (up to isomorphism) without elementarily equivalent interpretations. (Two

interpretations x; y are elementarily equivalent i� they satisfy exatly the same w�s

of L. That is, x  � i� y  �, for every � 2 L.) We shall refer to (V;

V

) as the

�-valuation semantis for L. In general, we refer to a semantis (V;) for L in whih

V is a set of valuations, and in whih  is obtained from V in the manner desribed

above, as a valuation semantis for L.

In the belief hange literature it is not standard pratie to start with a semanti

desription. Instead, L usually omes equipped with an abstrat onsequene relation,

denoted by the single turnstile `, in plae of the semanti entailment relation. The

onsequene operation Cn is de�ned in terms of `, and Cn is assumed to satisfy the

following properties:

(Inlusion) A � Cn(A)

(Idempotene) Cn(Cn(A)) � Cn(A)

(Monotoniity) If A � B then Cn(A) � Cn(B)
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(Supralassiality) Cn(A) inludes every truth-funtional tautology and satis�es

Modus Ponens

(Dedution theorem) � 2 Cn(A [ f�g) i� �! � 2 Cn(A)

(Compatness) � 2 Cn(A) i� � 2 Cn(A

F

) for some �nite subset A

F

of A

It is easy to show that, with the exeption of a single pathologial ase, the entailment

relations we onsider are preisely the semanti versions of these onsequene relations.

To see why, note �rstly that the onsequene operation Cn assoiated with every en-

tailment relation � we onsider, learly satis�es the six properties outlined above. And

onversely, from every onsequene relation ` whose assoiated onsequene operation

Cn satis�es these six properties (exept the trivial one for whih ` = }L � L), we

an onstrut an appropriate semantis for L that will satisfy all the requirements set

out above.

2

Simply take U , the set of interpretations of L, to be the set of maximally

onsistent subsets of L. That is, let

U = fA � L j A 0 ? and 8B � L suh that A � B, B ` ?g.

The satisfation relation  is then de�ned as follows: A  � i� � 2 A. It is readily

veri�ed that the semanti entailment relation � obtained from  behaves exatly like

`. Note also that the semantis obtained in this way is isomorphi to the �-valuation

semantis for L.

3

A theory or a belief set is a set K � L losed under entailment, i.e. for whih

K = Cn(K). A set X � L axiomatises a belief set K i� Cn(X) = K, and X �nitely

axiomatises K i� X is �nite. For every W � U , the theory determined by W is

Th(W ) = f� 2 L j W �M(�)g,

and for u 2 U we write Th(u) instead of Th(fug). A set A � L axiomatises a set

of interpretations W i� M(A) = W . A set A � L is satis�able i� M(A) 6= ;, i�

2

The trivial onsequene relation ` = }L � L an be obtained from a possible-worlds semantis

(U;) with U = ;.

3

The single onsequene relation ` for whih we annot obtain a orresponding semantis is the

trivial one for whih every w� follows from every set of w�s, de�ned as ` = }L�L. It is easily veri�ed

that suh a ` satis�es the six properties above, but allows for no maximally onsistent subsets.

Consequently, the set U of interpretations obtained from ` will be empty, something that is not

permitted by our de�nition of a semantis.



14 CHAPTER 1. INTRODUCTION

Cn(A) 6= Cn(?). For every satis�able subset A of L, � 2 L is A-established (or A-

believed) i� A � �, � is A-undeided (or A-neutral) i� A 2 � and A 2 :�, and � is

A-refuted (or A-disbelieved) i� A � :�. For an unsatis�able subset A of L, all the w�s

of L are A-established, while none are A-undeided or A-refuted.

The use of the following abbreviations will be onvenient. By � � � we understand

that � and � are logially equivalent, i.e. � � � and � � �. For every �nite A;B 2 }L

we write A � B as an abbreviation for f� � � j � 2 A and � 2 Bg where � 2 f_;^g,

:A as an abbreviation for f:� j � 2 Ag,

V

A as an abbreviation for the onjuntion

of all elements in A, with

V

; = >, and

W

A as an abbreviation for the disjuntion of

all elements in A, with

W

; = ?. For a belief set K and a w� � 2 L, the expansion of

K by � is de�ned as K + � = Cn(K [ f�g).

A binary relation R on any set X is onneted i� xRy or yRx for every x; y 2 X.

A preorder v (i.e. a reexive and transitive binary relation) on a set X that is also

onneted is alled a total preorder . For any preorder v on a set X, we write x < y

i� x v y and y 6v x, x �

v

y i� x v y and y v x, x k

v

y i� x 6v y and y 6v x, and we

let [x℄

v

= fy j x �

v

yg. For every non-empty Y; Z � X, we write Y v Z i� y v z for

every y 2 Y and z 2 Z, Y < Z i� y < z for every y 2 Y and z 2 Z, and Y �

v

Z i�

y �

v

z for every y 2 Y and z 2 Z. And as a limiting ase, we set ; < Y for every

non-empty Y � X.

Our examples are usually phrased in propositional languages (ontaining the usual

propositional onnetives) that are generated by at most three atoms. We use the

letters p, q and r to denote these atoms, and interpretations (or rather valuations) of

the languages will be represented by appropriate sequenes of 0s and 1s, 0 representing

falsity and 1 representing truth. The onvention is that the �rst digit in the sequene

represents the truth value of p, the seond the truth value of q and the third the truth

value of r.

Sometimes it will be onvenient to use transparent propositional languages in our

examples. These are restrited versions of �rst-order languages ontaining no variables

and no quanti�ers. The propositional atoms of suh a language are then simply the

�rst-order atoms that an be formed from the available prediate symbols and terms.

For example, suppose that L is a transparent propositional language ontaining the

prediate symbols b and f and the two onstant symbols t and . Then L is generated

from the four propositional atoms b(t), b(), f(t) and f().

For the reader's onveniene, we provide (without proof) the following well-known
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model-theoreti results about the kind of semanti setup we onsider.

Proposition 1.3.1 Let (U;) be a possible-worlds semantis for L.

1. If � � � then M(�) =M(�).

2. M(>) = U .

3. M(?) = ;.

4. u 2M(�) i� u =2M(:�).

5. M(� ^ �) =M(�) \M(�).

6. M(� _ �) =M(�) _M(�).

7. For every W � U , W � M(Th(W )).

Proposition 1.3.2 Let L be a �nitely generated propositional language and let (V;)

be a valuation semantis for L.

1. For every W � V , W =M(Th(W )).

2. For every W � V there is an �

W

2 L suh that M(�

W

) =W . That is, every set

of valuations an be axiomatised by a w� of L.

The following model-theoreti results will also prove to be most useful.

Lemma 1.3.3 Suppose that K is a belief set and that W � M(:�). Then

(M(Th(M(K) [W )) nM(K)) �M(:�).

Proof We only onsider the ase where W 6= ;, and there is thus a w 2 W suh

that w 2 M(:�). Let X = M(Th(M(K) [ W )) n M(K), suppose that x 2 X

and assume that x 2 M(�). So there is a � 2 K suh that x =2 M(�), and then

�! � 2 Th(M(K) [W ) (sine � ! � 2 K and W � M(:�)). But this means that

x 2M(�! �), ontraditing the fat that x 2M(�) and x =2M(�). 2

Lemma 1.3.4 Suppose that K is a belief set, � 2 K, W �M(:�), and

X =M(Th(M(K) [W )) nM(K).

Then Th(W ) = Th(X).
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Proof Sine W � X, it suÆes to show that for every � 2 L, if W � M(�) then X �

M(�). So pik a � 2 L and suppose thatW �M(�). Then :� ! � 2 Th(M(K)[W ),

sine :� ! � 2 K and W �M(�). Therefore X �M(:� ! �), and then X �M(�)

sine X �M(:�) by lemma 1.3.3. 2

Lemma 1.3.5 Let K be a belief set, and suppose that X � M(:�) and W � M(�).

Then M(Th(M(K) [X [W )) \M(:�) =M(Th(M(K) [X)) \M(:�).

Proof We only onsider the ase where 2 �. Assume that the left-to-right inlusion

does not hold. So there is a u 2 M(Th(M(K) [ X [W )) \M(:�) suh that u =2

M(Th(M(K) [X)) \M(:�). There is thus a � suh that (M(K) [X) � M(�), but

u =2 M(�). Now observe that :� ! � 2 Th(M(K) [ X [W ). But this means that

u 2 M(:� ! �), ontraditing the fat that u 2 M(:�) and u 2 M(:�). The proof

for the right-to-left inlusion is similar. 2



Chapter 2

AGM theory hange

But O the heavy hange, now thou art gone,

Now thou art gone, and never must return!

John Milton, Lyidas, 37

One of the most inuential ontributions to the study of belief hange is that of Al-

hourr�on, G�ardenfors and Makinson | the so-alled AGM approah to theory hange

| developed in a number of papers in the late 1970s and 1980s [see G�ardenfors, 1978,

1982, 1984, Alhourr�on and Makinson, 1981, 1985, Alhourr�on et al., 1985℄. Even

though it is mainly onerned with belief sets, it has beome a benhmark against

whih to test and ompare (whether diretly or indiretly) a wide variety of belief

hange operations. AGM theory hange takes the epistemi state of an agent to be a

belief set [G�ardenfors, 1988,p. 47℄, and aims to give a desription of the permissible

hanges to a belief set resulting from the revision by, or the removal of, a single wf-

f.

1

This is aomplished in terms of two sets of rationality postulates. Formally, we

assume a �xed belief set K, de�ning (belief) removal and revision pertaining to K as

funtions from L to }L. Where there is no ambiguity, we shall drop the referenes

to K. (In later hapters it will be neessary to view hange operations di�erently, as

funtions from Bel�L to }L, where Bel is the set of all belief sets.) By an �-removal,

�-revision, �-ontration, and so on, we mean a removal of � from K, revision of K

by �, a ontration of K by �, and so forth.

1

Although the original AGM papers are not exlusively onerned with belief sets, the major results

in [Alhourr�on et al., 1985℄ only hold for belief sets.

17
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By now a whole array of methods have been developed for onstruting AGM

theory hange. In this hapter we briey disuss three lassial ways of doing so.

When removing a w� � from a belief set K, partial meet ontration does so using

the maximal subsets of a belief set K not entailing a w� �, safe ontration employs

minimal subsets of K that entail �, and epistemi entrenhment makes use of an

ordering of relative entrenhment on w�s. Our treatment of AGM theory hange in

this hapter annot be regarded as omplete, primarily beause it does not ontain a

disussion of semanti approahes to theory hange. We regard the latter as important

enough to devote the whole of hapter 3 to it.

2.1 Postulates for AGM theory hange

AGM theory hange is onerned with a whole spetrum of rational ways to perform

belief hange, and does not provide unique de�nitions for revision and removal. Instead,

a number of postulates are provided with whih all removals and revisions are required

to omply. The idea is that these are the rational hoies to be made. As we have seen

in hapter 1 on page 7, Levi's ommensurability thesis views removal as more primitive

than revision, and it is thus appropriate that we start with the AGM postulates for

belief removal.

(K�1) K � � = Cn(K � �)

(K�2) K � � � K

(K�3) If � =2 K then K � � = K

(K�4) If 2 � then � =2 K � �

(K�5) If � � � then K � � = K � �

(K�6) If � 2 K then (K � �) + � = K

De�nition 2.1.1 A removal is a basi AGM ontration i� it satis�es (K�1) to (K�6).

We refer to these six postulates as the basi AGM ontration postulates. 2

The �rst �ve ontration postulates together onstitute little more than an obvious

expression of the intuition that the AGM trio assoiate with belief removal. (K�1)
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is the requirement that AGM ontration operate on belief sets, while (K�2) ensures

that the ontration of a belief set atually results in a ontrated belief set. (K�3) is

a straightforward appeal to the priniple of Informational Eonomy in the pathologial

ase of ontration by a w� that is not in the belief set to begin with. (K�4) ensures

that ontration by any w� other than a logially valid one is suessful, and (K�5) is

a formalisation of the priniple of the Irrelevane of Syntax. This brings us to (K�6),

the postulate also known as Reovery. It was originally phrased as follows:

(K�6

0

) K � (K � �) + �

but it is easily veri�ed that these two formulations are equivalent in the presene of

(K�1), (K�2), and (K�3).

The Reovery postulate is an expression of the priniple of Informational Eonomy.

It requires of a ontration of K by a w� � 2 K to retain so muh of K, that it is

possible to reover the whole of K from an �-expansion of the resulting belief set. The

desirability of the Reovery postulate is a ontentious issue and has evoked a vigorous

debate [see Makinson, 1987, 1997, Hansson, 1991, 1993, 1996, Levi, 1991, Lindstr�om

and Rabinowiz, 1991, Niederee, 1991℄. We take up the matter in hapter 6, where we

disuss belief removals that satisfy all the basi AGM ontration postulates exept

for Reovery. In aordane with a suggestion by Makinson [1987℄, we refer to suh

removals as withdrawals.

De�nition 2.1.2 A removal is a withdrawal i� it satis�es (K�1) to (K�5). 2

With the exeption of (K�5), whih involves two logially equivalent w�s, the basi

AGM ontration postulates all refer to a �xed w� by whih to ontrat a belief set.

Basi AGM ontration an thus be seen as a desription of how to ontrat a �xed

belief set K by a �xed w� �. The addition of the two supplementary AGM ontra-

tion postulates below, enfores a onnetion between the belief sets obtained during a

ontration of a (�xed) belief set by di�erent w�s.

2

(K�7) (K � �) \ (K � �) � K � (� ^ �)

(K�8) If � =2 K � (� ^ �) then K � (� ^ �) � K � �

De�nition 2.1.3 A removal is an AGM ontration i� it satis�es (K�1) to (K�8). 2

2

This matter is disussed in more detail in setion 2.2.
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The postulates for revision follow the same pattern as for ontration. There are six

basi AGM revision postulates.

(K�1) K � � = Cn(K � �)

(K�2) K � � � K + �

(K�3) If :� =2 K then K � � = K + �

(K�4) � 2 K � �

(K�5) If � � � then K � � = K � �

(K�6) ? 2 K � � i� � :�

De�nition 2.1.4 A revision is a basi AGM revision i� it satis�es (K�1) to (K�6). 2

(K�1) is the requirement that revision operate on belief sets, while (K�2) plaes an

appropriate upper bound on the belief set obtained from a revision. (K�3) invokes the

priniple of Informational Eonomy for the ase where the w� with whih to revise is

onsistent with the urrent belief set. (K�4) ensures that revision is always suessful,

and (K�5) expresses the priniple of the Irrelevane of Syntax. Finally, (K�6) highlights

the di�erene beween expansion and revision.

Like (basi AGM) ontration, basi AGM revision an be seen as a desription of

how to revise a �xed belief set by a �xed w�. To ensure that there is a onnetion

between the revision by di�erent w�s of the same belief set, it is neessary to add the

supplementary AGM revision postulates.

(K�7) K � (� ^ �) � (K � �) + �

(K�8) If :� =2 K � � then (K � �) + � � K � (� ^ �)

De�nition 2.1.5 A revision is an AGM revision i� it satis�es (K�1) to (K�8). 2

2.1.1 Connetions between ontration and revision

A quik perusal of all the AGM postulates shows that, with the exeption of (K�6)

and (K�6), there are obvious similarities between the AGM ontration postulates and

their revision ounterparts. G�ardenfors [1988℄ shows that AGM ontration and AGM

revision are interde�nable by ourtesy of the two identities given below.
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(Def � from �) K � � = (K � :�) + �

(Def � from �) K � � = (K � :�) \K

These identities are known respetively as the Levi identity and the Harper identity .

Observe that the Levi identity is a formal expression of Levi's ommensurability thesis.

Theorem 2.1.6 1. A revision de�ned in terms of a (basi AGM) ontration using

(Def � from �) is a basi AGM revision.

3

2. A removal de�ned in terms of a basi AGM revision using (Def � from �) is a

(basi AGM) ontration.

3. A revision de�ned in terms of an AGM ontration using (Def � from �) is an

AGM revision.

4. A removal de�ned in terms of an AGM revision using (Def � from �) is an AGM

ontration.

What is more, these two identities are also interhangeable. That is, if we start with a

theory hange operation (satisfying either the six basi AGM ontration postulates or

the six basi AGM revision postulates), and then apply one of these identities, followed

by an appliation of the other, we'll be bak at the theory hange operation that we

started with.

Theorem 2.1.7 [G�ardenfors, 1988℄

1. Let � be a (basi AGM) ontration, let � be obtained from � using (Def � from

�) and let � be obtained from � using (Def � from �). Then � and � are

idential.

2. Let � be a basi AGM revision, let � be obtained from � using (Def � from �)

and let > be obtained from � using (Def � from �). Then � and > are idential.

So the Levi and Harper identities provide us with a strong form of interde�nability

between ontration and revision. The signi�ane of this result will beome apparent

when we disuss the methods for onstruting AGM theory hange.

3

The proof of this part of the theorem does not make use of the Reovery postulate. This is a

signi�ant result that will be disussed and exploited in hapter 6.
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2.2 Partial meet ontration

The �rst method proposed for onstruting ontration operations [Alhourr�on et al.,

1985℄ is known as partial meet ontration.

4

In this approah, the onstrution of an

�-ontration uses as building bloks the maximal subsets of K that do not ontain �.

De�nition 2.2.1 A belief set K

0

is an �-remainder (of K) i� K

0

� K, � =2 K

0

and

� 2 K

0

+� for every � 2 K nK

0

. The set of �-remainders of K is denoted by K?�. 2

It is easily seen that K?� = fKg i� � =2 K, and that K?� = ; if � �. Compatness

further ensures that K?� = ; only if � �. The partial meet ontrations are obtained

by piking out a set of �-remainders, and taking their intersetion. Intuitively, we pik

the best �-remainders, and then retain those w�s that our in every one of them.

De�nition 2.2.2 A seletion funtion is a funtion s

K

: fK?� j � 2 Lg ! }}K suh

that ; � s

K

(A) � A for every A 6= ;, and s

K

(;) = fKg. 2

Seletion funtions are used to de�ne the partial meet ontrations.

(Def � from s

K

) K � � =

T

s

K

(K?�)

De�nition 2.2.3 A removal is a partial meet ontration i� it is de�ned in terms of

a seletion funtion s

K

using (Def � from s

K

). 2

Theorem 2.2.4 [Alhourr�on et al., 1985℄ Every removal de�ned in terms of a seletion

funtion using (Def � from s

K

) is a (basi AGM) ontration. Conversely, every (basi

AGM) ontration an be de�ned in terms of a seletion funtion using (Def � from

s

K

).

The two limiting ases of partial meet ontration, in whih s

K

(�) is either taken as the

set of all �-remainders, or as a single �-remainder, are known as full meet ontration

andmaxihoie ontration respetively. Clearly there is only one full meet ontration,

but many maxihoie ontrations. In fat, it is easily veri�ed that every basi AGM

ontration � an be de�ned in terms of a setM of maxihoie ontrations, as follows:

(Def � from M) K � � =

T

�2M

K � �

4

Partial meet ontration is diretly onerned with ontration, but the orresponding revisions

an, of ourse, be obtained in terms of (Def � from �).
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and that full meet ontration is obtained whenM ontains all the maxihoie ontra-

tions. Full meet ontration thus provides a lower bound on basi AGM ontration

in the sense that, for any basi AGM ontration, the belief set obtained from the

�-ontration of a w� � inludes the one obtained from the full meet �-ontration. It

is also easily veri�ed that full meet ontration is an AGM ontration (satisfying the

supplementary postulates as well), but that not all of the maxihoie ontrations are.

For the onstrution of AGM ontration in terms of (Def � from s

K

), a seletion

funtion has to be more prinipled in its hoie of �-remainders. This is attained by

imposing a suitable binary relation b on the set of remainders

K?L =

[

fA 2 K?� j � 2 L n Cn(>)g

and de�ning a seletion funtion from it as follows:

(Def s

K

from b) s

K

(K?�) =

(

fA 2 K?� j B b A, 8B 2 K?�g if 2 �,

fKg otherwise

Intuitively, b is used to obtain the maximal or \best" �-remainders (higher up being

better), and these are the ones piked out by the seletion funtion.

De�nition 2.2.5 A partial meet ontration is alled relational i� it is de�ned in

terms of a seletion funtion s

K

(using (Def � from s

K

)), where s

K

is de�ned in terms

of a relation b using (Def s

K

from b). If b is transitive, the partial meet ontration

is alled transitively relational , and if b is onneted as well as transitive (whih means

that it is a total preorder), it is alled onnetively relational . 2

It turns out that all relational partial meet ontrations satisfy (K�7), and that the

transitively relational partial meet ontrations, the onnetively relational partial meet

ontrations, and the AGM ontrations oinide exatly.

Theorem 2.2.6 [G�ardenfors, 1988℄ A removal is an AGM ontration i� it is a tran-

sitively relational partial meet ontration, i� it is a onnetively relational partial meet

ontration.

It is worth noting that not every relation b on K?L an sueed in produing a

seletion funtion using (Def s

K

from b). By de�nition, a seletion funtion has to

produe non-empty sets of �-remainders for every K?�. So (Def s

K

from b) will yield

a seletion funtion only if, for every � that is not logially valid, there are elements of
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K?� that are at least as good, in terms ofb, as all the elements ofK?�. And it is easy

to verify that not every relation on K?L, nor even every transitive relation on K?L,

has this property. Any irreexive relation serves as an obvious ounterexample. In

fat, not even all the total preorders have this property. In this ase, a ounterexample

is provided by onsidering a total preorder b that ontains an in�nitely asending

hain of elements of K?�. This restrition of the appliation of (Def s

K

from b) to

well-behaved relations also explains the (seemingly) surprising result that the set of

transitively relational partial meet ontrations and the set of onnetively relational

partial meet ontrations are idential. For it is a onsequene of this result that

the seletion funtions de�ned in terms of the total preorders using (Def s

K

from

b) oinide with the seletion funtions de�ned in terms of the transitive relations

using (Def s

K

from b). And this is the ase beause both the ill-behaved transitive

relations and the ill-behaved total preorders are simply not taken into onsideration in

the de�nition of the seletion funtions. The obvious question to onsider is whether

it is possible to give a diret desription of a set of transitive relations on K?L that

are well-behaved, in the sense that they indue seletion funtions when using (Def s

K

from b), and an be used to onstrut all the AGM ontrations. Suh a desription

would provide a sharper version of theorem 2.2.6. In setion 3.2 we shall see that this

an be done.

2.3 Epistemi entrenhment

The basi idea behind epistemi entrenhment is that some of our beliefs are more

�rmly entrenhed than others, and we would thus be more willing to give up the latter

w�s than the former if we are fored to hoose. In the view of G�ardenfors and Makinson

[1988℄ and G�ardenfors [1988℄, an epistemi entrenhment ordering should be subjet

to the following set of postulates (with w�s higher up in the ordering being more

entrenhed):

(EE1) v

EE

is transitive.

(EE2) If � � � then � v

EE

�

(EE3) For all �; � 2 K, � v

EE

� ^ � or � v

EE

� ^ �

(EE4) If K 6= Cn(?) then � =2 K i� � v

EE

� for all �
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(EE5) If � v

EE

� for all � then � �

De�nition 2.3.1 A binary relation v

EE

on L is an EE-ordering (an epistemi en-

trenhment ordering) with respet to a belief set K i� it satis�es (EE1) to (EE5).

2

(EE1) seems to be a reasonable ondition to impose on a relation that quali�es as

an ordering. (EE2) requires that logially weaker w�s be more entrenhed, whih

makes perfet sense one we realise that it is impossible to remove a w� from a belief

set without removing all the logially stronger w�s as well. The innoent-looking

postulate (EE3) turns out to be very powerful indeed. It is the ornerstone of the

ontroversial property that every EE-ordering is a total preorder. In hapter 5 we

onsider entrenhment orderings that are not total preorders. Finally, (EE4) and (EE5)

are minimality and maximality onditions respetively. (EE4) states that all the w�s

not in K are equally entrenhed, but less entrenhed than the w�s in K. And (EE5)

(together with (EE2)) requires the logially valid w�s to be equally entrenhed, but

more entrenhed than all the other w�s.

From results in [G�ardenfors and Makinson, 1988℄, AGM ontration and epistemi

entrenhment are interde�nable by means of the following two identities:

(Def � from v

EE

) K � � =

(

K \ f� j � <

EE

� _ �g if � 2 K, and 2 �,

K otherwise

(Def v

EE

from �) � v

EE

� i� � =2 K � (� ^ �) or � � ^ �

Theorem 2.3.2 1. A removal is an AGM ontration i� it is de�ned in terms of

an EE-ordering using (Def � from v

EE

).

2. A binary relation on L is an EE-ordering i� it is de�ned in terms of an AGM

ontration using (Def v

EE

from �).

In fat, as we shall see in hapter 3, these identities are interhangeable in the sense

that moving from an EE-ordering to an AGM ontration and bak (or vie versa),

brings us bak to where we started.
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2.3.1 Plausibility orderings

Grove [1988℄ presents a lass of plausibility orderings on w�s. The set of postulates he

uses to desribe these orderings bears some resemblane to that for the EE-orderings.

(GE1) v

GE

is onneted

(GE2) v

GE

is transitive

(GE3) If � � � _  then � v

GE

� or  v

GE

�

(GE4) If K 6= Cn(?) then :� =2 K i� � v

GE

� for all � 2 L

5

(GE5) � :� i� � v

GE

� for all � 2 L

De�nition 2.3.3 A binary relation v

GE

on L is a GE-ordering (with respet to a

belief set K) i� it satis�es (GE1) to (GE5). 2

Grove then de�nes AGM revision in terms of the GE-orderings as follows:

6

(Def � from v

GE

) � 2 K � � i�

(

(� ^ �) <

GE

(� ^ :�) if 2 :�,

� 2 L otherwise

Theorem 2.3.4 [Grove, 1988℄ Every GE-ordering de�nes an AGM revision using (Def

� from v

GE

). Conversely, every AGM revision an be de�ned in terms of a GE-ordering

using (Def � from v

GE

).

5

Grove [1988℄ does not inlude the ondition that K 6= Cn(?) in (GE4), but without it some of

his results (Theorem 4, p. 164) do not hold for an unsatis�able K. G�ardenfors [1988℄ gives the same

formulation as Grove, but his result about the relation between epistemi entrenhment orderings

and the Grove orderings (Lemma 4.27, p. 96) only holds if the above ondition is inluded. The

proposal of Boutilier [1992, 1994℄ to retify the formulation of (GE4) is to exlude the ondition that

K 6= Cn(?), as well as the reverse diretion of our version of (GE4). But this is too weak, and it

an be shown that it destroys the desired relationship between the Grove orderings and the epistemi

entrenhment orderings of G�ardenfors and Makinson.

6

Grove's de�nition of revision in [1988℄ in terms of G-orderings does not inlude the ase where

� :�, and neither does the de�nition of G�ardenfors [1988℄, but it is learly a neessary part of the

de�nition. For if � is logially invalid, then K � � = Cn(?), by (K�6). But, sine both � ^ � and

� ^ :� are then also logially invalid for every �, it follows from (GE5) that (� ^ �) 6<

GE

(� ^ :�).
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Grove desribes the GE-orderings as measures of relative importane, and they have

also been desribed as orderings of plausibility [Boutilier, 1992℄. However, (GE4) seems

to be at odds with both these epistemi interpretations of the GE-orderings, for in both

these ases, one would expet the w�s in K to be more important, or more plausible

than, all the w�s not in K. And yet (GE4) requires of every w� whose negation is not

in K to be as important, or as plausible, as the w�s in K. We return to this issue in

hapter 5.

G�ardenfors [1988℄ shows that the resemblane between the postulates for the EE-

orderings and the GE-orderings is not just oinidental, and that the GE-orderings are

dual to the EE-orderings in the following sense:

(Def v

E

from v

G

) � v

E

� i� :� v

G

:�

Theorem 2.3.5 [G�ardenfors, 1988℄ A relation on w� is an EE-ordering i� it an be

de�ned in terms of a GE-ordering using (Def v

E

from v

G

).

From (GE2) it follows that logially equivalent w�s are equally plausible, and the GE-

orderings an thus be de�ned in terms of the EE-orderings in a manner analogous to

that in (Def v

E

from v

G

):

(Def v

G

from v

E

) � v

G

� i� :� v

E

:�

2.4 Safe ontration

Safe ontration was originally introdued by Alhourr�on and Makinson [1981, 1985℄.

Intuitively, the idea is to identify w�s in the belief set K that annot be blamed for

a w� � being in K. When ontrating K by �, these w�s should all be retained, i.e.,

they are safe with respet to a ontration by �. The belief set resulting from an

�-ontration is then taken to be the belief set generated by the w�s that are safe with

respet to �. To determine the w�s that are safe with respet to �, we �rst need to

onsider the minimal subsets of K that entail �, dubbed the entailment sets for �.

De�nition 2.4.1 B is an entailment set for � (with respet to K) i� B � K and

B � �, but B n f�g 2 � for every � 2 B. We denote the set of entailment sets of � by

K>�. 2
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Note that K>� = ; i� � � or � =2 K. We also need to introdue a binary relation on

the w�s in K, subjet to ertain onditions.

De�nition 2.4.2 A binary relation<

H

on K is a hierarhy (over K) i� for every �nite

sequene �

1

; : : : :�

n

of w�s in K, if �

i

<

H

�

i+1

for 1 � i < n, then �

n

6<

H

�

1

. 2

A hierarhy over K an be seen as an indiation of the reliability of the w�s in K, with

those higher up being more reliable. As suh, it is not unlike an epistemi entrenhment

ordering with respet to K. W�s in K that are safe with respet to � are taken to be

those that are not minimal elements (with respet to <

H

) of any of the entailments

sets for �. In other words, the w�s in K that are not safe with respet to �, are those

that our as the least reliable members of some entailment set for �. We denote the

w�s that are safe with respet to � (and a hierarhy <

H

) by K=�. That is:

(Def K=� from <

H

) K=� =

(

� 2 K

�

�

�

�

�

8B 2 K>� suh that � 2 B;

9 2 B suh that  <

H

�

)

K=� is then used to de�ne safe ontration.

(Def � from <

H

) K � � =

(

Cn(K=�) where K=� is de�ned in terms of <

H

using (Def K=� from <

H

)

De�nition 2.4.3 A removal � is a safe ontration i� it is de�ned in terms of a

hierarhy <

H

using (Def � from <

H

). 2

Alhourr�on and Makinson [1985℄ show that every safe ontration is a (basi AGM)

ontration. In [1986℄, they also provide a onnetion with AGM ontration for the

ase where K is �nitely axiomatisable. To do so, they impose striter onditions on

hierarhies.

De�nition 2.4.4 A hierarhy over K

1. ontinues up i� the following holds for every �; �;  2 K: if � <

H

� and � � 

then � <

H

,

2. ontinues down i� the following holds for every �; �;  2 K: if � � � and � <

H



then � <

H

,

3. is regular i� it ontinues up and down, and
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4. is virtually onneted i� the following holds for every �; �;  2 K: if � <

H

� then

� <

H

 or  <

H

�.

2

They show that if K is �nitely axiomatisable, the removals de�ned in terms of the

regular virtually onneted hierarhies using (Def � from <

H

) are preisely the AGM

ontrations. Rott [1992b℄ extends this to the general ase as well.

Theorem 2.4.5 A removal � is a safe ontration de�ned in terms of a regular vir-

tually onneted hierarhy using (Def � from <

H

) i� it is an AGM ontration.

In hapter 3 we delve deeper into the onnetion between safe ontration and other

methods for onstruting AGM ontration.
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Chapter 3

Semanti belief hange

`When I use a word,' Humpty Dumpty said

in rather a sornful tone, `it means just what

I hoose it to mean | neither more nor less.'

Lewis Carrol, Alie's Adventures in Wonderland

One of the entral themes of this dissertation is to emphasise the fundamental role that

semanti approahes play in belief hange. In this hapter we take the initial steps in

the justi�ation of suh a laim. We ommene with the introdution of a notion

of semanti information and its relation to a possible-worlds semantis for L. This

is followed by a disussion of semanti approahes to AGM theory hange, in whih

the entral idea is that of a preorder on the interpretations of L. We point out the

strong links between suh semanti approahes and the methods for onstruting AGM

theory hange that were disussed in hapter 2. With the aid of our theory of semanti

information, we argue that the preorders on interpretations an be transformed into

preorders on the basi units of belief of an agent, and that it is appropriate to use these

orderings as representations of the epistemi states of an agent. In this and in later

hapters, suh a representation of epistemi states will prove to be most fruitful.

31
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3.1 Semanti ontent and infatoms

One of the assumptions enountered in hapter 2 is the representation of an epistemi

state as a belief set. This deision has a number of assoiated problems, one of the

most basi objetions being that the elements of a belief set are linguisti in nature.

In our view, an epistemi state ought to onsist of non-linguisti entities from whih

the beliefs assoiated with the epistemi state an be determined. And sine it is the

semantis of the language that determines the meaning of the w�s in the language,

the interpretations of the language (the elements of U) are usually used as the basi

building bloks of epistemi states. This is the basis for the representations used by

many authors [Harper, 1977, Grove, 1988, Katsuno and Mendelzon, 1991, Morreau,

1992, Peppas and Williams, 1995, Darwihe and Pearl, 1997℄. Suh representations

have proved to be very useful in a wide variety of situations, and muh of the work

disussed in this and later hapters are based on the idea of an epistemi state as a

set of interpretations. But if we think of the elements of an epistemi state as objets

from whih (linguisti) beliefs are built up, the use of interpretations does not seem to

be quite satisfatory. For it is diÆult to see how an interpretation an be onsidered

as a basi part of a belief expressed as a w� in L.

1

It is with this objetion in mind that we propose the use of infatoms as the basi

units of an epistemi state. Intuitively, infatoms are the basi independent piees of

information from whih the beliefs of an agent (expressed as w�s of L) are built up. In

this view, the information ontained in a belief, and in a belief set, is a set of infatoms.

More infatoms thus orrespond to a set of beliefs that ontains more information and

is logially stronger. Infatoms are independent in the sense that it is only the set of all

infatoms that ontains too muh information, leading an agent to inlude all w�s in its

set of beliefs. Any strit subset of the set of all infatoms orresponds to a satis�able

set of beliefs.

Sine the notion of an epistemi state is so entral to the study of belief hange,

it seems more appropriate to use a semantis based on infatoms when onstruting

belief hange operations. Although we give a formal desription of infatoms and an

infatom semantis below, we shall express most of the formal work on semanti belief

1

In fat, it makes more sense to do it the other way round and think of an interpretation (or rather,

a valuation) as being built up from a set of w�s. As we have seen in setion 1.3, this is a standard

way of onstruting a semantis that is isomorphi to the �-valuation semantis for L.
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hange in this, and indeed in later hapters, in terms of a possible-worlds semantis.

There are two reasons for this. Firstly, semanti desriptions of belief hange have

thus far onentrated on the use of a possible-worlds semantis. (In fat, with a few

exeptions, suh as [Lindstr�om, 1991℄, the emphasis has been plaed on a semantis that

is isomorphi (or idential) to a valuation semantis for L.) And seondly, we'll show

that there is suh a lose tehnial assoiation between infatoms and interpretations

(and valuations in partiular), that a swith from interpretations to infatoms is merely

a matter of regarding an interpretation as its assoiated infatom. In order to formalise

this relationship, we now proeed with a formal expliation of a semantis for L based

on infatoms.

Infatoms are generalised semanti versions of the ontent elements of Carnap and

Bar-Hillel [1952, 1953℄, and as suh, are quite di�erent from Keith Devlin's [1991℄

infons, although the latter is also desribed as basi bits of information. Formally, an

infatom is a funtion i from A

PL

, the set of propositional atoms of L (see setion 1.3),

to the set fI; Eg. The intuition is that infatoms are independent bits of information

from whih the information ontained in the w�s of L are built up. An infatom i sends

a propositional atom � to I if i is Inluded in the information ontained in �, and i

sends � to E if i is Exluded from the information ontained in �.

De�nition 3.1.1 Given a set Inf of infatoms, the ontent relation Æ from Inf to L is

then de�ned reursively as follows:

1. for every i 2 Inf, i 6Æ > and i Æ ?,

2. if � 2 A

PL

, then i Æ � i� i(�) = I,

3. if � = :� then i Æ � i� i 6Æ �,

4. if � = � _  then i Æ � i� i Æ � and i Æ ,

5. if � = � ^  then i Æ � i� either i  � or i Æ , or both,

6. if � = � !  then i Æ � i� i 6Æ � and i Æ , and

7. if � = � $  then i Æ � i� either both i 6Æ � and i Æ , or both i Æ � and

i 6Æ .

2
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The semanti ontent of a set of w�s A, denoted by C(A), is de�ned as

C(A) = fi 2 Inf j 9� 2 A suh that i Æ �g.

For a w� � 2 L, we write C(�) instead of C(f�g). So the semanti ontent of A

onsists of all the infatoms that are part of the information ontained in at least one

of the w�s in A. We shall refer to suh infatoms as the ontent bits of A. Conversely,

for an infatom i, A is said to be i-ontaining i� i is a ontent bit of A. An infatom

semantis for L is an ordered pair (Inf;Æ), where Inf is a set of infatoms and Æ is the

ontent relation of de�nition 3.1.1. The theory generated by a set of infatoms I � Inf

is de�ned as Th(I) = f� j C(�) � Ig. That is, Th(I) ontains all the w�s whose

ontents bits are inluded in I. Our �rst result about infatoms is given without proof.

Proposition 3.1.2 Let (Inf;Æ) be an infatom semantis for L.

1. C(� ^ �) = C(�) [ C(�).

2. C(� _ �) = C(�) \ C(�).

It turns out that there is a natural way to assoiate a unique infatom semantis with

every possible-worlds semantis, and to assoiate a unique valuation semantis with

every infatom semantis.

De�nition 3.1.3 1. Given a possible-worlds semantis (U;) for L, the assoiated

infatom semantis for L is de�ned as (Inf;Æ), where Inf = fi

u

j u 2 Ug, Æ is

obtained as in de�nition 3.1.1, and for every u 2 U , the assoiated infatom i

u

is

de�ned as follows: for every � 2 A

PL

, i

u

(�) = I i� u 1 �.

2. Given an infatom semantis (Inf;Æ) for L, the assoiated valuation semantis

(V;) based on valuations is de�ned as (V;), where V = fv

i

j i 2 Infg, 

is obtained in the standard way (see setion 1.3), and for every i 2 Inf, the

assoiated valuation v

i

is de�ned as follows: for every � 2 A

PL

, v

i

(�) = T i�

i 6Æ �.

2

De�nition 3.1.3 is justi�ed by propositions 3.1.5 and 3.1.6 below. They, in turn, rely

heavily on the following lemma.
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Lemma 3.1.4 1. Let (U;) be a possible-worlds semantis and let (Inf;Æ) be the

assoiated infatom semantis for L. For every � 2 L and every u 2 U , i

u

2 C(�)

i� u =2M(�).

2. Let (Inf;Æ) be an infatom semantis and let (V;) be the valuation semantis

assoiated with (Inf;Æ). For every � 2 L and every i 2 Inf, v

i

2 M(�) i�

i =2 C(�).

Proof Both proofs follow by indution on the struture of the w�s of L, and applia-

tions of de�nition 3.1.3. 2

Proposition 3.1.5 establishes some onnetions between interpretations and infatoms.

Proposition 3.1.5 Let (U;) be a possible-worlds semantis and let (Inf;Æ) be the

assoiated infatom semantis for L.

1. A � � i� M(A) � M(�) i� C(A) � C(�).

2. Th(C(A)) = Th(M(A)).

3. � � i� M(�) = U i� C(�) = ;.

4. C(A) = Inf n fi

u

j u 2M(A)g.

5. If W � U and I = fi

w

j w 2 Wg then Th(W ) = Th(Inf n I).

6. Th(M(A) [ fug) = Th(C(A) n fi

u

g).

7. If u 2 U then

Th(M(A) n fw j is elementarily equivalent to ug) = Th(C(A) [ fi

u

g).

Proof 1. Suppose that M(A) � M(�) and pik any i

u

2 C(�). Now assume that

i

u

=2 C(A). That is, for every � 2 A, i

u

=2 C(�). Then, by lemma 3.1.4, u 2M(�)

for every � 2 A, and therefore u 2 M(A). But by supposition, u 2M(�), and by

lemma 3.1.4, i

u

=2 C(�); a ontradition. Conversely, suppose that C(�) � C(A)

and pik any u 2M(A). Now assume that u =2 M(�). By lemma 3.1.4, i

u

2 C(�).

So i

u

2 C(A), and there is thus an � 2 A suh that i

u

2 C(�). But by lemma

3.1.4, u =2M(�), ontraditing the supposition that u 2M(A).
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2. � 2 Th(C(A)) i� C(�) � C(A) i� M(A) � M(�) (by part (1) above) i� � 2

Th(M(A)).

3. It follows easily from the de�nitions of M(�) and C(�) that M(�) = U i� � �

and that C(�) = ; i� � �.

4. Pik an i

u

2 C(A). So, there is an � 2 A suh that i

u

2 C(�). By lemma 3.1.4,

u =2 M(�). So u =2 M(A), and thus i

u

2 Inf n fi

v

j v 2 M(A)g. Conversely,

suppose that i

u

2 Inf n fi

v

j v 2 M(A)g. Then u =2 M(A), and there is thus

an � 2 A suh that u =2 M(�). Hene, by lemma 3.1.4, i

u

2 C(�). Therefore

i 2 C(A).

5. Suppose that W � U and I = fi

w

j w 2 Wg, and pik an � 2 Th(W ). So

W � M(�). Now assume that � =2 Th(Inf n I). That is, C(�) * Inf n I. In

other words, there is an i

u

2 C(�) suh that i

u

2 I. So u 2 W and by lemma

3.1.4, u =2 M(�), ontraditing the fat that W � M(�). Conversely, suppose

that � 2 Th(Inf n I). So C(�) � Inf n I. Now assume that � =2 Th(W ). Then

W * M(�), and there is thus a w 2 W suh that w =2 M(�). So i

w

2 I, and by

lemma 3.1.4, i

w

2 C(�), thus ontraditing the fat that C(�) � Inf n I.

6. Pik any � 2 Th(M(A)[fug). That is, M(A)[fug �M(�). It suÆes to show

that C(�) � C(A) n fi

u

g. So pik any i

v

2 C(�). By lemma 3.1.4, v =2 M(�),

and this means that v =2M(A) [ fug. So u 6= v (and hene i

u

6= i

v

) and there is

an � 2 A suh that v =2 M(�). By lemma 3.1.4 it then follows that i

v

2 C(�),

and thus that i

v

2 C(A). The required result then follows from the fat that

i

u

6= i

v

. Conversely, pik any � 2 Th(C(A) n fi

u

g). That is C(�) � C(A) n fi

u

g.

It suÆes to show thatM(A)[fug � M(�). So pik any v 2M(A)[fug. Then

either v = u (and hene i

u

= i

v

), or v 2 M(�) for every � 2 A. In the former

ase i

v

=2 C(�), and in the latter ase, it follows by lemma 3.1.4 that i

v

=2 C(�)

for every � 2 A, and thus that i

v

=2 C(A). So either way, i

v

=2 C(�), and hene,

by lemma 3.1.4, v 2M(�).

7. Pik any � 2 Th(M(A) n fw j w is elementarily equivalent to ug). That is,

M(A) n fw j w is elementarily equivalent to ug �M(�). It suÆes to show that

C(�) � C(A) [ fi

u

g. So pik any i

v

2 C(�). By lemma 3.1.4, v =2 M(�). And

this means that v =2 M(A) n fw j w is elementarily equivalent to ug. So either
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v is elementarily equivalent to u (and hene i

u

= i

v

), or there is an � 2 A suh

that v =2M(�). In the former ase it obviously follows that i

v

2 C(A)[fi

u

g, and

in the latter ase it follows by lemma 3.1.4 that i

v

2 C(�). But then i

v

2 C(A),

whih means we are done. Conversely, pik any � 2 Th(C(A) [ fi

u

g). That is,

C(�) � C(A) [ fi

u

g. It suÆes to show that

M(A) n fw j w is elementarily equivalent to ug �M(�).

So pik any v 2 M(A) n fw j w is elementarily equivalent to ug. Then v 2M(�)

for every � 2 A. By lemma 3.1.4, i

v

=2 C(�) for every � 2 A. Therefore

i

v

=2 C(A). Furthermore i

v

6= i

u

, for if i

v

= i

u

, it would have meant that v is

elementarily equivalent to u, ontraditing the fat that v 2 M(A) n fw j w is

elementarily equivalent to ug. And thus i

v

=2 C(�), whih means, by lemma 3.1.4,

that v 2M(�).

2

Part (1) of proposition 3.1.5 shows us that semanti entailment an also be de�ned in

terms of infatoms. A w� � is semantially entailed by a set of w�s A i� the ontent

bits of A inludes all the ontent bits of �. This enables us to de�ne a notion of

axiomatisability for sets of infatoms. A set of w�s A axiomatises a set of infatoms I

i� C(A) = I. The intuition is along the same lines as the axiomatisability of sets of

interpretations; both provide syntati desriptions of a semanti onept.

Of partiular interest in the proposition above are the last two parts. Part (6)

shows that adding an interpretation to the models of a set of w�s A is the same as

removing its assoiated infatom from the semanti ontent of A. Part (7) shows that the

removal, from the models of A, of all interpretations that are elementarily equivalent

to an interpretation u is the same as adding u's assoiated infatom to the semanti

ontent of A.

The next proposition draws parallels between valuations and infatoms.

Proposition 3.1.6 Let (Inf;Æ) be an infatom semantis and let (V;) be the valua-

tion semantis assoiated with (Inf;Æ).

1. M(A) = V n fv

i

j i 2 C(A)g.

2. If I � Inf and W = fw

i

j i 2 Ig then Th(I) = Th(V nW ).



38 CHAPTER 3. SEMANTIC BELIEF CHANGE

3. Th(C(A) [ fig) = Th(M(A) n fv

i

g).

4. Th(C(A) n fig) = Th(M(A) [ fv

i

g).

Proof 1. v

i

2 M(A) i� v

i

2 M(�) for every � 2 A, i� i =2 C(�) for every � 2 A

(by lemma 3.1.4), i� i =2 C(A), i� v

i

2 V n fw

i

j i 2 C(A)g.

2. Suppose that I � Inf and W = fw

i

j i 2 Ig. Now pik any � 2 Th(I). That

is, C(�) � I. It suÆes to show that V nW � M(�). So pik any w

i

2 V nW .

By the de�nition of W it follows that i =2 I. But this means that i =2 C(�), and

by lemma 3.1.4, that w

i

2 M(�). Conversely, pik any � 2 Th(V nW ). That

is, V nW � M(�). It suÆes to show that C(�) � I. So pik an i =2 I. By the

de�nition of W it follows that w

i

2 V nW . But then w

i

2 M(�), and by lemma

3.1.4, i =2 C(�).

3. The proof is very similar to the proof of part (7) of proposition 3.1.5 and is

omitted.

4. The proof is very similar to the proof of part (6) of proposition 3.1.5 and is

omitted.

2

These results learly show that there is a strong onnetion between interpretations

and valuations on the one hand, and infatoms on the other.

The onnetion between infatoms and the ontents elements of Carnap and Bar-

Hillel [1952, 1953℄ is easily established as follows. Let L be the language of a �nitely

generated propositional logi, generated by the atoms p

1;

: : : ; p

n

and let (V;

V

) be the

lassial valuation semantis for L (i.e., V ontains all possible valuations). Now, let

(Inf;Æ) be the assoiated infatom semantis for L. It is well known that a valuation

v 2 V an be axiomatised by a onjuntion of literals

V

n

i=1

l

i

, where l

i

2 fp

i

;:p

i

g.

That is, M (

V

n

i=1

l

i

) = fvg. These onjuntions are alled state desriptions. From

part (4) of proposition 3.1.5 it then follows that C(: (

V

n

i=1

l

i

) = fi

v

g). That is, the

negation of the state desription of v axiomatises the infatom assoiated with v. And

it is preisely these negations of the state desriptions that are the ontent elements of

Carnap and Bar-Hillel.
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From the disussion above it is lear that every entailment relation � for L an

be obtained from a unique valuation semantis (V;) and a unique infatom seman-

tis (Inf;Æ), and that (V;) is the valuation semantis assoiated with (Inf;Æ) and

(Inf;Æ) is the infatom semantis assoiated with (V;). It is therefore appropriate to

onsider (V;) and (Inf;Æ) as dual to eah other. It is also lear that, like valuations

and unlike interpretations, there an never be two distint infatoms i and j that are

elementarily equivalent in the sense that they are ontent bits of exatly the same

w�s (i.e. Th(i) = Th(j)). So valuations and infatoms have the same grainsize, with

interpretations (possibly) being �ner grained than either valuations or infatoms. From

an information-theoreti point of view, it seems reasonable to appeal to the Priniple

of the Identity of Indisernibles, thereby disallowing the elementarily equivalene of

distint infatoms:

(Identity of Indisernibles) Objets that annot be distinguished from one another

should be regarded as idential.

Given the lose onnetion between interpretations and valuations on the one hand, and

infatoms on the other, we shall frequently �nd it onvenient to refer to interpretations

as infatoms. In partiular, when referring to an interpretation u 2 U as an infatom,

we atually have in mind the infatom i

u

assoiated with u. While this onvention

introdues some ambiguity, it should ause no onfusion, and will aid in brevity.

3.2 A semantis for theory hange

The onstrution of basi AGM ontration in terms of partial meet ontration an

easily be onverted into a semanti desription of basi AGM theory hange. Grove

[1988℄ pointed out that it is just a matter of realising that the �-remainders are obtained

by adding single models of :� to the models of K.

Proposition 3.2.1 Let 2 � and � 2 K.

1. If u 2M(:�) then Th(M(K) [ fug) 2 K?�.

2. If A 2 K?� then A = Th(M(K) [ fug) for some u 2M(:�).

Proof For (1) pik any u 2M(:�). Clearly, Th(M(K) [ fug) � K and Th(M(K) [

fxg) 2 �. Now pik any � 2 K suh that Th(M(K) [ fug) 2 �, and thus u =2 M(�).
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By lemma 1.3.3, Th(M(K) [ fug) + � = Th(M(K) \M(�)) = K, and so � 2 K =

Th(M(K) [ fug) + �.

For (2) pik any A 2 K?�. Beause A 2 �, there is a u 2 M(A) suh that

u 2 M(:�), and there is thus a W � U suh that W \ M(K) = ;, u 2 W and

A = Th(M(K) [ W ) � Th(M(K) [ fug). If A � Th(M(K) [ fug) then there is

a � 2 Th(M(K) [ fug), and therefore � 2 K, suh that � =2 A. But then A +

� = Th(M(K) [ W ) + � � Th(M(K) [ fug) + � = Th(M(K) [ fug). And sine

� =2 Th(M(K) [ fug), it also follows that � =2 A + �, ontraditing the fat that

A 2 K?�. 2

If L has a valuation semantis, then there is a one-to-one orrespondene between the

elements of M(:�) and the elements of K?�. In general however, di�erent elements

of M(:�) may determine the same element of K?�. From an information-theoreti

viewpoint, an �-remainder is obtained by removing one of the ontent bits of � from

the semanti ontent of K.

Proposition 3.2.1 gives us a way to haraterise the partial meet ontrations seman-

tially. Instead of a funtion seleting a subset of the remainders of K after removing

�, we have a funtion seleting a subset of the models of :� to be added to the models

of K. We all suh a funtion a semanti seletion funtion.

De�nition 3.2.2 A funtion sm

K

: L ! }U is a semanti seletion funtion i� the

following holds:

1. If � � � then sm

K

(�) = sm

K

(�) and

2. if � =2 K or � � then sm

K

(�) = ;, otherwise ; � sm

K

(�) �M(:�).

2

Basi AGM theory hange an then be de�ned in terms of semanti seletion funtions

as follows:

(Def � from sm

K

) K � � = Th(M(K) [ sm

K

(�))

(Def � from sm

K

) K � � =

(

Th(sm

K

(:�)) if :� 2 K and 2 :�,

K + � otherwise
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Theorem 3.2.3 1. A removal de�ned in terms of a semanti seletion funtion

using (Def � from sm

K

) is a basi AGM ontration. Conversely, every basi

AGM ontration an be de�ned in terms of a semanti seletion funtion using

(Def � from sm

K

).

2. A revision de�ned in terms of a semanti seletion funtion using (Def � from

sm

K

) is a basi AGM revision. Conversely, every basi AGM revision an be

de�ned in terms of a semanti seletion funtion using (Def � from sm

K

).

Proof The proof an be found in appendix A. 2

Information-theoretially, theorem 3.2.3 tells us that if the semanti ontent of K

ontains all the ontent bits of � and � is not logially valid, then �-ontration is

obtained by removing some of the ontent bits of � from the semanti ontent of K.

Similarly, if the semanti ontent of K ontains all the ontent bits of :�, and :� is

not logially valid, then an �-revision is obtained by adding all ontent bits of � to

the semanti ontent of K, and removing some of ontent bits of :�. So basi AGM

ontration involves the removal of ontent bits of �, while basi AGM revision means

adding all the ontent bits of �, and removing some ontent bits of :�.

For a semanti onstrution of AGM theory hange, it is neessary to approah

matters in a more systemati fashion. It turns out that the use of preorders on the

interpretations of L, subjet to ertain restritions, will do the trik. The �rst expli-

itly semanti method for onstruting AGM revision (satisfying all eight of the AGM

revision postulates) is due to Grove [1988℄, who uses a generalised version of Lewis'

[1973℄ sphere-semantis for ounterfatuals. Grove's systems of spheres are based on

the maximally satis�able subsets of L. By onsidering these sets as interpretations of

L, we obtain a (possible-worlds) semantis for L that is isomorphi to the �-valuation

semantis for L. Let us denote by [A℄ the set of maximally satis�able extensions of a set

of w�s A � L, and that of a single w� � 2 L by [�℄. When viewed as interpretations,

the elements of [A℄ are thus the models of A. A system of spheres (entred on K) is

a olletion S of subsets of [>℄, the set of all maximally satis�able subsets of L, that

satisfy the following onditions:

(S1) S is totally ordered by set-inlusion

(S2) [K℄ is the �-minimum of S
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(S3) [>℄ 2 S

(S4) If any element of S intersets [�℄, then there is a smallest element of S doing so

Letting S

min

(�) be the smallest element of S interseting [�℄, AGM revision an then

be de�ned in terms of S as follows:

(Def � from S) K � � =

(

T

([�℄ \ S

min

) if [�℄ = ;,

L otherwise

Theorem 3.2.4 [Grove, 1988℄ Every system of spheres de�nes an AGM revision using

(Def � from S). Conversely, every AGM revision an be de�ned in terms of a system

of spheres using (Def � from S).

With [>℄ viewed as the set of interpretations of L, it is not diÆult to see that a system

of spheres orresponds to a preorder on U , subjet to a number of onditions. (S1)

ensures that the preorder is total, (S2) requires that the models of K all be equally

omparable and stritly below the ountermodels of K, and (S3) ensures that the

preorder is de�ned on the whole of U . The purpose of (S4) is to retain only those total

preorders for whih the set of minimal models of every w� (that is not logially invalid)

is non-empty. From a suggestion by Katsuno and Mendelzon [1991℄, we refer to suh

preorders as faithful. For reasons that will beome lear, our de�nition applies to all

the preorders on U and not just the total preorders.

De�nition 3.2.5 Let � be any preorder on U .

1. If W � U then any v 2 W is �-minimal in W i� for every w 2 W , w � v. We

denote the set of �-minimal elements of M(�) by Min

�

(�).

2. For a W � U , � is W -smooth i� for every w 2 W there is a v � w suh that v

is �-minimal in W .

3. � is smooth i� it is M(�)-smooth for every �.

2

4. A preorder � on U is faithful (with respet to a belief set K) i� � is smooth,

x � y for every x 2M(K) and y =2M(K), and x � y for every x; y 2M(K). For

an X � L, we say that � is X-faithful i� � is faithful with respet to Cn(X).

2

Smoothness is also known as stopperedness [Makinson, 1989℄ and the limit assumption [Lewis,

1973℄.
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2

Grove regards suh preorders as measures of the ompatibility of an interpretation with

the urrent beliefs of an agent, whilst interpretations lower down in the preorder are

regarded as more ompatible. Revision is then de�ned in terms of a faithful preorder

by letting the minimal models of a w� � (the models of � that are most ompatible

with the urrent beliefs of the agent) generate the belief set resulting from a revision

by �.

(Def � from �) K � � = Th(Min

�

(�))

This approah is a bit more general than Grove's sphere-semantis, sine faithful total

preorders an be imposed on the interpretations of any (possible-worlds) semantis

(U;�) for L, and not just the interpretations obtained from a system of spheres. In

fat, Grove's result an be seen as the speial ase in whih elementarily equivalent

interpretations form part of the same equivalene lass (modulo the faithful total pre-

order). With the aid of (Def � from �) and (Def � from �), obtaining a de�nition of

ontration in terms of faithful preorders is also a straightforward matter:

(Def � from �) K � � = Th(M(K) [Min

�

(:�))

And as expeted, the use of faithful total preorders haraterises AGM theory hange.

Theorem 3.2.6 1. Every faithful total preorder de�nes an AGM ontration using

(Def � from �). Conversely, every AGM ontration an be de�ned in terms of

a faithful total preorder using (Def � from �).

2. Every faithful total preorder de�nes an AGM revision using (Def � from �).

Conversely, every AGM revision an be de�ned in terms of a faithful total preorder

using (Def � from �).

Proof This result is essentially the same as a result of Peppas and Williams [1995℄.

The proof draws heavily on similar results in [G�ardenfors, 1988℄ and [Grove, 1988℄. For

the reader's onveniene, we provide the omplete proof in appendix A. 2

A reurring theme throughout this dissertation is the advoation of orderings on

infatoms as an adequate representation of epistemi states in many ontexts. One

of the reasons for advaning this laim is that, in many respets, suh orderings seem



44 CHAPTER 3. SEMANTIC BELIEF CHANGE

to lie at the heart of the onstrution of belief hange operations. Here is the �rst

formal argument in support of suh a laim. We show that the AGM ontration and

revision de�ned in terms of the same faithful total preorder an also be de�ned in terms

of eah other using the Levi and Harper identities.

De�nition 3.2.7 An AGM ontration � and an AGM revision � are semantially

related i� they an de�ned in terms of the same faithul total preorder using (Def �

from �) and (Def � from �). 2

The notion of semanti relatedness will be extended, as we proeed, to various on-

strutions involving faithful preorders.

Proposition 3.2.8 Let � be an AGM ontration and � an AGM revision that are

semantially related.

1. � an also be de�ned in terms of � using (Def � from �).

2. � an also be de�ned in terms of � using (Def � from �).

Proof Let � be a faithful total preorder in terms of whih � and � an be de�ned

using (Def � from �) and (Def � from �). The proof of (1) is trivial and is omitted.

For the proof of (2), it suÆes to show that Th(Min

�

(�)) = Th(M(K)[Min

�

(�))+�.

If :� 2 K, it follows from lemma 1.3.4, and if :� =2 K, it follows from the fat that

Min

�

(�) �M(K). 2

When viewed as orderings on infatoms, a faithful total preorder an be seen as a

way of ordering the basi units of information aording to their entrenhment (or

importane, or redibility), with an infatom higher up in the ordering onsidered as

more entrenhed. Reall from part (1) of proposition 3.1.6 that the models of K

orrespond to the infatoms that do not form part of the semanti ontent of K, and

from part (4) of proposition 3.1.5 that the ountermodels of K orrespond exatly

to the ontent bits of K. So a faithful total preorder plaes the ontent bits of K

stritly above the remaining infatoms, whih are all plaed on the same level. The

aompanying intuition is lear. The ontent bits of K are more entrenhed than the

infatoms not forming part of the semanti ontent of K.
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3.2.1 The propositional �nite ase

In the ontext of theory hange, Katsuno and Mendelzon [1991℄ seem to have been the

�rst to make the transition from Grove's sphere-semantis to faithful total preorders.

They investigate theory revision for the simpli�ed ase of the �nitely generated las-

sial propositional logis (for whih (U;�) is the �-valuation semantis for L). This

simpli�ation ensures that all belief sets an be axiomatised by single w�s, and aord-

ingly, this is the way they hoose to represent belief sets. That is, a belief set K is

represented by any w� � suh that Cn(�) = K. For them, a revision is thus a funtion

from L to L. They provide four basi revision postulates, and two supplementary ones.

(KM�1) � 2 Cn(� � �)

(KM�2) If :� =2 Cn(�) then Cn(� � �) = Cn(� ^ �)

(KM�3) If Cn(�) = Cn( ) and � � � then Cn(� � �) = Cn( � �)

(KM�4) If 2 :� then ? =2 Cn(� � �)

(KM�5) Cn(� � (� ^ �)) � Cn((� � �) ^ �)

(KM�6) If :� =2 Cn(� � �) then Cn((� � �) ^ �) � Cn(� � (� ^ �))

It is easy to see that these postulates are just the AGM revision postulates phrased to

�t in with their representation of belief sets. (KM�1) orresponds to (K�2), (KM�2)

is a ombination of (K�3) and (K�4), (KM�3) orresponds to (K�5), and (KM�4)

ombined with (KM�1) give (K�6). Furthermore, (KM�5) and (KM�6) respetively

orrespond to (K�7) and (K�8).

The method that Katsuno and Mendelzon employ to onstrut revisions involves

the faithful total preorders on U . They use the term faithful to refer to an assignment

of total preorders to every w� � (representing the belief set Cn(�)), with �

�

satisfying

the following three onditions:

1. If u; v 2M(�) then u �

�

v.

2. If u 2M(�) and v =2M(�) then u �

�

v.

3. If � �  then �

�

= �

 

.
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We shall refer to these as the KM-faithful total preorders. Sine U is �nite, every total

preorder on U is smooth, and so �

�

is learly a faithful total preorder (with respet to

Cn(�)). In their view, a KM-faithful total preorder is an indiation of minimal hange

(of some sort) on interpretations, a suggestion that is more or less in line with Grove's

idea of a measure of ompatability. They proeed to show that the postulates (KM�1)

to (KM�6) haraterise AGM revision.

Theorem 3.2.9 [Katsuno and Mendelzon, 1991℄ A revision satis�es the postulates

(KM�1) to (KM�6) i� there is a KM-faithful total preorder �

�

suh that M(� � �) =

Min

�

�

(�).

3.2.2 Semanti AGM revision without smoothness

The reason for inluding smoothness as one of the properties of the faithful preorders

is that the lak thereof opens the door for the possibility that a w� � (whih is not

logially invalid) need not have any minimal models. In suh ases, the use of (Def �

from �) to de�ne revision will result in the violation of (K�2) and (K�6). Apparently

Boutilier [1990, 1994℄ �rst notied that it is possible to do away with smoothness.

His idea an be explained as follows. When dealing with total preorders, a lak of

smoothness only auses problems for an �-revision if � is not logially invalid and �

doesn't have minimal models. And this an only our if there is an in�nite desending

hain of models of �. In suh situations it makes sense to obtain the belief set resulting

from an �-revision by a simple extension of minimality. Instead of taking a w� � to

be in K � � i� � is true in all the minimal models of �, we allow � into K � � i� there

is some level in the total preorder, below whih all models of � are also models of �.

Boutilier's setup di�ers from ours in a number of aspets. He asts L, the language

in whih an agent expresses his beliefs, into a propositional modal framework, and his

onstrution for de�ning revision is phrased in terms of modal operators. But it easy

to see that, in e�et, he onsiders the same logis as we do, and that his de�nition of

revision orresponds to (Def � from B) below. Let us refer to a preorder on U (with

respet to a belief set K) as B-faithful i� the following two onditions hold:

1. If u; v 2M(K) then u � v.

2. If u 2M(K) and v =2M(K) then u � v.
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So a preorder is faithful i� it is B-faithful and smooth. Boutilier's de�nition of revision

in terms of a B-faithful total preorder � then looks as follows:

(Def � from B) � 2 K�� i�

 

8w 2M(�), 9v � w suh that v 2M(�) \M(�),

and 8u 2M(�) suh that u � v, u 2M(�)

!

Boutilier shows that this onstrution an be used to de�ne AGM revision.

Theorem 3.2.10 [Boutilier, 1994℄ Every B-faithful total preorder de�nes an AGM

revision using (Def � from B). Conversely, every AGM revision an be de�ned in terms

of a B-faithful total preorder using (Def � from B).

It is easily veri�ed that, for the faithful total preorders, the identities (Def � from

�) and (Def � from B) are equivalent, and Boutilier's onstrution is thus learly an

extension of the minimal model semantis for revision.

3.3 Orderings as epistemi states

Reall from hapter 1 that the epistemi state of an agent has to be represented in a

way that, at the very least, ensures the extration of the beliefs of the agent, as well

as the information needed to perform reasoning in a oherent fashion. In the ontext

of AGM theory hange, the latter inludes the information to deide whih of the

permissible AGM theory hange operations to use. Semantially, it is thus suÆient to

represent an epistemi state as an ordered pair (K;�), where K is a belief set and � is

a faithful total preorder. We shall see that suh a representation beomes partiularly

apt when we adopt an information-theoreti view of the faithful preorders, where an

infatom higher up in the ordering is regarded as more entrenhed. For the moment

though, we onentrate on matters more formal, and disuss the onnetion between

semanti AGM theory hange and the three onstrution methods disussed in hapter

2. It turns out that the use of faithful total preorders is already impliitly ontained

in transitively (and onnetively) relational partial meet ontration, safe ontration

and epistemi entrenhment. In fat, there is a very strong onnetion between the

faithful total preorders, the orderings used for the onstrution of the transitively

(and onnetively) relational partial meet ontrations, the epistemi entrenhment

orderings, and the hierarhies used by safe ontration. Coupled with the priniple

of Redutionism, these results provide support for the proposal to represent epistemi

states semantially.
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3.3.1 Semanti epistemi entrenhment

From an information-theoreti point of view it seems natural to be able to extend

the faithful total preorders to orderings on the w�s of L. The basi idea is simply

to lift a faithful total preorder (on infatoms) in a sensible way to a power order (an

ordering on sets of infatoms). Beause every w� is assoiated with a partiular set

of infatoms | its semanti ontent | we an view the ordering on sets of infatoms

as an ordering on w�s. The question of deiding what onstitutes a sensible way of

lifting a faithful total preorder is, of ourse, largely dependent on the stated purpose

of suh an ordering on w�s. Reall from setion 2.3 that the intuition assoiated with

an epistemi entrenhment ordering is that w�s lower down are less entrenhed, and

should be given up more easily. So epistemi entrenhment plaes the emphasis on

what should be disarded rather than on what should be retained. We an thus think

of the level of entrenhment of a w� as being determined by its least entrenhed ontent

bits. Aordingly, it seems reasonable to regard � as at least as entrenhed as � i�

every ontent bit of � is at least as entrenhed as some ontent bit of �. It is in this

spirit that we de�ne the power order v in terms of a preorder � on the infatoms of L

as follows:

� v � i� for every j 2 C(�) there is an i 2 C(�) suh that i � j.

It turns out that the model-theoreti version of this de�nition applied to the faithful

total preorders yields preisely the EE-orderings of setion 2.3.

(Def v

E

from �) � v

E

� i� 8y 2M(:�) 9x 2M(:�) suh that x � y

This follows from the relationship between the GE-orderings and the EE-orderings

disussed in setion 2.3.1, and results in [Grove, 1988, G�ardenfors, 1988, Boutilier,

1992, 1994℄, showing that the GE-orderings an be de�ned in terms of the faithful

total preorders as follows:

(Def v

G

from �) � v

G

� i� 8y 2M(�) 9x 2M(�) suh that x � y

Theorem 3.3.1 1. Every faithful total preorder de�nes a GE-ordering using (Def

v

G

from �). Conversely, every GE-ordering an be de�ned in terms of a faithful

total preorder using (Def v

G

from �).
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2. Every faithful total preorder de�nes an EE-ordering using (Def v

E

from �).

Conversely, every EE-ordering an be de�ned in terms of a faithful total preorder

using (Def v

E

from �).

Proof 1. The proof draws heavily on results of Grove [1988℄, G�ardenfors [1988℄,

Boutilier [1992, 1994℄. For the reader's onveniene, we provide a omplete proof

in appendix A.

2. Follows from part (1) and theorem 2.3.5.

2

With the help of part (1) of theorem 3.3.1, the GE-orderings an be de�ned in terms

of AGM revision as follows:

(Def v

GE

from �) � v

GE

� i� :� =2 K � (� _ �) or :� =2 K or � :�

Proposition 3.3.2 Let � be an AGM revision. The relation de�ned in terms of �

using (Def v

GE

from �) is a GE-ordering.

Proof Let � be a faithful total preorder from whih � is obtained using (Def � from

�), and onsider the GE-ordering v

GE

de�ned in terms of � using (Def v

G

from �).

We show that � v

GE

� i� :� =2 K � (� _ �) or :� =2 K or � :�. We only onsider

the ase where :� 2 K and 2 �. Suppose that � v

GE

�. So, for every y 2 M(�)

there is an x 2 M(�) suh that x � y. And hene, for every y 2 Min

�

(�) there is

an x 2 Min

�

(�) suh that x � y. It thus follows that Min

�

(�) � Min

�

(� _ �). So

Min

�

(� _ �) * M(:�) and therefore :� =2 K � (� _ �). Conversely, suppose that

:� =2 K � (� _ �). Then there is an x 2 Min

�

(� _ �) suh that x 2M(�). So, x � y

for every y 2M(�) and therefore � v

GE

�. 2

A reasonable interpretation of part (2) of theorem 3.3.1 is that one should think of

the EE-orderings as being derived from the faithful total preorders. This view is also

supported by an appeal to the priniple of Redutionism, sine every EE-ordering is

built up from an ordering on infatoms in muh the same way that the entailment

relation � is built up from the interpretations of L (or from the infatoms of L). And

it is in line with the laim that orderings on infatoms are adequate representations of

the epistemi states of an agent. What is more, there is a strong onnetion between

the AGM ontration and the EE-ordering de�ned in terms of the same faithful total

preorder, muh along the lines of proposition 3.2.8.
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De�nition 3.3.3 An AGM ontration and an EE-ordering are semantially related

i� they an de�ned in terms of the same faithul total preorder using (Def � from �)

and (Def v

E

from �). 2

Proposition 3.3.4 Let � be an AGM ontration and v

EE

an EE-ordering that are

semantially related.

1. � an also be de�ned in terms of v

EE

using (Def � from v

EE

).

2. v

EE

an also be de�ned in terms of � using (Def v

EE

from �).

Proof Let � be a faithful total preorder in terms of whih � and v

EE

are de�ned

using (Def � from �) and (Def v

E

from �).

1. We need to show that if � 2 K n Cn(>) then � 2 K � � i� � 2 K and � <

EE

(�_�) (the remaining ase is trivial). It suÆes to show thatMin

�

(:�) �M(�)

i� � <

EE

�_�. Now, Min

�

(:�) �M(�) i� y 2 M(�) for every y 2 Min

�

(:�),

i� there is a y 2M(:�) suh that x 2M(�_�) for every x � y, i� �_� 6v

EE

�,

i� � <

EE

� _ �.

2. We need to show that if 2 � then � v

EE

� i� � =2 K � (� ^ �) (the remaining

ase is trivial). Suppose that � v

EE

�. So, for every y 2 M(:�) there is an

x 2 M(:�) suh that x � y. In partiular, for every y 2 Min

�

(:�) there is

an x 2 M(:�) suh that x � y. So Min

�

(:�) � Min

�

(:(� ^ �)) and thus

� =2 K � (� ^ �). Conversely, suppose that � =2 K � (� ^ �). Then there is a

z 2 M(K) [Min

�

(:(� ^ �)) suh that z 2 M(:�). And sine z � y for every

y 2M(:�), it follows that � v

EE

�.

2

3.3.2 The onnetion with relational partial meet ontration

With proposition 3.2.1 at our disposal, it beomes lear that the use of faithful total

preorders an be traed bak to the onstrution of relational partial meet ontrations

(see setion 2.2). Reall that the relational partial meet ontrations are onstruted

with the aid of a binary relation b on the set of all remainders

K?L = fA 2 K?� j � 2 L n Cn(>)g.



3.3. ORDERINGS AS EPISTEMIC STATES 51

Intuitively, b is seen as an ordering, with elements \higher up" in the relation being

regarded as \better". To obtain a related ordering on interpretations, we reinterpret

b as (the inverse of) a relation, not on remainders, but on the orresponding inter-

pretations, in the sense of proposition 3.2.1. Sine proposition 3.2.1 just applies to

�-remainders where � 2 K nCn(>), we use b restrited to (K?L)nfKg. (Reall that

K?� = fKg i� � =2 K.) It is easily veri�ed from proposition 3.2.1 that the interpreta-

tions orresponding to the elements of (K?L) n fKg are preisely the ountermodels

of K. The orresponding relation � on U is then de�ned as follows:

(Def � from b) u� v i�

8

>

<

>

:

Th(M(K) [ fvg) b Th(M(K) [ fug)

if u; v =2 M(K),

u 2M(K) otherwise.

So � orders the ountermodels of K inversely to the way b orders the orresponding

elements of K?L, puts the models of K stritly below the ountermodels of K, and

plaes all the models of K equally low down in the ordering. Now de�ne a removal �

in terms of � as follows:

(Def � from �) K � � = Th(M(K) [ fu 2M(:�) j u� v 8v 2M(:�)g)

That is, instead of taking the intersetion of the \best" �-remainders (in terms of b)

to obtain an �-ontration, we add the \best" models of :� (in terms of �) to M(K)

and take K�� to be the orresponding theory. Under the proviso that the funtion s

K

de�ned in terms of b using (Def s

K

from b) is indeed a seletion funtion, it is easily

veri�ed that � is idential to the partial meet ontration de�ned in terms of s

K

using

(Def � from s

K

). Furthermore, the set of faithful total preorders is learly a strit

subset of the transitive relations (and indeed of the total preorders) on U de�ned in

terms of the transitive relations (and the total preorders respetively) on K?L using

(Def� from b). And most importantly, every faithful total preorder � is well-behaved

in the sense that the removal de�ned in terms of � using (Def � from �) is an AGM

ontration. This observation enables us to answer a question posed in setion 2.2. To

obtain a set of relations on K?L that are well-behaved in the sense that the funtions

they indue using (Def s

K

from b) are seletion funtions, and for whih these seletion

funtions de�ne all the AGM ontrations when using (Def � from s

K

), we simply need

to obtain the relations on K?L orresponding to the faithful total preorders. They are

obtained as follows. First we onsider the set ontaining every faithful total preorder �
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in whih all elementarily equivalent interpretations form part of the same equivalene

lass (modulo �). Then we show how to obtain the appropriate orresponding relation

b on K?L from suh a faithful total preorder �:

(Def b from �) A b B i�

8

>

>

>

>

<

>

>

>

>

:

w � v 8v; w =2M(K) suh that

Th(M(K) [ fvg) = A and Th(M(K) [ fwg) = B

if A;B 6= K,

B = K otherwise.

It is easily veri�ed that b is a total preorder, and that the funtion s

K

de�ned in terms

ofb using (Def s

K

fromb) is a seletion funtion. So the ontration� de�ned in terms

of s

K

using (Def � from s

K

) is an AGM ontration. In fat, it is easily veri�ed that

� is the same ontration as the one de�ned in terms of � using (Def � from �). So

this set of total preorders on K?L is the set of well-behaved relations on K?L referred

to in setion 2.2. They are all well-behaved in the sense that the funtions indued

from them using (Def s

K

from b) are all seletion funtions. Furthermore, it follows

indiretly from theorem 3.2.4 that all the AGM ontrations an be de�ned in terms

of these seletion funtions using (Def � from s

K

). And analogous to the situation

with the faithful total preorders and the EE-orderings, an appeal to the priniple of

Redutionism provides support for the laim that the faithful total preorders are more

fundamental than the orresponding total preorders on K?L.

We onlude with a semanti view of full meet ontration and maxihoie ontra-

tion, the two limiting ases of partial meet ontration mentioned in setion 2.2. From

the disussion above it is lear that full meet ontration is obtained semantially (using

(Def � from �)) from the faithful total preorder on interpretations in whih the oun-

termodels of K are all equally omparable. Intuitively, this orresponds to the most

autious form of ontration in whih all ontent bits of K are equally entrenhed.

On the other hand, those maxihoie ontrations that are also AGM ontrations,

are obtained from the faithful total preorders in whih the ordering restrited to the

ountermodels of K is linear. The intuitive reading of these orderings orresponds

to the boldest forms of ontration, in that we are able to distinguish between the

entrenhment of all the ontent bits of K.
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3.3.3 Safe ontration

Rott [1992b℄ desribes a very strong onnetion between the EE-orderings and the

regular virtually onneted hierarhies (see de�nition 2.4.4). Reall from theorem 2.4.5

that the AGM ontrations an be de�ned in terms of the regular virtually onneted

hierarhies (over K) using (Def � from <

H

). A loser look at virtual onnetivity

shows that when it is applied to a hierarhy, it yields the strit version of a total

preorder on K. So the strit version of every EE-ordering, restrited to K, is thus

a virtually onneted hierarhy. What is more, it is easily veri�ed that every strit

version of an EE-ordering restrited to K is also regular. So every strit version of an

EE-ordering an also be used as a regular virtually onneted hierarhy to de�ne an

AGM ontration using (Def � from <

H

). In a slight abuse of notation we sometimes

use the term EE-ordering to refer to the strit version <

EE

of an EE-ordering v

EE

.

Of ourse, v

EE

an easily be obtained from <

EE

as follows:

v

EE

= <

EE

[ f(�; �) j � 6<

EE

� and � 6<

EE

�g.

Rott shows the following remarkable onnetion between the EE-orderings, the reg-

ular virtually onneted hierarhies, and AGM ontration. Every regular virtually

onneted hierarhy <

H

de�nes an EE-ordering as follows:

(Def <

EE

from <

H

) � <

EE

� i� there is a B � K suh that B � �, and for every

A � K suh that A � �, it is the ase that A 6= ;, and for every Æ 2 B there is a

 2 A suh that  <

H

Æ

Furthermore, the regular virtually onneted hierarhies de�ning the same EE-ordering

<

EE

inludes <

EE

itself, and are preisely those that de�ne the same AGM ontration

as well. And �nally, every EE-ordering yields the same AGM ontration, whether used

as an EE-ordering, or as a regular virtually onneted hierarhy. These results from

Rott [1992b℄ are summarised in the following theorem.

Theorem 3.3.5 1. Let <

H

be a regular virtually onneted hierarhy. The relation

de�ned in terms of <

H

using (Def <

EE

from <

H

) is the strit version of an

EE-ordering.

2. Two regular virtually onneted hierarhies de�ne the same AGM ontration

using (Def � from <

H

) i� they also de�ne the same strit version of an EE-

ordering using (Def <

EE

from <

H

).
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3. Let <

EE

be the strit version of an EE-ordering v

EE

. If the regular virtually

onneted hierarhy, obtained by restriting <

EE

to K, is applied to (Def <

EE

from <

H

), the resulting relation is idential to <

EE

.

4. Let <

H

be a regular virtually onneted hierarhy, and let <

EE

be the strit version

of the EE-ordering v

EE

, where the former is de�ned in terms of <

H

using (Def

<

EE

from <

H

). Then the AGM ontrations de�ned in terms of <

H

using (Def

� from <

H

) is idential to the AGM ontration de�ned in terms of v

EE

using

(Def � from v

EE

).

So every AGM ontration � an be de�ned in terms of an equivalene lass H of

regular virtually onneted hierarhies using (Def � from <

H

), with H ontaining a

unique EE-ordering <

EE

. Given these results, it seems reasonable to regard <

EE

as

the anonial hierarhy from whih � is obtained, espeially sine <

EE

is also the

EE-ordering de�ned in terms of every element of H using (Def <

EE

from <

H

).

3.3.4 Summary

We onlude this disussion with a summary of the semanti onnetions between AGM

ontration and revision, the EE-orderings, the GE-orderings and the regular virtually

onneted hierarhies.

3

Centre stage is oupied by the faithful total preorders, from

whih all these belief hange related operations and orderings an be obtained. To be

able to draw the onnetions properly, it is neessary to work with equivalene lasses

of faithful total preorders.

De�nition 3.3.6 Two faithful preorders � and 4 are said to be minimal-equivalent

i� Th(Min

�

(�)) = Th(Min

4

(�)) for every � 2 L. 2

For the �nitely generated propositional logis, no two di�erent faithful total preorders

will be minimal-equivalent, but as the next example shows, this is not so in the general

ase.

Example 3.3.7 Let L be the propositional language generated by the set of proposi-

tional atoms fp

i

j i � 0g, and with the standard valuation semantis (V;) in whih

V ontains all possible valuations. Furthermore, let

3

The orderings on remainders enountered in setion 3.3.2 are too losely related to the faithful

total preorders to be mentioned separately.
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u 1111 : : : u 1111 : : :

V n fu; v; wg

w 01111 : : :

6

6

6

v 0000 : : :

v 0000 : : :

V n fu; v; wg

w 01111 : : :

6

6

6

The faithful total preorder � The faithful total preorder 4

Figure 3.1: The faithful total preorders used in example 3.3.7. The faithful total

preorders � and 4 are obtained from the reexive transitive losures of the relations

determined by the arrows.

1. u denote the valuation that assigns the value T to all atoms, i.e. u(p

i

) = T for

every i � 0,

2. v denote the valuation that assigns the value F to all atoms, i.e. v(p

i

) = F for

every i � 0,

3. w denote the valuation that assigns the value T to all atoms exept p

0

, i.e.

w(p

i

) = T for every i > 0, and w(p

0

) = F .

Now let � be the total preorder that plaes u on its own on the lowest level, followed

by all the remaining valuations, exept v and w, on the next level, followed by v on the

next level, and followed by w on the highest level. Also, let 4 be the total preorder

that is idential to �, exept that v and w exhange positions. Figure 3.1 ontains

a graphial representation of these two total preorders. Clearly, both � and 4 are

K-faithful total preorders, where K = Cn(fp

i

j i � 0g). Furthermore, it is also easily
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veri�ed that neither v nor w are minimal models of any w� � 2 L. And it thus follows

that � and 4 are minimal-equivalent. 2

Although an equivalene lass of minimal-equivalent faithful total preorders may on-

tain a large number of di�erent total preorders, they all have the same relative ordering

of the minimal models of every w� in L. For if the minimal models of a w� � are at

least as low as the minimal models of � in terms of one member � of suh an equiv-

alene lass, but not in terms of some other member 4 of the same equivalene lass,

the minimal models of �^� annot be the same in terms of both � and 4. It is there-

fore easy to see that any two minimal-equivalent faithful total preorders de�ne the same

8

>

>

>

>

<

>

>

>

>

:

AGM ontration

AGM revision

EE-ordering

GE-ordering

9

>

>

>

>

=

>

>

>

>

;

in terms of

8

>

>

>

>

<

>

>

>

>

:

(Def � from � )

(Def � from � )

(Def v

E

from � )

(Def v

G

from � )

9

>

>

>

>

=

>

>

>

>

;

.

In view of these results, it makes sense to generalise de�nitions 3.2.7 and 3.3.3, and

extend the notion of semanti relatedness as follows.

De�nition 3.3.8 An AGM ontration, an AGM revision, an EE-ordering and a GE-

ordering are semantially related i� they an be de�ned in terms of the same faithful

total preorder using (Def � from �), (Def � from �), (Def v

E

from �), and (Def v

G

from �). 2

It follows, either diretly or indiretly, from theorems 2.3.5, 3.2.6, and 3.3.1, as well as

propositions 3.2.8 and 3.3.4, that an

8

>

>

>

>

<

>

>

>

>

:

AGM ontration

AGM ontration

AGM revision

EE-ordering

9

>

>

>

>

=

>

>

>

>

;

and a(n)

8

>

>

>

>

<

>

>

>

>

:

AGM revision

EE-ordering

GE-ordering

GE-ordering

9

>

>

>

>

=

>

>

>

>

;

that are semantially related are interhangeable using

8

>

>

>

>

<

>

>

>

>

:

(Def � from � )

(Def � from v

EE

)

(Def � from v

GE

)

(Def v

E

from v

G

9

>

>

>

>

=

>

>

>

>

;

and

8

>

>

>

>

<

>

>

>

>

:

(Def � from � )

(Def v

EE

from � )

(Def v

GE

from � )

(Def v

G

from v

E

)

9

>

>

>

>

=

>

>

>

>

;

.
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Figure 3.2 ontains a summary of these results, together with the results of theorem

3.3.5.
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�

�
v

EE

v

GE

[�℄

I �

	 R

� -

� -

6

?

6

?

<

EE

<

H

<

H

? ?

(Def � from v

EE

)

(Def v

EE

from �)

6

(Def � from v

GE

)

(Def v

GE

from �)

(Def � from <

H

) (Def <

EE

from <

H

)

(Def � from �)

(Def � from �)

(Def � from �) (Def v

E

from �)

(Def � from �) (Def v

G

from �)

(Def v

E

from v

G

)

(Def v

G

from v

E

)

Figure 3.2: The relationship between minimal-equivalent faithful total preorders, and

semantially related AGM ontrations, AGM revisions, EE-orderings, GE-orderings,

as well as safe ontrations de�ned in terms of regular virtually onneted hierarhies.



Chapter 4

Nonmonotoni reasoning

We demand guaranteed rigidly de�ned areas of doubt and unertainty.

Douglas Adams

The phrase \logial reasoning" is usually assoiated with the kind of arguments found

in mathematial proofs. Perhaps the most essential ingredient of suh arguments is

truth preservation, whih ensures that the truth of the onlusions drawn from a set

of assumptions are guaranteed by the truth of the assumptions. Although useful in

many areas, an agent equipped solely with reasoning abilities of this kind will soon �nd

itself paralysed and unable to draw almost any onlusion. For, as Benjamin Franklin

is so aptly quoted by Matthew Ginsberg [1987℄ in his introdution to nonmonotoni

reasoning, \Nothing is ertain but death and taxes.". To be able to operate at all

in a world �lled with unertainties, it is frequently neessary to be able to jump to

onlusions of whih the truth is not santioned by the evidene at our disposal. Of

ourse, for this to be seen as some kind of reasoning, it will have to be a rational and

systemati method of determing what is plausible, and not just an arbitrary drawing

of inferenes in a seemingly random fashion.

Nonmonotoni reasoning is part of the study of suh forms of defeasible reasoning.

A logi is said to be nonmonotoni if its assoiated entailment relation j� need not

always satisfy the following monotoniity property: if Aj�� then A [ f�gj��. With

j� seen as a relation of plausible onsequene, there are many examples to show that

monotoniity is an undesirable property. Perhaps the one most deeply entrenhed in

the nonmonotoni reasoning literature is the Tweety example. Given that Tweety is a

59
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bird, it seems plausible to infer that Tweety an y. But given the additional evidene

that Tweety is an ostrih, we should abandon our onlusion about Tweety's ying

apabilities.

To be able to draw plausible onlusions, nonmonotoni reasoning formalisms are

usually onerned (whether impliitly or expliitly) with three types of information.

Firstly, we have �xed information. This inludes information suh as \ostrihes are

birds". Seondly, we have default information whih onsists of information suh as

\birds normally y", and \ostrihes normally don't y". Together the �xed and default

information provide a bakground ontext [Ge�ner, 1992,p. 25℄. And thirdly, we have

evidene suh as \Tweety is a bird" and \Chirpy is an ostrih", ontaining information

spei� to the situation at hand. The di�erene between �xed and default information

is that the onlusions drawn from the system may defeat default information, but

not �xed information. For example, any nonmonotoni reasoning system worth its

salt should be able to onlude from the bakground ontext and the evidene given

above that \Chirpy doesn't y", thus defeating the information that \birds normally

y" (ombined with the information that ostrihes are birds). But adding the evidene

that \Chirpy is an ostrih but not a bird" should render the system inonsistent, sine

the evidene now onits with the �xed information.

A ursory omparison of belief hange and nonmonotoni reasoning might reate

the impression that they have very little in ommon. After all, the former is onerned

with the dynami proess of hanging one's beliefs, while the latter deals with the

seemingly stati proess of jumping to onlusions on the basis of new evidene. As we

shall see however, these two �elds of researh just provide di�erent views of what are

essentially idential proesses of reasoning. The suggestion of identifying nonmonotoni

reasoning with theory hange an already be found in [Glymour and Thomason, 1984℄,

but it was only with the subsequent development of general frameworks for both theory

hange and nonmonotoni reasoning that suh a suggestion was properly investigated.

In the ase of theory hange, the relevant framework is that of AGM theory hange.

For nonmonotoni reasoning the appropriate setting is provided by the nonmonotoni

onsequene relations of Kraus et al. [1990℄, and the subsequent extensions proposed by

Lehmann and Magidor [1992℄, and G�ardenfors and Makinson [1994℄. We shall therefore

fous our attention on these approahes to nonmonotoni reasoning.
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4.1 KLM nonmonotoni reasoning

During the 1980s a host of nonmonotoni logis made their appearane, of whih the

modal systems of MDermott and Doyle [1980, 1982℄, Moore's [1984, 1985℄ autoepis-

temi logi, Reiter's [1980℄ default logi, MCarthy's [1980, 1986℄ irumsription [Lif-

shitz, 1986, 1987℄, and Poole's [1988℄ system for default reasoning are probably the

best known. While these systems all have interesting properties when looked at indi-

vidually, the lak of a general framework for nonmonotoni reasoning made it diÆult

to ompare and evaluate them.

One of the most inuential attempts to establish suh a general nonmonotoni

setting is the KLM approah, named after its three originators Sarit Kraus, Daniel

Lehmann and Menahem Magidor [1990℄. The suess of their approah is largely

attributable to their deision to fous on the onsequene relations assoiated with

nonmonotoni logis, an idea that seems to have originated with Gabbay [1985℄. From

a semanti point of view, the work of the KLM trio is an extension of Shoham's

[1987a, 1987b℄ proposed model theory for nonmonotoni reasoning. As a formal study

of onsequene relations, it grew out of the work of Gabbay [1985℄, and has muh in

ommon with Makinson's [1989℄ theory of umulative inferene, whih was developed

independently and more or less at the same time. Kraus et al. onern themselves

with binary relations, denoted by j�, on a propositional language L losed under the

usual propositional onnetives. The semantis for L is assumed to be a valuation

semantis (V;) as de�ned in setion 1.3, with � denoting the standard notion of

semanti entailment assoiated with it. As we have shown in setion 1.3, every one

of the logis we onsider an be \onverted" into suh a propositional logi, whih

means that the logis permitted by Kraus et al. are preisely those that we onsider

as well. One of their primary aims is to demarate those binary relations on L that

are deserving of the name \nonmonotoni onsequene relation". Elements of suh

relations are denoted by expressions of the form �j�� (where � and � are w�s of L),

and should be read as \� is a plausible onsequene of �", or \if � holds then I am

willing to (defeasibly) jump to the onlusion that � holds".

Of the three types of information used in nonmonotoni reasoning systems, only

the evidene is expliitly represented in the KLM setup. In an expression suh as �j��,

� is the available evidene from whih the plausible onlusion � is drawn. The �xed

information is oded into the semantis for L, and is represented on the objet level
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by the logially valid w�s. Default information, on the other hand, should be seen as

somehow being enoded into the onsequene relation j�. For example, let b(t) and

f(t) be atoms of a transparent propositional language L (see setion 1.3), with b(t)

representing the assertion that Tweety is a bird, and f(t) representing the laim that

Tweety an y. Then b(t)j�f(t) is read as \I am willing to jump to the onlusion

that Tweety an y, given that Tweety is a bird". The fat that suh a onlusion

seems reasonable an be attributed to the existene of a default rule stating that birds

normally y. But it would be a mistake to think that b(t)j�f(t) is, or forms part of,

suh a default rule. Rather, it is the fat that suh a default rule is built into j� that

allows us to plausibly onlude that Tweety an y from the evidene that Tweety is

a bird. In setion 4.6 we disuss these matters in more detail.

4.2 Preferential onsequene relations

Formally, the KLM approah to nonmonotoni reasoning mirrors the AGM approah

to theory hange in many ways. The KLM nonmonotoni onsequene relations are

de�ned in terms of sets of postulates. This is followed by a desription of semanti

methods for onstruting these relations, and the statement of representation theorems,

proving that the onstrution methods do indeed yield preisely the set of onsequene

relations desribed by the appropriate set of postulates. Four families of onsequene

relations are studied by Kraus et al. [1990℄ and Lehmann and Magidor [1992℄: umula-

tive onsequene relations, loop-umulative onsequene relations, preferential onse-

quene relations and rational onsequene relations. We shall restrit our attention to

the preferential onsequene relations in this setion and to the rational onsequene

relations in setion 4.3.

De�nition 4.2.1 A preferential onsequene relation j� is a binary relation on L

satisfying the postulates Ref, LLE, RW, And, Or and CM given below.

1

2

(Ref) For every � 2 L, �j�� (Reexivity)

(LLE) If � � � and �j� then �j� (Left Logial Equivalene)

(RW) If � j=  and �j�� then �j� (Right Weakening)

1

This desription of the preferential onsequene relations is given by Lehmann and Magidor [1992℄.
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(And) If �j�� and �j� then �j�� ^ 

(Or) If �j� and �j� then � _ �j�

(CM) If �j�� and �j� then � ^ �j� (Cautious Monotoniity)

Reexivity ensures that � itself is a plausible onsequene of �, while Left Logial

Equivalene requires di�erent bits of evidene, whih happen to be logially equivalent,

to have the same plausible onsequenes. Right Weakening expresses the intuition

that anything logially weaker than some plausible onsequene of � should also be a

plausible onsequene of �. The And postulate requires the onjuntion of two plausible

onsequenes to be a plausible onsequene, while Or stipulates that the same plausible

onsequene of two di�erent piees of evidene should also be a plausible onsequene

of their disjuntion. As the name suggests, Cautious Monotoniity is a weakened form

of the monotoniity property. In the ontext of binary onsequene relations, the latter

an be phrased as follows:

(Mon) If �j� then � ^ �j� (Monotonoity)

While Monotoniity ensures that a onsequene  of � will also be a onsequene of a

w� obtained by adding any w� � to �, Cautious Monotoniity requires that the w� �

added to � has to be a plausible onsequene of �. In other words, all the plausible

onsequenes of � are also plausible onsequenes of � ^ �, as long as � is a plausible

onsequene of �. Kraus et al. mention a number of other properties satis�ed by the

preferential onsequene relations, and it is not that diÆult to ome up with even

more. We limit ourselves below to some intuitively desirable ones, mainly to give the

reader a avour of the harateristis of these onsequene relations.

(SC) If � � � then �j�� (Supralassiality)

(Cut) If � ^ �j� and �j�� then �j�

(Cum) If �j�� then �j� i� � ^ �j� (Cumulativity)

(Re) If �j�� and �j�� then �j� i� �j� (Reiproity)

(Cond) If � ^ �j� then �j�� !  (Conditionalisation)
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Supralassiality is the very natural ondition that anything logially weaker than �

should also be a plausible onsequene of �. Under the assumption that �j��, Cut

an be seen as the onverse of Cautious Monotoniity. It ensures that in the proess

of heking whether  is a plausible onsequene of �, it is suÆient to show that

 is a plausible onsequene of � together with any plausible onsequene � of �.

Cumulativity is just Cut and Cautious Monotoniity thrown together, but is inluded

here beause it is an important nontrivial property of nonmonotoni reasoning systems.

Together with Reexivity, Left Logial Equivalene and Right Weakening, it provides

a guarantee that adding to � any plausible onsequenes of �, will not in any way alter

the plausible onsequenes obtained. It is thus markedly di�erent from probabilistially

motivated onsequene relations in whih the expression �j�� is taken to mean that the

onditional probability of � given � is above some threshold value. Reiproity (referred

to by Kraus et al. [1990℄ as Equivalene) shows that if � and � are \equivalent" under

j�, then the plausible onsequenes of � and � are exatly the same. Conditionalisation

(referred to by Kraus et al. [1990℄ as rule S) is reminisent of one part of the dedution

theorem for lassial propositional logi.

4.2.1 A semantis for preferential onsequene relations

The method for onstruting preferential onsequene relations provided by Kraus et

al. is semanti in nature and makes use of, what is alled, preferential models. The

idea is to plae an ordering on a set of \states", with the states lower down in the

ordering being more \normal", in some sense. A w� � is then taken to be a plausible

onsequene of � if � holds in the most normal states in whih � holds. Intuitively, it

has muh in ommon with Shoham's [1987a, 1987b℄ preferential models whih, in turn,

is a generalisation of the semantis for MCarthy's irumsription [Lifshitz, 1987℄.

Tehnially, it generalises Shoham's onstrution in two aspets. Firstly, it draws a

lear distintion between the valuations of L and the set of \states", and plaes an

ordering on the states, not the valuations. A labelling funtion is used to assoiate

every state with a partiular valuation. States are thus more general than valuations,

sine di�erent states may be assoiated with the same valuation. Seondly, it relaxes

Shoham's requirement that the ordering on interpretations be well-founded (i.e. that

there are no in�nite desending hains). This generality is needed in the representation

theorem that links the preferential onsequene relations to the preferential models.
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De�nition 4.2.2 Let S be any set. We refer to the elements of S as states.

1. A labelling funtion for S is a funtion from S to V , the set of valuations of L.

2. Given a labelling funtion l for S, the l-models of a w� � 2 L, denoted by b�, is

de�ned as b� = fs 2 S j l(s)  �g.

3. A preferential model P is an ordered triple (S; l;�), where l is a labelling funtion

for S, � is a strit partial order on S, and for every � 2 L, � is b�-smooth (see

de�nition 3.2.5).

2

Given a preferential model P , the P -indued onsequene relation j�

P

is de�ned in

terms of P as follows:

(Def j�

P

from P ) �j�

P

� i� for every s 2 S that is �-minimal in �̂, s 2

^

�

Kraus et al. then show that the binary relations on L de�ned in terms of the preferential

models using (Def j�

P

from P ) are preisely the preferential onsequene relations.

Theorem 4.2.3 [Kraus et al., 1990℄ Every binary relation on L de�ned in terms of

a preferential model P using (Def j�

P

from P ) is a preferential onsequene relation.

Conversely, every preferential onsequene relation an be de�ned in terms of some

preferential model P using (Def j�

P

from P ).

The insistene on the b�-smoothness, in the set of l-models, of the strit partial order

�, for every w� �, is neessary for the satisfation of Cautious Monotoniity, and it is a

muh weaker ondition than Shoham's requirement that the ordering be well-founded.

In fat, if � is required to be well-founded, the onverse part of theorem 4.2.3 does

not hold [Lehmann and Magidor, 1992℄. The use of states instead of valuations is also

neessary for the onverse part of theorem 4.2.3 to hold, as the following example of

Kraus et al. [1990℄ shows.

Example 4.2.4 Let L be the propositional language generated by the atoms p and q,

and let (V;) be the valuation semantis for L with V = f11; 10; 00g. Let P = (S; l;�)

be a preferential model, with S = fs

1

; s

2

; s

3

; s

4

g, � = f(s

1

; s

3

); (s

2

; s

4

)g, and with l

de�ned as follows:

l(s

1

) = 00, l(s

2

) = 10, l(s

3

) = 11, l(s

4

) = 11.
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Figure 4.1: The preferential model P = (S; l;�) used in example 4.2.4. The strit

partial order � is determined by the arrows.

Figure 4.1 ontains a graphial representation of the preferential model P . We show

that the preferential onsequene relation j�

P

de�ned in terms of P using (Def j�

P

from

P ) annot be de�ned in terms of any preferential model whose labelling funtion is the

identity funtion. Assume, to the ontrary, that there is a preferential model P

0

=

(S

0

; l

0

;�

0

) for whih l

0

is the identity funtion, suh that the preferential onsequene

relation j�

P

0

de�ned in terms of P

0

using (Def j�

P

from P ) is idential to j�

P

. It is

easily veri�ed that :p ^ :q 6j�

P

0

?, p ^ :q 6j�

P

0

?, p ^ q 6j�

P

0

?, but :p ^ qj�

P

0

?, from

whih it follows that S

0

= fs

0

1

; s

0

2

; s

0

3

g, with l

0

(s

0

1

) = 00, l

0

(s

0

2

) = 10 and l

0

(s

0

3

) = 11.

Furthermore, (p^ q)_:qj�

P

0

:q, but (p^ q)_:q 6j�

P

0

:p^:q and (p^ q)_:q 6j�

P

0

p^:q,

whih means that the �-minimal elements of

\

(p ^ q) _ :q are the states s

0

1

and s

0

2

. So

either s

0

1

� s

0

3

or s

0

2

� s

0

3

, or both. But from p $ q 6j�

P

0

:p ^ :q and p 6j�

P

0

p ^ :q it

follows respetively that s

0

1

� s

0

3

and s

0

2

� s

0

3

; a ontradition. 2

It is worth noting at this stage that Kraus et al. see preferential models only as tehnial

tools to aid in the study of the preferential onsequene relations, and do not regard

the former as suitable representations of the part of an epistemi state pertaining to

nonmonotoni reasoning [see Kraus et al., 1990,p. 170℄.

4.3 Rational onsequene relations

There seems to be a fair amount of agreement that any reasonable nonmonotoni

onsequene relation should at least be a preferential onsequene relation. A more
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ontroversial question is whether one should ut down any further by piking out some

strit subset of the preferential onsequene relations, and if so, how to go about it.

A partiularly attrative proposal in this regard is the one advaned by Lehmann and

Magidor [1992℄, in whih they propose the addition of the following three postulates:

(NR) If �j�� then either � ^ j�� or � ^ :j�� (Negation Rationality)

(DR) If � _ �j� then either �j� or �j� (Disjuntive Rationality)

(RM) If �j� then either � ^ �j� or �j�:� (Rational Monotoniity)

Kraus et al. [1990℄ already onsidered these postulates, and desribed them as neessary

properties for a rational reasoner. Negation Rationality stipulates that if we regard �

as a plausible onsequene of �, we must have some reason for doing so. Sine exatly

one of  or : holds, it has to be the ase that � is a plausible onsequene when adding

either  or : to �. Disjuntive Rationality is a slightly generalised version of the same

idea. If  is a plausible onsequene of � _ � then, sine one of � or � has to hold, 

should be a plausible onsequene of either � or �. Rational Monotoniity requires of a

reasoner to omply with Monotoniity unless there is a very good reason not to. If  is

a plausible onsequene of � then  should also be a plausible onsequene when adding

� to �, unless :� is a plausible onsequene of �. It is easily veri�ed that, for eah of

these three postulates, there is a preferential onsequene relation in whih it does not

hold. In fat, in the presene of the postulates for preferential onsequene relations,

Rational Monotoniity is stritly stronger than Disjuntive Rationality whih, in turn,

is stritly stronger than Negation Rationality [Lehmann and Magidor, 1992℄.

De�nition 4.3.1 A rational onsequene relation is a preferential onsequene rela-

tion that also satis�es Rational Monotoniity. 2

To obtain a semanti haraterisation of the rational onsequene relations, we restrit

ourselves to those preferential models in whih the strit partial orders on states are

also modular.

De�nition 4.3.2 A strit partial order � on a set X is alled modular i� for every

x; y; z 2 X, if x � y, y � x and z � x then z � y. 2

The modular strit partial orders are the strit versions of the total preorders on X.
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De�nition 4.3.3 A ranked model is a preferential model R = (S; l;�) in whih the

strit partial order � is modular as well. 2

Every modular strit partial order � partitions the states into levels, with omparable

states being on di�erent levels, and inomparable states onsidered to be on the same

level. We an thus think of � as being obtained from a ranking funtion that ranks

states aording to normality | the lower the rank of a state, the more normal it is.

Theorem 4.3.4 [Lehmann and Magidor, 1992℄ Every binary relation on L de�ned in

terms of a ranked model R using (Def j�

P

from P ) is a rational onsequene relation.

Conversely, every rational onsequene relation an be de�ned in terms of some ranked

model R using (Def j�

P

from P ).

Lehmann and Magidor regard Rational Monotoniity as a natural ondition that should

be satis�ed by all nonmonotoni onsequene relations, and they thus tend to favour

the rational onsequene relations as the set of nonmonotoni onsequene relations.

This is not a view shared by everyone. For example, Makinson [1994℄ regards Rational

Monotoniity as too strong a ondition to insist upon. He argues as follows: If  is a

plausible onsequene of � then, even if :� does not follow plausibly from �, � may

still suggest the possibility of :� strongly enough to undermine the plausibility of 

given � ^ �. Makinson is in favour of removing some of the preferential onsequene

relations, though. He seems to be of the opinion that all nonmonotoni onsequene

relations should satisfy Disjuntive Rationality. In setion 4.4.2 we present an argument

supporting the viewpoint of Lehmann and Magidor.

We now ome to properties that are not satis�ed by all rational onsequene rela-

tions. As expeted, it is easily shown that some rational onsequene relations do not

satisfy Monotoniity. What is perhaps surprising is that some rational onsequene

relations do satisfy Monotoniity. For example, it is easily veri�ed that the entailment

relation � obtained from any valuation semantis (V;) for L is a rational onsequene

relation. One simply needs to examine the ranked model (S; l;�) where S = V , l(s) = s

for every s 2 S, and � is the empty relation. So the lassial entailment relations of

the logis we onsider are all instanes of the rational onsequene relations! While

it might seem strange to inlude onsequene relations that satisfy Monotoniity in a

family of nonmonotoni onsequene relations, it an be justi�ed as follows. As ex-

plained on page 59, the intuition that we are trying to formalise is one of jumping to

onlusions in a systemati fashion. And it seems reasonable to inlude, as a septial
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extreme, the ase where an agent refuses to jump to any onlusions other than those

santioned by lassial logi. So perhaps it is not the inlusion of these monotoni

onsequene relations that should be alled into question, but rather the hoie of the

name \nonmonotoni reasoning" for this �eld of study.

Kraus et al. also onsider the following three properties.

(EHD) If �j�� !  then � ^ �j�

(Trans) If �j�� and �j� then �j� (Transitivity)

(Cont) If �j�� then :�j�:� (Contraposition)

EHD is reminisent of one part of the dedution theorem for lassial propositional

logi; hene the aronym \EHD" whih stands for the \Easy Half of the Dedution

theorem". Kraus et al. show that for the preferential onsequene relations, EHD,

Transitivity and Monotoniity are equivalent, and Contraposition is stronger than

Monotoniity. It is thus lear that these are not suitable properties for nonmonotoni

reasoning.

Two properties whih are worth onsidering are given below.

(DP) If �j� then either � ^ �j� or � ^ �j�: (Determinay Preservation)

(CP) If �j�? then � :� (Consisteny Preservation)

Like Rational Monotoniity, Determinay Preservation (whih was �rst suggested by

Makinson [see 1994,p. 93℄) requires Monotoniity to hold unless there is a very good

reason not to. If  is a plausible onsequene of �, then it must also be a plausible

onsequene obtained when adding � to �, unless the addition of � to � has :

as a plausible onsequene. It is easily veri�ed that for the preferential onsequene

relations, Determinay Preservation is stritly stronger than Rational Monotoniity,

and its aeptane would thus amount to a restrition to a strit subset of the rational

onsequene relations. It is a desirable property in many instanes sine it promotes

onsiderations of irrelevane. The notion of irrelevane involves the idea that irrelevant

additional evidene should not inuene our plausible onsequenes. So, given the

default information that birds normally y, we should onlude that Tweety an y

from the evidene that Tweety is a red bird, sine being red is irrelevant to Tweety's

ying abilities. In general then, an irrelevane postulate will usually have the following
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form: If  is a plausible onsequene of �, and � is irrelevant in terms of 's plausibility

when presented with � as evidene, then  is a plausible onsequene of � ^ �. Of

ourse, the question is how to formalise the intuition that � is irrelevant in terms of 's

plausibility when � is given as evidene. In the ase of Determinay Preservation, the

formalisation omes down to the requirement that : should not be plausible when

presented with � ^ � as evidene, i.e., that � ^ � 6j�:.

In the ontext of our red bird example above, Determinay Preservation an be

explained as follows. Sine we are willing to onlude that Tweety an y on learning

that it is a bird, and sine the additional evidene that Tweety is red does not lead us to

onlude that Tweety an't y, we have to onlude that Tweety an y when presented

with the evidene that Tweety is a red bird. Although Determinay Preservation is

appropriate in this example, it is too strong a ondition to impose in all situations. For

example, from the evidene that Tweety is a bird, it is, as we have argued, reasonable

to onlude that Tweety an y. But when retrating this onlusion on learning that

Tweety was spotted in Oudtshoorn | an area in South Afria where ostrihes are not

unommon|we do not neessarily want to be fored into onluding that Tweety an't

y. After all, the information about Tweety's whereabouts might raise the possibility

that Tweety is an ostrih without rendering it so plausible that one would be willing

to at on suh a laim.

Consisteny Preservation stipulates that logially invalid w�s may only be plausible

onsequenes of logially invalid w�s. It seems to be a reasonable ondition, and it is

therefore surprising that it is not satis�ed by all rational onsequene relations. As the

next example shows, the failure of Consisteny Preservation an be attributed to the

fat that the labelling funtions of ranked models need not be surjetive.

Example 4.3.5 Let L be the propositional language generated by the two atoms p

and q, and let (V;) be the �-valuation semantis for L where V = f11; 10; 01; 00g.

Let R = (S; l;�) be the ranked model where S = fsg, l(s) = 00 and � = ;, and let j�

R

be the onsequene relation de�ned in terms of R using (Def j�

P

from P ). It is easily

veri�ed that pj�

R

?, even though 2 :p, and j�

R

therefore does not satisfy Consisteny

Preservation. 2

In the next setion we shall have more to say about those rational onsequene relations

that satisfy Consisteny Preservation.
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4.4 Nonmonotoni reasoning as theory revision

From the results above it should be obvious that there are lose similarities between the

ranked models that haraterise the rational onsequene relations and the semanti

haraterisation of AGM theory revision. Both employ orderings to de�ne some kind of

minimal model semantis, although the elements on whih the orderings are plaed, are

not quite the same. Based on these similarities, we an move from theory revision to

nonmonotoni reasoning and bak as follows [Makinson and G�ardenfors, 1991℄: Given

a belief set K and a theory revision operation, de�ne a nonmonotoni onsequene

relation by letting the set of plausible onsequenes of � oinide with the new belief

set obtained from an �-revision of K. Conversely, given a nonmonotoni onsequene

relation, �x a belief set K in some appropriate fashion and then de�ne an �-revision

of K by letting the resulting belief set be equal to the set of plausible onsequenes of

�.

This translation sheme provides a nie way of omparing postulates for theory

revision with postulates for nonmonotoni reasoning and vie versa, as is done by

Makinson and G�ardenfors [1991℄ and G�ardenfors and Rott [1995℄. One an also use

the translation method as the basis for an investigation aimed at disovering the extent

to whih the two �elds of researh overlap. The results of G�ardenfors and Makinson

[1994℄, whih we desribe below, are evidene of the suess of suh an approah.

4.4.1 Expetation based onsequene relations

The fat that the semanti strutures used in AGM theory revision and KLM non-

monotoni reasoning are similar, should not be too surprising. The idea of an ordering

on worlds or states, with elements lower down (or higher up, as the ase may be) in the

ordering as somehow being \better", an be traed bak to work done in the 1960s and

1970s on onditional logi and ounterfatual reasoning [Lewis, 1973, Adams, 1975,

Burgess, 1981, Stalnaker et al., 1981, van Benthem, 1984, Ginsberg, 1986℄. Makinson

[1993℄ also provides a survey of researh areas employing some kind of minimal model

semantis. What is perhaps surprising is how easily the strutures used in AGM theory

revison and KLM nonmonotoni reasoning an be made idential. The two di�erenes

to be eliminated are that AGM theory revision uses total preorders, not modular strit

partial orders, and plaes them on the interpretations of L, not on a set of states. From

results by G�ardenfors and Makinson [1994℄ it follows indiretly that these di�erenes
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an easily be done away with. We show that those rational onsequene relations sat-

isfying Consisteny Preservation an be de�ned in terms of the faithful total preorders

as follows:

2

(Def j� from �) �j�� i� Min

�

(�) �M(�)

De�nition 4.4.1 An expetation based onsequene relation is a rational onsequene

relation that also satis�es Consisteny Preservation. 2

The underlying intuition provided by G�ardenfors and Makinson is that the reasoning

of an agent is guided, not just by its �rm beliefs, but also by its expetations. Every

expetation based onsequene relation j� is based on a set of expetations E, playing

a role that is analogous to that of a belief set K in theory hange. In fat, every

expetation set E is, tehnially speaking, a belief set, as we shall see below. Intuitively,

E is the \urrent" set of expetations of the agent, and the plausible onsequenes of

a w� � (i.e., every w� � for whih �j�� holds) are those w�s that follow logially

from � together with \as many as possible" of the elements of E that are ompatible

with �. The set of expetations E is not expliitly mentioned in the de�nition of an

expetation based onsequene relation j�, but a suitable E an be reovered from j�

as follows.

(Def E from j�) E = f� j >j��g

That is, E is taken as the set of plausible onsequenes of any logially valid w�. This

proess of reovery is justi�ed by noting that the plausible onsequenes of a w� � an

be seen as the \new" set of expetations that an agent would be willing to embrae

whenever it is willing to aept � as a new piee of evidene. Now, o�ering a logially

valid w� as a new piee of evidene is just a roundabout way of saying that we are

in a situation in whih no new evidene has been obtained. And when an agent is

not presented with any new evidene, it is reasonable to require that its urrent set of

expetations should not hange. Hene the de�nition of E as in (Def E from j�).

2

In fat, the rational onsequene relations an be de�ned in terms of total preorders on interpre-

tations of L, but it inludes total preorders on strit subsets of the interpretations of L as well. The

inlusion of Consisteny Preservation is thus neessary solely for the purpose of ensuring that we only

onsider the total preorders on all the interpretations of L.
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Theorem 4.4.2 Given any belief set K, every binary relation j� on L de�ned in terms

of a K-faithful total preorder using (Def j� from �) is an expetation based onsequene

relation. Conversely, every expetation based onsequene relation j� an be de�ned

in terms of a K-faithful total preorder � using (Def j� from �), where K is some

satis�able belief set.

Proof Pik any belief set K and any K-faithful total preorder �, and let j� be the

binary relation on L de�ned in terms of � using (Def j� from �). To show that j�

satis�es Reexivity, Left Logial Equivalene, RightWeakening, and And, is trivial. For

Or, suppose that �j� and �j�. That is, Min

�

(�) � M() and Min

�

(�) � M().

In the ase where at least one of � or � is logially invalid, it follows trivially that

� _ �j�. So we suppose that this is not the ase. If the �-minimal models of �

are stritly below the �-minimal models of �, then Min

�

(� _ �) = Min

�

(�), and so

� _ �j�. A similar argument holds if the � -minimal models of � are stritly below

the �-minimal models of �. In the remaining ase, it follows from the properties of

a K-faithful total preorder that Min

�

(� _ �) = Min

�

(�) [ Min

�

(�), from whih

it also follows that � _ �j�. For Cautious Monotoniity, suppose that �j�� and

�j�. That is, Min

�

(�) � M(�) and Min

�

(�) � M(). If � is logially invalid

then learly � ^ �j�. So we suppose that this is not the ase. From the M(�)-

smoothness of � it then follows that Min

�

(� ^ �) = Min

�

(�), and so � ^ �j�.

For Rational Monotoniity, suppose that �j� and that � 6j�:�. So Min

�

(�) � M()

and Min

�

(�) \M(�) 6= ;. From the properties of a K-faithful total preorder it then

follows thatMin

�

(�^�) =Min

�

(�)\M(�), and so �^�j�. Finally, for Consisteny

Preservation, suppose that �j�?. That is, Min

�

(�) = ;. By the smoothness of � it

then has to be the ase that M(�) = ;, and so � :�.

Conversely, let j� be any expetation based onsequene relation. Now onsider the

following de�nition of a binary relation j� on L in terms of the seletion funtions of

de�nition 2.2.2.

(Def j� from s

K

) �j�� i� � 2

T

fK

0

+ � j K

0

2 s

K

(K?:�)g

A binary relation on L is alled transitively relational i� it is de�ned in terms of

a seletion funtion s

K

using (Def j� from s

K

), where s

K

is de�ned in terms of a

transitive relation b on K?L using (Def s

K

from b) (see page 23), and K is some

satis�able belief set. G�ardenfors and Makinson [1994℄ prove that the expetation based

onsequene relations are preisely the transitively relational binary relations on L. So
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there is a satis�able belief set K, and a transitive relation b on K?L that de�nes a

seletion funtion s

K

using (Def s

K

from b), and j� an be de�ned in terms of s

K

using (Def j�

K

from s

K

). But by theorem 2.2.6, the K-removal de�ned in terms of s

K

using (Def � from s

K

) is an AGM K-ontration. By theorem 2.1.6 it then follows

that the K-revision � de�ned as

K � � =

\

fK

0

+ � j K

0

2 s

K

(K?:�)g for every � 2 L

is an AGM K-revision. And by theorem 3.2.6 it follows that there is a K-faithful total

preorder � suh that � is de�ned in terms of � using (Def � from �). Sine j� an

be de�ned in terms of s

K

using (Def j� from s

K

), j� an also be de�ned in terms of �

using (Def j� from �). 2

With the aid of theorem 4.4.2 we an show that, tehnially at least, it makes sense to

regard every expetation based onsequene relation j� as being based, not just on the

set of plausible onsequenes of any logially valid w�, but also on the unsatis�able

belief set. The idea is that whenever an expetation based onsequene relation j� an

be de�ned in terms of a K-faithful total preorder from using (Def j� from �), then K

is the expetation set on whih j� is based. The question of whether it is appropriate

to view an unsatis�able belief set as an expetation set will be disussed in setion

4.4.2.

Lemma 4.4.3 Let j� be an expetation based onsequene relation and let K be the

set of w�s de�ned in terms of j� using (Def K from j�). Then K is a satis�able belief

set, and j� an be de�ned in terms of at least one K-faithful total preorder, and at

least one Cn(?)-faithful total preorder using (Def j� from �). Furthermore, j� annot

be de�ned in terms of any K

0

-faithful total preorder, using (Def j� from �), for any

satis�able belief set K

0

that is not equal to K.

Proof From theorem 4.4.2 it follows that j� an be de�ned in terms of a K

00

-faithful

total preorder � where K

00

is a satis�able belief set. So

K = f� j >j��g = Th(Min

�

(>)),

and sine it follows from K

00

-faithfulness that Min

�

(>) = M(K

00

), we thus have that

K

00

= K. So we have shown that K is a satis�able belief set and that j� an be de�ned

in terms of at least one K-faithful total preorder using (Def j� from �). By noting that
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� is also a Cn(?)-faithful total preorder, we immediately get that j� an be de�ned in

terms of at least one Cn(?)-faithful total preorder using (Def j� from �). And �nally,

pik any satis�able belief set K

0

6= K, any K

0

-faithful total preorder �

0

, and let j�

0

be

the expetation based onsequene relation de�ned in terms of �

0

using (Def j� from

�). So

f� j >j�

0

�g = Th(Min

�

0

(>)) = Th(M(K

0

)) = K

0

.

For at least one w� �, either >j�� but >6j�

0

�, or >6j�� but >j�

0

�, and so j�

0

is not

idential to j�. 2

Lemma 4.4.3 is the justi�ation for the following de�nition. It allows us to assoiate

expetation sets with expetation based onsequene relations in the same way that

belief sets are assoiated with theory hange operations.

De�nition 4.4.4 An expetation based onsequene relation j� is said to be based on

E i� either E = Cn(?), or E is de�ned in terms of j� using (Def E from j�). For

brevity we shall refer to an expetation based onsequene relation based on E as an

E-based onsequene relation. 2

From lemma 4.4.3 it follows that the expetation based onsequene relations an be

partitioned into equivalene lasses aording to the satis�able belief sets on whih they

are based, and that all the expetation based onsequene relations are based on the

unsatis�able belief set. This enables us to assoiate, for every belief set K, the K-based

onsequene relations with the AGM K-revisions, using the following two de�nitions,

whih an be seen as a formalisation of the proedure for translating between theory

revision and nonmonotoni reasoning, and vie versa.

(Def j� from �) �j�� i� � 2 K � �

(Def � from j�) K � � = f� j �j��g

Corollary 4.4.5 Let K be any belief set and let � be any K-faithful total preorder.

The AGM K-revision � de�ned in terms of � using (Def � from �), and the K-based

onsequene relation j� de�ned in terms of � using (Def j� from �), an also be de�ned

in terms of eah other using (Def j� from �) and (Def � from j�).

Proof The proofs follow easily from theorems 3.2.6 and 4.4.2, and lemma 4.4.3, and

are omitted. 2



76 CHAPTER 4. NONMONOTONIC REASONING

4.4.2 Expetations, beliefs and epistemi states

The semanti onstrution of the expetation based onsequene relations suggests that

the nonmonotoni reasoning abilities of agents an be modelled by ordered pairs of the

form (E;�), where E is a belief set representing the expetations of the agent, and

� is an E-faithful total preorder on the interpretations of L. We shall refer to these

strutures as expetation states. An expetation state is thus a part of an epistemi

state involved with nonmonotoni reasoning abilities. An information-theoreti view,

with � seen as a total preorder on infatoms instead of on interpretations, suggests

the following interpretation of expetation states. Think of the expetations of an

agent as being built up from infatoms. For a given expetation state (E;�), E is,

of ourse, built up from Cont(E), the ontent bits of E. Sine � is an E-faithful

total preorder, the lowest infatoms in � are preisely those that do not form part of

Cont(E). The total preorder � should thus be seen as a representation of the extent

to whih infatoms form part of the urrent expetations (the ontent of E). Infatoms

higher up in � are less easily dislodged from Cont(E), with the lowest infatoms in

the ordering representing the limiting ase of those that do not form part of Cont(E)

to begin with. The plausible onsequenes of a w� � are then taken to be all the

w�s whose ontent are inluded in the set of infatoms, obtained by augmenting the

ontent of � with \as many as possible" of the ontent bits of E. All that remains

is to give a preise desription of the phrase \as many as possible". Now, the only

set ontaining too many infatoms is the set of all infatoms, sine it is the only set of

infatoms orresponding to an unsatis�able set of w�s. So, when adding ontent bits of

E to the ontent of �, the main onsideration is to avoid ending up with the set of all

infatoms, something that an only our if the ontent of E ontains all the ontent

bits of :�. It thus boils down to the question of determining whih ontent bits of :�

should not be added to the ontent of �. With the help of the total preorder � and

the priniple of Indi�erene, the deision is an easy one. The ontent bits of :� not to

inlude, are the ones that are most easily dislodged from Cont(E), i.e. the �-minimal

ontent bits of :�.

The expetation states and the way they are used to de�ne nonmonotoni reasoning

thus oinide exatly with the modelling of theory revision as proposed in setion 3.3.

So the reasoning proess employed in nonmonotoni reasoning and theory revision is

idential. Does it then follow that nonmonotoni reasoning is theory revision (and vie
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versa)? G�ardenfors and Makinson argue that this is not the ase. Their argument is

based on the fat that there is a di�erene between beliefs and expetations. Fuhrmann

and Levi [1994℄ use this di�erene as an argument in favour of the laim that there is a

di�erene in the proesses of reasoning involved in theory revision and nonmonotoni

reasoning. They do not question the appropriateness of AGM revision, but ast doubt

on the desirability of Rational Monotoniity for nonmonotoni reasoning. Rabinowiz

[1995℄ provides yet another perspetive. He takes issue with the use of \mere expeta-

tions" (whih he regards as being too weak) when interpreting nonmonotoni reasoning

as belief hange, and suggests the use of \assumptions", whih are taken to provide a

basis for both reasoning and ation. But in doing so, he rejets AGM revision as an

appropriate framework for dealing with assumptions.

In our opinion, the rux of the matter is to determine what a partiular reasoning

proess is intended to produe. For belief revision it is not an issue. The set of w�s

obtained when an agent revises its urrent set of beliefs, is learly intended to be the

new set of beliefs of the agent. For expetation based nonmonotoni reasoning, though,

matters are not so lear. How should we interpret the set of plausible onsequenes

of a w� �? It is our ontention that it annot be interpreted as anything other than

the new set of expetations that an agent is willing to embrae when presented with

the evidene �. In other words, expetation based nonmonotoni reasoning is the

proess of moving from one expetation set to another when onfronted with new

evidene. The main motivation for this laim entres around the identi�ation of the

urrent set of expetations with the plausible onsequenes of a logially valid w�,

and an be explained as follows. Sine the expression �j�� is understood to mean

that � is a plausible onsequene of the new evidene � at my disposal, it seems

reasonable to interpret the situation in whih � is a logially valid w� as one in whih

no new evidene has beome available. So my urrent set of expetations onsists of the

plausible onsequenes of the urrently available evidene. And it therefore stands to

reason that if I am willing to aept � as new evidene, my new set of expetations will

be the plausible onsequenes of �. We shall have more to say about suh a dynami

view of nonmonotoni reasoning in setion 4.5.

The aeptane of this viewpoint has some interesting onsequenes for the rela-

tion between nonmonotoni reasoning and belief revision. Firstly, it requires the new

belief set obtained when revising by a partiular w� �, to be a subset of the plausible

onsequenes of �, beause the latter is preisely the set of w�s making up the expe-
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tation set obtained when aepting � as new evidene. Seondly, it requires of us to

assoiate a reasoning proess with nonmonotoni reasoning that is at least as strong as

the proess of reasoning used in belief revision. A phrase suh as \a stronger reasoning

proess" is, of ourse, highly ambiguous, but at least one sensible interpretation would

be to insist that the postulates satis�ed by belief revision should also be satis�ed by

nonmonotoni reasoning. The aeptane of AGM revision as an appropriate mod-

elling for belief revision then fores us to aept Rational Monotoniity as a desirable

postulate for nonmonotoni reasoning.

Our justi�ation of the dynami view of nonmonotoni reasoning presented above

is, to a large extent, based on the premise that the urrent set of expetations of an

agent an be identi�ed with the plausible onsequenes of any logially w�. However,

suh an identi�ation is slightly at odds with the idea, expressed in lemma 4.4.3, of

obtaining the expetation set of an agent from a K-faithful total preorder, sine this

lemma shows that every expetation based onsequene relation is not just based on

some satis�able belief set K, but also on the unsatis�able belief set. Now, the latter

ertainly does not orrespond to the set of plausible onsequenes of any logially valid

w� (nor, for that matter, does it orrespond to the plausible onsequenes of any

w� other than one of the logially invalid ones). This presents us with the following

dilemma. Should the unsatis�able set be seen as an expetation set? A negative

answer is not unlike the assumption frequently made in the theory hange literature,

where the urrent set of beliefs of an agent is assumed to be satis�able. Indeed, in the

representation results of G�ardenfors and Makinson [1994℄ that apply to this disussion,

they restrit themselves to satis�able expetation sets. But there are at least two

reasons to onsider unsatis�able expetation sets as well. Firstly, in the ontext of

the dynami harater that we attribute to nonmonotoni reasoning, the unsatis�able

belief set is a legitimate expetation set | the one obtained when aepting a logially

invalid w� as evidene. And seondly, a broader view of the reasoning abilities of an

agent might well inlude other forms of defeasible reasoning in whih the aeptane

of evidene, represented by w�s other than logially invalid ones, will give rise to an

unsatis�able belief set.

3

On the other hand, if we aept the unsatis�able belief set as

3

A ase in point is that of base hange in whih the beliefs of an agent are represented by a base,

whih is taken to be a set of w�s that is not losed under lassial entailment. In suh ases, the

theory generated by a base may be unsatis�able, but the base itself might ontain enough struture

to enable us to de�ne appropriate hange operations. See, for example, [Fuhrmann, 1991,p. 186℄,
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a legitimate expetation set, how are we to explain the assoiation of every expetation

based onsequene relation with two expetation sets, one of whih is the unsatis�able

belief? The solution, we believe, is a simple one. It is just a matter of realising that

the notion of an expetation state is more fundamental than that of a nonmonotoni

onsequene relation. An expetation set is thus obtained from an expetation state,

not from the derived notion of an expetation based onsequene relation. Viewed

information-theoretially, an expetation state (E;�) with E = Cn(?) should simply

be seen as an ordering on infatoms in whih the lowest level, ontaining the infatoms

that do not form part of Cont(E), is empty.

In onlusion, there is a di�erene between theory revision and expetation based

nonmonotoni reasoning, although the reasoning proess involved in both might very

well be idential. As a onsequene, our representation of an epistemi state ought

to be modi�ed suh that both forms of reasoning an be reovered from it. That is,

an epistemi state should ontain, not just the information neessary for performing

theory hange; it should also inorporate the information in an expetation state so as

to be able to perform expetation based nonmonotoni reasoning. In setion 4.7 we

present one method for doing so.

4.5 A dynami view of nonmonotoni reasoning

As disussed on page 59, the role of the set of nonmonotoni onsequene relations

is to provide a framework in whih legitimate forms of nonmonotoni reasoning an

be expressed. It is usually motivated in terms of examples suh as the following.

Consider a transparent propositional language ontaining the atoms b(t), f(t) and

o(t), respetively representing the assertion that Tweety is a bird, Tweety an y,

and Tweety is an ostrih. Given the �xed information that ostrihes are birds and

the default information that birds normally y, but that ostrihes usually don't, it

is reasonable to onlude that Tweety an y when learning that Tweety is a bird,

but that Tweety an't y when obtaining the additional evidene that Tweety is an

ostrih. One should thus be able to �nd at least one nonmonotoni onsequene relation

j� ontaining both b(t)j�f(t) and b(t) ^ o(t)j�:f(t).

Examples suh as the one above have a de�nite dynami avour to them. It involves

the adjustment of the urrent set of plausible onsequenes when obtaining the initial

[Hansson, 1993b,p. 641℄, and hapter 8 of this dissertation.
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evidene (that Tweety is a bird), only to be followed by a readjustment when presented

with the additional evidene (that Tweety is an ostrih). Given the dynami nature

of suh examples, the formalisation presented above o�ers a uriously stati view of

nonmonotoni reasoning. The idea of additional evidene (that Tweety is an ostrih)

being added to the initial evidene (that Tweety is a bird) somehow gets lost in the

formalisation of the example. So, although b(t) ^ o(t)j�:f(t) is intended to signify

that the addition of the new evidene o(t) to the initial evidene b(t) will result in

:f(t) as a plausible onsequene, the given interpretation of j� simply takes it to mean

that :f(t) is a plausible onsequene of b(t) ^ o(t), and nothing more. There are

only two ways to explain this seemingly anomolous behaviour. We an adopt a view

of nonmonotoni reasoning as a kind of suppositional reasoning, in whih evidene is

put forward \for the sake of argument", only to be disarded again when it has been

determined what its plausible onsequenes would be. Suh an interpretation seems to

be in line with the aims of onditional logi [Adams, 1975, van Benthem, 1984℄, but it

does not provide an aurate reetion of what nonmonotoni reasoning ought to be.

Alternatively, we an attah both a stati and a dynami interpretation to expressions

suh as b(t) ^ o(t)j�:f(t). In general then, we would take the expression � ^ �j� to

mean that  is a plausible onsequene of �^�, as well as to onvey the intuition that,

when presented with � as initial evidene, followed by � as additional evidene, we will

be able to draw the plausible onlusion . The dynami interpretation desribes a

proess in whih evidene is being aumulated systematially, and an be seen as a kind

of iterated version of nonmonotoni reasoning. In fat, it ties up niely with the view

of expetation based nonmonotoni reasoning, presented in setion 4.4.2, as a proess

of moving from one expetation set to another when faed with new evidene. Let E

be our urrent set of expetations, i.e. the w�s that we urrently regard as plausible,

and let j�

E

be the E-based onsequene relation desribing our urrent nonmonotoni

reasoning proess. When onfronted with evidene in the form of a w� �, our new

set of expetations E

0

onsists of all the plausible onsequenes of �. But having

aepted the evidene � (at least for the moment), there is every reason to believe

that modi�ations will be made, not just to our expetation set E, but also to the very

proess of nonmonotoni reasoning that we employ. In other words, we don't just move

to a new expetation set E

0

, but also to a new (E

0

-based) onsequene relation j�

�

E

0

,

and any additional evidene � will now be evaluated in terms of j�

�

E

0

. The deision to

attah both a stati and a dynami interpretation to expressions of the form � ^ �j�
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an thus be formalised as the following property:

If � � :� then � ^ �j�

E

 i� �j�

�

E

0



where j�

E

is an E-based onsequene relation, E

0

= fÆ j �j�

E

Æg, and where j�

�

E

0

is

the E

0

-based onsequene relation adopted when presented with the evidene �. In

setion 7.5.1 we reonsider this property in the ontext of iterated belief hange, and

show that, when slightly modi�ed, it has an interesting model-theoreti interpretation.

4.6 Representing default information

Although our desription of the three types of information used by nonmonotoni rea-

soning systems (see page 60) has, for the most part, been of an informal nature thus

far, it is lear that both the �xed information and the evidene an be represented ade-

quately by sets of w�s of the language L. (In fat, the approah we have followed only

makes provision for single w�s to represent evidene.) When it omes to the represen-

tation of default information, however, the situation is not so lear. One solution is to

be satis�ed with an impliit representation of default rules. For example, suppose L is

a transparent propositional language ontaining the prediate symbols b and f , with b

representing the property of being a bird and f the property of being able to y. Then

any expetation based onsequene relation j� ontaining all the elements of the form

b(x)j�f(x), with x being replaed by all the terms in L, ontains an impliit represen-

tation of the default rule that \birds normally y". This is the viewpoint advaned by

G�ardenfors and Makinson [1994,p. 224℄, at least when it omes to expetation based

nonmonotoni reasoning. Of ourse, suh an approah still leaves unanswered the ques-

tion of how an agent hooses a partiular expetation based onsequene relation, or

equivalently, how it arrives at a partiular expetation state.

In many instanes though, of whih the Tweety example is a ase in point, it seems

more natural to have an expliit way of representing default information. The question

then beomes one of deiding on the most appropriate form of expliit representation.

A �rst attempt might involve the expansion of the language L to introdue another

objet level onnetive  , whih is used to enode default information. Thus, the

default rule asserting that birds normally y might be represented as the set of w�s of

the form b(x) f(x), with x being replaed by all the terms in L. But this approah is

bound to ompliate matters enormously, sine suh default w�s an then also our as
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�xed information, as evidene and as plausible onsequenes of the evidene at hand.

In fat, it is tantamount to the introdution of a onditional onnetive into L, and an

easily lead to a variant of G�ardenfors' triviality result [G�ardenfors, 1988,pp. 156{166℄.

A more realisti initial approah, and one that avoids the ompliated issue of an agent

reasoning about its own reasoning, is to view  as a meta-onnetive. The language

L thus remains unhanged, but in speifying default information we use expressions

of the form �  �, where � and � are w�s of L. This is the method of representing

default information in quite a number of reently developed nonmonotoni reasoning

systems, [Kraus et al., 1990, Pearl, 1990, Lehmann and Magidor, 1992, Ge�ner and

Pearl, 1992, Goldszmidt and Pearl, 1993, 1996℄. These systems are all based on notions

independently developed by Lehmann and Magidor [1992℄ on the one hand, and Pearl

[1990℄ on the other hand, whih we briey disuss below.

Lehmann and Magidor [1992℄ present three nonmonotoni reasoning systems, all

of whih involve the spei�ation of a onditional knowledge base. In our terminology,

a onditional knowledge base CK is a set of default rules of the form �  �, with

�; � 2 L. They refer to suh default rules as onditional assertions. The idea is that one

should be able to derive a set of onditional assertions from any onditional knowledge

base. When viewed as a binary relation on L, suh a derived set of onditional assertions

an then be seen as a nonmonotoni onsequene relation. So, for example, if we are

able to derive the onditional assertion �  � from CK, we would take � to be a

plausible onsequene of � in the presene of CK. The question is then to determine

whih onditional assertions we should be able to derive from a partiular onditional

knowledge base.

Lehmann and Magidor's �rst proposal is based on the preferential onsequene

relations (see de�nition setion 4.2.1), and is termed preferential entailment.

De�nition 4.6.1 A onditional knowledge base CK preferentially entails a ondition-

al assertion � � i� for every preferential onsequene relation j� ontaining CK (in

the sense that j�Æ for every   Æ 2 CK), �j�� holds. 2

So preferential entailment only permits us to draw those plausible onlusions that we

will be able to draw from every preferential onsequene relation respeting the default

information ontained in CK. This is one of the reasons that it has been advoated

by Pearl [1989℄ as the onservative ore that should be ontained in any nonmonotoni

reasoning system.
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Clearly the set of onditional assertions preferentially entailed by a onditional

knowledge base CK also ontains CK, and preferential entailment an thus be seen

as a losure operation of some kind. When viewed as a binary relation on L, it turns

out that every set of onditional assertions preferentially entailed by some onditional

knowledge base is itself a preferential onsequene relation. Preferential entailment is

thus seen as too weak, sine it annot be desribed as a set of rational onsequene

relations.

For Lehmann and Magidor's seond proposal of what a onditional knowledge base

should entail, they apply the onstrution used above to the rational onsequene

relations (see de�nition 4.3.1).

De�nition 4.6.2 A onditional knowledge base CK rationally entails a onditional

assertion �  � i� for every rational onsequene relation j� ontaining CK (in the

sense that j�Æ for every   Æ 2 CK), �j�� holds. 2

Remarkably, it turns out that rational entailment is equivalent to preferential entail-

ment. To be more preise, Lehmann and Magidor show that a onditional knowledge

base CK rationally entails a onditional assertion � � i� CK preferentially entails

�  �. Even more remarkable, perhaps, is the fat that for �nitely generated propo-

sitional languages, Pearl's �-entailment [1988℄, whih is a proposal to deal with default

information on qualitative probabilisti grounds, is also equivalent to preferential en-

tailment [Ge�ner and Pearl, 1992℄.

Sine rational entailment is equivalent to preferential entailment, the former is

thus also regarded as too weak. Lehmann and Magidor [Lehmann, 1989, Lehmann

and Magidor, 1992℄ propose to retify the situation as follows. Consider the set of

onditional assertions rationally entailed by a onditional knowledge base CK. Viewed

as a binary relation on L, this set is a preferential onsequene relation. The idea is to

�nd a sensible way to extend the preferential onsequene relation to obtain a rational

onsequene relation. This rational onsequene relation, termed the rational losure

of CK, seems to be a genuine improvement on rational and preferential entailment,

sine it is able to handle aounts of irrelevane as well as spei�ity.

4

The interested

4

Spei�ity refers to the ability to give priority to more \spei�" default information. For example,

if we know that birds normally y, but that ostrihes normally don't y, the latter rule should have

priority over the former when dealing with a bird that also happens to be an ostrih. See setion 4.3

for a desription of irrelevane.
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reader is invited to onsult [Lehmann, 1989℄ and [Lehmann and Magidor, 1992℄ for

more details. Interestingly enough, Goldszmidt and Pearl [1990℄ have shown that, for

the �nitely generated propositional languages, rational losure is quivalent to system-Z

[Pearl, 1990℄, another of Pearl's nonmonotoni reasoning systems based on qualitative

probabilities.

4.7 Unifying autious and bold reasoning

We have seen (see setion 4.4.2) that G�ardenfors and Makinson [1994℄ use the ex-

petation based onsequene relations as the basis for a uni�ed treatment of theory

revision and nonmonotoni reasoning, arguing that they an be seen as the same pro-

ess, although used for two di�erent purposes. In this setion we show that a loser

examination of the G�ardenfors-Makinson laim is the gateway to a theory of autious

and bold reasoning, enompassing both AGM theory revision and nonmonotoni rea-

soning (in the form of the expetation based onsequene relations) as speial ases.

Suh a theory thus provides a truly uni�ed piture of the two areas.

Let us �rst onsider the laim that theory revision and nonmonotoni reasoning

an be seen as the same proess. With AGM revision and the expetation based

onsequene relations in mind, the interpretation to attah to this assertion is straight-

forward. If the belief set K of an agent in a partiular situation, and the expetation set

E of the same agent in a (possibly) di�erent situation are idential, then the reasoning

proess involved when revising K by a w� � should be the same as when trying to

inorporate the evidene � into E. In other words, the permissible ways of revising K

by � should be exatly the same as the permissible ways of obtaining the plausible on-

sequenes of �, given the expetation set E. What then, about the statement that this

proess is used for two di�erent purposes? Aording to G�ardenfors and Makinson, it

boils down to the di�erene between beliefs and expetations. For them, expetations

inlude not only our beliefs as a limiting ase, but also other w�s that are regarded

as plausible enough to be used as a basis for inferene. The set of expetations of an

agent will thus always inlude its set of beliefs. If we take seriously this relationship

between expetations and beliefs, we are one step loser to a uni�ed view of theory

revision and nonmonotoni reasoning. For, suh a relationship does not just involve

the urrent belief set K and the urrent set of expetations E. It also requires the

belief set obtained when revising K by � to be a subset of the plausible onsequenes
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of �, given the expetation set E. In other words, we should have both K � E and

K � � � f� j �j��g for any AGM K-revision � and any E-based onsequene relation

j�. In fat, we might as well use AGM revisions to represent expetation based rea-

soning, as long as we keep in mind that when doing so, the belief sets used are to be

interpreted as expetation sets. This is the route we shall take in the remainder of this

setion.

G�ardenfors and Makinson have hosen to di�erentiate between beliefs and expe-

tations, but there is nothing preventing us from introduing even further distintions

between sets of onlusions. Rabinowiz [1995℄, for example, proposes the use of a set

of assumptions, whih is intended to be inluded in the set of expetations, and also

to inlude the set of beliefs. Formally, there is, of ourse, no problem with drawing

suh distintions. In fat, we might as well ontinue in this fashion, and make room

for an arbitrary �nite sequene of sets of w�s, eah one inluding its predeessor and

being inluded in its suessor. But what would we be gaining epistemologially? One

answer to this question onerns the ations to be taken by agents under various ir-

umstanes. For example, Rabinowiz's reason for introduing sets of assumptions is

related to his dissatisfation with the use of \mere expetations" when identifying the

proess of theory revision with nonmonotoni reasoning. He argues that expetations,

as understood by G�ardenfors and Makinson, are too provisional to be used for purposes

of deliberation and ation, and suggests the use of assumptions instead. It is our view

that the qualitative di�erene between beliefs, assumptions, expetations and the like,

an perhaps best be expressed, not in terms of whether an agent is willing to at on

them, as Rabinowiz ontends, but rather in terms of how it is willing to at on them.

For example, a detetive investigating a murder ase may be willing to draw tentative

onlusions in order to get his investigation going. He may even be willing to at on

suh onlusions by, for example, following up ertain leads. But he may not have

suÆient faith in these onlusions to bring suspets in for questioning, or to obtain a

warrant for searhing the house of the main suspet. And even when the evidene at

his disposal provides, in his opinion, suÆient grounds for assuming the main suspet

to be guilty, he may not be willing to hand the ase over for proseution. In this ex-

ample then, his expetations might determine his ations related to initial investigative

work, his assumptions might determine when to take ations with possible negative

rami�ations, and his beliefs might determine when to lose the investigation.

Intuitively, suh a sequene of sets of w�s thus orresponds to various degrees of
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beliefs, with a set of w�s earlier in the sequene being assoiated with the outome

of a more autious form of reasoning, and one later in the sequene representing the

outome of a bolder form of reasoning. In the spirit of G�ardenfors and Makinson we

take all these di�erent forms of reasoning to be driven by the same reasoning proess,

and we represent them as a sequene of AGM revisions.

De�nition 4.7.1 An n-reasoning ontext is a sequene of of ordered pairs

h(K

1

; �

1

); : : : ; (K

n

; �

n

)i

where, for every i from 1 to n, �

i

is an AGM K

i

-revision, and for every i from 1 to

n� 1, and every � 2 L, K

i

� K

i+1

and K

i

�

i

� � K

i+1

�

i+1

�. 2

We an then, for example, represent a setup involving beliefs, assumptions and expe-

tations as a 3-reasoning ontext in whih K

1

orresponds to the set of beliefs, K

2

to

the set of assumptions, and K

3

to the expetation set.

It turns out that in the �nitely generated propositional ase, at least, the n-

reasoning ontexts an be onstruted elegantly in terms of sequenes of suessively

re�ned ordered pairs, eah onsisting of a belief set and a faithful total preorder.

De�nition 4.7.2 For any n > 0, an n-re�ned epistemi state is an n-tuple of epistemi

states h�

1

; : : :�

n

i (with every �

i

being an ordered pair (K

i

;�

i

), where K

i

is a belief

set, and �

i

is K

i

-faithful total preorder) suh that, for every i from 1 to n� 1:

1. K

i

� K

i+1

,

2. for every x; y 2 U (the set of interpretations of L), if x �

�

i+1

y then x �

�

i

y,

and

3. for every x; y 2 U , if x �

i

y then x �

i+1

y.

2

Intuitively, �ner grained total preorders represent more adventurous forms of reasoning.

From an information-theoreti point of view, it ensures that an agent is better able

to disriminate between infatoms, and will therefore remove fewer infatoms during a

revision proess.

Theorem 4.7.3 Pik any positive integer n.
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1. Every n-re�ned epistemi state h�

1

; : : :�

n

i de�nes an n-reasoning ontext

h(K

1

; �

1

); : : : ; (K

n

; �

n

)i

by letting every �

i

be the AGM K

i

-revision de�ned in terms of �

i

using (Def �

from �).

2. If L is a �nitely generated propositional language, then every n-reasoning ontext

h(K

1

; �

1

); : : : ; (K

n

; �

n

)i an be de�ned in terms of some n-re�ned epistemi state

h�

1

; : : :�

n

i for whih every �

i

is de�ned in terms of �

i

using (Def � from �).

Proof 1. Pik any i suh that 1 � i < n and any � 2 L. It suÆes to show that

Min

�

i+1

(�) � Min

�

i

(�). So pik any y 2 Min

�

i+1

(�). For every x 2 M(�),

x �

i+1

y, and so x �

i

y. That is, y 2Min

�

i

(�).

2. From theorem 3.2.6 it follows that every �

i

an be de�ned in terms of some K

i

-

faithful total preorder �

i

using (Def � from �). Pik any i suh that 1 � i < n,

and any x; y 2 U , and let � be a w� that axiomatises the set fx; yg. We need

to show that x �

�

i+1

y implies x �

�

i

y, and x �

i

y implies x �

i+1

y. Suppose

�rstly that x �

�

i+1

y but that x 6�

�

i

y. Without loss of generality we an assume

that x �

i

y. It then follows thatMin

�

i

(�) = fxg andMin

�

i+1

(�) = fx; yg. But

then M(K

i

�

i

�) �M(K

i+1

�

i+1

�), ontraditing the supposition that K

i

�

i

� �

K

i+1

�

i+1

�. Next, suppose that x �

i

y but that x �

i+1

y, i.e. y �

i+1

x. Then

Min

�

i

(�) = fxg and either Min

�

i+1

(�) = fx; yg or Min

�

i+1

(�) = fyg. Either

way,Min

�

i+1

(�) *Min

�

i

(�), and soM(K

i+1

�

i+1

�) *M(K

i

�

i

�), ontraditing

the supposition that K

i

�

i

� � K

i+1

�

i+1

�.

2

So the n-re�ned epistemi states provide a suitable abstrat framework for a uni�ed

view of autious and bold reasoning, inluding both AGM theory revision and expe-

tation based inferene.

4.8 Conlusion

Although sometimes viewed as two distint albeit related �elds, theory revision and

nonmonotoni reasoning seem to be two sides of the same oin. In reent years, the
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researh onduted in these two areas have beome more and more entwined, with fre-

quent attempts at attaining a kind of synergy on various levels [Makinson, 1989, 1993,

Katsuno and Mendelzon, 1991, Katsuno and Satoh, 1991, Lindstr�om, 1991, G�ardenfors

and Makinson, 1994, Boutilier, 1994, Goldszmidt and Pearl, 1996℄.

One of the reasons for the view that theory revision and nonmonotoni reasoning

are motivated by di�erent ideas, is that theory revision is usually seen as a desription

of the dynami proess of an agent modifying its set of beliefs, while nonmonotoni

reasoning is viewed as the study of the seemingly stati notion of jumping to onlusions

in the fae of unertainty.

5

But, as we have seen in setions 4.4.2 and 4.5, a loser look

at the intuition underlying nonmonotoni reasoning reveals it to be of a dynami nature

as well. In fat, the word \nonmonotoni" an be seen as a referene to the willingness

of an agent to modify its urrent set of plausible onlusions in the fae of additional

oniting evidene. The prevalene of the stati view of nonmonotoni reasoning is

perhaps attributable to the fat that many of the nonmonotoni reasoning formalisms

are �rmly rooted in work originally done in the area of onditional logi [Adams, 1975,

Stalnaker et al., 1981, van Benthem, 1984℄.

As we have shown in setion 4.5 the aommodation of the dynami nature of

nonmonotoni reasoning in these formalisms is made possible by making ertain impliit

assumptions. In setion 7.5.1 we show how these assumptions an be translated into a

property of iterated theory revision, thus providing another example of nonmonotoni

reasoning as theory revision.

In onlusion, it is lear that researh involving both nonmonotoni reasoning and

theory hange will bene�t both areas. As a ontribution along these lines, we have

presented a general theory of bold and autious reasoning, with AGM theory revision

and expetation based reasoning as speial ases. From our perspetive, though, the

important advantage resulting from the omparison of theory revision and nonmono-

toni reasoning presented in this hapter, is that it provides more support for the use

of faithful total preorders as an appropriate way to represent parts of the epistemi

states of agents.

5

See Veltman [1996℄ for a di�erent view.



Chapter 5

Epistemi entrenhment

Good order is the foundation of all things.

Edmund Burke (1729-97), Irish-born British politiian

As indiated in hapter 1, belief hange is onerned with the ability of an agent to

modify its urrent view of the world in a oherent fashion when onfronted with new

information. To be able to e�et suh modi�ations, it is neessary to �nd a way to

represent the epistemi states of agents. In our view, an appropriate representation

of an epistemi state, at least in the ase of theory ontration and revision, is as an

ordered pair of the form (K;�), where K is a belief set and � is a faithful preorder.

But this is not the only possibility. Other proposals inlude a representation as a set of

\onditional assertions" (see setion 4.6 and Darwihe and Pearl [1997,p. 2℄), and as

an ordering of entrenhment among the w�s of L, [Nayak, 1994b, Nayak et al., 1996℄.

Our fous in this hapter is on the latter proposal.

The best-known version of suh entrenhment orderings is the EE-orderings of

G�ardenfors and Makinson [G�ardenfors, 1988, G�ardenfors and Makinson, 1988℄, dis-

ussed in setion 2.3 and again in setion 3.3.1. In this hapter we onsider them

yet again. We show how to formalise the intuition underlying the de�nition of AGM

ontration in terms of the EE-orderings. Then we fous on new results regarding the

relationship between the EE-orderings and the faithful total preorders. This leads to

a surprising onnetion between the EE-orderings and the orderings on w�s obtained

from Spohn's ordinal onditional funtions [1988℄.

Setion 5.5 of this hapter is an expanded version of the paper by Meyer et al. [1999b℄.

89
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The EE-orderings provide an adequate formalisation of the intuitive notion of the

entrenhment of beliefs in most respets, but they also have some undesirable prop-

erties. We take a look at other approahes to entrenhment and disuss the extent

to whih they irumvent the problems assoiated with the EE-orderings. This in-

ludes a presentation of our own proposal for entrenhment, a re�ned version of the

EE-orderings that is, perhaps not surprisingly, motivated by semanti onsiderations.

This hapter ontains referenes to virtually every variation on entrenhment that

has been put forward in the belief hange literature. Remarkably, eah and every one

of these an, in some way or another, be onstruted semantially in terms of some

ordering on interpretations or infatoms; a result that is, in part, summarised in �gure

5.6 on page 136.

5.1 AGM ontration via the EE-orderings

The intuition asribed to the EE-orderings is that w�s higher up in the ordering are

more entrenhed in the belief set K. When fored to hoose, we should thus rather

disard the less entrenhed w�s. This is G�ardenfors' intuitive desription of ontration

via epistemi entrenhment [1988,p. 89℄; an intuition that is not in exat aordane

with (Def � from v

EE

), the formal de�nition of AGM ontration in terms of the

EE-orderings. (We disuss this matter in more detail in hapter 6.) In this setion we

show that it is possible to formalise the intuition above, by speifying exatly what it

means to say that we are \fored to hoose". We desribe AGM ontration in terms

of the EE-orderings in a way that di�ers from (Def � from v

EE

). In doing so, we make

use of the following identities:

(Def s

v

) s

v

(�) = f� j � < �g

(Def r

�

) r

�

(�) = fx j 9y 2 Min

�

(�), suh that x � yg

De�nition 5.1.1 1. Given a preorder v on L, and a w� �, we de�ne s

v

(�), the

strit ut of �, in terms of v using (Def s

v

).

2. For a faithful preorder � (whih need not be total), we de�ne r

�

(�), the downset

of a w� � in terms of � using (Def r

�

).

2
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A strit ut of a w� � ontains all the w�s that are more entrenhed than � in v.

Strit uts an be seen as the strit versions of the fallbaks of Lindstr�om and Rabi-

nowiz [1991℄. On the other hand, for the faithful total preorders, r

�

(�) is the set

of interpretations that are not stritly above the minimal models of �. We show that

there is a lose onnetion between strit uts and downsets.

Proposition 5.1.2 Let � be a faithful total preorder, and let v

EE

be the EE-ordering

de�ned in terms of � using (Def v

E

from �). If 2 � then Th(r

�

(:�)) = s

v

EE

(�).

Proof Suppose that 2 � and pik any � 2 Th(r

�

(:�)). It suÆes to show that

� 6v

EE

�. Beause Min

�

(:�) � r

�

(:�), there is a y 2 Min

�

(:�) suh that x 2

M(�) for every x � y, and thus � 6v

EE

�. Conversely, pik a � 2 s

v

EE

(�), and pik

any y 2 Min

�

(:�). Sine � 6v

EE

�, x 2 M(�) for every x � y, from whih it follows

that r

�

(:�) �M(�). 2

Proposition 5.1.2 enables us to show that the w�s that are stritly more entrenhed

than � form the ore of the w�s to be retained during an �-ontration of K.

Proposition 5.1.3 Let � be a faithful total preorder, let v

EE

be the EE-ordering

de�ned in terms of � using (Def v

E

from �), and let � be the AGM ontration

de�ned in terms of � using (Def � from �). If 2 � then s

v

EE

(�) � K � �.

Proof Follows easily from proposition 5.1.2. 2

The remaining question is thus to determine whih of the w�s that are at most as

entrenhed as � will be retained, and whih will be disarded during an �-ontration

of K. The intuition ditates that we only remove those w�s that we are fored to

remove. Given proposition 5.1.3, it is lear that a w� � in K will have to disarded if

� is entailed by � together with s

v

EE

(�).

Proposition 5.1.4 Let � be a faithful total preorder, let v

EE

be the EE-ordering

de�ned in terms of � using (Def v

E

from �), and let � be the AGM ontration

de�ned in terms of � using (Def � from �). If 2 � and � 2 s

v

EE

(�) + � then

� =2 K � �.

Proof Suppose that 2 � and � 2 s

v

EE

(�)+�. By proposition 5.1.3, s

v

EE

(�) � K��

and so, if � 2 K � �, then � 2 K � �, ontraditing (K�4). 2
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Furthermore, if the addition of any two w�s � and  to s

v

EE

(�) yields �, then both

will have to be removed from K, even when adding either of them on their own to

s

v

EE

(�) does not entail �.

Proposition 5.1.5 Let � be a faithful total preorder, let v

EE

be the EE-ordering

de�ned in terms of � using (Def v

E

from �), and let � be the AGM ontration

de�ned in terms of � using (Def � from �). Now suppose that � =2 s

v

EE

(�) + � and

� =2 s

v

EE

(�) + , but � 2 s

v

EE

(�) + � ^ . Then � =2 K � � and  =2 K � �.

Proof Beause � =2 s

v

EE

(�) + , we have that 2 �, and by proposition 5.1.2 there

is an x 2 M(Th(r

�

(:�))) suh that x 2 M(:�) \M(). Furthermore, sine � 2

s

v

EE

(�) + � ^ , x 2 M(:�). Sine M(K) � r

�

(:�), it then follows from lemma

1.3.5 that x 2M(Th(M(K)[Min

�

(:�))) and so � =2 K��. The proof for  =2 K��

is similar. 2

And �nally, we get a result that plaes an upper bound on the w�s to be removed

from K. The next proposition ensures that there is a good reason for disarding a w�

� 2 K during an �-ontration of K: We'll always be able to �nd a w� that is at least

as entrenhed as �, and whih, together with � and the ore, entail �.

Proposition 5.1.6 Let � be a faithful total preorder, let v

EE

be the EE-ordering

de�ned in terms of � using (Def v

E

from �), and let � be the AGM ontration

de�ned in terms of � using (Def � from �). For every � 2 K nK�� there is a  2 K

suh that � =2 s

v

EE

(�) +  and � v

EE

, but � 2 s

v

EE

(�) + � ^ .

Proof Pik any � 2 K n K � �. We show that � ! � has the desired properties.

Sine � 2 K nK ��, it follows that � 2 K, and so � ! � 2 K. Furthermore, beause

� 2 K nK � �, there is an x 2Min

�

(:�) � r

�

(:�) suh that x 2M(:�) \M(:�).

So x 2 M(� ! �) \ r

�

(:�) � M(s

v

EE

(�) + � ! �) by proposition 5.1.2, and

thus � =2 s

v

EE

(�) + � ! �. To show that � v

EE

� ! � it is enough to point out

that x � y for every y 2 M(:(� ! �)), and to reall that x 2 M(:�). Finally,

� 2 s

v

EE

(�) + � ^ (� ! �) beause f�; � ! �g � �. 2

Combining the results above, we obtain the following representation theorem.



5.2. EE-ORDERINGS AND MINIMALITY 93

Theorem 5.1.7 Let � be a faithful total preorder, let v

EE

be the EE-ordering de�ned

in terms of � using (Def v

E

from �), and let � be the AGM ontration de�ned in

terms of � using (Def � from �). For every �; � 2 L,

� =2 K � � i�

8

>

>

>

>

<

>

>

>

>

:

� =2 K, or

2 � and � 2 s

v

EE

(�) + �, or

2 � and 9 2 K suh that � =2 s

v

EE

(�) + �, � v

EE

,

and � 2 s

v

EE

(�) + � ^ .

Proof Suppose that � =2 K ��, that � 2 K and that either � � or � =2 s

v

EE

(�)+ �.

� � ontradits (K�6) and the fat that � 2 K nK � �, so we suppose that 2 � and

� =2 s

v

EE

(�)+�. Then the required result follows from proposition 5.1.6. Conversely,

if � =2 K then by (K�2), � =2 K � �. If 2 � and � 2 s

v

EE

(�) + � then � =2 K � �

by proposition 5.1.4. So suppose that � 2 K, 2 �, � =2 s

v

EE

(�) + � and that there

is a  2 K suh that � =2 s

v

EE

(�) + , � v

EE

, and � 2 s

v

EE

(�) + � ^ . Then

� =2 K � � by proposition 5.1.5. 2

Theorem 5.1.7 shows that a w� � 2 K will be disarded during an �-ontration of K

for preisely one of the following two reasons:

� If � is entailed by � together with s

v

EE

(�).

� If � is entailed by � together with s

v

EE

(�) and some w�  that is at least as

entrenhed as �.

So, during an �-ontration of K, we say that we are \fored to hoose" between two

w�s � and  i� the ore of w�s to be retained (the set s

v

EE

(�)) entails � when both

� and  are added to it.

5.2 EE-orderings and minimality

Impliit in the semanti desription of the EE-orderings in setion 3.3.1, is the idea

that the entrenhment of w�s is a derived notion, based on orderings of interpretations,

or perhaps more aptly, orderings of infatoms. Of ourse, theorem 3.3.1 also guarantees

the onstrution of faithful total preorders in terms of some kind of onverse of (Def

v

E

from �), leaving the door open for a view of the EE-orderings as at least as

basi, epistemologially, as the faithful total preorders. Nevertheless, a number of
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other fators make it diÆult to esape the onlusion that the latter is the more

fundamental of the two. In the �rst plae, an appeal to the priniple of Redutionism

beomes appropriate in this ontext if we adopt the view that the EE-orderings are

built up from orderings on infatoms, in muh the same way that lassial entailment

relations are built up from the interpretations (or infatoms) of L. In addition, there

is also the fat that di�erent minimal-equivalent faithful total preorders (see de�nition

3.3.6) may de�ne the same EE-ordering using (Def v

E

from �). This last realisation

is, in fat, the key to some important results about the onnetion between the EE-

orderings and the minimal models of the w�s of L. The veri�ation of these results is

based on the following useful observations onerning the relationship between power

orders on L, in the sense of (Def v

E

from �), and the preorders from whih they

are obtained. These tehnial results will again prove to be most useful in setion 5.5,

where we shall have oasion to make extensive use of them without expliitly referring

to lemma 5.2.1.

Lemma 5.2.1 Let � be any preorder (not neessarily total), and let v be the ordering

on L de�ned in tems of (Def v

E

from �).

1. � v � i� for every y 2Min

�

(:�) there is an x 2 Min

�

(:�) suh that x � y.

2. � 6v � i� there is a y 2Min

�

(:�) suh that x 2M(�) for every x � y.

Proof 1. Suppose that � v � and pik any y 2 Min

�

(:�). From (Def v

E

from

�) it follows that there is a z 2 M(:�) suh that x � y. By the smoothness

of �, there is an x 2 Min

�

(:�) suh that x � z, and the required result then

follows from transitivity. Conversely, suppose that for every y 2 Min

�

(:�)

there is an x 2 Min

�

(:�) suh that x � y, and pik any v 2 M(:�). By the

smoothness of � there is a v

0

2Min

�

(:�) suh that v

0

� v, and by supposition

there is a u 2Min

�

(:�) suh that u � v

0

. The required result then follows from

transitivity.

2. Suppose that � 6v �. That is, there is a v 2M(:�) suh that x 2M(�) for every

x � v. The required result then follows from smoothness and transitivity. The

onverse follows immediately from the supposition that there is a y 2Min

�

(:�)

suh that x 2M(�) for every x � y.

2
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For any faithful total preorder, the set of minimal models of any w� is partiularly

well-behaved in the sense that they are all on the same level. As a onsequene, the

appliation of lemma 5.2.1 to the faithful total preorders and the EE-orderings obtained

from them, using (Def v

E

from �), leads to some interesting results. It shows that the

EE-orderings an be ompletely determined by the minimal models of the w�s of L. In

the non-trivial ase of two w�s � and � that are both not logially valid, � is at most

as entrenhed as � i� the minimal models of :� are at least as high up as the minimal

models of :�, and � will be stritly more entrenhed than � if and only if the minimal

models of :� are stritly below the minimal models of :�. Moreover, any two w�s �

and � are equally entrenhed if and only if the minimal models of :� and :� are on

the same level. In the next setion we show that these results provide an interesting

onnetion between the GE-orderings of Grove (see setion 2.3.1), the EE-orderings,

and the orderings on w�s obtained from Spohn's ordinal onditional funtions [1988℄.

Corollary 5.2.2 Let � be a faithful total preorder, let v

EE

be the EE-ordering de�ned

in terms of � using (Def v

E

from �), and let v

GE

be the GE-ordering de�ned in terms

of � using (Def v

G

from �).

1

1. If 2 � and 2 � then � v

EE

� i� Min

�

(:�) � Min

�

(:�).

2. If 2 � and 2 � then � <

EE

� i� Min

�

(:�) � Min

�

(:�).

3. � �

v

EE

� i� Min

�

(:�) �

�

Min

�

(:�).

2

4. If 2 :� and 2 :� then � v

GE

� i� Min

�

(�) � Min

�

(�).

5. If 2 :� and 2 :� then � <

GE

� i� Min

�

(�) � Min

�

(�).

6. � �

v

GE

� i� Min

�

(�) �

�

Min

�

(�).

Proof Follows easily from lemma 5.2.1 and theorem 2.3.5. 2

From an information-theoreti point of view, the results onerning the EE-orderings

are partiularly illuminating. Reall that a faithful total preorder an be seen as an

1

See setion 1.3 for an explanation of the onvention of applying �, � and �

�

to sets of interpre-

tations.

2

This is a well-known result in the ontext of Grove's systems of spheres [see G�ardenfors, 1988,p.

95℄.
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ordering in whih infatoms lower down are regarded as less entrenhed. The entrenh-

ment of a w� is thus ompletely determined by its least entrenhed ontent bits, a view

that is reminisent of the saying that a hain is only as strong as its weakest link. It an

be seen as a generalisation of a result by G�ardenfors and Makinson [1988℄, that when

a belief set K is �nite modulo Cn, an EE-ordering with respet to K is ompletely

determined by the o-atoms of K, where the o-atoms of K are the logially weakest

elements of K n Cn(>).

5.3 Ordinal onditional funtions

Spohn [1988℄ presents a representation of epistemi states inspired by probability the-

ory. Let us restrit ourselves to a valuation semantis (V;) for L. Spohn de�nes an

ordinal onditional funtion (OCF) � to be a funtion from V , the set of valuations of

L, into the lass of ordinals, suh that �(v) = 0 for at least one v 2 V . Intuitively,

valuations with a smaller ordinal assigned to them are onsidered to be more plausible.

The valuations assigned the ordinal 0 are thus seen as the most plausible, and onse-

quently the urrent belief set is de�ned as K

�

= Th(fv j �(v) = 0g). Sine � has to

assign the ordinal 0 to at least one element of V , K

�

will always be satis�able.

Clearly any OCF � indues a total preorder � on V as follows:

(Def � from �) v � w i� �(v) � �(w)

In fat, sine every subset of V has a smallest ordinal assoiated with it, � is a well-

order, whih means it will also be smooth (see de�nition 3.2.5). Also, � will be a

K

�

-faithful total preorder, provided that fv j �(v) = 0g = M(K

�

).

3

Some K

�

-faithful

total preorders, however, are not well-orders, and they an thus not be de�ned in

terms of any OCF � using (Def � from �). In this sense ordinal onditional funtions

are less general than faithful total preorders. On the other hand, the referene to

ordinals ensures that OCFs allow for a representation of degrees of belief that is more

sophistiated than any suh notion de�ned in terms of faithful total preorders.

Spohn extends the ordinal onditional funtions to funtions from }V n f;g into

the lass of ordinals by assoiating every non-empty subset W of V with the smallest

ordinal assigned to any of the valuations in W . That is, for any OCF �, he de�nes

3

The requirement that fv j �(v) = 0g = M(K

�

) is a tehnial restrition that an be traed bak

to the non-axiomatisability of in�nitely generated propositional languages.
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�(W ) = minf�(w) j w 2 Wg, and the extended � thus de�nes a total preorder on

}V nf;g. It is easily veri�ed that for every OCF � and every W 2 }V nfV g, �(w) = 0

for every w 2 W i� �(V nW ) > 0. As a onsequene, K

�

an also be desribed as the

set of all w�s � suh that �(M(:�)) > 0.

Sine every w� of L is assoiated with a partiular set of valuations | its set of

models | every OCF � de�nes a total preorder on L as follows:

4

(Def v

�

from �) � v

�

� i�

(

�(M(�)) � �(M(�)) if 2 :� and 2 :�,

� :� otherwise

Remarkably, it turns out that these orderings on w�s are instanes of the GE-orderings

of Grove.

Proposition 5.3.1 Let � be an OCF, let � be the total preorder on V de�ned in terms

of � using (Def � from �), and let v

�

be the total preorder on L, de�ned in terms of

� using (Def v

�

from �).

1. v

�

an also be de�ned in terms of � using (Def v

G

from �), where � is the

total preorder on V obtained from �.

2. v

�

is a GE-ordering.

Proof 1. The non-trivial ases, i.e. for satis�able w�s that are not logialy valid,

follow from the de�nition of the extended � and part (4) of orollary 5.2.2.

2. If � is a K

�

-faithful total preorder, the result follows from part (1) and theorem

3.3.1. The ase where � is not K

�

-faithful orresponds to a violation of the

tehnial restrition that the lowest level of � has to ontain all the models of

K

�

. It is easily veri�ed that in suh a ase, � also de�nes a GE-ordering. From

part (1) we then get the required result.

2

We now ome to Spohn's de�nition of the plausibility of w�s. He takes a w� � to be

less plausible than a w� � i� �(M(:�)) < �(M(:�)) or �(M(�)) < �(M(�)). Sine �

only assigns ordinals to non-empty sets of valuations, we let this de�nition apply only

to satis�able w�s that are not logially valid. In order to aommodate all the w�s of

4

The OCF determines the relationship between all satis�able w�s. For ompleteness, we inlude

the logially invalid w�s by plaing them stritly below the satis�able ones.
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L, we extend the de�nition by letting the logially valid w�s be more plausible than

all the other w�s, and letting the logially invalid w�s be less plausible than all the

others. The plausibility ordering <

P

is then de�ned in terms of an OCF � as follows:

(Def <

P

from �) � <

P

� i�

8

>

<

>

:

�(M(:�)) < �(M(:�)) or �(M(�)) < �(M(�))

if 2 �, 2 :�, 2 �, and 2 :�,

� :� and 2 :�, or 2 � and � �, otherwise

Spohn justi�es his de�nition of plausibility in terms of the �rmness with whih a w� is

believed or disbelieved. The basi idea is that if � is K

�

-established (i.e. �(M(:�)) >

0) then � is believed with a �rmness of �(M(:�)), if :� is K

�

-refuted (i.e. �(M(�)) >

0), then � is disbelieved with a �rmness of �(M(�)), and if � is K

�

-undeided (i.e.

�(M(�)) = �(M(:�)) = 0), then � and :� are both believed and disbelieved, with a

�rmness of 0. A w� � will thus be less plausible than a w� � for one of the following

reasons (where both � and � are satis�able but not logially valid):

1. � is K

�

-established and � is K

�

-established. That is, � is disbelieved and � is

believed. Then �(M(:�)) < �(M(:�)) and �(M(�)) < �(M(�)).

2. � is K

�

-undeided and � is K

�

-established. That is, � is less �rmly believed than

�. Then �(M(:�)) < �(M(:�)).

3. Both � and � are K

�

-established and � is less �rmly believed than �. Then

�(M(:�)) < �(M(:�)).

4. � is K

�

-refuted and � is K

�

-undeided. So � is more �rmly disbelieved than �.

Then �(M(�)) < �(M(�)).

5. Both � and � are K

�

-refuted and � is more �rmly disbelieved than �. Then

�(M(�)) < �(M(�)).

There is another way to justify (Def <

P

from �) as a suitable proposal for obtaining

plausibility orderings as well; one that involves the onnetion between the ordinal

onditional funtions and the GE-orderings. Reall that one of the primary purposes

of an EE-ordering (with respet to K) is to ompare the w�s in K. It regards all w�s

that are not in K as equally entrenhed. Similarly (see setion 2.3.1), a GE-ordering

distinguishes between w�s that are K-refuted, but regards all the w�s in K, together

with all the K-undeided w�s, as equally plausible. Now suppose that we want to
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obtain an entrenhment ordering that ombines the best of the EE-orderings and the

GE-orderings.

5

We need to onsider three ases. Firstly, w�s not in K need to be

plaed stritly below w�s in K. Seondly, when omparing w�s in K we need to use an

EE-ordering. And thirdly, when omparing w�s not in K, we need to use the inverse

of a GE-ordering (sine GE-orderings regard w�s lower down as more plausible). We

therefore de�ne a re�ned ordering, an R-orderingv

R

in terms of a faithful total preorder

� as follows:

(Def v

R

from �) � v

R

� i�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

8y 2M(:�), 9x 2M(:�) suh that x � y

if �; � 2 K,

8y 2M(�), 9x 2M(�) suh that x � y

if �; � =2 K,

� =2 K and � 2 K otherwise

It is easily shown that (Def v

R

from �) is a formalisation of the verbal desription

given above.

Proposition 5.3.2 Let � be a faithful total preorder, let v

EE

be the EE-ordering

de�ned in terms of � using (Def v

E

from �), let v

GE

be the GE-ordering de�ned in

terms of � using (Def v

G

from �), and let v

R

be the R-ordering de�ned in terms of

� using (Def v

R

from �). Then

� v

R

� i�

8

>

<

>

:

� v

EE

� if �; � 2 K,

� v

GE

� if �; � =2 K,

� =2 K and � 2 K otherwise.

Proof Follows from theorem 2.3.5. 2

It turns out that Spohn's plausibility orderings are instanes of the strit versions of

the R-orderings.

Theorem 5.3.3 Let � be an OCF, let � be the K

�

-faithful total preorder obtained in

terms of � using (Def � from �), let <

P

be the plausibility ordering obtained in terms

of � using (Def <

P

from �), and let v

R

be the R-ordering obtained in terms of � using

(Def v

R

from �). Then � <

P

� i� � <

R

� for every �; � 2 L.

5

This is a suggestion due to Rabinowiz [1995℄.
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Proof We only onsider the ase where 2 �, 2 :�, 2 � and 2 :�. Firstly, note that

it follows readily from proposition 5.3.2 that the strit version of v

R

an be desribed

as follows:

� <

R

� i�

8

>

<

>

:

� <

EE

� if �; � 2 K

�

,

� <

GE

� if �; � =2 K

�

,

� =2 K

�

and � 2 K

�

otherwise.

Now suppose that � <

P

�. That is, �(M(:�)) < �(M(:�)) or �(M(�)) < �(M(�)).

If �; � 2 K

�

, then �(M(�)) = �(M(�)) = 0, and therefore �(M(:�)) < �(M(:�)).

But this means that Min

�

(:�) � Min

�

(:�). By proposition 5.3.2 it then follows

that � <

EE

�, and so � <

R

�. If �; � =2 K

�

, then �(M(:�)) = �(M(:�)) = 0,

and therefore �(M(�)) < �(M(�)). But this means that Min

�

(�) � Min

�

(�). By

proposition 5.3.2 it then follows that � <

GE

�, and so � <

R

�. Then the only remaining

possibility is for � not to be in K

�

and for � to be in K

�

. For if � 2 K

�

and � =2 K

�

then �(M(�)) = 0 and �(M(:�)) = 0, ontraditing the supposition that � <

P

�. So

we again have that � <

R

�.

Conversely, suppose that � <

R

�. If �; � 2 K

�

then � <

EE

�, and so, by orollary

5.2.2, Min

�

(:�) � Min

�

(:�). But this means that �(M(:�)) < �(M(:�)), and so

� <

P

�. If �; � =2 K

�

then � <

GE

�, and by orollary 5.2.2, Min

�

(�) � Min

�

(�).

But then �(M(�)) < �(M(�)), and so � <

P

�. So we are left with the ase where

� =2 K

�

and � 2 K

�

, whih means that �(M(:�)) = 0 and �(M(:�)) > 0. So

�(M(:�)) < �(M(:�)) and therefore � <

P

�. 2

We shall enounter the ordinal onditional funtions again in setion 7.1 in the ontext

of iterated belief hange.

5.4 Generalised epistemi entrenhment

The EE-orderings of G�ardenfors and Makinson provide a satisfatory formalisation of

the intuition of the entrenhment of w�s in many ways, but they have drawn ritiism

from various quarters, mainly for being too restritive in three aspets [Lindstr�om and

Rabinowiz, 1991, Rott, 1992, G�ardenfors and Makinson, 1994, Rabinowiz, 1995℄.

The �rst, and most serious objetion, is that every EE-ordering is a total preorder.

This has the unfortunate onsequene of ruling out any kind of formal representation

of the idea that some w�s are not omparable in terms of entrenhment. A seond
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objetion onerns the minimality ondition, imposed on the EE-orderings in the guise

of the postulate (EE4). It ensures that the EE-orderings do not distinguish between

w�s that are not in K, and are thus unable to give a proper aount of entrenhment

among w�s that are not in the urrent belief set of an agent. That this is undesirable

is highlighted by the realisation that an agent annot regard a w� � as being more

entrenhed than its negation :� without aepting � into its urrent set of beliefs. And

thirdly, there is resistane to the maximality ondition, imposed on the EE-orderings

in terms of the postulate (EE5), whih requires the most entrenhed w�s to be nothing

other than the logially valid w�s. In this setion we onsider proposals intended to

retify these shortomings by providing entrenhment orderings that generalise the

EE-orderings in one way or another.

5.4.1 LR-entrenhment

Lindstr�om and Rabinowiz [1991℄ propose a generalised version of the EE-orderings

aimed at retifying the �rst objetion mentioned above, subjet to the following set of

postulates:

(LR1) v

LR

is transitive.

(LR2) If � � � then � v

LR

�

(LR3) If � v

LR

� and � v

LR

 then � v

LR

� ^ 

(LR4) If K 6= Cn(?) then � =2 K i� � v

LR

� for all �

(LR5) If > v

LR

� then � �

De�nition 5.4.1 A binary relation v

LR

on L is an LR-ordering (with respet to a

belief set K) i� it satis�es (LR1) to (LR5). 2

With the exeption of (LR3), whih replaes the postulate (EE3), and (LR5), whih is

equivalent to (EE5) in the presene of (LR1) and (LR2), the LR-postulates are idential

to the postulates for the EE-orderings. (LR3) is a weakened version of (EE3), and its

adoption in the plae of (EE3) ensures the possibility that w�s in K need not all be

omparable. In fat, it is easy to see that if we only onsider those LR-orderings in

whih all w� are omparable, we end up with preisely the EE-orderings. To see why,
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?; p ^ q;:p ^ q; p ^ :q:p ^ :q; p; q; p$ q; p _ :q;:p _ q

:(p$ q)

3

:p _ :q

Y
*

k

p _ q

6

>

Figure 5.1: A graphial representation of the LR-ordering used in example 5.4.2. The

ordering is obtained from the reexive transitive losure of the relation determined by

the arrows. Every w� in the �gure is a anonial representative of the set of w�s that

are logially equivalent to it.

note that it follows from (LR3) that if � v

LR

� then � v

LR

�^ �. Now, if all w�s are

omparable, then we have either � v

LR

� or � v

LR

�, from whih we immediately get

that � v

LR

� ^ � or � v

LR

� ^ �.

LR-entrenhment is thus a generalisation of the EE-orderings, but is it a proper

generalisation? That is, are there any LR-orderings for whih some w�s are indeed not

omparable? The answer to this question is provided by the following simple example.

Example 5.4.2 Let L be the propositional language generated by the two atoms p

and q, and let (V;) be the valuation semantis for L where V = f11; 10; 01; 00g. Now

let K = Cn(:(p$ q)), and de�ne the LR-ordering v

LR

as follows: � v

LR

� i� � � �

or � =2 K. It is easily veri�ed that v

LR

is indeed an LR-ordering. Figure 5.1 ontains

a graphial representation of v

LR

, from whih it is easily seen that :p _ q and p _ q

are inomparable. 2
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Lindstr�om and Rabinowiz provide a method for onstruting the LR-orderings in

terms of fallbak families and prove an appropriate representation theorem. More

interesting, from our perspetive, is their seond onstrution method. They show that

the LR-orderings an also be obtained as the intersetions of families of EE-orderings.

Theorem 5.4.3 [Lindstr�om and Rabinowiz, 1991℄

1. The intersetion of every family of EE-orderings is an LR-ordering.

2. For every LR-ordering v

LR

there is a family E of EE-orderings suh that v

LR

=

\E :

In this view of the LR-orderings, the epistemi state of an agent is taken to be a lass of

EE-orderings. An appeal to the priniple of Indi�erene then results in the onstrution

of an entrenhment ordering in whih a w� � is seen as at most as entrenhed as a wf

� i� every EE-ordering in E regards � as at most as entrenhed as �.

5.4.2 GEE-entrenhment

Rott [1992℄ takes the view that it is more natural to onsider strit relations on

w�s and argues that the EE-orderings should be seen as onverse omplements of

suh strit relations (or equivalently, that these strit relations be obtained as the

onverse omplements of the EE-orderings).

6

He de�nes a set of generalised epistemi

entrenhment orderings in terms of the following set of postulates:

(GEE1) > 6< >

(GEE2") If � < � and � �  then � < 

(GEE2#) If � < � and  � � then  < �

(GEE3") If � < � and � <  then � < � ^ 

(GEE3#) If � ^ � < � then � < �

De�nition 5.4.4 A binary relation <

GEE

on L is a GEE-ordering (with respet to a

belief set K) i� it satis�es (GEE1) to (GEE3#). 2

6

A relation S is the onverse omplement of a binary relation R on a set X i� for every x; y 2 X ,

(x; y) 2 S i� (y; x) =2 R.
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Rott is of the opinion that the EE-orderings should be seen as onverse omplements of

the GEE-orderings. Sine the EE-orderings are total preorders, taking the strit version

of an EE-ordering is the same as taking its onverse omplement. He shows that the

strit versions of the EE-orderings form a strit subset of the set of all GEE-orderings.

The GEE-orderings are not subjet to analogues of the minimality and maximality

onditions imposed on the EE-orderings. The following four supplementary postulates

for generalised epistemi entrenhment are intended to serve as suh analogues.

(GEE4) If K 6= L then ? < � i� � 2 K

(GEE4

0

) If � =2 K and � 2 K then � < �

(GEE5) If 2 � then � < >

(GEE5

0

) If � < > and � 6< > then � < �

It is easily veri�ed that the strit versions of the EE-orderings satisfy these four pos-

tulates as well.

It turns out that the GEE-orderings an be de�ned in terms of families of strit

versions of the EE-orderings. With a small modi�ation, the following results are

obtained from [Rott, 1992℄.

Theorem 5.4.5 1. The intersetion of every family of strit EE-orderings is a

GEE-ordering that satis�es the four supplementary postulates as well.

2. For every GEE-ordering <

GEE

that satis�es the four supplementary postulates as

well, there is a family E of strit EE-orderings suh that <

GEE

= \E :

Theorem 5.4.5 is remarkably similar to theorem 5.4.3, the representation theorem for

the LR-orderings in terms of families of EE-orderings, and might lead one to suspet

that the GEE-orderings (satisfying the four supplementary postulates) are preisely

the strit versions of the LR-orderings. But as the next example shows, this is not the

ase.

Example 5.4.6 Consider the propositional language L generated by the two atoms

p and q with the valuation semantis (V;), where V = f11; 10; 01; 00g. Let K =
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p ^ :q;:q;:(p$ q);?;:p ^ :q;:p _ :q;:p ^ q;:p

p$ q; p ^ q

:p _ q; q p; p _ :q

p _ q

>

6

k 3

3
k

6

Figure 5.2: A graphial representation of the LR-ordering used in example 5.4.6. The

ordering is obtained from the reexive transitive losure of the relation determined by

the arrows. Every w� in the �gure is a anonial representative of the set of w�s that

are logially equivalent to it.

Cn(p ^ q), and onsider the LR-ordering v

LR

de�ned as follows:

� v

LR

� i�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

� 2 L if � =2 K,

p ^ q � � if � � p ^ q or � � p$ q,

q � � if � � q or � � :p _ q,

p � � if � � p or � � p _ :q,

p _ q � � if � � p _ q,

� 2 L if � �.

Figure 5.2 ontains a graphial representation of the LR-ordering v

LR

. An inspetion

of �gure 5.2 shows that v

LR

is indeed an LR-ordering, but that the strit version <

LR

of v

LR

violates (GEE3"), by taking � as p $ q, � as p, and  as q, and violates

(GEE3#) by taking � as p and � as q. 2
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5.5 Re�ned entrenhment

Although the faithful total preorders are suÆient for a omplete haraterisation of

AGM theory hange, it is possible to ahieve the same e�et with other preorders as

well. We have a partiular interest in a set of faithful preorders that are very losely

related to the faithful total preorders.

De�nition 5.5.1 A weak partial order � on a set X is alled modular i� for every

x; y; z 2 X, if x k

�

y and z � x, then z � y. 2

The modular weak partial orders are the reexive versions of the modular partial

orders of Ginsberg [1986℄ and Lehmann and Magidor [1992℄, whih in turn, an also be

desribed as the relations on a set X satisfying transitivity and virtual onnetivity (see

de�nition 2.4.4). Intuitively, a modular weak partial order ensures that the elements

of X are arranged in levels, with inomparable elements being regarded as on the same

level. Using this intuition, it is lear that the following two identities provide a natural

onnetion between the total preorders and the modular weak partial orders.

(Def � from �) � = � n f(x; y) 2 X �X j x 6= y and x �

�

yg

(Def � from �) � = � [ f(x; y) 2 X �X j x k

�

yg

De�nition 5.5.2 A faithful modular weak partial order and a faithful total preorder

are semantially related i� they an be de�ned in terms of eah other using (Def �

from �) and (Def � from �) respetively. 2

It is easily seen that a faithful total preorder and its semantially related modular

weak partial order are minimal-equivalent (see de�nition 3.3.6), and as a result, the set

of faithful modular weak partial orders an also be used to haraterise AGM theory

hange.

7

So if we are only interested in minimality, as in the ase of AGM theory

hange, a move from the faithful total preorders to the faithful modular weak partial

orders is an inessential tehnial modi�ation. But as we shall see below, other on-

strutions involving orderings on interpretations are more sensitive to suh a shift. (See

also hapter 6.) From an information-theoreti point of view, there is also an impor-

tant di�erene. In a faithful total preorder, infatoms on the same level are regarded as

equally important or entrenhed, while the semantially related faithful modular weak

7

These results are speial ases of proposition 5.7.3 and orollary 5.7.4.
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partial order will regard them as inomparable. As we shall see in hapter 6, this an

have important e�ets on basi priniples suh as the priniple of Indi�erene and the

priniple of Preferene.

In this setion we use the faithful modular weak partial orders as the basis for

the presentation and investigation of sets of re�ned versions of the EE-orderings that

allow for the possibility of w�s being inomparable. These orderings are obtained by

applying (Def v

E

from � ), not to the faithful total preorders, but to the faithful

modular weak partial orders.

De�nition 5.5.3 An RE-ordering v

RE

(re�ned entrenhment ordering) is a binary

relation on L de�ned in terms of a faithful modular weak partial order using (Def v

E

from �). We say that an EE-ordering and an RE-ordering, de�ned respetively in

terms of a faithful total preorder and its semantially related faithful modular weak

partial order, using (Def v

E

from �), are semantially related . 2

The next proposition provides a preliminary list of properties of the RE-orderings.

Proposition 5.5.4 Let v

RE

be the RE-ordering de�ned in terms of the faithful mod-

ular weak partial order � using (Def v

E

from �). Then v

RE

satis�es the following

properties.

1. v

RE

is a preorder (that need not be total).

2. Suppose that the EE-ordering v

EE

is semantially related to v

RE

. If � v

RE

�

then � v

EE

�.

3. If � � � then � v

RE

�.

4. � v

RE

� for all �, i� � �.

5. If � � � then � v

RE

 i� � v

RE

, and  v

RE

� i�  v

RE

�.

6. If K is satis�able then f� j :� 2 Kg = [?℄

v

RE

.

7. If � =2 K and � 2 K then � <

RE

�.

8. If :� 2 K and : =2 K then � <

RE

.

9. If � =2 K then K [ f�g � � i� � v

RE

�.
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10. If � �

v

RE

� then � ^ �; � _ � 2 [�℄

v

RE

= [�℄

v

RE

.

11. � v

RE

� ^ �, or � v

RE

� ^ �, or both �! � 6v

RE

� and � ! � 6v

RE

�.

Proof Many of these results follow from proposition 5.7.6. We only prove the re-

maining parts. For part (6), we need to show that if K is satis�able, then [?℄

v

RE

�

f� j :� 2 Kg. So suppose that K is satis�able, pik any � 2 [?℄

v

RE

and assume

that :� =2 K. Then there is at least one model x of K that satis�es �, and thus

� 6v

RE

?, ontraditing the supposition that � 2 [?℄

v

RE

. For part (8), we need

to show that if :� 2 K and : =2 K then  6v

RE

�. So suppose that :� 2 K

and : =2 K. Sine M(K) \M() 6= ;, it follows from faithfulness that there is a

y 2 M() \M(K) � M(:�), suh that x 2 M() for every x � y, i.e.  6v

RE

�. For

part (9), we need to show that if � =2 K and � v

RE

� then K [f�g � �. So let � =2 K

and suppose that K [f�g 2 �. So there is a y 2M(K)\M(�) suh that y 2M(:�).

That is, y 2 M(:�) and for every x � y, x 2 M(�), whih means that � 6v

RE

�. For

part (10), we need to show that if � �

v

RE

� then � _ � 2 [�℄

v

RE

= [�℄

v

RE

. From part

(3) of this proposition it follows that � v

RE

�_�. To show that �_� v

RE

�, assume

that it is not the ase. Then there is a y 2Min

�

(:�) suh that x 2M(�_�) for every

x � y. Therefore y 2 M(:�) \M(�). But sine � v

RE

�, there is a z 2 Min

�

(:�)

suh that z < y whih, together with the minimality of y in M(:�), ontradits the

fat that � v

RE

�. 2

An inspetion of the properties set out in proposition 5.5.4 reveals something of the

struture of the RE-orderings. They are re�ned versions of the EE-orderings that

need not be total. Furthermore, every RE-ordering partitions the set of w�s into four

disjoint sets. The logially valid w�s are all equally entrenhed and stritly more

entrenhed than all other w�s. Next omes the remaining w�s in K. While stritly

more entrenhed than the w�s not in K, they need not all be omparable. The third

partitition onsists of the K-undeided w�s, whih are all stritly less entrenhed than

the w�s in K and more entrenhed than the K-refuted w�s. (If K is unsatis�able,

there are not any K-undeided w�s or K-refuted w�s.) So the RE-orderings are able

to distinguish between w�s not in K. In fat, the part of an RE-ordering restrited

to the w�s that are not in K, orresponds to lassial entailment relative to K. This

ertainly has more intuitive appeal than regarding all the w�s that are not in K as

equally entrenhed, suh as the EE-orderings do. For example, it makes muh more
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sense to regard a w� that is K-refuted as less entrenhed than a w� that is merely

K-undeided, than to regard them both as equally entrenhed.

The last two parts of proposition 5.5.4 are worth singling out. Note that part (10)

does not hold for the EE-orderings. An interesting example is the ase of a w� � and its

negation. In an EE-ordering v

EE

, it is perfetly aeptable to have :� �

v

EE

� as long

as � is not logially valid or logially invalid. However, if this were the ase in an RE-

ordering v

RE

, part (10) of proposition 5.5.4 would require that � _ :� 2 [�℄

v

RE

, thus

ontraditing part (4) of the same proposition. Part (11) bears a vague resemblane

to the postulate (EE3), and will be used in our haraterisation of the RE-orderings in

terms of postulates. In fat, so will the properties ontained in the lemma below.

Lemma 5.5.5 Let v

RE

be an RE-ordering:

1. If �!  v

RE

� then �! � v

RE

� or � !  v

RE

�.

2. If �!  v

RE

� then � 6v

RE

� or � !  v

RE

�.

3. If �!  v

RE

� then � 6v

RE

 or �! � v

RE

�.

Proof Let � be a faithful modular weak partial order from whih v

RE

is de�ned using

(Def v

E

from �).

1. Suppose that � ! � 6v

RE

� and � !  6v

RE

�. By � ! � 6v

RE

� there is a

y 2 Min

�

(:�) suh x 2 M(� ! �) for every x � y. And by the minimality of

y in M(:�), x 2M(�) \M(�) for every x < y. Similarly, � !  6v

RE

� implies

that there is a v 2Min

�

(:�) suh that u 2M(�)\M() for every u < v. Sine

� is a modular weak partial order, it has to be the ase that v � y. And this

means that z 2M(�)\M() for every z < y. So y 2 M(:�) and x 2M(�! )

for every x � y. That is, �!  6v

RE

�.

2. Suppose that � v

RE

� and � !  6v

RE

�. As in part (1), � !  6v

RE

� means

there is a v 2 Min

�

(:�) suh that u 2 M(�) \M() for every u < v. So by

� v

RE

� there is a w � v suh that w 2Min

�

(:�). And sine w � v, it follows

that u 2 M(�) \M() for every u < w. So u 2 M(� ! ) for every u � w.

That is, �!  6v

RE

�.

3. Suppose that � v

RE

 and � ! � 6v

RE

�. As in part (1), � ! � 6v

RE

� means

there is a y 2 Min

�

(:�)suh that x 2 M(�) \M(�) for every x < y. So by
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� v

RE

, z � y for every z 2 M(:). And therefore x 2 M() for every x < y.

So y 2M(:�) and x 2M(�! ) for every x � y. That is, �!  6v

RE

�.

2

5.5.1 Re�ned entrenhment and the EE-orderings

The appliation of lemma 5.2.1 to the faithful modular weak partial orders and the

RE-orderings obtained in terms of them, using (Def v

E

from �), yields a useful result.

It shows that two w�s are equally entrenhed if and only if their negations have the

same minimal models, and for any two w�s � and �, both of whom are not logially

valid, � is stritly more entrenhed than � if and only if the minimal models of :� are

either stritly above the minimal models of :�, or form a strit subset of the minimal

models of :�. As a onsequene, two w�s � and � are inomparable i� the minimal

models of the negations of the two w�s are on the same level, the minimal models of

:� inlude a model of �, and the minimal models of :� inlude a model of �.

Corollary 5.5.6 Let � be a faithful modular weak partial order, and let v

RE

be the

RE-ordering de�ned in terms of � using (Def v

E

from �).

1. � �

v

RE

� i� Min

�

(:�) =Min

�

(:�).

2. If 2 � and 2 � then � <

RE

� i� Min

�

(:�) � Min

�

(:�) or Min

�

(:�) <

Min

�

(:�).

3. � k

v

RE

� i� Min

�

(:�) * M(:�), Min

�

(:�) * M(:�), and x k

�

y or x = y

for every y 2Min

�

(:�) and every x 2Min

�

(:�).

Proof 1. Follows easily from lemma 5.2.1.

2. Suppose that 2 �, 2 �, and � <

RE

�, and suppose there is a y 2Min

�

(:�) and

an x 2 Min

�

(:�), suh that x � y. From � 6v

RE

� there is a v 2 Min

�

(:�)

suh that u 2 M(�) for every u � v. So, for every s 2 Min

�

(:�) and every

t 2 Min

�

(:�), s � t. Therefore the minimal models of :� and :� lie on

the same level. Now pik any u 2 Min

�

(:�). By � v

RE

�, u 2 Min

�

(:�).

Furthermore v is a minimal model of :� that is not a minimal model of :� and

so Min

�

(:�) �Min

�

(:�). The onverse follows easily, and is omitted.



5.5. REFINED ENTRENCHMENT 111

- - -� � �

- - -� � �

6

6

6

6

- - -� � �
6

6

[>℄

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

K

L nK

I �

� I

� I

I �

I �

� I

� I

I �

� I

� I

�

I �

I

[>℄

8

>

>

>

>

>

<

>

>

>

>

>

:

K

(

L nK

I �

EE-orderings RE-orderings

Figure 5.3: A graphial omparison of the EE-orderings and the RE-orderings

3. Suppose � k

v

RE

�. So there is a v 2 Min

�

(:�) suh that u 2 M(�) for every

u � v, and there is a y 2 Min

�

(:�) suh that x 2 M(�) for every x � y. The

required result then follows from the fat that v k

�

y and that � is a modular

weak partial order. The onverse follows easily.

2

A onsequene of orollaries 5.2.2 and 5.5.6 is that the RE-ordering whih is semantial-

ly related to an EE-ordering v

EE

maintains the ordering between the equivalene lass-

es of w�s modulo v

EE

but o�ers an exploded view of eah of these equivalene lasses.

Figure 5.3 gives a graphial representation of this situation. From an information-

theoreti point of view, the results of orollary 5.5.6 are quite interesting. They show

that the RE-orderings have more of the underlying entailment relation � built into

them than their semantially related EE-orderings. Thus, two w�s are equally en-

trenhed when they have exatly the same set of least entrenhed ontents bits, not

when their least entrenhed ontent bits are merely on the same level, as is the ase

for the EE-orderings. Similarly, a w� � will be more entrenhed than a w� �, not

only when the least entrenhed ontent bits of � are more entrenhed than the least

entrenhed ontents bits of �, but also when the least entrenhed ontent bits of �

stritly inludes the least entrenhed ontent bits of �. And ontinuing in the same

vein, the inomparability of two w�s � and �, in terms of re�ned entrenhment, then

ours when their least entrenhed ontent bits are on the same level, but neither set

is inluded in the other.
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The strong link with the entailment relation � is evident when we onsider the

faithful modular weak partial order � in whih the ountermodels of K are all on the

same level. In suh a ase, the RE-ordering de�ned in terms of � using (Def v

E

from

�) orresponds exatly to entailment relative to K. In fat, an even stronger link exists

in the limiting ase where K just ontains the logially valid w�s. In this ase, there

is only one RE-ordering and one EE-ordering with respet to K. And whereas the

RE-ordering is exatly the entailment relation �, the semantially related EE-ordering

regards all w�s, exept for the logially valid ones, as equally entrenhed. An elegant

explanation for this di�erene an be found by looking at � and the semantially

related faithful total preorder �. It is easily veri�ed that � is the identity relation on

U , while � is the Cartesian produt U � U . So � represents the epistemi state of an

agent for whom all infatoms are inomparable. In the absene of any preferene for

ertain bits of information, it has no hoie but to revert bak to the logial ontent

of w�s as a measure of the entrenhment. Hene the use of the lassial entailment

relation � as the assoiated entrenhment ordering. On the other hand, the faithful

total preorder � represents the epistemi state of an agent who regards all infatoms as

equally entrenhed. Hene all w�s, exept the logially valid w�s, are seen as equally

entrenhed.

In light of the similarity between the methods of onstruting the RE-orderings and

the EE-orderings, it is natural to wonder whether they an be de�ned in terms of one

another. The next theorem shows that this an be aomplished by the following two

identities:

(Def v

RE

from v

EE

) � v

RE

� i� � � or � <

EE

� or � <

EE

�! �

(Def v

EE

from v

RE

) � v

EE

� i� � v

RE

� or �! � 6v

RE

�

Theorem 5.5.7 Let the RE-ordering v

RE

and the EE-ordering v

EE

be semantially

related.

1. v

RE

an also be de�ned in terms of v

EE

using (Def v

RE

from v

EE

)

2. v

EE

an also be de�ned in terms of v

RE

using (Def v

EE

from v

RE

)

Proof Let � be a faithful modular weak partial order in terms of whih v

RE

is de�ned

using (Def v

E

from �), and let � be the semantially related faithful total preorder

in terms of whih v

EE

is de�ned using (Def v

E

from �).
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1. Suppose that � v

RE

�. By part (2) of proposition 5.5.4, � v

EE

�. Suppose

further that � 6<

EE

�, i.e. � v

EE

�, and that 2 �. Then 2 � (by part (4) of

proposition 5.5.4), and by orollary 5.2.2 it follows that for every y 2Min

�

(:�)

and every x 2 Min

�

(:�), x �

�

y. Beause 2 � there is thus a v 2 Min

�

(:�)

suh that for every u � v, u 2 M(�) \M(�). Combined with � v

RE

� this

means that for every w �

�

v, w 2 M(:�) \M(:�) or w 2 M(�). Therefore

z 2 M(� ! �) for every z � v, and so � ! � 6v

EE

�, i.e. � <

EE

� ! �.

Conversely, if � � then � v

RE

� follows vauously. If � <

EE

�, i.e. � 6v

EE

�,

there is a y 2Min

�

(:�) suh that x 2M(�) for every x � y. So y < u for every

u 2 Min

�

(:�) and therefore � v

RE

�. Finally, suppose that � <

EE

�! �, i.e.

�! � 6v

EE

�. Then there is a y 2Min

�

(:�) suh that x 2M(�! �) for every

x � y, and soMin

�

(:�) =Min

�

(:�) �M(:�). So for every v 2M(:�), there

is a u 2M(:�) suh that u � v, i.e. � v

RE

�.

2. Suppose that � v

EE

� and that � 6v

RE

�. By � 6v

RE

� there is a y 2Min

�

(:�)

suh that x 2 M(�) for every x � y. So z 2 M(�) \M(�) for every z < y, and

from � v

EE

� it thus follows that there is a v �

�

y suh that v 2 M(:�). So

u 2 M(� ! �) for every u � v and thus �! � 6v

RE

�. Conversely, if � v

RE

�

then � v

EE

� by part (2) of proposition 5.5.4. And if � ! � 6v

RE

� then

there is a y 2 Min

�

(:�) suh that x 2 M(� ! �) for every x � y. Therefore

z 2 M(�) \M(�) for every z < y. So u � y for every u 2 M(:�), from whih

� v

EE

� follows easily.

2

Theorem 5.5.7 also shows that the identities (Def v

EE

from v

RE

) and (Def v

RE

from v

EE

) are interhangeable. That is, if we start with either an RE-ordering or an

EE-ordering, and then apply (Def v

EE

from v

RE

) and (Def v

RE

from v

EE

) in the

appropriate order, we end up with the same ordering that we started with. It is thus

appropriate to think of re�ned entrenhment as an alternative to the EE-orderings.

Indeed, in view of theorem 5.5.7, there is a one-to-one orrespondene between the

RE-orderings and the EE-orderings, obtained by applying the two identities (Def v

EE

from v

RE

) and (Def v

RE

from v

EE

).

The lose relationship between the RE-orderings and the EE-orderings raises the

question of whether the two notions ever oinide. One part of the answer to this
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question is easy. Whenever a faithful preorder � is both a total preorder and a modular

weak partial order, the EE-ordering and the RE-ordering de�ned in terms of � using

(Def v

E

from �) are, by de�nition, idential. Now, it is easy to see that this is the

ase only when �, restrited to the ountermodels of K, is a linear order.

De�nition 5.5.8 For a belief set K, a K-linear order � is a faithful total preorder

suh that � \ ((U nM(K))� (U nM(K))) is a linear order. 2

Proposition 5.5.9 Let � be any K-linear order. The binary relation de�ned in terms

of � using (Def v

E

from �) is an EE-ordering and an RE-ordering.

Proof Follows immediately from the fat that � is both a faithful total preorder and

a faithful modular weak partial order. 2

In general, there may be instanes of faithful total preorders, or faithful modular weak

partial orders, as the ase may be, that are not K-linear orders, but that nevertheless

de�ne the same EE-orderings (or RE-orderings) as some K-linear order. More inter-

esting, no doubt, is that, at least in the �nitely generated propositional ase, if an

EE-ordering annot be de�ned in terms of a K-linear order using (Def v

E

from �),

then it is not an RE-ordering, and vie versa.

Proposition 5.5.10 Let L be a �nitely generated propositional language with a valu-

ation semantis (V;).

1. Let v

RE

be an RE-ordering that annot be de�ned in terms of a K-linear order

using (Def v

E

from �). Then v

RE

is not an EE-ordering.

2. Let v

EE

be an EE-ordering that annot be de�ned in terms of a K-linear order

using (Def v

E

from �). Then v

EE

is not an RE-ordering.

Proof 1. By de�nition, v

RE

an be de�ned in terms of a faithful modular weak

partial order �, that is not a K-linear order, using (Def v

E

from �). That means

there are at least two distint ountermodels x and y of K suh that x k

�

y. Let

�

x

be a w� that axiomatises x and let �

y

be a w� that axiomatises y. (By our

hoie of L, there are suh w�s.) So Min

�

(�

x

) = fxg and Min

�

(�

y

) = fyg, and

thus Min

�

(�

x

) * M(�

y

), Min

�

(�

y

) * M(�

x

), and Min

�

(�

x

) k

�

Min

�

(�

y

).

By part (iii) of orollary 5.5.6 it then follows that :�

x

k

v

RE

:�

y

, and so v

RE

annot be an EE-ordering.
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2. Assume that v

EE

is an RE-ordering. Then it follows, as in part (i), that v

EE

annot be an EE-ordering; a ontradition.

2

5.5.2 Postulates for re�ned entrenhment

In this setion we present a desription of the RE-orderings in terms of postulates,

and give a representation theorem to prove that the postulates do indeed provide a

haraterisation of the RE-orderings. The postulates are given below.

(RE1) v

RE

is transitive

(RE2) If � � � then � v

RE

�

(RE3a) If �; � 2 K then � v

RE

� ^ �, or � v

RE

� ^ �,

or both �! � 6v

RE

� and � ! � 6v

RE

�

(RE3b) If �!  v

RE

� then �! � v

RE

� or � !  v

RE

�

(RE3) If �!  v

RE

� then � 6v

RE

� or � !  v

RE

�

(RE3d) If �!  v

RE

� then � 6v

RE

 or �! � v

RE

�

(RE4a) If � =2 K and � 2 K, then � <

RE

�

(RE4b) If �; � =2 K, then � v

RE

� i� K [ f�g � �

(RE5) If � v

RE

� for all �, then � �

To a ertain extent, the postulates for re�ned entrenhment follow the same pattern as

the postulates for the EE-orderings, and this is reeted in the labelling sheme we use.

(RE1), (RE2) and (RE5) are idential to (EE1), (EE2), and (EE5) respetively. And

while (RE3a) bears a vague resemblane to (EE3), it is a bit more diÆult to desribe

the intuition assoiated with (RE3b), (RE3) and (RE3d). Tehnially though, they

seem to be neessary for a omplete desription of the relationship between the w�s

in K. (EE4) gives a omplete desription of how an EE-ordering treats the w�s that

are not in K, while the handling of suh w�s by the RE-orderings are desribed by the

two independent postulates, (RE4a) and (RE4b). (RE4a) desribes the relationship

between w�s inK and w�s not inK, while (RE4b) is a presription for the treatment of
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any two w�s, neither of whih are in K. To obtain the desired representation theorem,

we need the following two lemmas.

Lemma 5.5.11 If v is a relation on L that satis�es (RE1) to (RE5) then the relation

v

EE

de�ned as: � v

EE

� i� � v � or �! � 6v �, satis�es (EE1) to (EE5).

Proof For (EE1), suppose that � v

EE

� and � v

EE

. That is, � v � or �! � 6v �,

and � v  or � !  6v �. This an be divided into four ases: (i) � v � and � v ,

(ii) � v � and � !  6v �, (iii) � v  and � ! � 6v �, and (iv) � ! � 6v � and

� !  6v �. For (i), � v  follows from (RE1). For (ii), (iii), and (iv), � !  6v �

follows from (RE3), (RE3d), and (RE3b) respetively. So in all four ases, either

� v  or �!  6v �. That is, � v

EE

. (EE2) follows from (RE2) and (EE3) follows

from (RE3a). For (EE4), suppose that K 6= L, and let � =2 K. Assume there is a �

suh that � 6v

EE

�. That is, � 6v � and � ! � v �. By (RE4a) � =2 K, and so,

by (RE4b), K [ f� ! �g � �. But this means � 2 K; a ontradition. Conversely,

suppose that � 2 K. So :� =2 K, and :� < � by (RE4a). And sine � ! :� � :�,

we have that � 6v :� and �! :� v �. That is, � 6v

EE

:�. For (EE5), suppose that

2 �. By (RE5), > 6v � and by (RE2), > ! � v >. That is, > 6v

EE

�. 2

Lemma 5.5.12 Let v be a relation on L that satis�es (RE1) to (RE5). If v

EE

is

de�ned as: � v

EE

� i� � v � or � ! � 6v �, and v

RE

is de�ned as as: � v

RE

� i�

� � or � <

EE

� or � <

EE

�! �, then v = v

RE

.

Proof By lemma 5.5.11, v

EE

is an EE-ordering, and thus a total preorder. By keeping

in mind that � <

EE

� i� � 6v

EE

�, noting that (�! �)! � � � _ �, and ombining

the de�nitions of v

EE

and v

RE

, it suÆes to show that

� v � i�

8

>

<

>

:

� �, or

� 6v � and � ! � v �, or

�! � 6v � and � _ � v �! �.

So suppose that � v �, 2 �, and either � v � or � ! � 6v �. We have to show that

� ! � 6v � and � _ � v � ! �. Assume that � ! � v �. There are two ases.

Either � v � or � ! � 6v �. In the former ase, � ! � v � v �. By (RE3) it thus

follows that � 6v � or � ! � v �, ontraditing � v � and 2 � ombined with (RE5).

In the latter ase, note that � v � v � ! � by (RE2), and sine (� ! �) ! � � �,

(� ! �) ! � v � ! �. By (RE3) we then have that � ! � 6v �, or � ! � v �; a



5.5. REFINED ENTRENCHMENT 117

ontradition. So we have shown that �! � 6v �. Now assume that � _ � 6v �! �.

By (RE2), � v � v � ! �. And sine � � (� ! �) ! �, (� ! �) ! � v � ! �.

By (RE3b) it then follows that (� ! �) ! � v � ! �, or � ! � v �. And sine

(� ! �) ! � � � _ �, it has to be the ase that � ! � v �. But sine we have, by

supposition, that � v � or � ! � 6v �, this means that � v �. From � ! � v � it

also follows by (RE3) that � 6v � or �! � v �. So �! � v �, and by (RE5), � �.

But this ontradits 2 �, � v �, and (RE5). 2

We are now in a position to prove that the postulates given above provide a hara-

terisation of the RE-orderings.

Theorem 5.5.13 Every binary relation on L de�ned in terms of a faithful modular

weak partial order using (Def v

E

from �) satis�es (RE1) to (RE5). Conversely, every

binary relation on L that satis�es (RE1) to (RE5) an be de�ned in terms of a faithful

modular weak partial order using (Def v

E

from �).

Proof Let v

RE

be a binary relation on L de�ned in terms of a faithful modular weak

partial order using (Def v

E

from �). The required result follows from proposition 5.5.4

and lemma 5.5.5. For the onverse, let v be a relation on L that satis�es (RE1) to

(RE5). Now de�ne a relation v

EE

on L as follows: � v

EE

� i� � v � or �! � 6v �.

By lemma 5.5.11, v

EE

is an EE-ordering, and by theorem 3.3.1, there is thus a faithful

total preorder � from whih v

EE

an be obtained using (Def v

E

from �). By theorem

5.5.7, the faithful modular weak partial order semantially related to � de�nes the

RE-ordering v

RE

using (Def v

RE

from v

EE

). And by lemma 5.5.12, v and v

RE

are

idential. 2

5.5.3 Re�ned entrenhment and AGM ontration

Just as in the ase of the EE-orderings and AGM ontration, the RE-orderings and

AGM ontration are interde�nable; in this ase using the following two identities:

(Def v

RE

from �) � v

RE

� i� �! � 2 K � � ^ �

(Def � from v

RE

) � 2 K � � i� � 2 K and

(

� 6<

RE

� ! �, or

� =2 K
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De�nition 5.5.14 An RE-ordering and an AGM ontration are semantially related

i� they an be de�ned in terms of the same faithful modular weak partial order using

(Def v

E

from �) and (Def � from �). 2

Theorem 5.5.15 Suppose that the RE-ordering v

RE

and the AGM ontration � are

semantially related.

1. v

RE

an also be de�ned in terms of � using (Def v

RE

from �).

2. � an also be de�ned in terms of v

RE

using (Def � from v

RE

).

Proof 1. Let � be a faithful modular weak partial order in terms of whih v

RE

and � are de�ned using (Def v

E

from �) and (Def � from �). Now suppose

that � ! � =2 K � � ^ �. So there is a y 2 M(K) [Min

�

(:(� ^ �)) suh that

y 2 M(� ^ :�). If y 2 M(K) then x 2 M(�) for every x � y and so � 6v

R

�.

And similarly, if y 2 Min

�

(:(� ^ �)) then x 2 M(�) for every x � y and so

� 6v

RE

�. Conversely, suppose that � 6v

RE

�. Then there is a y 2 Min

�

(:�)

suh that x 2 M(�) for every x � y. So y 2 M(�) and y 2 Min

�

(:(� ^ �)),

and thus �! � =2 K � � ^ �.

2. Follows from theorems 3.3.4 and 5.5.7.

2

And as in similar ases disussed before, the identities (Def v

RE

from �) and (Def �

from v

RE

) are interhangeable. That is, if we start with either an AGM ontration or

an RE-ordering, and apply (Def v

RE

from �) and (Def � fromv

RE

) in the appropriate

order, we end up with the same AGM ontration or RE-ordering. In fat, we an

extend the interhangeability of identities further by noting that the identity (Def �

from v

EE

), when applied to the EE-ordering v

EE

, and the identity (Def � from v

RE

),

when applied to the RE-ordering v

RE

whih is semantially related to v

EE

, both yield

exatly the same AGM ontration �.

Corollary 5.5.16 Let the RE-ordering v

RE

, the EE-ordering v

EE

, and the AGM

ontration � be semantially related. Then � an also be de�ned in terms of v

RE

using (Def � from v

RE

), as well as in terms of v

EE

using (Def � from v

EE

).

Proof Follows easily from proposition 3.3.4, and theorems 5.5.15 and 5.5.7. 2
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In the ase of a �nitely generated propositional language, the de�nition of AGM on-

tration in terms of the RE-orderings an be simpli�ed onsiderably. Consider a faithful

modular weak partial order � on the interpretations of suh a �nite L, and let v

RE

be the RE-ordering de�ned in terms of � using (Def v

E

from �). From part (10) of

proposition 5.5.4, it follows that for every �, there is a � 2 [�℄

v

RE

suh that  � � for

every  2 [�℄

v

RE

. That is, every equivalene lass [�℄

v

RE

ontains a logially weakest

w�. We use p�q

RE

to denote a anonial representative of the logially weakest w�s

in [�℄

v

RE

, and show below that if �; � 2 K, then � 2 K � � i� � ! � � p�q

RE

. That

is, if � is in K, then heking whether a w� � 2 K is retained in K � � is a matter of

heking whether � ! � entails a logially weakest w� in [�℄

v

RE

.

Proposition 5.5.17 Let L be a �nitely generated propositional language, � a faithful

modular weak partial order, � the AGM ontration de�ned in terms of � using (Def

� from �), and v

RE

the RE-ordering de�ned in terms of � using (Def v

E

from �).

If �; � 2 K then � 2 K � � i� � ! � � p�q

v

RE

(where p�q

RE

is a anonial

representative of the logially weakest w�s in [�℄

v

RE

).

Proof By theorem 5.5.15, if �; � 2 K, then � 2 K � � i� � 6<

RE

� ! �. Sine

� � � ! �, it follows from part (3) of proposition 5.5.4 that � v

RE

� ! �, and this

result an thus be rewritten as follows: If �; � 2 K, then � 2 K�� i� � ! � 2 [�℄

v

RE

.

Now suppose that �; � 2 K. If � 2 K � �, then � ! � 2 [�℄

v

RE

, and sine p�q

v

RE

is logially weaker than every w� in [�℄

v

RE

, � ! � � p�q

v

RE

. Conversely, if � !

� � p�q

v

RE

then, by part (3) of proposition 5.5.4, � ! � v

RE

p�q

v

RE

. Furthermore,

sine p�q

v

RE

2 [�℄

v

RE

, we get that p�q

v

RE

v

RE

�, and so, by the transitivity of v

RE

,

� ! � v

RE

�. And beause � � � ! �, it follows from part (3) of proposition 5.5.4

that � v

RE

� ! �. Thus � ! � 2 [�℄

v

RE

, and it follows from the result above that

� 2 K � �. 2

5.5.4 A omparison with generalised entrenhment

Sine the EE-orderings are all instanes of the LR-orderings of Lindstr�om and Rabi-

nowiz, the one-to-one orrespondene between the EE-orderings and the RE-orderings

provide an indiret relationship between RE-entrenhment and ertain instanes of

LR-entrenhment. But we an also obtain a di�erent onnetion by noting that the

RE-orderings all satisfy the postulate (LR3).
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Proposition 5.5.18 Every RE-ordering v

RE

satis�es (LR3).

Proof Suppose � v

RE

� and � v

RE

, let � be a faithful modular weak partial order

from whih v

RE

is de�ned, using (Def v

E

from �), and pik a y 2 M(:(� ^ )). So

y 2 M(:�) or y 2 M(:). In the former ase it follows from � v

RE

� that there is

an x 2 M(:�) suh that x � y. And in the latter ase it follows from � v

RE

 that

there is an x 2M(:�) suh that x � y. So � v

RE

� ^ . 2

Sine the LR-orderings require that all the w�s not inK be equally entrenhed, the RE-

orderings do not qualify as instanes of the LR-orderings. However, the RE-orderings

onform to the onditions imposed by the LR-orderings on the w�s in K. In this sense,

there is an LR-ordering orresponding to every RE-ordering. On the other hand, the

following example shows that some LR-orderings do not orrespond to any RE-ordering,

even when we restrit ourselves to just the w�s in K.

Example 5.5.19 Consider the propositional language L generated by the two atoms

p and q with the valuation semantis (V;), where V = f11; 10; 01; 00g. Now, let

K = Cn(p ^ q), and onsider the LR-ordering v

LR

de�ned as follows:

� v

LR

� i�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

� 2 L if � =2 K,

p ^ q � � if � � p ^ q or � � p$ q or � � p or

� � q or � � :p _ q,

p _ q � � if � � p _ q,

p _ :q � � if � � p _ :q,

� 2 L if � �.

Figure 5.4 ontains a graphial representation of v

LR

. An inspetion of �gure 5.4

reveals that v

LR

is indeed an LR-ordering, but it an be veri�ed that the part of v

LR

restrited to the elements ofK does not oinide with the restrition of any RE-ordering

v

RE

to K. 2

We now turn to a omparison of Rott's GEE-orderings (see setion 5.4.2) and the RE-

orderings. Observe �rstly that, sine the EE-orderings are total preorders, taking the

onverse omplement of an EE-ordering v

EE

is the same as taking its strit version

<

EE

. In the ase of the RE-orderings, this is not the ase, though. One way to obtain

a omparison of the RE-orderings with the GEE-orderings is to hek whether the

RE-orderings satisfy the following translations of the GEE postulates into assertions

about the onverse omplements of the GEE-orderings:
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?;:p ^ q; p ^ :q;:p ^ :q;:(p$ q);:p _ :q

p ^ q; p$ q; p; q;:p _ q

p _ q p _ :q

3

6

k

>

>

}

Figure 5.4: A graphial representation of the LR-ordering used in example 5.5.19. The

ordering is obtained from the reexive transitive losure of the relation determined by

the arrows. Every w� in the �gure is a anonial representative of the set of w�s that

are logially equivalent to it.

(CGEE1) > v >

(CGEE2") If  v � and � �  then � v �

(CGEE2#) If � v  and  � � then � v �

(CGEE3") If � ^  v � then � v � or  v �

(CGEE3#) If � v � then � v � ^ �

(CGEE4) If K 6= Cn(?) then � v ? i� � =2 K

(CGEE4

0

) If � 2 K and � v � then � 2 K

(CGEE5) If > v � then � �

(CGEE5

0

) If > v � and � v � then > v �

It is easily veri�ed that the RE-orderings satisfy (CGEE1), (CGEE2") and (CGEE2#),

the three postulates regarded by Rott as minimal onditions of rationality for every

relation designed to formalise the onept of epistemi entrenhment. Furthermore,
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they also satisfy (CGEE3#), (CGEE4

0

), (CGEE5) and (CGEE5

0

), but do not satis-

fy (CGEE3") or (CGEE4). They do satisfy the left-to-right diretion of (CGEE4),

though.

Proposition 5.5.20 The RE-orderings satisfy the postulates (CGEE1), (CGEE2"),

(CGEE2#), (CGEE3#), (CGEE4

0

), (CGEE5) and (CGEE5

0

). Furthermore, they do

not neessarily satisfy (CGEE3") or (CGEE4), but they do satisfy the left-to-right

diretion of (CGEE4).

Proof Let � be a faithful modular weak partial order in terms of whih v

RE

an be

de�ned using (Def v

E

from �). (CGEE1) follows from (RE2), and (CGEE2") and

(CGEE2#) both from (RE1) and (RE2). For (CGEE3#), suppose that � v

RE

� and

pik any y 2M(:(� ^ �)). So y 2M(:�) or y 2M(:�). We have to show that there

is an x � y suh that x 2 M(:�). If y 2 M(:�), this follows from the reexivity of

�, and if y 2 M(:�), it follows from the fat that � v

RE

�. (CGEE4

0

) follows from

(RE4a), (CGEE5) from (RE2) and (RE5), and (CGEE5

0

) follows from (RE1).

To show that the RE-orderings do not always satisfy (CGEE3"), let K = Cn(fp$

qg) and onsider the RE-ordering v

RE

, with respet to K, whih is de�ned as follows:

� v

RE

� i�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

� 2 L if � =2 K,

� 2 K if � � p$ q,

p! q � � if � � p! q,

q ! p � � if � � q ! p,

� � if � �.

It is readily veri�ed that v

RE

is indeed an RE-ordering. By letting � = p $ q,

� = q  q,  = p  q, and observing that � ^  � �, we see that v

RE

violates

(CGEE3").

To show that the RE-orderings do not always satisfy (CGEE4), it is suÆient to

observe that the entailment relation � is an RE-ordering with respet to the belief set

Cn(>). Finally, that every RE-ordering satis�es the left-to-right diretion of (CGEE4)

follows from (RE4a). 2

As observed above, the onverse omplement of an EE-ordering is the same as its

strit version. It might therefore be instrutive to determine whether or not the strit

versions of the RE-orderings are instanes of the GEE-orderings. It turns out that the
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strit RE-orderings satisfy (GEE1), (GEE2"), and (GEE2#), but do not always satisfy

(GEE3") and (GEE3#).

Proposition 5.5.21 Let <

RE

be the strit version of an RE-ordering. Then <

RE

sat-

is�es (GEE1), (GEE2") and (GEE2#), but does not, in general, satisfy either (GEE3")

or (GEE3#).

Proof (GEE1) is trivial. (GEE2") and (GEE2#) both follow from (RE1) and (RE2).

To show that (GEE3") and (GEE3#) do not always hold, onsider the LR-ordering

v

LR

in example 5.5.19. It is easily veri�ed that v

LR

is also an RE-ordering, de�ned in

terms of the faithful modular weak partial order � using (Def v

E

from �), where �

is de�ned as follows:

� = f(x; x) j x 2 Ug [ f(11; y) j y 2 Ug [ f(10; 00); (01; 00)g.

Figure 5.5 ontains a graphial representation of � and the RE-ordering v

RE

de�ned

in terms of � using (Def v

E

from �). Note that the LR-ordering in example 5.5.19

is idential to v

RE

. As noted in example 5.5.19, <

LR

violates both (GEE3") and

(GEE3#). 2

With regard to the supplementary postulates, the strit RE-orderings satisfy all but

the left-to-right diretion of (GEE4).

Proposition 5.5.22 The strit version <

RE

of an RE-ordering satis�es the right-

to-left diretion of (GEE4) (but not the left-to-right diretion), as well as (GEE4

0

),

(GEE5) and (GEE5

0

).

Proof (RE4b) ensures that the left-to-right diretion of (GEE4) does not always hold,

and (RE4a) ensures that the right-to-left diretion holds. (GEE4

0

) follows from (RE4a),

and both (GEE5) and (GEE5

0

) follow from (RE2) and (RE5). 2

The results above seem to suggest that the GEE-orderings and the RE-orderings have

quite di�erent intuitions assoiated with them. Whereas the GEE-orderings onsitute

a proper generalisation of the EE-orderings, the RE-orderings should be seen as al-

ternatives to the EE-orderings. This is highlighted when the link with ontration is

investigated. Rott applies (Def � from v

EE

) to the GEE-orderings to obtain a set of

ontrations that is a strit superset of AGM ontration. In ontrast, (Def � from

v

RE

) applied to the RE-orderings yields preisely the set of AGM ontrations.
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Figure 5.5: A graphial representation of the faithful modular weak partial order �

used in in proposition 5.5.21, as well as the RE-ordering de�ned in terms of � using

(Def v

E

from �). Both orderings are obtained from the reexive transitive losure

of the respetive relations determined by the arrows. Every w� in the representation

of the RE-ordering is a anonial representative of the set of w�s that are logially

equivalent to it.

5.5.5 Re�ned G-plausibility

We have seen in theorem 3.3.1 that the duals of the EE-orderings (the GE-orderings

of Grove) an be de�ned in terms of the faithful total preorders using (Def v

G

from

�). In a similar manner, by applying (Def v

G

from �) to the faithful modular weak

partial orders, we an obtain a set of orderings that are dual to the RE-orderings. We

shall refer to them as the RG-orderings.

De�nition 5.5.23 An RG-ordering is a binary relation on L obtained in terms of

a faithful modular weak partial order using (Def v

G

from �). We say that a GE-

ordering and an RG-ordering, de�ned respetively in terms of a faithful total preorder

and its semantially related modular weak partial order, using (Def v

G

from �), are

semantially related . 2
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From the de�nitions of the RE-orderings and the RG-orderings it is lear that they an

be de�ned in terms of one another using (Def v

E

from v

G

) and (Def v

G

from v

E

). By

virtue of (Def v

G

from v

E

), the results about the RE-orderings an thus be translated

into results about the RG-orderings. While suh an exerise would serve little purpose

in most ases, it is our intention to onentrate on two aspets pertaining to the use of

the RG-orderings. The �rst is a omparison of the suitability of the RG-orderings and

the GE-orderings as orderings of plausibility. The seond aspet involves the de�nition

of AGM revision in terms of the RG-orderings. The results provided in the proposition

below will be used in the disussion of these two aspets.

Proposition 5.5.24 Let v

RG

be the RG-ordering de�ned in terms of the faithful mod-

ular weak partial order � using (Def v

G

from �). Then v

RG

satis�es the following

properties.

1. v

RG

is a preorder (that need not be total).

2. Suppose that the GE-ordering v

GE

and the v

RG

are semantially related. If

� v

RG

� then � v

GE

�.

3. If � � � then � v

RG

�.

4. � :� i� for all � 2 L, � v

RG

�.

5. If K is satis�able then K = [>℄

v

RG

.

6. If K � � and K 2 � then � <

RG

�.

7. If K 2 :� and K � : then � <

RG

.

8. If K [ f�g 2 ? then K [ f�g � � i� � v

RG

�.

Proof The proofs are similar to that of proposition 5.5.4 and are omitted. 2

These properties reveal that the RG-orderings are �ner grained versions of the GE-

orderings. They are preorders like the GE-orderings, but they need not be total. For

every satis�able belief set K, they partition the set of w�s into four disjoint sets, and

not three, as the GE-orderings do. The logially invalid w�s are all equivalent and

stritly above all other w�s, followed by the rest of the K-refuted w�s, just as with

the GE-orderings. However, whereas the GE-orderings lump the K-established w�s
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together with the w�s that are K-undeided, the RG-orderings distinguish between

these two sets. In partiular, the w�s in K are all equivalent and stritly lower than all

other w�s, while the K-undeided w�s are stritly below all K-refuted w�s. Finally,

the K-undeided w�s are not all omparable. Instead, any RG-ordering restrited to

the K-undeided w�s (or, in fat, restrited to all w�s exept those that are K-refuted)

is exatly the inverse of entailment relative to K. So the only part of any RG-ordering

that is not ompletely spei�ed by K itself, is the ordering restrited to the w�s that

are not logially invalid, but are nevertheless K-refuted.

In view of these results, the RG-orderings seem to be more suitable as plausibility

orderings than the GE-orderings. This is due mainly to the fat that they are �ner

grained versions of the GE-orderings. Unlike the GE-orderings, an RG-ordering (with

respet to K) does not regard the w�s in K and the K-undeided w�s as equally

plausible, or equally lose to the belief set K. Instead, all the w�s in K are seen as

more plausible than the K-undeided w�s, a result that surely is more in line with the

intuition of plausibility. More important, perhaps, is that the added struture of the

RG-orderings also extends to the K-refuted w�s, enabling us to give a de�nition of

revision that is both simpler and more intuitively appealing than (Def � from v

GE

).

The intuition underlying the use of the RG-orderings to de�ne AGM revision an

be desribed as follows. When revising a belief set K with a w� �, K �� should onsist

of a set of w�s that entails �, while still being satis�able. Now, the set onsisting of

the w�s that are preisely as plausible as �, ertainly entails � (sine it inludes �).

So if this set is satis�able, all the w�s in it should be inluded in K ��. As a result, we

should hoose K �� to onsist of all the w�s entailed by the set of w�s that is preisely

as plausible as �. That is, AGM revision an be de�ned in terms of the RG-orderings

as follows:

(Def � from v

RG

) K � � = Cn([�℄

v

RG

)

Theorem 5.5.25 Let � be a faithful modular weak partial order and let v

RG

be the

RG-ordering de�ned in terms of � using (Def v

G

from �). The revision de�ned in

terms of � using (Def � from �) an also be de�ned in terms of v

RG

using (Def �

from v

RG

).

Proof It suÆes to show that for all �; � 2 L, [�℄

v

RG

� � i� � 2 Th(Min

�

(�)). So

suppose that [�℄

v

RG

� �. That is, � 2 Th(

T

fM() j  2 [�℄

v

RG

g). By orollary
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5.5.6 and theorem 2.3.5, Min

�

(�) = Min

�

() for every  2 [�℄

v

RG

. So Min

�

(�) �

T

fM() j  2 [�℄

v

RG

g, and thus � 2 Th(Min

�

(�)). Conversely, suppose that � 2

Th(Min

�

(�)). Clearly, we also have that � ^ � 2 Th(Min

�

(�)). So, for every y 2

M(�) there is an x 2 M(� ^ �) suh that x � y, whih means that � ^ � v

RG

�.

Furthermore, beause � ^ � � �, it follows from part (3) of proposition 5.5.24 that

� v

RG

� ^ �. So � ^ � �

v

RG

� and thus [�℄

v

RG

� �. 2

For the sake of ompleteness, we inlude two identities that an be used to de�ne the

GE-orderings and the RG-orderings in terms of eah other. That these two identities

an indeed be used for this purpose follows easily by applying (Def v

G

from v

E

), (Def

v

EE

from v

RE

), (Def v

RE

from v

RG

), (Def v

RE

from v

EE

) and (Def v

E

from v

G

).

(Def v

GE

from v

RG

) � v

GE

� i� � v

RG

� or :� ^ � 6v

RG

�

(Def v

RG

from v

GE

) � v

RG

� i� � :� or � <

GE

� or � v

GE

:� ^ �

5.6 Other alternatives

In this setion we take a brief look at ways to remove the minimality and maximality

onditions on the EE-orderings (see setion 2.3). Two proposals in whih both these

onditions do not feature are the GEE-orderings of Rott, onsidered in setion 5.4.2,

and the expetation orderings of G�ardenfors and Makinson [1994℄. The expetation

orderings are required to satisfy the postulates (EE1), (EE2) and (EE3), but not (EE4)

and (EE5), and an thus be seen as the EE-orderings without the minimality and

maximality onditions imposed on them. They are used to de�ne the expetation

based onsequene relations, disussed in setion 4.4.1, as follows:

(Def j� from v) �j�� i� � 2 Cn(f�g [ f j :� < g)

Interestingly enough, G�ardenfors and Makinson point out that the expetation based

onsequene relations an also be de�ned in terms of the EE-orderings using (Def j�

from v). So if the interest in the expetation orderings is motivated solely on their

relationship with the expetation based onsequene relations, we might as well stik

to the EE-orderings.

Let us now take a loser look at these two onditions individually. We �rst onsider

the maximality ondition | the requirement that the most entrenhed w�s are nothing
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but the logially valid w�s. The most obvious way to remove this requirement is

to remove the orresponding postulate (or postulates). Thus, for the EE-orderings

it is a matter of removing (EE4), for the LR-orderings the removal of (LR5), and

for the GEE-orderings the removal of (GEE5) and (GEE5

0

). But there is also an

elegant semanti way in whih to onsider this issue. Intuitively, the objetion to this

maximality ondition is that some of the beliefs of an agent might be so entrenhed as

to be on the same level as the logially valid w�s. It is reasonable to regard these w�s

as being entrenhed to suh an extent that they annot be dislodged from the belief set

of the agent. As suh, they should rather be seen as part of the knowledge of the agent.

We an ahieve the desired e�et by moving to a new semantis for L in whih these

w�s are logially valid. This new semantis is obtained from the urrent one by taking

the new set of interpretations as the set of models of these w�s. That is, if B is the

set of beliefs that should be regarded as knowledge, we replae the urrent semantis

(U;) by the new semantis (M(B);

B

), where 

B

is just the satisfation relation 

with the �rst oordinates restrited to M(B).

We now turn to the minimality ondition | that all w�s not in K should be

equally entrenhed and stritly less entrenhed than the w�s in K. The objetion to

this requirement is, of ourse, onerned with the insistene that all w�s not in K

be equally entrenhed, and not with the deision to plae the w�s that are not in K

stritly below the w�s in K. In fat, it seems reasonable to require that all versions of

entrenhment should satisfy (RE4a) on page 115.

8

This is the ondition termed stability

by Rabinowiz [1995℄, and is learly satis�ed by all the versions of entrenhment that

we have onsidered so far.

With regard to the issue of the omparability of the w�s not inK, we an distinguish

between three approahes. The �rst is to apply the same onditions that are being

plaed on the omparability of w�s in K. Thus, for the EE-orderings it is a matter of

applying (EE3) to the w�s not in K as well, and replaing (EE4) by (RE4a), while suh

a suggestion applied to the LR-orderings merely involves the replaement of (LR4) by

(RE4a).

8

If there is no expliit mention of a belief set, the extration of a suitable one from the entrenhment

ordering should be performed in suh a way as to ensure the satisfation of (RE4a). For example,

Rott's basi GEE-orderings do not refer to a belief set, but the belief set obtained from a GEE-ordering

<

GEE

is taken as the set f� j ? <

GEE

�g.
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A di�erent suggestion due to Rabinowiz [1995℄, and one that relates spei�ally to

the EE-orderings, is to use their semantially related GE-orderings (obtained using (Def

v

G

from v

E

)) to distinguish between the w�s not in K. As we have seen in setion 5.3,

this orresponds to Spohn's R-orderings. For a satis�able belief set K, an R-ordering

v

R

partitions the w�s of L into three lasses: Those that are K-believed (the w�s in

K), those that are K-disbelieved (the K-refuted w�s), and those that are K-neutral

(the K-undeided w�s). The K-neutral w�s are all equally entrenhed, stritly less

entrenhed than those w�s that are K-believed, but stritly more entrenhed than the

K-disbelieved w�s. Note, however, that the relative ordering of the K-believed w�s

is a mirror image of the relative ordering of the K-disbelieved w�s, and vie versa.

That is, if � and � are both K-believed, or if both are K-disbelieved, then � v

R

� i�

:� v

R

:�. The R-orderings thus involve the imposition of a kind of symmetry between

the ordering of the belief set and the disbelief set of an agent that seems diÆult to

justify.

As a result, we propose to generalise this idea as follows. Instead of ombining

an EE-ordering v

EE

and the partiular GE-ordering obtained in terms of v

EE

using

(Def v

G

from v

E

), we ombine v

EE

and any GE-ordering (with respet to the same

belief set K). To be more spei�, given any EE-ordering v

EE

and any GE-ordering

v

GE

, both with respet to the same belief set K, we de�ne a ombined entrenhment

ordering v

C

in terms of v

EE

and v

GE

as follows:

(Def v

C

from v

EE

and v

GE

) � v

C

� i�

8

>

<

>

:

� v

EE

� if �; � 2 K,

� v

GE

� if �; � =2 K,

� =2 K and � 2 K otherwise

The ombined entrenhment orderings retain the partitioning of the R-orderings, as well

as the property that all K-neutral w�s are equally entrenhed, but have the advantage

of not being subjet to the requirements of symmetry between the belief set and the

disbelief set of an agent.

We onlude this setion with some thoughts on the way re�ned entrenhment

handles the omparability of w�s not in K. Although the RE-orderings are able to

distinguish between the entrenhment of w�s not in K, this ability is little more than a

reetion of the underlying entailment relation � and does not seem to express a genuine

di�erene in the entrenhment of suh w�s. For a more satisfatory desription of the

relative entrenhment of suh w�s, we have a hoie between the two proposals related

to the minimality ondition, applied to the RE-orderings. The appliation of the �rst
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proposal involves doing away with (RE4b), and applying (RE3a) to all w�s, and not

just those in K. The seond proposal involves the RE-orderings and the RG-orderings.

Given any RE-ordering v

RE

and any RG-ordering v

RG

, both with respet to the same

belief set K, we de�ne a CR-ordering v

CR

in terms of v

RE

and v

RG

using (Def v

C

from v

EE

and v

GE

).

De�nition 5.6.1 A binary relation on L is a CR-ordering , with respet to a belief set

K, i� it is de�ned in terms of an RE-ordering with respet to K, and an RG-ordering

with respet to K, using (Def v

C

from v

EE

and v

GE

). 2

From the properties of the RE-orderings and the RG-orderings, it follows that for a

satis�able belief set K, every CR-ordering v

CR

partitions the w�s of L into �ve lasses:

1. The logially valid w�s are all equally entrenhed, and more entrenhed than all

other w�s.

2. The w�s that are K-believed, but not logially valid, are stritly less entrenhed

than the logially valid w�s, and more entrenhed than all other w�s.

3. The K-neutral w�s are less entrenhed than the K-believed w�s and more en-

trenhed than the K-disbelieved w�s. Moreover, the CR-ordering restrited to

the K-neutral w�s orresponds to entailment relative to K.

4. The K-disbelieved w�s that are not logially invalid are less entrened than the

K-believed and theK-neutral w�s, but more entrenhed than the logially invalid

w�s.

5. And �nally, the logially invalid w�s are all equally entrenhed, and less en-

trenhed than all other w�s.

5.7 Unifying epistemi and re�ned entrenhment

From the disussion on re�ned entrenhment it is lear that the RE-orderings are in-

tended as alternatives to the EE-orderings. This view is supported by the results

about the onnetion between the RE-orderings, the EE-orderings and AGM ontra-

tion. The main di�erene between the RE-orderings and the EE-orderings is that the

RE-orderings are not all total preorders. And while this renders the RE-orderings
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more appropriate in ertain respets, it has its downside as well. For in embraing

the RE-orderings at the expense of the EE-orderings, we also disard the property of

being able to ompare all w�s in all but some limiting ases. The question that arises

is thus whether it is possible to obtain a uni�ed view of entrenhment, enompassing

both re�ned entrenhment and epistemi entrenhment. From a semanti viewpoint,

there is a positive answer to this question. It involves the use of a set of faithful pre-

orders whih stritly inludes the faithful total preorders and the faithful modular weak

partial orders.

De�nition 5.7.1 A preorder � on a set V is alled layered i� for every x; y; z 2 V , if

z � x and either x �

�

y or x k

�

y, then z � y. 2

Layered preorders appeal to the same intuition that underlies the total preorders,

the modular weak partial orders and the modular (strit) partial orders. The idea is

that the elements of V are arranged in levels, with elements in di�erent layers being

omparable. The di�erene between all these types of orderings onerns the way in

whih elements in the same layer are treated. So, while the total preorders regard all

elements in the same layer as omparable, and the modular weak partial orders take

all distint elements in the same layer as inomparable, the layered preorders provide

a ompromise between these two extremes: they allow for both the omparability and

the inomparability of elements in the same layer. Using this intuition, it is lear that

every layered preorder is uniquely assoiated with a modular weak partial order and a

total preorder. (And in fat, every total preorder and every modular weak partial is a

layered preorder.)

De�nition 5.7.2 A modular weak partial order � on a set X, a total preorder � on

X, and a layered preorder 4 on X are semantially related i� � an be de�ned in

terms of 4 using (Def � from �) and � an be de�ned in terms of 4 using (Def �

from �). 2

It is easily veri�ed that a faithful layered preorder and its semantially related faithful

total preorder and faithful modular weak partial order are minimal-equivalent (see

de�nition 3.3.6).

Proposition 5.7.3 A removal and a revision de�ned in terms of a faithful layered

preorder - using (Def � from �) and (Def � from �), an also be de�ned in terms
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of its semantially related faithful total preorder �, and its semantially related faithful

modular weak partial order �, using (Def � from �) and (Def � from �).

Proof Follows from the fat that Min

.

(�) = Min

�

(�) = Min

�

(�) for every � 2 L.

2

As a result we an use either the faithful layered preorders, or the faithful modular

weak partial orders, or the faithful total preorders to haraterise AGM theory hange.

Corollary 5.7.4 Let - be a faithful layered preorder, let � be the faithful modular

weak partial order obtained in terms of - using (Def � from �), and let � be the

faithful total preorder obtained in terms of - using (Def � from �).

1. The AGM revisions de�ned in terms of �, -, and � using (Def � from �) are

idential.

2. The AGM ontrations de�ned in terms of �, -, and � using (Def � from �)

are idential.

Proof Follows from theorem 3.2.6 and proposition 5.7.3. 2

From an information-theoreti point of view, the faithful layered preorders provide us

with a degree of freedom that is laking in both the faithful total preorders and the

faithful modular weak partial orders. It allows us to regard some infatoms as being

inomparable with respet to entrenhment, and others to be equally entrenhed. As

a result, the faithful layered preorders an be used to de�ne a lass of entrenhment

orderings that generalises both the RE-orderings and the EE-orderings.

De�nition 5.7.5 A binary relation v

GRE

is a GRE-ordering i� it is de�ned in terms

of a faithful layered preorder � using (Def v

E

from �). We say that a GRE-ordering,

an RE-ordering, and an EE-ordering de�ned respetively in terms of a faithful layered

preorder, its semantially related total preorder, and its semantially related modular

weak partial order, using (Def v

E

from �), are semantially related . 2

From theorem 3.3.1, de�nitions 5.5.3 and 5.7.5, and the fat that the faithful total

preorders and the faithful modular weak partial orders are instanes of the faithful

layered preorders, it immediately follows that the EE-orderings and the RE-orderings

are all instanes of the GRE-orderings. We onlude with a list of properties of the
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GRE-orderings. The obvious question, whether there is a set of postulates that gives

a preise desription of the GRE-orderings, seems to be a non-trivial one. We leave

a proper investigation of this issue, and the quest for an appropriate representation

theorem, for future researh.

Proposition 5.7.6 Let � be a faithful layered preorder, and let v

GRE

be the GRE-

ordering de�ned in terms of � using (Def v

E

from �). Then v

GRE

satis�es the

following properties.

1. v

GRE

is a preorder (that need not be total).

2. Suppose that v

GRE

and an EE-ordering v

EE

are semantially related. If � v

GRE

� then � v

EE

�.

3. Suppose that v

GRE

and an RE-ordering v

RE

are semantially related. If � v

RE

�

then � v

GRE

�.

4. If � � � then � v

GRE

�.

5. � v

GRE

� for all � i� � �.

6. If � � � then � v

GRE

 i� � v

GRE

, and  v

GRE

� i�  v

GRE

�.

7. If K is satis�able then f� j :� 2 Kg � [?℄

v

RE

.

8. If � =2 K and � 2 K then � <

GRE

�.

9. If :� 2 K and : =2 K then � v

GRE

.

10. If � =2 K and K [ f�g � � then � v

GRE

�.

11. If � �

v

GRE

� then � ^ � 2 [�℄

v

GRE

= [�℄

v

GRE

.

12. � v

GRE

� ^ �, or � v

GRE

� ^ �, or both �! � 6v

GRE

� and � ! � 6v

GRE

�.

Proof The reexivity and transitivity of v

GRE

are trivial. To show that v

GRE

need

not be a total preorder, onsider the example of a propositional language generated by

two atoms, p and q. Now let K = Cn(p) and onsider the faithful layered preorder

f(x; x) j x 2 Ug [ f(x; y) j x 2M(K) and y =2M(K)g.
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It is easily veri�ed that q 6v

GRE

:q and :q 6v

GRE

q. For (2) and (3), let 4 be a faithful

layered preorder in terms of whih v

GRE

an be de�ned using (Def v

E

from �), let �

be the faithful modular weak partial order that is semantially related to 4, and let �

be the faithful total preorder that is semantially related to 4. Then (2) follows from

the fat that if x 4 y then x � y, and (3) from the fat that if x � y then x 4 y. (4)

is trivial. For (5), suppose that � v

GRE

� for all �. So in partiular > v

GRE

�, whih

an only be if M(:�) = ;. Therefore � �. Conversely, if � � then M(:�) = ;, from

whih it follows vauously that � v

GRE

� for all �. (6) is trivial. For (7), suppose

that K is satis�able and pik any � suh that :� 2 K. ? v

GRE

� follows from

? � � and part (4), and � v

GRE

? from the faithfulness of 4. For (8), suppose that

� =2 K and � 2 K. So M(K) \M(:�) = ;, and sine K has a model that satis�es

:�, it follows from faithfulness that for every y 2 M(:�) there is an x 2 M(:�)

suh that x 4 y. That is, � v

GRE

�. On the other hand, sine K has a model y

that satis�es :�, and sine all models of K satisfy �, it follows from faithfulness that

x 2 M(�) for every x 4 y, and thus � 6v

GRE

�. For (9), suppose that :� 2 K and

: =2 K. � v

GRE

 follows from faithfulness. For the proof of (10), let � =2 K and

suppose that K [ f�g � �. Now pik any y 2 M(:�). If y =2 M(K) then, beause

M(K)\M(:�) 6= ;, there is an x 2M(K)\M(:�) suh that x 4 y. And if y 2M(K)

then, beauseM(K)\M(�) �M(�), y =2M(�), and there is thus an x 2M(:�) suh

that x � y. So � v

GRE

�. For the proof of (11), suppose that � �

v

GRE

�. By part (4),

� ^ � v

GRE

�. To show that � v

GRE

� ^ �, pik a y 2 M(:� _ :�). If y 2 M(:�)

then � v

GRE

� guarantees that there is an x 2 M(:�) suh that x 4 y, and the ase

where y 2 M(:�) is trivial. For the proof of (12), suppose that � 6v

GRE

� ^ � and

� 6v

GRE

� ^ �. Then there is a y 2 Min

4

(:� _ :�) suh that x 2 M(�) for every

x 4 y, and there is a v 2 Min

4

(:� _ :�) suh that u 2 M(�) for every u 4 v. So

y 2M(�)\M(:�) and x 2 M(�)\M(�) for every x � y. Similarly, v 2M(:�)\M(�)

and u 2 M(�) \M(�) for every u � v. Sine 4 is a layered preorder, it therefore has

to be the ase that y k

4

v. So y 2 M(:�) and x 2 M(� ! �) for every x 4 y. That

is, � ! � 6v

GRE

�. And similarly for v, �! � 6v

GRE

�. 2

5.8 Summary

Entrenhment orderings play an important role in belief hange. They are regarded

as more fundamental than theory hange operations suh as revision and ontration
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[G�ardenfors, 1988,p. 88℄, and are seen as suitable representations of the epistemi states

of an agent [Nayak, 1994a,b, Nayak et al., 1996℄, at least for the part pertaining to belief

hange. While we are in agreement with the idea of entrenhment being more basi

than theory hange operations, it should ome as no surprise that our view onerning

the representation of epistemi states is rather di�erent. We regard the faithful layered

preorders as more fundamental than entrenhment, a view that is supported by the

results in this hapter. In partiular, we saw that the di�erent kinds of entrenhment

orderings disussed all turn out to be have a semanti basis, and more spei�ally, are

rooted in (some subset of) the faithful layered preorders. This prompts the following

generalisation of de�nitions 3.3.8, 5.5.3 and 5.5.14.

De�nition 5.8.1 An AGM ontration �, an AGM revision �, an EE-ordering v

EE

,

a GE-ordering v

GE

, an RE-ordering v

RE

, and an RG-ordering v

RG

are semantially

related i� there is a faithful total preorder � and a semantially related faithful modular

weak partial order � suh that

1. � an be de�ned in terms of � (and �) using (Def � from �),

2. � an be de�ned in terms of � (and �) using (Def � from �),

3. v

EE

an be de�ned in terms of � using (Def v

E

from �),

4. v

GE

an be de�ned in terms of � using (Def v

G

from �),

5. v

RE

an be de�ned in terms of � using (Def v

E

from �), and

6. v

RG

an be de�ned in terms of � using (Def v

G

from �).

2

Figure 5.6 ontains a summary of some the results related to faithful layered pre-

orders, and extends the results in �gure 3.2 on page 58. G�ardenfors and Makinson

[1994,p. 244℄ advane the view that entrenhment orderings suh as their expetation

orderings, are more fundamental than strutures suh as the faithful layered preorders.

Their argument is that plaing an ordering on sets of states (or worlds or infatoms)

is epistemologially more advaned than plaing an ordering on beliefs in the form

of w�s of L. Aordingly, they see the former as being derived from the latter, and

leave the question of how an agent obtains suh an ordering on w�s to the �eld of
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v

RG

v

RE

v

EE

v

GE

�

�

�

�

-

� -

� -

6 6

<

EE

<

H

<

H

?

6

*

(Def <

EE

from <

H

)

Y

(Def v

G

from v

E

)

(Def v

GE

from v

RG

)

�

(Def v

G

from v

E

)

(Def v

E

from v

G

)

j

(Def � from v

RG

)

(Def v

RG

from �)

(Def � from v

GE

)

(Def v

GE

from �)

(Def � from �)

�

?

6

1

i

q

I

?

?

(Def v

RE

from v

EE

)

(Def v

EE

from v

RE

)

(Def v

RE

from �)

(Def � from v

RE

)

(Def v

EE

from �)

(Def � from v

EE

)

(Def � from �)

(Def � from �)

-

(Def � from <

H

)

(Def � from �)

o

7

(Def (v

E

from �)

(Def (v

E

from �)

)

(Def v

G

from v

E

)

(Def v

E

from v

G

)

�

U

(Def v

G

from �)

(Def v

G

from �)

~

Figure 5.6: The relationship between minimal-equivalent faithful layered preorder-

s, AGM ontration, AGM revision, the EE-orderings, the RE-orderings, the GE-

orderings, the RG-orderings, and safe ontration in terms of regular virtually on-

neted hierarhies.
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ognitive siene. While we agree that some kinds of orderings on w�s an be regarded

as more fundamental than orderings on worlds, it is diÆult to see that suh a view

an be applied to orderings on w�s that are as highly strutured as the entrenhment

orderings enountered in this hapter. In partiular, it is diÆult to esape the on-

lusion that the faithful layered preorders are used to derive orderings on w�s (in the

form of the GRE-orderings), espeially when adopting an information-theoreti point

of view. Of ourse, this still leaves open the question of how to obtain suh orderings

on infatoms. One way to ahieve this might indeed be in terms of priority orderings

on w�s, in the spirit of Nebel's epistemi relevane orderings [1990, 1991, 1992℄. But

suh orderings have a ompletely di�erent harater than orderings of entrenhment,

sine they disregard the logial relationship between w�s.

Finally, in this hapter we have onentrated on suitable properties for entrenh-

ment orderings, but we have paid little attention to how these entrenhment orderings

ought to be used. In the next hapter, our attention will be shifted to the latter ques-

tion. More spei�ally, we show how the EE-orderings and the RE-orderings an be

used to de�ne withdrawals whih di�er from AGM ontration.
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Chapter 6

Withdrawal

Believe it or not.

R.L. Ripley

Title of newspaper olumn

Although AGM theory ontration oupies a entral position in the literature on be-

lief hange, there is one aspet about it that has reated a fair amount of ontroversy.

It involves the inlusion of (K-6), the postulate known as Reovery. The Reovery

postulate is part of the AGM trio's formal expression of the priniple of Information-

al Eonomy, the idea that an agent should try to keep the loss of information to a

minimum.

In this hapter we undertake a detailed investigation of withdrawals, the removals

obtained when Reovery is dropped from the basi AGM ontration postulates (see

setion 2.1). We ommene with a motivation for the move from ontration to with-

drawal by reviewing the main objetions levelled at reovery, and then proeed with

a desription of the withdrawal operations found in [Levi, 1991, 1998, Hansson and

Olsson, 1995, Rott and Pagnuo, 1999, Ferm�e, 1998, Ferm�e and Rodriguez, 1998℄.

Along the way, we also present a new addition to the family of withdrawal operations;

systemati withdrawal. We de�ne systemati withdrawal semantially, in terms of the

faithful modular weak partial orders (see de�nition 5.5.1), and show that it an be

haraterised by a set of postulates.

In a omparison of withdrawal operations we show that AGM ontration, system-

ati withdrawal and the severe withdrawal of Rott and Pagnuo [1999℄ are intimately

139
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onneted by virtue of their de�nition in terms of sets of layered faithful preorders.

These semanti onstrutions, together with similar semanti de�nitions of the EE-

orderings (see theorem 3.3.1) and the RE-orderings (see de�nition 5.5.3), are then used

to show that AGM ontration, systemati withdrawal, severe withdrawal, the EE-

orderings, and the RE-orderings are all interde�nable; indeed interhangeable. The

lose onnetion between these onstrutions an be traed bak to a shared feature.

They are all de�ned in terms of faithful layered preorders; a result that is summarised

in �gure 6.7 on page 199.

6.1 To reover or not to reover

At a �rst glane, the Reovery postulate seems to be a reasonable requirement to

impose on theory removal. It requires the hanges to a belief set K resulting from an

�-ontration to be small enough so that an �-expansion will be suÆient to reover all

the disarded information. In other words, information is a valuable ommodity, and it

makes good sense to e�et as little hange as possible when irumstanes ditate that

our set of beliefs should be modi�ed. Viewed as suh, reovery is a formalisation of the

priniple of Informational Eonomy. And while this is learly a useful priniple, it an

have undesirable onsequenes if it is allowed to beome the overriding onern. This

is the bakground against whih the objetions levelled at reovery should be seen.

The Reovery postulate has been ritiised by various authors, and for several

di�erent reasons.

1

One of the reasons most frequently ited stems from the extension

of theory hange to base hange. In base hange, the set of w�s on whih ontrations

and revisions are performed, termed the base, need not be a belief set. A base is taken

to ontain the \basi" beliefs of an agent, with the w�s logially entailed by the base

being seen as \derived" beliefs. Under the assumption that only w�s in the urrent base

are allowed to be retained after a (base) ontration | an assumption whih underlies

most approahes to base hange | it is easy to �nd ounterexamples to Reovery.

Example 6.1.1 Let L be the propositional language generated by the two atoms p

and q with the valuation semantis (V;), where V = f00; 01; 10; 11g. Contrating the

base fp; qg by p_ q learly has to result in the empty base. Expanding with p_ q now

1

Those objetions to the Reovery postulate raised by Tennant [1994, 1997℄ whih are valid, are

restatements of those in the referenes ited below.
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yields the new base fp _ qg, and it is thus not the ase that fp; qg � Cn(;) + p _ q,

as (K�6

0

), applied to bases, would have it. (Reall from setion 2.1, that (K�6

0

) is an

alternative formulation of the Reovery postulate.) 2

The retention of Reovery on the knowledge level (see page 3) is thus regarded as an

obstale to the aeptane of base hange operations.

2

This argument, found in [Makin-

son, 1987, Fuhrmann, 1991, Hansson, 1992a, 1993, 1996, Niederee, 1991℄, is ertainly

ompelling if one aepts the requirement that a base ontration operation may only

result in a new base that is a subset of the original one. But a number of researhers

have de�ned base ontration operations that aren't bound by this restrition, and

as a result, the theory ontration operations assoiated with these base ontration

operations do satisfy Reovery ([Nebel, 1989, 1990, 1991, 1992, Nayak, 1994a, Meyer

et al., 1999a℄, and hapter 8).

3

The rejetion of Reovery on these grounds thus boils

down to a question of the kind of base ontration one is willing to aept.

A di�erent argument against Reovery, one that operates purely on the theory

hange level, an be found in [Hansson, 1991, 1992a, 1996, Lindstr�om and Rabinowiz,

1991℄, and to a ertain extent, in [Niederee, 1991℄ as well. A general formulation of

this argument is presented by Lindstr�om and Rabinowiz [1991℄. They point out that

the following is a derived property of any removal that satis�es the six basi AGM

postulates:

If � 2 K and � � � then � 2 (K � �) + �.

That is, it is impossible to get rid of a w� � in K by �rst ontrating and then

expanding with a w� that is logially weaker than �. This argument is made onrete

by the following two onvining ounterexamples to Reovery, due to Hansson [1991,

1992a℄, and also ourring in [Hansson, 1996, 1999℄.

Example 6.1.2 I read a book about Cleopatra, in whih the laim is made that she

had a son and a daughter. I subsequently disover that the book is �tional, whih

leads me to remove my belief that Cleopatra had a hild. However, on onsulting a

history book I disover that Cleopatra indeed had a hild, and I thus expand my belief

set with this assertion.

2

Indeed, in [Alhourr�on et al., 1985℄, where the AGM postulates are phrased so as not to deal

exlusively with belief sets, the Reovery postulate, in the form of (K�6

0

), is taken to hold only for

belief sets.

3

A theory ontration operation � is assoiated with a base ontration operation � i� Cn(B �

�) = Cn(B)� �.
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Let L be a propositional language generated by the two atoms p and q. Let p denote

the assertion that Cleopatra had a son, and q the assertion that she had a daughter.

Then K = Cn(p; q). The removal of the belief that she had a hild is formalised as

K � (p _ q). Sine p; q 2 K, Reovery requires that K � (p _ q) + (p _ q) = K. So

expanding my belief set with the assertion that Cleopatra did, after all, have a hild,

will ensure that I again entertain the belief that she had a son and the belief that she

had a daughter; a onlusion whih seems unreasonable in this ontext. 2

Example 6.1.3 I have reason to believe that George is a mass murderer, and therefore

a riminal. Then I reeive information whih leads me to give up my belief that George

is a riminal. Sine all mass murderers are riminals, I also have to give up my belief

that George is a mass murderer. Then I reeive new information whih leads me to

aept the belief that George is a shoplifter.

To formalise this example, let L be a propositional language generated by the three

atoms p, q and r. Let p denote the assertion that George is a mass murderer, q the

assertion that George is a riminal, and r the assertion that George is a shoplifter.

Clearly, it is appropriate to use a semantis for L in whih p � q and r � q. Letting

K denote my initial set of beliefs, we have that q 2 K. Now, giving up my belief that

George is a riminal results in the new set of beliefs K � q. By Reovery we then have

that (K � q) + q = K, and sine r � q, K = (K � q) + q � (K � q) + r.

So, sine I previously believed George to be a mass murderer, I an't regard him as

a shoplifter without again believing that he is a mass murderer as well. 2

These ounterexamples strongly suggest that onerns other than the retention of in-

formation should also play a role during the removal of beliefs. Suh onsiderations

also form the gist of Levi's ritiism of Reovery [1991℄. He argues that anything other

than the use of maxihoie ontration (see setion 2.2) already onstitutes a radial

departure from the requirement that as muh information as possible be retained, and

takes issue with AGM's restrition of the permissible withdrawals to those that an be

de�ned in terms of the intersetion of maxihoie ontrations using (Def � from M)

(see setion 2.2). We disuss these matters in more detail in setion 6.3.6.

Niederee [1991℄ onsiders a third reason for rejeting the Reovery postulate. This

involves an extension to multiple withdrawal , in whih a withdrawal from a belief set

by a set of w�s, instead of just a single w�, is performed. He provides some plausi-

ble postulates for multiple withdrawal, and shows that multiple withdrawal operations
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satisfying these postulates annot be regarded as \extensions" of (single w�) with-

drawal operations that satisfy Reovery (where \extension" is given a preisely de�ned

meaning).

Despite the objetions against Reovery, its inlusion yields some desirable proper-

ties as well. Firstly, the prinipal argument against reovery is that removal operations

satisfying it, sometimes retain too muh information. Yet, as Makinson points out

[1987℄, full meet ontration (see setion 2.2), whih is a partiularly autious form of

withdrawal, satis�es Reovery. In ontrast, if Reovery is simply disarded, it permits

removals that learly remove too muh information. Witness, for example, the spei�

withdrawal in whih withdrawing any w� � 2 K, exept a logially valid �, yields

the set of logially valid w�s. And observe also that it is the inlusion of Reovery

whih ensures that the attempted removal of a logially valid w� from K results in

retaining all of K. Furthermore, although Hansson's ounterexamples show that there

are irumstanes under whih Reovery ought not to hold, it does not address the

question of whether there is any situation in whih Reovery should hold. But suh

examples do exist, as shown by Nayak [1994a℄. Finally, Makinson [1997℄ points out that

ounterexamples to Reovery are presented with an impliit assumption of a partiular

pattern of justi�ation among the beliefs held. He argues that suh ounterexamples

show that Reovery is indeed inappropriate for belief sets augmented with additional

struture of some kind, but that Reovery seems to be free of intuitive ounterexamples

in the idealised situation where a belief set is taken as a \naked" theory, without any

extra-logial struture.

In summary then, it seems exessive to insist that every withdrawal should satisfy

Reovery in order for it to be regarded as rational. Moreover, the advantages of Reov-

ery disussed above are not so muh arguments for its retention as they are arguments

against its omplete dismissal. It thus seems reasonable to investigate withdrawal op-

erations that do not always satisfy Reovery, but that, nevertheless, retain its desirable

features. It is to this task that we now turn.

6.2 Basi withdrawal

In hapter 2 we saw that there is a distintion to be drawn between basi AGM theory

ontration and AGM theory ontration (whih satis�es the supplementary postulates

as well). The latter, whih also satis�es the supplementary AGM ontration postu-
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lates, is more prinipled in the sense that it imposes restritions on the relationship

between belief sets resulting from the ontration by di�erent w�s (of a �xed belief set

K). And from a semanti point of view, we saw in hapters 3 and 5 that (prinipled)

AGM ontration involves the use of the faithful layered preorders.

We shall see below that a similar distintion holds for withdrawal. We onsider

two versions of withdrawal that an be onsidered as basi, at least in the sense that

they do not satisfy (K�7) and (K�8). In setion 6.3 we swith our attention to more

prinipled forms of withdrawal.

6.2.1 Saturatable withdrawal

For the purposes of onstruting appropriate withdrawal operations, it is useful to start

with a method for onstruting all those withdrawals for whih the withdrawal of every

logially valid w� leaves the urrent belief set unaltered. That is, those belief removals

satisfying (K�1) to (K�5), together with the following postulate:

(Failure) If � � then K � � = K

De�nition 6.2.1 A withdrawal is alled proper i� it satis�es Failure. 2

Proper withdrawal an be haraterised with the aid of Levi's saturatable ontrations

[1991℄.

De�nition 6.2.2 A belief set K

0

is a saturatable ontration with respet to K and �

i� K

0

� K and Cn(K

0

[ f:�g) 2 L?�. We denote the set of saturatable ontrations

with respet to K and � by s(K;�). 2

Reall from de�nition 2.2.1, that L?� is the set of maximal subsets of L that do not

entail �. So every element K

0

of L?� orresponds to an interpretation u, in the sense

that Th(u) = K

0

. (But, in general, the same element of L?� might be determined

by more than one interpretation | interpretations whih are elementarily equivalent,

but whih might be non-isomorphi.) Note further that there are no saturatable on-

trations with respet to K and � if � �, and if � =2 K, there will only be saturatable

ontrations in some ases.

To get a feel for the intuition underlying the use of the saturatable ontrations,

it is instrutive to view them semantially. The set of saturatable ontrations with

respet to a belief set K and a w� � is obtained by adding single models of :�, together
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with any subset of models of �, to the models of K, and then taking the orresponding

theory.

Proposition 6.2.3 Suppose � 2 K and 2 �.

1. If x 2M(:�) and W �M(�), then Th(M(K) [W [ fxg) 2 s(K;�).

2. If K

0

2 s(K;�), then there is an x 2 M(:�) and a W � M(�) suh that

K

0

= Th(M(K) [W [ fxg).

Proof For the proof of (1), suppose that x 2 M(:�) and W � M(�). It suÆes to

show that Cn(Th(M(K) [W [ fxg) [ f:�g) 2 L?�. Sine M(K) [W �M(�) and

x 2M(:�), it follows by lemma 1.3.5 that

M(Th(M(K) [W [ fxg)) \M(:�) =M(Th(M(K) [ fxg)) \M(:�).

Sine � 2 K, it follows from lemma 1.3.4 that Th(x) = Th(M(K)[fxg))\M(:�). And

by proposition 3.2.1, there is an X 2 L?� suh that Th(x) = X. So Cn(Th(M(K) [

W [ fxg) [ f:�g) = Th(x) 2 L?�.

For the proof of (2), suppose that K

0

2 s(K;�). So Cn(K

0

[ f:�g) 2 L?�. By

proposition 3.2.1 there is an x 2M(:�) suh that

Th(fxg) = Cn(K

0

[ f:�g) = Th(M(K

0

) \M(:�)).

Now letW =M(K

0

)\M(�). We show thatK

0

= Th(M(K)[W[fxg). For the left-to-

right inlusion, note that M(K) �M(K

0

) and x 2M(K

0

), and so M(K)[W [fxg �

M(K

0

). For the right-to-left inlusion, pik any � 2 Th(M(K) [ W [ fxg). So

M(K) [W [ fxg �M(�), and it suÆes to show that M(K

0

) n (M(K) [W [ fxg) �

M(�). Pik any y 2 M(K

0

) n (M(K) [W [ fxg). By the hoie of W , y 2 M(:�),

and thus y 2 M(K

0

[ f:�g). And sine Th(fxg) = Cn(K

0

[ f:�g), it follows that

y 2 M(�). 2

The removals permitted by Levi are those obtained by taking the intersetion of any

subset of the saturatable ontrations with respet to K and �, where � 2 K nCn(>).

(Hansson and Olsson [1995℄ refer to these removals as partial meet Levi-ontration

operators.) Semantially, this an be aomplished by using the saturatable seletion

funtions.
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De�nition 6.2.4 A funtion ss

K

: L ! }U is a saturatable seletion funtion i� the

following holds:

1. If � � � then ss

K

(�) = ss

K

(�),

2. if � � then ss

K

(�) = ;,

3. if � =2 K then ss

K

(�) �M(K), and

4. if 2 � and � 2 K then ss

K

(�) \M(:�) 6= ;.

2

There is a lose orrespondene between the semanti seletion funtions of de�nition

3.2.2, and the saturatable seletion funtions. As is the ase with the semanti seletion

funtions, we add the elements of ss

K

(�) to the models of K to obtain the models of

K � �. The di�ererene is that the saturatable seletion funtions, unlike the semanti

seletion funtions, allow us to inlude, as models of K � �, some ountermodels of K

that are also models of �.

De�nition 6.2.5 A removal is a saturatable withdrawal i� it an be de�ned in terms

of a saturatable seletion funtion ss

K

using (Def � from sm

K

) (see setion 3.2). 2

Hansson and Olsson [1995℄ show that the proper withdrawals are preisely the satu-

ratable withdrawals.

4

Theorem 6.2.6 A removal � is a proper withdrawal i� it is a saturatable withdrawal.

6.2.2 Sensible withdrawal

It is generally aknowledged that the set of all withdrawals (and even the set of all

proper withdrawals) allows for too muh generality. And from the disussion in setion

6.1, it seems reasonable to ut down on the set of all proper withdrawals by trying

to weaken the Reovery postulate in some appropriate fashion. However, attempts

to do so have proved to be quite diÆult. For example, Hansson [1991℄ proposes the

following two properties:

4

Hansson and Olsson's onstrutions are phrased diretly in terms of Levi's saturatable ontra-

tions, and not in terms of the saturatable seletion funtions, but by virtue of proposition 6.2.3, the

required orrespondene is easily established.
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(Relevane) If � 2 K nK � �, then there is an X � K suh that K � � � X and

� =2 Cn(X), but � 2 Cn(X) + �

(Core-retainment) If � 2 K nK��, then there is an X � K suh that � =2 Cn(X),

but � 2 Cn(X) + �

Core-retainment is learly weaker than Relevane, and intuitively, it might seem as if

Core-retainment, and perhaps Relevane as well, are weaker than Reovery. However,

Hansson shows that they both imply Reovery in the presene of (K�1) to (K�5).

Based on these results, Hansson onjetures that \a reasonable ontration operator

without the Reovery property does not seem possible". Indeed, the diÆulty in on-

struting plausible withdrawal operations on belief sets that do not satisfy Reovery

has led some researhers to view Reovery not neessarily as a fundamental postulate

of theory ontration, but rather as an emerging property [Hansson and Rott, 1995℄.

Reently, Ferm�e and Rodriguez [1998℄ have sueeded in the provision of a weaker

version of Reovery.

(Proxy Reovery) If K 6= K � � then there is a � 2 K suh that � =2 K � � and

K � (K � �) + �

It is easily established that Proxy Reovery is a weaker version of Reovery. If Reovery

is satis�ed, Proxy Reovery holds by taking � = �.

De�nition 6.2.7 A withdrawal is alled sensible i� it satis�es Failure and Proxy Re-

overy. 2

It is easily veri�ed that the basi AGM ontrations form a strit subset of the sensible

withdrawals, whih in turn, form a strit subset of the proper withdrawals. (Ferm�e

[1998℄ provides an example proving the seond strit inlusion.)

Ferm�e and Rodriguez haraterise sensible withdrawal in terms of Ferm�e's semi-

ontration [1998℄. The onstrution of semi-ontrations is justi�ed as follows. It is

well-known, and easily veri�ed, that if � is a basi AGM ontration, then � ! � 2

K�� for every � 2 K nK��. But in some ounterexamples to Reovery, this proves

to be undesirable. Consider, for instane, example 6.1.2 again. One way of stating the

problem with this example is that the w�s (p_ q)! p and (p_ q)! q are required to

be in K � (p _ q). Ferm�e's basi idea is to remove undesirable w�s suh as these from

the resulting belief set. This is done with the aid of semi-seletion funtions.
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De�nition 6.2.8 A semi-seletion funtion is a funtion s from }L to L suh that

s(X) 2 X if X 6= ;, and s(;) = >. 2

For any basi AGM ontration �, a semi-seletion funtion piks out, for every K n

K � �, the onsequent � of a w� �! � in K � �, suh that � 2 K nK � �. This is

equivalent to piking out the onjuntion of a �nite number of onsequents �

i

of w�s

of the form �! �

i

in K ��, where every �

i

is in K nK ��. Semi-ontration is then

de�ned as follows:

(Def � from � and s) K � � = (K � �) \ (K � (�! s(K nK � �)))

De�nition 6.2.9 A removal funtion is a semi-ontration i� it an be de�ned in

terms of a basi AGM ontration and a semi-seletion funtion using (Def � from �

and s). 2

The following representation theorem of Ferm�e and Rodriguez [1998℄ establishes the

relationship between sensible withdrawal and semi-ontration.

Theorem 6.2.10 A removal is a sensible withdrawal i� it is a semi-ontration.

While sensible withdrawal does indeed provide us with a withdrawal operation that is

more permissive than basi AGM ontration, but not as permissive as proper with-

drawal, there are indiations that it is not prinipled enough to be regarded as an

appropriate form of withdrawal. The following example shows that sensible withdraw-

al does not always satisfy the supplementary postulates, (K�7) and (K�8); not even

when we restrit ourselves to the sensible withdrawals de�ned in terms of AGM on-

trations (whih do satisfy the supplementary postulates).

Example 6.2.11 Let L be the propositional language generated by the three atoms

p, q and r, and let (V;) be the valuation semantis for L where

V = f000; 001; 010; 011; 100; 101; 110; 111g.

Let K = Cnfp; q; rg and let � be the faithful total preorder de�ned as follows:

x � y i�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

y 2 V if x = 111,

y 2 f000; 001; 010; 011; 100; 101; 110g if x 2 f011; 101g,

y 2 f000; 001; 010; 100; 110g if x = 110,

y 2 f000; 001; 010; 100g if x = 100, and

y 2 f000; 001; 010g if x 2 f000; 001; 010g.
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111

011 101

110

k

3

>

}

100

�

000 010001

6

k

>

�

6

-

- -�

Figure 6.1: A graphial representation of the faithful total preorder � used in example

6.2.11. The ordering is obtained from the reexive transitive losure of the relation

determined by the arrows.

Figure 6.1 ontains a graphial representation of �. Let � be the AGM ontration

de�ned in terms of � using (Def � from �), and let s be any semi-seletion funtion

suh that

s(K nK � (q _ r)) = q _ r,

s(K nK � (:q _ r)) = :q _ r,

s(K nK � r) = q $ r,

s(K nK � (p! q)) = p ^ q, and

s(K nK � q) = q.

It is readily veri�ed that suh an s exists. Now, let � be the semi-ontration de�ned

in terms of � and s using (Def � from � and s). By theorem 6.2.10, � is a sensible

withdrawal.

To show that � violates (K�7), take q _ r as �, :q _ r as �, and observe that

K � (q _ r) = Cn(p ^ (q $ r)), K � (:q _ r) = Cn(p ^ q), and K � ((q _

r) ^ (:q _ r)) = K � r = Cn(p ^ (q _ r)). To show that � violates (K�8), take

q as �, p ! q as �, and observe that K � (p ! q) = Cn((p _ q) ^ r), and that
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K � (q ^ (p! q)) = K � q = Cn(p ^ r). 2

The failure of (K�7) and (K�8) an be traed bak to the semi-seletion funtions

and the undesirable amount of freedom they allow in hoosing a w� in K nK � �.

6.3 Prinipled withdrawal

In the light of the failure of sensible withdrawal to satisfy (K�7) and (K�8), the

hallenge before us is to de�ne a type of withdrawal that is truly prinipled in nature,

like AGM ontration, but without the requirement that Reovery should hold. To

obtain suh an approah to withdrawal, it is neessary to take a loser look at the

intuition assoiated with AGM ontration.

As we have seen, the inlusion of the Reovery postulate in the AGM framework

is justi�ed by an appeal to the priniple of Informational Eonomy [G�ardenfors, 1988℄.

When epistemi states are viewed as belief sets, this view ditates that informational

eonomy should be measured in terms of set-inlusion, thus providing a restatement

of the priniple of Conservatism. If the priniple of Informational Eonomy had been

the overriding onern, it would have implied that the belief set resulting from an �-

ontration of K should be a maximal subset of K that does not imply �; that is, an

�-remainder (see de�nition 2.2.1). But it is easily seen that this involves a restrition

to maxihoie ontration (see page 22), a speial ase of AGM ontration whih

Alhourr�on and Makinson [1982℄ have shown to be too strong for a general aount of

theory ontration.

Sine AGM ontration is more than just maxihoie ontration, it follows that the

priniple of Informational Eonomy is not the only requirement in question, but rather

one of several equally important guidelines. In partiular, as Rott and Pagnuo [1999℄

argue in their exellent survey of withdrawal, the respetive roles of the priniples of

Indi�erene and Preferene in the onstrution of AGM ontrations are as important

as that of the priniple of Informational Eonomy. We shall see below that in de�ning

AGM ontration, the priniple of Informational Eonomy has, to some degree, already

given way to the priniple of Indi�erene. It is our ontention that, for a desription of

prinipled withdrawal, it is neessary for this proess to take its full ourse. That is,

we propose that both the priniples of Indi�erene and Preferene should take strit

preedene over the priniple of Informational Eonomy. We adopt an information-

theoreti point of view, and use the faithful layered preorders on the infatoms of L as
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the mahinery for onstruting withdrawal operations. The priniples of Indi�erene,

Preferene, and Informational Eonomy are then applied, in a onsistent manner, to

di�erent subsets of the faithful layered preorders, yielding di�erent forms of prinipled

withdrawal.

Let us �rst onsider, in detail, the way in whih these three priniples are ombined

to obtain AGM ontration. In this ase, the appliation of the priniple of Informa-

tional Eonomy is twofold. Its inuene is felt in the requirement that some mehanism

should be used for distinguishing between the level of entrenhment of infatoms. This

requirement is implemented by the use of a faithful total preorder. Seondly, the prini-

ple of Informational Eonomy restrits the appliation of the remaining two priniples

to ontent bits of � during an �-ontration. (This is where it still takes preedene

over the priniple of Preferene and, to some extent, over the priniple of Indi�erene.)

The priniple of Preferene then ensures that any ontent bit i of � whih is regarded

as at most as entrenhed as a ontent bit j of �, will reeive at most as muh onsid-

eration for removal from K as j. Consequently, only the worst ontent bits of � are

onsidered for removal. And �nally, sine the worst ontent bits of � are all seen as

equally entrenhed, the priniple of Indi�erene ensures that they will all be removed

from K. So, in this sense at least, the priniple of Indi�erene holds sway over the

priniple of Informational Eonomy.

It is our view that the role of the priniple of Informational Eonomy should be

reviewed in order for both the priniples of Indi�erene and Preferene to take omplete

preedene over it. In this view, its appliation only results in the use of the faithful

layered preorders to distinguish between the level of entrenhment of infatoms. Guided

by the two remaining priniples, the set of infatoms removed from K then ontains all

the infatoms that are at most as entrenhed as the worst ontent bits of �. We shall

see that the appliation of these three priniples in the manner desribed above, leads

to the development of a number of di�erent forms of prinipled withdrawal.

6.3.1 Severe withdrawal

Rott and Pagnuo [1999℄ use the faithful total preorders to de�ne the set of severe

withdrawals.

5

Reall from setion 5.1 that the downset of a w� � is de�ned in terms

5

Atually, they use Grove's systems of spheres, but it is easily extendable to the slightly more

general ase that we onsider.
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of a faithful preorder using (Def r

�

from �). The downset of � ontains all the

interpretations that are at least as low down in the ordering as the minimal models of

�. Downsets are used to de�ne severe withdrawal as follows:

(Def � from r

�

) K � � = Th(M(K) [r

�

(:�))

De�nition 6.3.1 A removal is a severe withdrawal i� it is de�ned in terms of a faithful

total preorder using (Def � from r

�

). 2

Viewed information-theoretially, it should be apparent that (Def � from r

�

) is an

appliation, in terms of the faithful total preorders, of the priniples of Indi�erene,

Preferene, and Informational Eonomy in the manner desribed above.

Rott and Pagnuo show that severe withdrawal is haraterised by the following

set of postulates.

6

(K

�

�1) K

�

�� = Cn(K

�

��)

(K

�

�2) K

�

�� � K

(K

�

�3) If � =2 K then K

�

�� = K

(K

�

�4) If 2 � then � =2 K

�

��

(K

�

�5) If � � � then K

�

�� = K

�

��

(K

�

�6) If � � then K

�

�� = K

(K

�

�7) If 2 � then K

�

�� � K

�

�(� ^ �)

(K

�

�8) If � =2 K

�

�(� ^ �) then K

�

�(� ^ �) � K

�

��

Theorem 6.3.2 [Rott and Pagnuo, 1999℄ A removal

�

� is a severe withdrawal i� it

satis�es (K

�

�1) to (K

�

�8).

The postulates for severe withdrawal di�er from those for AGM ontration only on the

sixth and seventh postulates; the remaining ones are idential to their AGM ontra-

tion ounterparts. (K

�

�6), whih replaes Reovery, is the postulate we have referred

to as Failure. (K

�

�7) is a muh stronger requirement than the orresponding AGM

6

Pagnuo [1996℄ originally gave a di�erent haraterisation of severe withdrawal.
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ontration postulate (K�7). It is a kind of monotoniity property, requiring that the

removal of weaker w�s should always result in smaller belief sets. Rott and Pagnuo

regard this as an intuitively plausible postulate whih follows from the appliation of

the priniples of Indi�erene and Preferene. In setion 6.3.5, we argue against the

inlusion of this postulate, showing that it has some undesirable onsequenes, and

that (K

�

�7) is a onsequene of the priniples of Indi�erene and Preferene only when

they are applied to the faithful total preorders.

6.3.2 Systemati withdrawal

In this setion we introdue a set of withdrawals that are losely related to the severe

withdrawals. Their onstrution is based on an appliation of the priniples of Indif-

ferene, Preferene and Informational Eonomy in a manner idential to that used in

the onstrution of severe withdrawal. The only di�erene is that they are obtained

using the faithful modular weak partial orders, instead of the faithful total preorders.

De�nition 6.3.3 A belief removal � is a systemati withdrawal i� it is de�ned in

terms of a faithful modular weak partial order using (Def � from r

�

). 2

The di�erene between systemati withdrawal and severe withdrawal lies in the dif-

ferene between the downset (see de�nition 5.1.1) of a w� � obtained from a total

preorder and that obtained from a modular weak partial order. In the latter ase, the

downset onsists of the minimal models of � as well as all the interpretations stritly

below them (whih are all, of ourse, ountermodels of �). The former ase inludes

all the interpretations mentioned above, as well as the ountermodels of � on the same

level as the minimal models of �. In setion 6.3.5 we shall see that this seemingly minor

tehnial di�erene aounts for some fundamental di�erenes between these two forms

of prinipled withdrawal. For the moment, we provide a haraterisation of systemati

withdrawal in terms of a set of postulates.

(K�1) K � � = Cn(K � �)

(K�2) K � � � K

(K�3) If � =2 K then K � � = K

(K�4) If 2 � then � =2 K � �
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(K�5) If � � � then K � � = K � �

(K�6) If � � then K � � = K

(K�7) If  2 K � (� ^ ) then  2 K � (� ^ � ^ )

(K�8) If � =2 K � (� ^ �) then K � (� ^ �) � K � �

(K�9) If � 2 K, � _ � 2 K � � and � =2 K � � then � 2 K � (� ^ �)

(K�10) If 2 � and � 2 K � � then � =2 K � (� ^ �)

Theorem 6.3.4 A removal � is a systemati withdrawal i� it satis�es (K�1) to

(K�10).

Proof The left-to-right diretion follows from proposition B.1.2 in appendix B. For the

onverse, suppose that � satis�es (K�1) to (K�10). Now de�ne

�

� in terms of � using

(Def

�

� from �) on page 160. By lemma B.1.4 in appendix B,

�

� is a severe withdrawal.

So there is a faithful total preorder � from whih

�

� an be obtained using (Def � from

r

�

). Let � be the faithful modular weak partial order whih is semantially related

to �. By proposition 6.3.20, the systemati withdrawal � obtained from � using (Def

� from r

�

) an also be de�ned in terms of

�

� using (Def � from

�

�) on page 162. And

by lemma B.1.5 in appendix B, � is idential to �. 2

The �rst �ve postulates oinide with the �rst �ve AGM ontration postulates, and

the �rst six oinide with the �rst six postulates for severe withdrawal. (K�7) is a muh

weaker version of (K

�

�7). If a w�  is entrenhed enough in the belief set K so that it is

retained when at least one of  or � has to be disarded, then it should also be retained

when at least one of  or any w� logially stronger than � has to be disarded. (K�8) is

idential to (K�8) and (K

�

�8). (K�9) and (K�10) both introdue more restritions on

the relationship between withdrawals by di�erent w�s. (K�9) gives onditions under

whih a w� � should be retained and (K�10) gives onditions under whih � should

be disarded.

6.3.3 Revision-equivalene

With the de�nition of severe withdrawal and systemati withdrawal, we now have,

together with AGM ontration, three types of prinipled withdrawal at our disposal
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whih, as it turns out, are very losely related. For a proper omparison of this relation-

ship, it is instrutive to ommene with the desription of a feature whih Makinson

[1987℄ refers to as revision-equivalene.

De�nition 6.3.5 Two withdrawals � and � are revision-equivalent i� (K � :�) +

� = (K � :�) + �. 2

In other words, two withdrawals are revision-equivalent i� the revisions they de�ne in

terms of the Levi identity (Def � from �), are idential. From Makinson [1987℄ we ob-

tain the following results onerning the revision-equivalene of basi AGM ontration

and (basi) withdrawal.

Theorem 6.3.6 1. A revision-equivalent lass of withdrawals ontains a unique ba-

si AGM ontration.

2. The basi AGM ontration � is the maximal element in the equivalene lass

[�℄ of withdrawals that are revision-equivalent to �. That is, for every � in [�℄,

K � � � K � � for every � 2 L.

To bring severe withdrawal into the piture, we need to restrit ourselves to the revision-

equivalent lasses whih ontain the AGM ontrations.

De�nition 6.3.7 A revision-equivalent lass is alled prinipled i� it ontains an AGM

ontration. 2

Note that a withdrawal in a prinipled revision-equivalene lass need not satisfy (K�7)

and (K�8). A ase in point is the sensible withdrawal in example 6.2.11.

Rott and Pagnuo [1999℄ provide the following results.

Theorem 6.3.8 1. Every prinipled revision-equivalent lass ontains a unique se-

vere withdrawal.

2. The severe withdrawal

�

� is the minimal element in the (prinipled) equivalene

lass [

�

�℄ of withdrawals that are revision-equivalent to

�

� and that satisfy (K�8).

That is, for every � in [

�

�℄ that satis�es (K�8), K

�

�� � K � � for every � 2 L.

7

It should ome as no surprise that the revision-equivalene of an AGM ontration and

a severe withdrawal is losely tied to their semanti de�nitions in terms of faithful total

preorders.

7

This is a result derived from Observation 7 in [Rott and Pagnuo, 1999℄.
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De�nition 6.3.9 An AGM ontration and a severe withdrawal are semantially re-

lated i� they an be de�ned in terms of the same faithful total preorder using (Def �

from �) and (Def � from r

�

) respetively. 2

Theorem 6.3.10 An AGM ontration and a severe withdrawal are semantially re-

lated i� they are revision-equivalent.

Proof Follows from lemma 1.3.5 and the fat that every prinipled revision-equivalene

lass ontains a unique AGM ontration and a unique severe withdrawal. 2

In fat, it is easily established that the very notion of prinipled revision-equivalene

hinges on the use of minimal-equivalent faithful layered preorders (see de�nition 3.3.6).

Proposition 6.3.11 Suppose � and � are two withdrawals whih are in the same

prinipled revision-equivalene lass, and let � be the AGM revision obtained in terms

of � and � using (Def � from �). Furthermore, let � be any faithful layered preorder

in terms of whih � is de�ned using (Def � from �). Then, for every � 2 K nCn(>),

there is a W

�

�

�M(�) and a W

�

�

�M(�) suh that

K � � = Th(M(K) [Min

�

(:�) [W

�

�

), and

K � � = Th(M(K) [Min

�

(:�) [W

�

�

).

Proof Follows from lemma 1.3.5. 2

The signi�ane of proposition 6.3.11 is that it enables us to regard a set of minimal-

equivalent faithful layered preorders as the basis for obtaining a prinipled revision-

equivalent lass of withdrawals, and allows us to see every withdrawal in a prinipled

revision-equivalene lass as \independent" of the other members in the lass. For

example, Rott and Pagnuo show that the smallest withdrawal

:::

� in a prinipled

revision-equivalent lass [

:::

�℄ an be de�ned in terms of the severe withdrawal in [

:::

�℄ as

follows:

(Def

:::

� from

�

�) K

:::

� � =

(

Cn(�) \K

�

�� if � 2 K n Cn(>),

K otherwise

But

:::

� an also be de�ned, \independently" of

�

�, in terms of a faithful total preorder

� as follows:
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(Def

:::

� from �) K

:::

� � =

8

>

<

>

:

Th(M(K) [Min

�

(:�) [M(�))

if � 2 K nCn(>),

K otherwise

Proposition 6.3.12 Let

�

� be the severe withdrawal de�ned in terms of a faithful total

preorder � using (Def � from r

�

). The withdrawal

:::

� de�ned in terms of

�

� using

(Def

:::

� from

�

�) an also be de�ned in terms of � using (Def

:::

� from �).

Proof We only onsider the ase where � 2 K n Cn(>). Then

Cn(�) \K

�

��

= Th(M(K

�

��) [M(�))

= Th(M(K) [r

�

(:�) [M(�)) by (Def � from r

�

)

= Th(M(K) [Min

�

(:�) [M(�)) from (Def r

�

).

2

The withdrawal

:::

� de�ned in terms of a faithful total preorder using (Def

:::

� from�) is in

gross violation of the priniples of Indi�erene, Preferene and Informational Eonomy.

From an information-theoreti point of view, it removes all the ontent bits of :� from

K during a withdrawal of �, regardless of how entrenhed they are. As suh, it is not

an appropriate andidate for prinipled withdrawal. It is most likely examples suh

as these whih prompted Lindstr�om and Rabinowiz [1991℄ to advane the thesis that

any reasonable withdrawal should lie somewhere between AGM ontration and severe

withdrawal. To be more preise, in a prinipled revision-equivalene lass ontaining

the AGM ontration � and the severe withdrawal

�

�, we should regard as reasonable,

only those withdrawals � for whih K

�

�� � K � � � K�� for every � 2 L. Following

a suggestion by Rott [1992a, 1995℄, we refer to this proposal as the LR interpolation

thesis.

De�nition 6.3.13 A withdrawal is reasonable i� it satis�es the LR interpolation the-

sis. 2

Note that being a reasonable withdrawal is not a guarantee of prinipled behaviour.

Some suh withdrawals, suh as the sensible withdrawal in example 6.2.11, do not

even satisfy (K�7) and (K�8).

8

From an information-theoreti point of view, the LR

8

It is easily veri�ed that the sensible withdrawal in this example is indeed reasonable.
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interpolation thesis requires an �-withdrawal to be e�eted by removing from K, any

subset of the ontent bits of :� that are at most as entrenhed as the least entrenhed

ontent bits of �, together with these least entrenhed ontent bits of �. So, while

it does not guarantee an adherene to the priniples of Preferene and Indi�erene

with regard to C(:�) (the ontent bits of :�), it ensures the satisfation of these

two priniples in terms of C(�) (the ontent bits of �) and it goes some way towards

satisfying these priniples when omparing elements of C(�) and C(:�).

We are now in a position to bring systemati withdrawal into the piture as well.

It is perhaps to be expeted that every prinipled revision-equivalene lass ontains

a unique systemati withdrawal. And this is indeed the ase, as the next proposition

shows.

Proposition 6.3.14 Every prinipled revision-equivalene lass ontains a unique sys-

temati withdrawal.

Proof Pik any prinipled revision-equivalene lass. By theorem 6.3.6, it ontains

a unique AGM ontration � whih, by proposition 5.7.3, an be de�ned in terms of

a faithful modular weak partial order �. By lemma 1.3.5, the systemati withdrawal

�, de�ned in terms of � using (Def � from �), is revision-equivalent to �. Now

assume there is a di�erent systemati withdrawal � in this revision-equivalene lass.

By theorem 6.3.4, it an be de�ned in terms of a faithful modular weak partial order

� using (Def � from r

�

), where � is not minimal-equivalent to �. And then �

de�nes an AGM ontration

�

� in terms of (Def � from �) whih, though revision-

equivalent to �, di�ers from �. But this ontradits the uniqueness of � in the given

revision-equivalene lass. 2

It is easily seen that systemati withdrawal is also reasonable (that is, it satis�es the

LR interpolation thesis).

Proposition 6.3.15 Every systemati withdrawal belongs to a prinipled revision-

equivalene lass, and is reasonable.

Proof Consider any systemati withdrawal �. By de�nition, there is a faithful mod-

ular weak partial order � in terms of whih � is de�ned using (Def � from r

�

). By

lemma 1.3.5, the AGM ontration de�ned in terms of � using (Def � from �) is

revision-equivalent to �, and it thus follows that � belongs to a prinipled revision-

equivalene lass. Furthermore, from theorem 6.3.6, K � � � K � � for every � 2 L.
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Now onsider the faithful total preorder � obtained in terms of � using (Def � from

�), and let

�

� be the severe withdrawal de�ned in terms of � using (Def � from r

�

).

Then K

�

�� � K � � for every � 2 L, and by lemma 1.3.5,

�

� is revision-equivalent to

�. So � satis�es the LR-interpolation thesis; i.e. it is reasonable. 2

In the ontext of revision-equivalene, the relationship between AGM ontration, sys-

temi withdrawal, severe withdrawal, and the faithful layered preorders de�ning these

di�erent forms of prinipled withdrawal, is summarised in the following orollary.

Corollary 6.3.16 Consider a prinipled revision-equivalene lass R of withdrawals.

1. There is a minimal-equivalene lassM of faithful layered preorders suh that,

for every faithful layered preorder � inM and every withdrawal � in R, K �

� = Th(M(K) [Min

�

(:�) [W

�

�

), where W

�

�

�M(�).

2. R ontains a unique AGM ontration �, a unique systemati withdrawal � that

is also reasonable, and a unique severe withdrawal

�

�.

3. For every withdrawal � in R, K � � � K � � for every � 2 L.

4. For every withdrawal � in R whih satis�es (K�8), K

�

�� � K � � for every

� 2 L.

5. The AGM ontration � an be de�ned in terms of every faithful layered preorder

� inM, using (Def � from �).

6. The systemati withdrawal � an be de�ned in terms of every faithful modular

weak partial order � inM, using (Def � from r

�

).

7. The severe withdrawal

�

� an be de�ned in terms of every faithful total preorder

� inM, using (Def � from r

�

).

Proof Follows from proposition 6.3.11, theorems 6.3.6 and 6.3.8, propositions 6.3.14,

6.3.15, and 5.7.3, theorem 6.3.4, and theorem 6.3.2. 2
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6.3.4 Reasonable withdrawal

This setion is devoted to an investigation of the relationship between various reason-

able withdrawals, with partiular emphasis on AGM ontration, systemati withdraw-

al and severe withdrawal. We have seen that AGM ontration and severe withdrawal

both oupy speial positions in the revision-equivalene lasses. The former provides

an upper bound for reasonable withdrawal, and the latter a lower bound. As a result

both an be de�ned in terms of the remaining reasonable withdrawals. In partiular,

� an be obtained from any revision-equivalent reasonable withdrawal � as follows

(Def � from �) K � � = K \ ((K � �) + :�)

And

�

� an be obtained from any revision-equivalent reasonable withdrawal � in one

of two ways:

9

(Def

�

� from �) � 2 K

�

�� i�

(

� 2 K � (� ^ �) if 2 �,

� 2 K otherwise

(Def

�

� from � (v2)) K

�

�� =

(

T

fK � (� ^ �) j � 2 Lg if 2 �,

K otherwise

Proposition 6.3.17 Let � and

�

� be an AGM ontration and a severe withdrawal

respetively, that are revision-equivalent. Suppose that � is a reasonable withdrawal

that is revision-equivalent to

�

� (and �). Then

1. � an be de�ned in terms of � using (Def � from �),

2.

�

� an be de�ned in terms of � using (Def

�

� from �), and

3.

�

� an be de�ned in terms of � using (Def

�

� from � (v2)).

Proof Let � be a faithful total preorder in terms of whih � is de�ned using (Def

� from �). By orollary 6.3.16,

�

� an be de�ned in terms of � using (Def � from

r

�

). Sine � is reasonable, and therefore revision-equivalent to �, there is, by lemma

1.3.5, a W

�

� M(�) suh that K � � = Th(M(K) [ W

�

[ Min

�

(:�)), for every

� 2 K n Cn(>). We only onsider the ases where 2 �.

9

Sine (Def

�

� from �) and (Def

�

� from � (v2)) de�ne the same severe withdrawal when applied

to any reasonable withdrawal, any further results involving (Def

�

� from �) should be seen as results

involving (Def

�

� from � (v2)) as well.
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1. Follows from lemma 1.3.5.

2. If � =2 K � (� ^ �) then � =2 K

�

�(� ^ �), sine � is reasonable and revision-

equivalent to

�

�. So there is a y 2M(K) [r

�

(:(� ^ �)) suh that z 2M(:�),

and therefore y 2 Min

�

(:(� ^ �)). Therefore x � y for every x 2 Min

�

(:�),

and thus � =2 K

�

��. Conversely, if � =2 K

�

�� then y 2 M(:�) for some y 2

M(K)[r

�

(:�), and there is thus an x 2Min

�

(:(�^�)) suh that x 2M(:�).

Therefore � =2 K � (� ^ �).

3. If  =2

T

fK � (�^ �) j � 2 Lg then there is a � 2 L suh that  =2 K � (�^ �).

And then  =2 K

�

�(� ^ �), sine � is reasonable and revision-equivalent to

�

�.

So there is a z 2 M(K) [ r

�

(:(� ^ �)) suh that M(:). But then  =2 K

�

��,

sine y � x for every y 2Min

�

(:�) and every x 2 Min

�

(:(�^�)). Conversely,

if  =2 K

�

�� then  =2 K

�

�(� ^ ) by part (2), from whih the required result

follows.

2

And as a orollary of proposition 6.3.17, the identities (Def � from �) and (Def

�

� from

�) are interhangeable when restrited to AGM ontration and severe withdrawal.

10

That is, starting with an AGM ontration or a severe withdrawal, and applying these

two identities in the appropriate sequene, brings us bak to where we started.

De�nition 6.3.18 An AGM ontration �, a systemati withdrawal �, and a severe

withdrawal

�

� are semantially related i� there is a faithful total preorder � and a

semantially related faithful modular weak partial order � suh that

1. � is de�ned in terms of � (and �) using (Def � from �),

2. � is de�ned in terms of � using (Def � from r

�

), and

3.

�

� is de�ned in terms of � using (Def � from r

�

).

2

10

Part (1) of proposition 6.3.17 an be traed bak to [Makinson, 1987℄. Also, proposition 6.3.17,

when restrited to AGM ontration and severe withdrawal, and orollary 6.3.19, albeit in a slightly

di�erent guise, an be found in [Rott and Pagnuo, 1999℄.
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Corollary 6.3.19 If an AGM ontration and a severe withdrawal are semantially

related, then they an also be de�ned in terms of eah other using (Def � from �) and

(Def

�

� from �).

Proof Follows from proposition 6.3.17 and orollary 6.3.16. 2

Sine systemati withdrawal is reasonable, it follows from proposition 6.3.17 that every

systemati withdrawal � de�nes a revision-equivalent AGM ontration � using (Def

� from �), and a revision-equivalent severe withdrawal

�

� using (Def

�

� from �).

Being reasonable, � lies somehere between � and

�

�, so to speak. (In fat, it lies muh

\loser" to severe withdrawal, in terms of set-inlusion.) Nevertheless, it is possible to

de�ne systemati withdrawal in terms of both AGM ontration and severe withdrawal.

In partiular, � an be de�ned in terms of � as follows:

(Def � from �) � 2 K � � i�

8

>

<

>

:

� _ � 2 K � (� ^ �) and � =2 K � (� ^ �)

if 2 �, 2 �, � 2 K,

� 2 K otherwise

And � an be de�ned in terms of

�

� as follows:

(Def � from

�

�) � 2 K � � i�

8

>

<

>

:

� _ � 2 K

�

�� and � =2 K

�

��

if 2 �, 2 � and � 2 K,

� 2 K otherwise

Proposition 6.3.20 Let � be an AGM ontration, let � be a systemati withdrawal,

and let

�

� be a severe withdrawal. Suppose that �, � and

�

� are semantially related.

1. � an also be de�ned in terms of � using (Def � from �).

2. � an also be de�ned in terms of

�

� using (Def � from

�

�).

Proof Let � be a faithful total preorder in terms of whih � and

�

� are de�ned using

(Def � from �) and (Def � from r

�

) respetively, and let � be the faithful modular

weak partial order that is semantially related to �. We only onsider the ase where

2 �, 2 � and � 2 K.

1. Suppose that � 2 K � �. Then r

�

(:�) � M(�) and so Min

�

(:(� ^ �)) �

M(�_�) andMin

�

(:�) =Min

�

(:(�^�)). Therefore �_� 2 K� (�^�) and

� =2 K�(�^�). Conversely, suppose that �_� 2 K�(�^�) and � =2 K�(�^�).

SoMin

�

(:�) � Min

�

(:(�^�)) and thus r

�

(:�) � r

�

(:(�^�)) �M(�_�),

from whih it follows that � 2 K � �.
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2. Suppose that � 2 K � �. Then r

�

(:�) � M(�), and so r

�

(:�) � M(� _ �),

and thus � _ � 2 K

�

��. Furthermore, y � x for every x 2 Min

�

(:�) and

every y 2Min

�

(:�), and so � =2 K

�

��. Conversely, suppose that � _ � 2 K

�

��

and � =2 K

�

��. Then r

�

(:�) � M(� _ �), whih means Min

�

(:�) � M(�).

Furthermore, r

�

(:�) *M(�), and so y � x for every x 2Min

�

(:�) and every

y 2Min

�

(:�). Therefore r

�

(:�) nMin

�

(:�) �M(�) and thus � 2 K � �.

2

And as a orollary of propositions 6.3.17 and 6.3.20, the identities (Def � from �)

and (Def � from �) are interhangeable when applied to AGM ontration and sys-

temati withdrawal. Similarly, the identities (Def

�

� from �) and (Def � from

�

�) are

interhangeable when applied to severe withdrawal and systemati withdrawal.

Corollary 6.3.21 Let � be an AGM ontration, let � be a systemati withdrawal,

and let

�

� be a severe withdrawal. Suppose that �, � and

�

� are semantially related.

1. � and � an also be de�ned in terms of one another using (Def � from �) and

(Def � from �).

2.

�

� and � an also be de�ned in terms of one another using (Def

�

� from �) and

(Def � from

�

�).

6.3.5 Systemati withdrawal vs. severe withdrawal

Systemati withdrawal and severe withdrawal are motivated by similar onerns. In-

deed, they apply the priniples of Indi�erene, Preferene and Informational Eonomy

in the same manner, and the method of onstrution used is idential; they di�er only

in the hoie of faithful layered preorders to apply to (Def � from r

�

). As a re-

sult, they have many features in ommon. Firstly, both these forms of withdrawal are

speial ases of Cantwell's [1999℄ fallbak-based withdrawal. Moreover, it is easily ver-

i�ed that systemati withdrawal and severe withdrawal satisfy (K�7), and that severe

withdrawal, like systemati withdrawal, satis�es (K�7) and (K�10).

Proposition 6.3.22 Every systemati and every severe withdrawal satis�es (K�7),

and every severe withdrawal satis�es (K�7) and (K�10).
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Figure 6.2: A graphial representation of the faithful total preorder � and the seman-

tially related faithful modular weak partial order � used in example 6.3.23. In both

�gures, two interpretations x and y are in the relevant faithful preorder i� (x; y) is in

the reexive transitive losure of the relation determined by the arrows.

Proof For severe withdrawal, note that (K�7) follows easily from (K

�

�7), and that

(K�7) follows easily from (K

�

�7) if 2 �. For the remaining part of (K�7), suppose

that � � and that  2 K

�

�� ^ . By (K

�

�5),  2 K

�

� and thus �  by (K

�

�4). And

then  2 K

�

�� ^ � ^  by (K

�

�1). The proof that severe withdrawal satis�es (K�10)

is idential to the proof that systemati withdrawal satis�es (K�10). It an be found

in appendix B, proposition B.1.2.

Let � be a systemati withdrawal de�ned in terms of the faithful modular weak

partial order � using (Def � from r

�

). To prove that � satis�es (K�7), it suÆes

to show that M(K) [ r

�

(:(� ^ �)) � M(K) [ r

�

(:�) [ r

�

(�). Pik any x 2

M(K)[r

�

(:(�^�)). We only onsider the ase where x =2M(K). If x 2M(:(�^�))

then, from (Def r

�

), x 2 Min

�

(:(� ^ �)). Therefore either x 2 Min

�

(:�) or

x 2 Min

�

(:�). And sine Min

�

(:�) � r

�

(:�) and Min

�

(:�) � r

�

(:�), it

follows that x 2 r

�

(:�)[r

�

(:�). On the other hand, if x 2M(� ^ �) then there is

an y 2Min

�

(:(�^�)) suh that x � y. Now, either y 2Min

�

(:�) or y 2Min

�

(:�).

In the former ase, x 2 r

�

(:�) and in the latter ase x 2 r

�

(:�). 2

And at the risk of illustrating the obvious, the next example shows that neither sys-

temati withdrawal nor severe withdrawal satis�es the Reovery postulate.
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Example 6.3.23 Let L be the propositional language generated by the two atoms

p and q, and let (V;) be the valuation semantis for L, with V = f00; 01; 10; 11g.

Furthermore, let K = Cn(fp; qg). Now, let � be the faithful total preorder de�ned as

follows:

x � y i�

8

>

<

>

:

y 2 V if x = 11,

y 2 f01; 10; 00g if x 2 f01; 10g, and

y = 00 if x = 00,

and let � be the assoiated faithful modular weak partial order de�ned in terms of

� using (Def � from �). Figure 6.2 ontains graphial representations of � and �.

Let

�

� be the severe withdrawal de�ned in terms of � using (Def � from r

�

), and

let � be the systemati withdrawal de�ned in terms of � using (Def � from r

�

). So

r

�

(:(p_q)) = r

�

(:(p_q)) = V and thus K

�

�(p_q) = K�(p_q) = Th(V ) = Cn(>).

But K

�

�(p _ q) + (p _ q) = (K � (p _ q)) + (p _ q) = Cn(p _ q) � K, thus invalidating

Reovery. 2

The lose relationship between systemati and severe withdrawal raises the question

of whether the two notions ever oinide. Part of the answer to this question is easy.

Whenever a faithful layered preorder � is both a total preorder and a modular weak

partial order, the severe withdrawal and the systemati withdrawal de�ned in terms of

� using (Def � from r

�

) are, by de�nition, idential. It is easy to see that this is the

ase only when � is a K-linear order (see de�nition 5.5.8).

Proposition 6.3.24 Let � be any K-linear order. The belief removal de�ned in terms

of � using (Def � from r

�

) is a severe withdrawal as well as a systemati withdrawal.

Proof Follows immediately from the fat that � is both a faithful total preorder and

a faithful modular weak partial order. 2

Furthermore, if a severe withdrawal annot be de�ned in terms of a K-linear order

using (Def � from r

�

), then it is not a severe withdrawal, and vie versa; at least for

the �nitely generated propositional languages.

Proposition 6.3.25 Let L be a �nitely generated propositional lanaguage with a val-

uation semantis (V;).

1. Let

�

� be a severe withdrawal that annot be de�ned in terms of a K-linear order

using (Def � from r

�

). Then

�

� is not a systemati withdrawal.
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2. Let � be a systemati withdrawal that annot be de�ned in terms of a K-linear

order using (Def � from r

�

). Then � is not a severe withdrawal.

Proof 1. Assume that

�

� is a systemati withdrawal. Now, let � be a faithful total

preorder in terms of whih

�

� is de�ned using (Def � from r

�

), and let � be

the faithful modular weak partial order de�ned in terms of � using (Def � from

r

�

). By orollary 6.3.16, the systemati withdrawal � de�ned in terms of �

using (Def � from r

�

) is revision-equivalent to

�

�, and it thus follows that � is

equal to

�

�. By supposition, � is not a K-linear order, whih means there are at

least two distint ountermodels, x and y, of K suh that x �

�

y and x k

�

y.

Now, let � be a w� suh that M(�) = fxg. (By our hoie of L, there is suh an

�.) Then r

�

(�) 6= r

�

(�) and thus K

�

�:� 6= K � :�; a ontradition.

2. The proof is similar to that of part (1) and is omitted.

2

Notwithstanding the similarities between systemati and severe withdrawal, there are

fundamental di�erenes between them as well. We now ome to a number of prop-

erties that are indiative of the major di�erenes. Interestingly enough, the intuitive

plausibility of all these properties are, in some way or another, related to the following

simple example.

11

Example 6.3.26 While reading about Cleopatra, I have ome aross one soure laim-

ing that she had a son, and another laiming that she had a daughter. Now onsider

the following three situations.

1. If I attend a talk about the life and times of Cleopatra, and the speaker, an

expert on the subjet, says something whih prompts me to retrat the belief

that Cleopatra had a son, it seems reasonable to retain the belief that she had a

daughter.

2. Similarly, if the speaker leads me to retrat the belief that Cleopatra had a

daughter, I should retain the belief that she had a son.

3. And �nally, suppose that the speaker relates an inident whih is spei� enough

to ast doubts on my belief that she had a son and a daughter, but is too vague

11

This is a variant of example 6.1.2.
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to indiate whether she didn't have a son, didn't have a daughter, or perhaps,

did not have any hildren at all. In these irumstanes, intuition ditates that

I should retain the belief that she had a hild, without ommitting myself to a

belief about it being a son or a daughter.

To formalise this example, let L be a propositional language generated by the two atoms

p and q. Let p denote the assertion that Cleopatra had a son, and q the assertion that

she had a daughter. Then K = Cn(p; q). The three di�erent situations desribed

above are then formalised as follows:

K � p = Cn(q), K � q = Cn(p), and K � (p ^ q) = Cn(p _ q).

It is easily veri�ed that the systemati withdrawal in example 6.3.23 is able to aom-

modate example 6.3.26, but as we shall see below, the adherene to (K

�

�7) ensures that

severe withdrawal disallows this type of withdrawal. 2

Let us now onsider eah of the relevant properties indiating the di�erenes between

systemati withdrawal and severe withdrawal. The �rst one is the property expressed

by (K

�

�7). That it is not satis�ed by systemati withdrawal, unlike severe withdrawal,

is evident by onsidering the systemati withdrawal in example 6.3.23, and noting that

q 2 K � p, but that q =2 K � (p ^ q). Rott and Pagnuo [1999℄ argue in favour of

(K

�

�7) by making an appeal to the priniples of Indi�erene and Preferene. Observe

that an � ^ �-withdrawal fores us to get rid of at least one of � or �. If � is given

up, they argue, we an obtain an �-withdrawal by abandoning the same beliefs as

when withdrawing � ^ �. And if � is given up, we might have to remove even more

beliefs. Information-theoretially, this an be justi�ed as follows. If � is given up

during an � ^ �-withdrawal, the worst ontent bits of � ^ � is at least as entrenhed

as the worst ontent bits of �. But the ontent bits of � are also ontent bits of �^ �,

and the worst ontent bits of � ^ � an thus not be more entrenhed than the worst

ontent bits of �. From the priniples of Indi�erene and Preferene it then follows

that an �-withdrawal should result in the removal of exatly the same infatoms as an

� ^ �-withdrawal. On the other hand, if � is given up during an � ^ �-withdrawal, it

follows by similar reasoning that the worst ontent bits of �^� and of � are all equally

entrenhed, with the worst ontent elements of � at least as entrenhed, and possibily

more entrenhed. Consequently, the priniples of Indi�erene and Preferene ditate

that an �-withdrawal should remove at least as muh infatoms as an �^�-withdrawal.
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A areful analysis of the argument advaned above makes it lear that it relies

heavily on the assumption that two infatoms an never be inomparable. In other

words, it assumes the existene of a faithful total preorder to measure the relative

entrenhment of infatoms. But the moment this restrition is relaxed to, say, a faithful

modular weak partial order, the postulate (K

�

�7) is not santioned by the same appeal

to priniples of Indi�erene and Preferene. This an, perhaps, best be illustrated by

example 6.3.26. Even though both p and q are given up during a p^ q-withdrawal, we

don't want either a p-withdrawal or a q-withdrawal to remove as muh information as

a p ^ q-withdrawal.

The next property we onsider is that expressed by the postulate (K�9). Unlike

systemati withdrawal, it is not satis�ed by severe withdrawal, a result whih an

be veri�ed by noting that for the severe withdrawal

�

� in example 6.3.23, p 2 K,

p _ q 2 K

�

�p and q =2 K

�

�p, but p =2 K

�

�(p ^ q). Intuitively, we an justify (K�9)

as follows. If � _ �, but not �, is retained after an �-withdrawal, it is an indiation

that � is more easily dislodged from K than �. Consequently, we should retain �, and

disard �, when having to withdraw � ^ �.

Rott and Pagnuo [1999℄ show that severe withdrawal satis�es the following prop-

erties:

(Inlusion) Either K

�

�� � K

�

�� or K

�

�� � K

�

��

(Deomposition) Either K

�

�(� ^ �) = K

�

�� or K

�

�(� ^ �) = K

�

��

(Converse onjuntive inlusion) If 2 �, 2 �, and K

�

�(� ^ �) � K

�

�� then � =2

K

�

��

(Expulsiveness) If 2 � and 2 � then either � =2 K

�

�� or � =2 K

�

��

Rott and Pagnuo regard it as regrettable that severe withdrawal satis�es Expulsive-

ness, in partiular, and write as follows:

\Expulsiveness is an undesirable property sine we do not neessarily want

sentenes that intuitively have nothing to do with one another to a�et

eah other in belief ontrations. This is the bitter pill we have to swallow

if we want to adhere to the priniples of Indi�erene and Preferene."

We ontend that it is the use of the faithful total preorders, and not these two prin-

iples that are the problem. This is made abundantly lear by noting that systemati
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withdrawal does not satisfy Expulsiveness. In fat, by onsidering the systemati with-

drawal in example 6.3.23, and taking p as �, and q as � in the four properties above,

we see that systemati withdrawal doesn't satisfy any of the four properties above.

Example 6.3.26 is thus evidene of the undesirability of these properties.

An analysis of the properties above reates the impression that, at least in some

respets, severe withdrawal removes too muh information from a belief set. This

impression is strengthened by noting that severe withdrawal, unlike systemati with-

drawal, inludes the following partiularly severe instane of proper withdrawal:

(Def

_

�) K

_

�� =

(

Cn(>) if � 2 K n Cn(>),

K otherwise

Proposition 6.3.27 The belief removal

_

� de�ned in (Def

_

�) is a severe withdrawal,

but not a systemati withdrawal.

Proof It is easily veri�ed that

_

� is de�ned in terms of the faithful total preorder �

using (Def � from �), where � is de�ned as follows:

x � y i�

(

y 2 U if x 2M(K),

y 2 U nM(K), otherwise

and

_

� is thus a severe withdrawal. Now assume that

_

� is also a systemati withdrawal.

Clearly

_

� is revision-equivalent to itself, and by orollary 6.3.16 it then follows that

there is no other systemati withdrawal that is revision-equivalent to

_

�. Now, let � be

the faithful modular weak partial order that is semantially related to �. Sine � is

minimal-equivalent to�, it follows from orollary 6.3.16 that the systemati withdrawal

� de�ned in terms of � using (Def � from �) is revision-equivalent to

_

�, and it is

easily veri�ed that � is not equal to

_

�; a ontradition. 2

At the beginning of this setion we saw that systemati withdrawal and severe with-

drawal sometimes oinide. A related question is whether these two forms of with-

drawal ever oinide with AGM ontration. It turns out that full meet ontration

(see page 22) is the only ase for whih systemati withdrawal and AGM ontration

are idential. (See setion 3.3.2 for a semanti desription of full meet ontration.)

Proposition 6.3.28 Full meet ontration is the only AGM ontration that is a sys-

temati withdrawal.
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Proof The full meet ontration � an be de�ned in terms of the following faithful

modular weak partial order using (Def � from �): x � y i� x = y, or x 2 M(K)

and y =2 M(K). It is therefore, by de�nition, a systemati withdrawal. Next we show

that � is the only belief removal that is both an AGM ontration and a systemati

withdrawal. Pik any systemati withdrawal � other than �. So K � � 6= K � �

for some � 2 K n Cn(>). If K � � * K � �, then there is a � 2 K � � (and thus

� 2 K) suh that � =2 K � �. Sine K � � = Th(M(K) [M(:�)), there is therefore

an x 2 M(K � �) suh that x 2 M(� ^ :�). And thus � =2 K � � + �, whih is

a violation of Reovery. So suppose that K � � � K � �. Now let � be a faithful

modular weak partial order in terms of whih � is de�ned using (Def � from r

�

).

Sine K � � = Th(M(K) [M(:�)), it follows from K � � � K � � that there is a

� 2 Th(M(K) [ r

�

(:�)) suh that y 2 M(:�) for some y 2 M(:�). So 2 � _ �,

and sine Min

�

(:�) � r

�

(:�), Min

�

(:�)\Min

�

(:(�_�)) = ;, whih means that

Min

�

(:�) �Min

�

(:(�_�)).

12

By smoothness, Min

�

(:�) 6= ;, and there is thus an

x 2M(:� ^ �) suh that x � z for every z 2Min

�

(:(� _ �)). So x 2 r

�

(:(� _ �))

and thus � =2 K � (� _ �) + (� _ �). So � does not satisfy Reovery, and is therefore

not an AGM ontration. 2

With the exeption of some ases involving a few trivial belief sets, though, severe

withdrawal and AGM ontration always produe di�erent results.

Proposition 6.3.29 Let K be suh that for some �; � 2 K, 2 �, 2 � and � 6� �.

Then severe withdrawal and AGM ontration never oinide.

Proof Pik any severe withdrawal

�

� and let � be a faithful total preorder in terms

of whih

�

� an be de�ned using (Def � from r

�

). If Min

�

(:(�$ �)) �M(�) then

r

�

(:(� _ :�)) * M(�) and so � =2 K

�

�(� _ :�) + (� _ :�), whih is a violation

of Reovery. The remaining two ases, where Min

�

(:(� $ �)) � M(�), and where

Min

�

(:(�$ �)) *M(�) and Min

�

(:(�$ �)) *M(�), are similar. 2

We onlude this setion with a suggestion prompted by a remark from Hans Rott

[personal ommuniation℄ that it seems diÆult to ome up with yet more appropriate

forms of prinipled withdrawal. It turns out that there is a semanti way to desribe

another set of reasonable withdrawals, all of whih exhibit prinipled behaviour. The

12

See setion 1.3 for an explanation of the onvention of applying �, � and �

�

to sets of interpre-

tations.
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method of onstruting this set relies on the priniples of Indi�erene, Preferene and

Informational Eonomy, and they are employed in a manner idential to that used in the

onstrution of severe and systemati withdrawal. It di�ers only from the onstrutive

modellings of systemati and severe withdrawal in the hoie of permissible faithful

preorders.

De�nition 6.3.30 A belief removal is a methodial withdrawal i� it is de�ned in terms

of a faithful layered preorder using (Def � from r

�

). 2

Sine the set of faithful layered preorders inludes the faithful modular weak partial

orders and the faithful total preorders, methodial withdrawal inludes both system-

ati and severe withdrawal. However, it exludes the AGM ontrations whih do not

oinide with systemati withdrawal. It is our ontention that methodial withdrawal

onstitutes a lass of withdrawals that deserve further study. We provide a tenta-

tive �rst step in this diretion with a result involving some properties of methodial

withdrawal.

Proposition 6.3.31 Methodial withdrawal satis�es (K�1) to (K�5), (K�7), (K�8),

(K�7) and (K�10).

Proof The proofs are similar to those for systemati and severe withdrawal, and are

omitted. 2

From theorem 6.3.8 it thus follows that methodial withdrawal is also reasonable.

6.3.6 Informational value

In setion 6.2.1 we saw that proper withdrawal, as haraterised by Levi's saturatable

withdrawals, is too general to be regarded as prinipled. In partiular, it ontains many

removals whih do not satisfy (K�7) and (K�8). These, of ourse, inlude the basi

AGM ontrations that are not AGM ontrations.

Levi [1991℄ provides two methods for obtaining a more prinipled form of proper

withdrawal. The basi tenet of the onstrutions is that it is not the loss of information

that should be minimised, but rather the loss of informational value. In order to ahieve

this, it is neessary to provide a measure V on the belief sets that are subsets of the

urrent belief set K. He onsiders two monotoniity onditions of V:
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(Strong monotoniity) If X � Y then V(X) < V(Y )

(Weak monotoniity) If X � Y then V(X) � V(Y )

Levi sees strong monotoniity as too strong a requirement to impose on V, arguing

instead for the imposition of weak monotoniity. This is referred to as a measure of

undamped informational value.

13

The intuition is that some information may have

no informational value, and that the addition of suh information should leave the

informational value of a belief set unhanged. His �rst method uses undamped infor-

mational value. To determine the belief set resulting from an �-withdrawal of K, he

�nds the saturatable ontrations with respet to K and � that minimises the loss of

informational value, and takes their intersetion. That is done as follows with the aid

of a measure of undamped informational value V:

(Def � from V) K � � =

8

>

<

>

:

T

fX 2 s(K;�) j V(X) � V(Y ) 8Y 2 s(K;�)g

if � 2 K n Cn(>),

K otherwise

De�nition 6.3.32 A withdrawal is alled informational valued i� it de�ned in terms

of a measure of undamped informational value V using (Def � from V) 2

As Levi observes, this method is problemati from a deision-theoreti point of view,

sine the belief set obtained from an �-withdrawal may not represent a minimal loss

in informational value.

Example 6.3.33 Let L be the propositional language generated by the atoms p and

q, and let (V;) be the valuation semantis for L. Now let K = Cn(p), and let

V(Cn(p)) = 1, V(Cn(p _ q)) = V(Cn(p _ :q)) =

3

4

, and V(Cn(>)) = 0. It is easily

seen that K � p = Cn(>) for the withdrawal � de�ned in terms of V using (Def �

from V). And yet

V(Cn(>)) = 0 < V(Cn(p _ q)) = V(Cn(p _ q)) =

3

4

.

Choosing either Cn(p _ q) or Cn(p _ :q) would thus have resulted in a loss of infor-

mational value of

1

4

, while the hoie of Cn(>) represents a loss of informational value

of 1. 2

13

Atually, Levi's measure of undamped informational value, as proposed in [Levi, 1991℄, is required

to be a probability measure. We stik to the watered-down version used by Hansson and Olsson [1995℄.
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To retify this undesirable behaviour, Levi swithes to damped informational value. A

measure V

D

of damped informational value is determined in terms of a measure V of

undamped informational value as follows:

(Def V

D

from V) V

D

(X) = minfV(Y ) 2 s(K;�) j Y � Xg

In other words, the damped informational value of a belief set X � K is equal to

the minimum undamped informational value of the saturatable ontrations ontained

in X. Levi's seond method then de�nes proper withdrawals in terms of damped

informational value using (Def � from V). It is easily established that the proper

withdrawals de�ned in terms of V and V

D

using (Def � from V), where V

D

is obtained

in terms of V using (Def V

D

from V), are idential. The advantage in using damped

informational value is that it an be motivated from a deision-theoreti point of view.

Hansson and Olsson [1995℄ show that informational valued withdrawal satis�es (K�7)

and (K�8). In this sense, then, it is a prinipled form of withdrawal.

Levi [1998℄ has reently expressed some doubts about the appropriateness of infor-

mational valued withdrawal, as it has been presented thus far. He presents an example

whih is representative of a lass of informational valued withdrawals satisfying Re-

overy, whih he sees as ounterintuitive [Levi, 1998,p. 37℄. Furthermore, he points

out that the undamped and damped informational value of some belief sets (suh as

the saturatable ontrations) are the same, but that it di�ers for others. As a result,

he proposes the use of a seond version of damped informational value. The removal-

s de�ned in terms of this version of damped informational value using (Def � from

V) is dubbed mild ontration. It turns out that mild ontration oinides exatly

with severe withdrawal. This is one of the reasons why Levi favours severe withdrawal

over systemati withdrawal. He argues that his onstrution of severe withdrawal (or

mild ontration) in terms of undamped informational value (version 2) provides a

deision-theoreti motivation; something that systemati withdrawal does not appear

to possess.

6.4 Withdrawal and entrenhment

As disussed in hapter 5, entrenhment orderings on w�s are intended to provide a

measure of the extent to whih a partiular belief of an agent is entrenhed in its belief

set. As suh, these orderings an be useful in the onstrution of withdrawals. In
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this regard, we have already seen how AGM ontration an be de�ned in terms of

two forms of entrenhment; the EE-orderings of setion 2.3, and the RE-orderings of

setion 5.5. In fat, we saw in setion 5.8 that the EE-orderings, the RE-orderings

and AGM ontration are interhangeable in terms of the relevant identities. In this

setion we show that this interhangeability an be extended to inlude systemati and

severe withdrawal as well. It will be onvenient to generalise the notion of semanti

relatedness found in de�nitions 5.8.1 and 6.3.18.

De�nition 6.4.1 An AGM ontration �, an AGM revision �, an EE-ordering v

EE

, a

GE-orderingv

GE

, an RE-ordering v

RE

, an RG-ordering v

RG

, a systemati withdrawal

�, and a severe withdrawal

�

� are semantially related i� there is a faithful total

preorder � and a semantially related faithful modular weak partial order � suh that

1. � is de�ned in terms of � (and �) using (Def � from �),

2. � is de�ned in terms of � (and �) using (Def � from �),

3. v

EE

is de�ned in terms of � using (Def v

E

from �),

4. v

GE

is de�ned in terms of � using (Def v

G

from �),

5. v

RE

is de�ned in terms of � using (Def v

E

from �),

6. v

RG

is de�ned in terms of � using (Def v

G

from �),

7. � is de�ned in terms of � using (Def � from r

�

), and

8.

�

� is de�ned in terms of � using (Def � from r

�

).

2

Note that, for the remainder of this hapter, we shall fequently make use of lemma

5.2.1 without expliitly referring to it, as has been the onvention in hapter 5.

Let us begin with sharper versions of results by Rott and Pagnuo [1999℄, showing

that severe withdrawal and epistemi entrenhment are interde�nable by means of the

following two identities:

(Def

�

� from v

EE

) K

�

�� =

(

K \ f� j � <

EE

�g if � 2 K nCn(>),

K otherwise
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(Def v

EE

from

�

�) � v

EE

� i� � =2 K

�

�� or � �

Proposition 6.4.2 If an EE-ordering v

EE

and a severe withdrawal

�

� are semantially

related, they an also be de�ned in terms of one another using (Def v

EE

from

�

�) and

(Def

�

� from v

EE

).

Proof Let � be a faithful preorder in terms of whih v

EE

and

�

� are de�ned using (Def

v

EE

from�) and (Def� fromr

�

). We only onsider the ase where �; � 2 KnCn(>).

Observe that � 2 K

�

�� i� there is a y 2 Min

�

(:�) suh that x 2 M(�) for every

x � y, i� � 6v

EE

�, i� � <

EE

�. And then observe that � v

EE

� i� for every

y 2 Min

�

(:�) there is an x 2M(:�) suh that x � y, i� � =2 K

�

��. 2

Proposition 6.4.2 thus also shows that the identities (Def

�

� from v

EE

) and (Def v

EE

from

�

�) are interhangeable. Note that (Def v

EE

from

�

�) and (Def

�

� from v

EE

)

provide a very elegant method for moving between severe withdrawal and epistemi

entrenhment. Barring some limiting ases, a w� � is in the belief set resulting from a

severe �-withdrawal i� � is more entrenhed than �.

Interestingly enough, Rott and Pagnuo [1999℄ show that (Def v

EE

from

�

�) and

(Def v

EE

from �) are equivalent when applied to severe withdrawals. This observation

prompts us to show that the appliation of (Def v

EE

from �) to any two revision-

equivalent reasonable withdrawals yields the same EE-ordering.

Proposition 6.4.3 Let � and � be two reasonable withdrawals that are revision-

equivalent. The EE-orderings de�ned in terms of � and � using (Def v

EE

from �)

are idential.

Proof Let � and

�

� be the unique AGM ontration and severe withdrawal respetive-

ly, that are revision-equivalent to � and �. It suÆes to show that the EE-orderings

de�ned in terms of � and � using (Def v

EE

from �) are idential. So let v

�

EE

be

the EE-ordering de�ned in terms of � using (Def v

EE

from �), and let v

�

�

EE

be the

EE-ordering de�ned in terms of

�

� using (Def v

EE

from

�

�). Sine (Def v

EE

from

�

�)

and (Def v

EE

from �) yield idential EE-orderings when applied to severe withdrawal,

v

�

�

EE

an also be de�ned in terms of

�

� using (Def v

EE

from �).

First we show that v

�

EE

and v

�

�

EE

are idential. Let � be a faithful total preorder

in terms of whih � and

�

� an be de�ned using (Def � from �) and (Def � from r

�

)

respetively. By orollary 6.3.16 there is suh a �. By proposition 6.4.2, v

�

�

EE

is the
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EE-ordering de�ned in terms of � using (Def v

E

from �), and by proposition 3.3.4,

v

�

EE

is the EE-ordering de�ned in terms of � using (Def v

E

from �). So v

�

�

EE

and

v

�

EE

are idential.

Now, let v

�

EE

be the relation on L de�ned in terms of � using (Def v

EE

from �).

We only onsider the ase where 2 � ^ �. If � v

�

EE

� then � =2 K � � ^ �. Sine

� is reasonable, � =2 K � � ^ � and thus � v

�

EE

�. Furthermore, if � v

�

EE

� then

� =2 K � � ^ �. Sine � is reasonable, � =2 K

�

�� ^ � and thus � v

�

�

EE

�. And sine

v

�

EE

and v

�

�

EE

are idential, the required result follows. 2

When using (Def v

RE

from �), we obtain a result for reasonable withdrawal and

re�ned entrenhment whih is similar to proposition 6.4.3.

Proposition 6.4.4 Let � and � be two reasonable withdrawals that are revision-

equivalent. The RE-orderings de�ned in terms of � and � using (Def v

RE

from �)

are idential.

Proof Let � be the unique AGM ontration and

�

� the unique severe withdrawal

that are both revision-equivalent to � and �. Furthermore, let � be a faithful total

preorder in terms of whih � and

�

� an be de�ned using (Def � from �) and (Def

� from r

�

) respetively. By orollary 6.3.16 there is suh a �. Moreover, let � be

the faithful modular weak partial order that is semantially related to �. By theorem

5.5.15 we know that the RE-ordering v

�

RE

de�ned in terms of � using (Def v

E

from

�) an also be de�ned in terms of � using (Def v

RE

from �). Below we show that the

binary relation v

�

�

RE

on L de�ned in terms of

�

� using (Def v

RE

from �) is idential

to v

�

RE

. The required result then follows in a manner that is similar to the proof of

proposition 6.4.3.

Suppose that � v

�

RE

�. Then �! � 2 K��^� and soM(K)[Min

�

(:(�^�)) �

M(� ! �). From this it follows that for every x � y, where y 2 Min

�

(:(� ^ �)),

x 2 M(� ! �). That is, r

�

(:(� ^ �)) � M(� ! �

_

), and thus �! � 2 K

�

�(� ^ �),

from whih it follows that � v

�

�

RE

�. Conversely, if � v

�

�

RE

� then �! � 2 K

�

�(�^�).

But this means that �! � 2 K � (� ^ �) and so � v

�

RE

�. 2

A result similar to proposition 6.4.2 holds for severe withdrawal and re�ned entrenh-

ment when (Def v

RE

from �) and the identity below are used:

(Def

�

� from v

RE

) K

�

�� =

(

K \ f� j � 6v

RE

� and � ! � v

RE

�g if 2 �,

K otherwise
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Proposition 6.4.5 If an RE-ordering v

RE

and a severe withdrawal

�

� are semanti-

ally related, then they an also be de�ned in terms of one another using (Def v

RE

from �) and (Def

�

� from v

RE

).

Proof Let � be a faithful total preorder in terms of whih

�

� an be de�ned using (Def

�

� from r

�

), and let � be the semantially related faithful modular weak partial order.

The validity of the appliation of (Def

�

� from v

RE

) follows easily from proposition

6.4.2 and theorem 5.5.7. For (Def v

RE

from �) we only onsider the ase where 2 �.

Observe that � v

RE

� i� for every y 2 Min

�

(:�) there is an x 2 Min

�

(:�) suh

that x � y, i� r

�

(:(� ^ �)) � M(�! �), i� �! � 2 K

�

�(� ^ �). 2

Next is a similar result for systemati withdrawal and the EE-orderings, when using

(Def v

EE

from �) and the identity below:

(Def � from v

EE

) � 2 K � � i�

8

>

<

>

:

� <

EE

� _ � and � v

EE

�

if � 2 K n Cn(>),

� 2 K otherwise

Proposition 6.4.6 If the EE-ordering v

EE

and the systemati withdrawal � are se-

mantially related, then they an also be de�ned in terms of one another using (Def �

from v

EE

) and (Def v

EE

from �).

Proof Let � be a faithful total preorder in terms of whih v

EE

an be de�ned using

(Def v

E

from �), and let � be the semantially related faithful modular weak partial

order. For (Def � from v

EE

) we only onsider the ase where � 2 K nCn(>). Suppose

that � 2 K � �. So, there is a y 2 Min

�

(:�) suh that x 2 M(�) � M(� _ �) for

every x � y. Furthermore, sine Min

�

(:�) � M(�), x 2 M(� _ �) for every x suh

that y � x. So x 2 M(� _ �) for every x � y, whih means that � _ � 6v

EE

� and

thus that � <

EE

� _ �. And sine x 2 M(�) for every x � y, we have that � v

EE

�.

Conversely, suppose that � =2 K � �. So there is a y 2 M(K) [ r

�

(:�) suh that

y 2 M(:�). Suppose further that � v

EE

�. Then there is an x 2 M(:�) suh that

x � y and thus y 2 Min

�

(:�). So y 2 M(:(� _ �)) and y � z for every z 2 M(:�).

That is, � _ � v

EE

�, whih means that � 6<

EE

� _ �.

For (Def v

EE

from �), suppose that � 6v

EE

�. So there is a y 2 Min

�

(:�)

suh that x 2 M(�) for every x � y. Then 2 � ^ �, y 2 Min

�

(:(� ^ �)), and so

M(K) [ r

�

(:(� ^ �)) � M(�). That is � 2 K � (� ^ �). Conversely, suppose that
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� 2 K��^�. We only onsider the ase where 2 �^�. ThenM(K)[r

�

(:(�^�)) �

M(�), and there is thus a y 2 Min

�

(:(� ^ �)) = Min

�

(:�) suh that x 2 M(�) for

every x � y. Furthermore, sine Min

�

(:(� ^ �)) �M(�), x 2M(�) for every x suh

that y � x. So x 2M(�) for every x � y and thus � 6v

EE

�. 2

Finally, we obtain a related result for systemati withdrawal and re�ned entrenhment

in terms of (Def v

RE

from �) and the identity below.

(Def � from v

RE

) K � � =

8

>

<

>

:

f� j � 6v

RE

� and � ! � v

RE

�g

if � 2 K n Cn(>),

K otherwise

Proposition 6.4.7 If the RE-ordering v

RE

and the systemati withdrawal � are se-

mantially related, then they an also be de�ned in terms of one another using (Def �

from v

RE

) and (Def v

RE

from �).

Proof Let � be a faithful modular weak partial order in terms of whih v

RE

and �

an be de�ned using (Def v

E

from �) and (Def � from r

�

). The proof for (Def v

RE

from �) is idential to the part of the proof of proposition 6.4.5 onerning (Def v

RE

from �). For (Def � from v

RE

), we only onsider the ase where � 2 K n Cn(>).

Suppose that � 2 K � �. So there is a y 2 Min

�

(:�) suh that x 2 M(�) for every

x � y. That is, � 6v

RE

�. Note further that for every z 2 Min

�

(:�), z 2 M(�),

and so � ! � v

RE

�. Conversely, suppose that � 6v

RE

� and � ! � v

RE

�. From

� 6v

RE

� there is a y 2 Min

�

(:�) suh that x 2 M(�) for every x � y, and from

� ! � v

RE

� it follows that y 2 M(�) for every y 2 Min

�

(:�). And therefore,

� 2 K � �. 2

6.5 Systemati withdrawal and entrenhment

Setion 6.4 ontains a plethora of results, providing strong links between severe with-

drawal, systemati withdrawal, the EE-orderings and the RE-orderings, in terms of

appropriate identities. But with the exeption of the onnetion between severe with-

drawal and the EE-orderings, it is diÆult to view these identities as intuitively plau-

sible desriptions of how these onstrutions relate to eah other. This is not unlike

the onnetion between AGM ontration and epistemi entrenhment provided by the

identities (Def � from v

EE

) and (Def v

EE

from �) in setion 2.3. (Def � from v

EE

)
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in partiular, has been the subjet of some srutiny in the theory hange literature.

With the exeption of some limiting ases, it shows that a w� � is in the �-ontration

of K i� � _ � is more entrenhed than �. It is, of ourse, the use of � _ �, instead of

� above, that is the soure of onern. Blakburn et al. [1997℄, for example, attribute

the use of � _ � to \tehnial reasons". G�ardenfors and Makinson [1988℄ provide a

motivation for its use, but it is somewhat diÆult to understand, and depends on the

aeptane of the Reovery postulate. More reently, G�ardenfors has admitted that

the identity is somewhat ounterintuitive [1992,p. 19℄.

In setion 5.1 we gave a di�erent haraterisation of AGM ontration in terms of

the EE-orderings; one that, in our opinion, provides a loser math with the G�ardenfors

intuition that ontration in terms of epistemi entrenhment is based on the idea of

being \fored to hoose" between the removal of two w�s. In this setion we intend to

provide an analogous math between systemati withdrawal and re�ned entrenhment.

We start by showing that the EE-orderings have too oarse a grainsize to provide a

suitable intuitive desription of systemati withdrawal. This is followed by another

desription of systemati withdrawal in terms of the RE-orderings; one whih di�ers

from the one given in proposition 6.4.7. Finally, we show that for the �nitely generated

propositional ase, there is a graph based proedure for de�ning systemati withdrawal

in terms of re�ned entrenhment.

6.5.1 Systemati withdrawal and the EE-orderings

The reason that (Def � from v

EE

) is seen as a somewhat ounterintuitive de�nition

of AGM ontration in terms of the EE-orderings is that w�s that are less entrenhed

than a w� � are sometimes retained during an �-ontration, as the next example

shows.

Example 6.5.1 Let L be the propositional language generated by the two atoms p

and q, and let (V;), with V = f00; 01; 10; 11g, be the valuation semantis for L. Let

K = Cn(p) and de�ne the EE-ordering v

EE

as follows:

� v

EE

� i�

8

>

>

>

>

<

>

>

>

>

:

� 2 L if � =2 K,

p � � if � � p or � � p _ :q,

p _ q � � if � � p _ q, and

� � if � � >.



180 CHAPTER 6. WITHDRAWAL

f� j p 2 �g = L nK

p _ :q, p

p _ q

>

6

6

6

Figure 6.3: A graphial representation of the EE-ordering v

EE

with respet to the

belief set K = Cn(fpg). This EE-ordering is used in example 6.5.1. For every �; � 2 L,

� v

EE

� i� (�; �) is in the reexive transitive losure of the relation determined by

the arrows. Eah w� in this �gure is a anonial representative of the set of w�s whih

are logially equivalent to it.

It is easily veri�ed that v

EE

is indeed an EE-ordering. Figure 6.3 ontains a graphial

representation of v

EE

. It an be veri�ed that the AGM ontration � de�ned in terms

of v

EE

using (Def � from v

EE

) yields K � (p _ q) = Cn(p _ :q). So K � (p _ q)

ontains the w� p _ :q, a w� that is less entrenhed than p _ q. 2

Our �rst result shows that, unlike AGM ontration, none of the w�s that are less

entrenhed than � are in the belief set resulting from a systemati �-withdrawal.

Proposition 6.5.2 Suppose that the EE-ordering v

EE

and the systemati withdrawal

� are semantially related. If 2 � and � <

EE

� then � =2 K � �.

Proof Let � be a faithful total preorder in terms of whih v

EE

an be de�ned using

(Def v

E

from �) and let � be its semantially related faithful modular weak partial
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order. Suppose that 2 � and � <

EE

�. Then � 6v

EE

� and there is thus a y 2

Min

�

(:�) suh that x 2 M(�) for every x � y. So y � z for every z 2 Min

�

(:�).

Therefore r

�

(:�) *M(�) and thus � =2 K � �. 2

Proposition 6.5.2 desribes the fate of the w�s that are less entrenhed than �, but

it gives no indiation of what happens to the remaining w�s. The next result gives a

partial answer to this question.

Proposition 6.5.3 Suppose that the EE-ordering v

EE

and the systemati withdrawal

� are semantially related. If � <

EE

� then � 2 K � �.

Proof Let � be a faithful total preorder in terms of whih v

EE

an be de�ned using

(Def v

E

from �), and let � be its semantially related faithful modular weak partial

order. Suppose that � <

EE

�. We only onsider the ase where 2 �. By (EE2), 2 �,

and from � 6v

EE

� it follows that there is a y 2 Min

�

(:�) suh that x 2 M(�) for

every x � y. So M(K) [ r

�

(:�) �M(�) and thus � 2 K � �. 2

The w�s that are more entrenhed than � will thus all be retained after a systemati

�-withdrawal. It therefore only remains to be seen what systemati withdrawal does

with the w�s that are as entrenhed as �. Unfortunately it seems that the EE-orderings

are too oarse to aount for a proper desription of how to handle these w�s.

Example 6.5.4 Consider the language L generated by the two atoms p and q, and let

(V;) be the valuation semantis for L, with V = f00; 01; 10; 11g. Let K = Cn(fp; qg),

de�ne the faithful total preorder � as follows

x � y i�

8

>

<

>

:

y 2 V if x = 11,

y 2 f00; 01; 10g if x 2 f01; 10g, and

y = 00 if x = 00

and let � be the assoiated faithful modular weak partial order de�ned in terms of �

using (Def � from �). Now, let v

EE

be the EE-ordering de�ned in terms of � using

(Def v

E

from �) and let � be the systemati withdrawal de�ned in terms of � using

(Def � from r

�

). Figure 6.4 ontains a graphial representation of � and v

EE

. An

inspetion of v

EE

in �gure 6.4 shows that the status of the w�s whih are exatly as

entrenhed as the w� we want to withdraw is somewhat ambiguous. To see this, note

that K � p = Cn(fqg). So although the w�s p _ :q, p $ q, p ^ q, :p _ q, and q are

exatly as entrenhed as p, some of them are in K � p, while others are not. 2
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11

10 01

00

}
>

�

I

-
�

f� j p ^ q 2 �g = L nK

p; p _ :q; p$ q; p ^ q;:p _ q; q

p _ q

>

6

6

6

Figure 6.4: A graphial representation of the EE-ordering v

EE

with respet to the

belief set K = Cn(fp; qg), and the faithful total preorder from whih it is obtained

using (Def v

E

from �). These orderings are used in example 6.5.4. For every two

interpretations x and y, x � y i� (x; y) is in the reexive transitive losure of the

relation determined by the arrows. Similarly, for every �; � 2 L, � v

EE

� i� (�; �) is

in the reexive transitive losure of the relation determined by the arrows. Eah w�

in the graphial representation of the EE-ordering is a anonial representative of the

set of w�s whih are logially equivalent to it.

Interestingly enough, this example does not represent a phenomenon that is unique to

systemati withdrawal. The next proposition shows that systemati withdrawal and

AGM ontration di�er only on those w�s that are less entrenhed than the w� � to

be withdrawn. In other words, the type of problem highlighted in example 6.5.4 is one

that has been arried over from AGM ontration.

Proposition 6.5.5 Suppose that the EE-ordering v

EE

, the systemati withdrawal �,

and the AGM ontration � are semantially related. If � 6<

EE

� then � 2 K � � i�

� 2 K � �.

Proof Let � be a faithful total preorder in terms of whih v

EE

and � an be de�ned
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using (Def v

E

from �) and (Def � from �), and let � be its semantially related

faithful modular weak partial order. Suppose that � 6<

EE

�. The right-to-left diretion

follows from orollary 6.3.16. Now suppose that � 2 K � �. Pik any x 2 r

�

(:�).

If x 2 M(K) [Min

�

(:�) then x 2 M(�), so we suppose otherwise. Then x 2 M(�)

and x � y for every y 2 Min

�

(:�). Assume that x =2 M(�). Then x 2 M(� ^ :�),

and sine � v

EE

�, there is a z � x suh that z 2M(:�), ontraditing the fat that

x � y for every y in Min

�

(:�). 2

Example 6.5.4 gives an indiation that the EE-orderings have too oarse a grainsize to

provide an intuitively satisfatory desription of systemati withdrawal. This undesir-

able behaviour an be traed bak to the fat that the EE-orderings are total preorders;

a feature that has already been disussed at length in hapter 5.

6.5.2 Systemati withdrawal and the RE-orderings

We now ome to an alternative desription of systemati withdrawal in terms of re�ned

entrenhment. It turns out that re�ned entrenhment retains the intuitively desirable

results of setion 6.5.1, and eliminates the ounterintuitive results assoiated with the

EE-orderings desribed in that setion. First, we show that the result of proposition

6.5.2 arries over to the RE-orderings.

Proposition 6.5.6 Suppose that the RE-ordering v

EE

and the systemati withdrawal

� are semantially related. If 2 � and � v

RE

� then � =2 K � �.

Proof Let � be a faithful modular weak partial order in terms of whih v

RE

and �

an be de�ned using (Def v

E

from �) and (Def � from r

�

). Suppose that 2 � and

� v

RE

�. So, for every y 2 Min

�

(:�) there is an x 2 Min

�

(:�) suh that x � y.

This means that r

�

(:�) *M(�), and therefore that � =2 K � �. 2

So during an �-withdrawal, systemati withdrawal does not just guarantee the removal

of all the w�s that are less entrenhed than �, but also those that are as entrenhed

as �. It remains to be seen what happens to the remaining w�s; those are not at most

as entrenhed as the w� � to be withdrawn. Note �rstly that AGM ontration and

systemati withdrawal treat these w�s in exatly the same manner.

Proposition 6.5.7 Suppose that the RE-ordering v

EE

and the systemati withdrawal

� are semantially related. If � 6v

RE

� then � 2 K � � i� � 2 K � �.
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p; p _ :q

f� j p ^ q 2 �g = L nK

p$ q; p ^ q

p _ q

>

6

6

6

:p _ q; q

k

>

3

}

Figure 6.5: A graphial representation of the RE-ordering v

RE

with respet to the

belief set K = Cn(fp^qg). This RE-ordering is used in example 6.5.8. For every �; � 2

L, � v

RE

� i� (�; �) is in the reexive transitive losure of the relation determined by

the arrows. Eah w� in this �gure is a anonial representative of the set of w�s whih

are logially equivalent to it.

Proof Let � be a faithful modular weak partial order in terms of whih v

RE

and � an

be de�ned using (Def v

E

from �) and (Def � from r

�

). Suppose that � 6v

RE

�. By

orollary 6.3.16 we already have that K�� � K��. So suppose that � 2 K��. Then

M(K) [Min

�

(:�) �M(�) and it thus suÆes to show that r

�

(:�) nMin

�

(:�) �

M(�). Now, sine � 6v

RE

�, there is a y 2 Min

�

(:�) suh that x 2 M(�) for every

x � y. It then follows easily that r

�

(:�) nMin

�

(:�) �M(�). 2

The next example shows that the w�s that are more entrenhed than � are not always

retained after a systemati �-withdrawal.
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Example 6.5.8 Let L be the propositional language generated by the two atoms p

and q and let (V;) be the valuation semantis for L, with V = f00; 01; 10; 11g. Now,

let K = Cn(fp; qg), de�ne the faithful modular weak partial order � as follows

x � y i�

8

>

>

>

>

<

>

>

>

>

:

y 2 V if x = 11,

y 2 f01; 00g if x = 01,

y 2 f10; 00g if x = 10, and

y = 00 if x = 00,

and let v

RE

be the RE-ordering de�ned in terms of � using (Def v

E

from �). Fig-

ure 6.2 ontains a graphial representation of �, and �gure 6.5 ontains a graphial

representation of v

RE

.

Now let � be the systemati withdrawal de�ned in terms of � using (Def � from

r

�

). It is easily veri�ed that K � (p$ q) = Cn(p_ q). Furthermore, an inspetion of

�gure 6.5 shows that p, q, :p_ q and p_:q are all more entrenhed than p$ q. And

yet, none of these w�s are in K � (p$ q). 2

An inspetion of the RE-ordering v

RE

in �gure 6.5 gives a lue as to why w�s that are

more entrenhed than � are sometimes not retained when performing an �-withdrawal.

Observe in �gure 6.5 that both p and q are more entrenhed than p ^ q. Retaining

both of them in K � (p ^ q) is out of the question (beause it would then follow that

p ^ q 2 K � (p ^ q)). Furthermore, v

RE

does not allow us to hoose between p and q,

sine they are inomparable in terms of v

RE

. The prudent ourse of ation is then to

remove both. This argument an be formulated as a general priniple involving sets of

w�s.

Proposition 6.5.9 Suppose that the RE-ordering v

EE

and the systemati withdrawal

� are semantially related. Now, suppose that � <

RE

�, X [ f�g � �, and both

� <

RE

 and � k

v

RE

 for every  2 X. Then � =2 K � �.

Proof Let � be a faithful modular weak partial order in terms of whih v

RE

and �

an be de�ned using (Def v

E

from �) and (Def � from r

�

). Assume that � 2 K � �

and pik a  2 X. Sine � <

RE

, there is a y 2 Min

�

(:�) suh that x 2 M() for

every x � y. Furthermore, y 2M(�) beause � 2 K��. Now, sine X [f�g � � and

y 2M(:� ^ �), there is a Æ 2 X suh that y =2M(Æ). And beause � k

v

RE

Æ, there is

a v 2 Min

�

(:�) suh that u 2 M(Æ) for every u � v. Therefore y 
 v. Furthermore,
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from � 2 K � � it follows that v 
 y. And beause � v

RE

�, there is a w � v suh

that w 2 M(:�). Sine y 2 Min

�

(:�) and y k

�

v, it has to be the ase that w = v,

and therefore v 2Min

�

(:�). And sine v =2M(�), � =2 K � �; a ontradition. 2

Note that proposition 6.5.9 only guarantees that � is not in K ��, and makes no suh

laim about the w�s in X as well, even though these w�s are all inomparable with

� and more entrenhed than �, just as � is. This an be explained by observing that

the w�s in X need not be inomparable with one another. In the speial ase in whih

they are inomparable, it follows easily from proposition 6.5.9 that none of the w�s in

X are in K � � either.

A related result, and one that is of some importane for the results presented in

the rest of this setion, holds for the set of w�s that inludes not only those that are

more entrenhed than �, but also those that are inomparable with �. For this result

we need the following lemma.

Lemma 6.5.10 Let � be a faithful modular weak partial order, v

RE

the RE-ordering

de�ned in terms of � using (Def v

E

from �), and � the systemati withdrawal de�ned

in terms of � using (Def � from r

�

). If � 2 K, � 6v

RE

� and � =2 K � �, then there

is a y 2 M(:� ^ �) and a z 2 M(:� ^ :�) suh that x 2 M(� ^ �) for every x < y,

and x 2M(� ^ �) for every x < z.

Proof Suppose that � 2 K, � 6v

RE

� and � =2 K � �. It follows from � 6v

RE

�

that there is a y 2 Min

�

(:�) suh that x 2 M(�) for every x � y. And therefore

y 2 M(:� ^ �) and x 2M(� ^ �) for every x < y. Furthermore, beause � =2 K � �,

there is a z 2 M(K) [ r

�

(:�) suh that z 2 M(:�). If z =2 Min

�

(:�) then, sine

� 2 K, z < y, whih violates the result that all interpretations stritly below y are

models of �. So z 2Min

�

(:�), and beause y is also a minimal model of :� it follows

that z 2M(:� ^ :�), and that x 2M(� ^ �) for every x < z. 2

Proposition 6.5.11 Suppose that the RE-ordering v

EE

and the systemati withdrawal

� are semantially related.

1. If � 2 K, � 6v

RE

� and � =2 K��, then there is a  6v

RE

� suh that f�; g � �.

2. If � 6v

RE

�,  6v

RE

�, and f�; g � �, then � =2 K � � and  =2 K � �.
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Proof Let � be a faithful modular weak partial order in terms of whih v

RE

and �

an be de�ned using (Def v

E

from �) and (Def � from r

�

). For the proof of (1),

suppose that � 6v

RE

� and � =2 K � �. Now onsider the w� � ! �. It is lear

that f�; � ! �g � �. Sine � 2 K, it follows from lemma 6.5.10 that there is a

y 2 M(:� ^ �) and a z 2 M(:� ^ :�) suh that x 2 M(� ^ �) for every x < y, and

x 2 M(� ^ �) for every x < z. So z is a model of :� suh that x 2 M(� ! �) for

every x � z. That is, (� ! �) 6v

RE

�, and we have the desired result.

To prove (2), suppose that � 6v

RE

�,  6v

RE

� and f�; g � �. Beause � 6v

RE

�,

there is a y 2Min

�

(:�) suh that x 2M(�) for every x � y, and beause f�; g � �,

y 2 M(:). Similarly, from  6v

RE

� there is a z 2 Min

�

(:�) suh that x 2 M()

for every x � y, and z 2M(:�). It thus follows that  =2 K � � and � =2 K � �. 2

So proposition 6.5.11 tells us exatly whih of the w�s that are not at most as en-

trenhed as a w� � in K will be retained when withdrawing � from K, and whih

of these w�s will be disarded. It therefore plaes us in a position to formalise the

relationship between the systemati withdrawals and the RE-orderings.

Theorem 6.5.12 Suppose that the RE-ordering v

EE

and the systemati withdrawal

� are semantially related. Then

� =2 K � � i�

8

>

>

>

>

<

>

>

>

>

:

� =2 K and � �, or

� =2 K and � =2 K, or

� v

RE

� and 2 �, or

� 6v

RE

� and 9 6v

RE

� suh that f�; g � �,

(6.1)

or equivalently,

� 2 K � � i�

8

>

<

>

:

� 2 K and � �, or

� 2 K and � =2 K, or

� 6v

RE

� and for every  6v

RE

�, f�; g 2 �.

(6.2)

Proof The proof is mostly a ombination of the results in propositions 6.5.11 and

6.5.6. It an be found in appendix B. 2

In fat, we an do better. The next proposition enables us to sharpen the relationship

between systemati withdrawal and re�ned entrenhment.

Proposition 6.5.13 Suppose that the RE-ordering v

EE

and the systemati withdrawal

� are semantially related.
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1. If � 2 K, � <

RE

�, and � =2 K � �, then � <

RE

,  k

v

RE

�, and f�; g � �

for some  2 L.

2. If � 2 K, � k

v

RE

�, and � =2 K � �, then � k

v

RE

,  k

v

RE

�, and f�; g � �

for some  2 L.

14

Proof Let � be a faithful modular weak partial order in terms of whih v

RE

and � an

be de�ned using (Defv

E

from�) and (Def� fromr

�

). The proofs are similar to those

of part (1) of proposition 6.5.11. For the proof of (1), suppose that � 2 K, � <

RE

�,

and � =2 K � �. Now onsider the w� � ! �. It is lear that f�; � ! �g � �. By

lemma 6.5.10 there is a y 2M(:�^�) and a z 2M(:�^:�) suh that x 2M(�^�)

for every x < y, and x 2M(�^�) for every x < z. So z 2M(:�) and x 2M(� ! �)

for every x � z. That is, (� ! �) 6v

RE

�. Sine M(:(� ! �)) � M(:�), it

also learly follows that � v

RE

(� ! �), and so � <

RE

(� ! �). To show that

(� ! �) k

v

RE

�, note �rstly that z 2 M(:�) and x 2 M(� ! �) for every x � z.

That is, (� ! �) 6v

RE

�. And then note that y 2 M(:(� ! �)) and x 2 M(�) for

every x � z. That is, � 6v

RE

(� ! �).

For the proof of (2), suppose that � 2 K, � k

v

RE

�, and � =2 K � �. Now

onsider the w� � $ �. It is lear that f�; � $ �g � �. By lemma 6.5.10, there is

a y 2 M(:� ^ �) and a z 2 M(:� ^ :�) suh that x 2 M(� ^ �) for every x < y

and M(� ^ �) for every x < z. To show that � $ � k

v

RE

�, note �rstly z 2 M(:�)

and x 2 M(� $ �) for every x � z. That is, � $ � 6v

RE

�. And then note that

sine � 6v

RE

�, there is a v 2 M(:�) suh that u 2 M(�) for every u � v. Therefore

v k

�

y, and so u 2 M(� ^ �) for every u < v. So v 2 M(:(� $ �)) and u 2 M(�)

for every u � v. That is, � 6v

RE

� $ �. Then, to show that � $ � k

v

RE

�, note that

z 2 M(:�) and x 2 M(� $ �) for x � z. That is, � $ � 6v

RE

�. And then observe

that y 2M(:(� $ �)) and x 2M(�) for every x � y. That is, � 6v

RE

(� $ �). 2

We are now in a position to state the main result of this setion.

14

It an also be shown that if � 2 K, � k

v

RE

� and � =2 K � �, then � <

RE

,  k

v

RE

�, and

f�; g � � for some . The proof is essentially the same as for part (1) of the proposition. While

suh a result does not o�er muh insight from an epistemologial point of view, it might be useful for

omputational purposes.
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Theorem 6.5.14 Suppose that the RE-ordering v

EE

and the systemati withdrawal

� are semantially related. Then

� =2 K � � i�

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

� =2 K and � �, or

� =2 K and � =2 K, or

� v

RE

� and 2 �, or

� <

RE

� and 9 2 L suh that

� <

RE

, � k

v

RE

 and f�; g � �, or

� k

v

RE

� and 9 2 L suh that

� k

v

RE

, � k

v

RE

 and f�; g � �,

(6.3)

or equivalently,

� 2 K � � i�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

� 2 K and � �, or

� 2 K and � =2 K, or

� <

RE

� and 8 2 L suh that

� <

RE

 and � k

v

RE

, f�; g 2 �, or

� k

v

RE

� and 8 2 L suh that

� k

v

RE

 and � k

v

RE

, f�; g 2 �.

(6.4)

Proof The proof is mostly a ombination of the results in propositions 6.5.11, 6.5.6

and 6.5.13. It an be found in appendix B. 2

From theorem 6.5.14 it emerges that, barring the limiting ases where � is logially

valid or not in K, a w� � 2 K will only be removed during a systemati �-withdrawal

for one of the following reasons:

1. The w� � is at most as entrenhed as �.

2. The w� � is irrelevant with respet to � (i.e. � is not omparable with �) but

there is another w� , whih is irrelevant with respet to both � and �, and

whose inlusion in the resulting belief set together with �, will fore us to inlude

� as well.

3. The w� � is more entrenhed than � but there is another w� , also more en-

trenhed than �, and irrelevant with respet to �, whose inlusion in the resulting

belief set together with �, will fore us to inlude � as well.
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6.5.3 Representing systemati withdrawal graphially

Setions 6.4 and 6.5.2 provide interesting formal relationships between systemati with-

drawal and re�ned entrenhment, but they provide little insight into the possible use of

the RE-orderings to atually perform systemati withdrawal. In this setion we show

that for the speial ase of the �nitely generated propositional languages, it is possi-

ble to de�ne a proess for onstruting systemati withdrawal from the RE-orderings.

This is important for omputational purposes, but it is also of some epistemologial

importane.

The �rst result shows that those w�s whih happen to be at most as entrenhed as

some disarded w� will also be disarded.

Proposition 6.5.15 Suppose that the RE-ordering v

EE

and the systemati withdrawal

� are semantially related. If � =2 K � � then  =2 K � � for every  v

RE

�.

Proof Let � be a faithful modular weak partial order in terms of whih v

RE

and �

an be de�ned using (Def v

E

from �) and (Def � from r

�

). Suppose that � =2 K ��

and pik any  v

RE

�. So there is a y 2 M(K � �) suh that y 2 M(:�). And sine

 v

RE

� there is an x 2 M(:) suh that x � y. So x 2 M(K � �) and therefore

 =2 K � �. 2

In setion 6.5.2 it was shown that systemati withdrawal requires a good reason for

removing a w� from K during an �-withdrawal. The next result is similar, providing

a di�erent kind of justi�ation for the removal of some of these w�s.

Proposition 6.5.16 Suppose that the RE-ordering v

EE

and the systemati withdrawal

� are semantially related. If � 2 K,  k

v

RE

� and  =2 K��, then there is a � =2 K��

suh that � <

RE

� and  v

RE

�.

Proof Let � be a faithful modular weak partial order in terms of whih v

RE

and �

an be de�ned using (Def v

E

from �) and (Def � from r

�

). Pik any � 2 K and any

 suh that  k

v

RE

� and  =2 K � �. We show that � <

RE

� _ ,  v

RE

� _  and

�_ =2 K��. Sine M(�) �M(�_) and M() �M(�_), it immediately follows

that � v

RE

� _  and  v

RE

� _ . Sine  k

v

RE

�, there is a y 2 Min

�

(:�) suh

that x 2 M() for every x � y, and there is a v 2 Min

�

(:) suh that u 2 M(�) for

every u � v. So y k

�

v, x 2 M() for every x < y, and u 2 M(�) for every u < v.

Beause  =2 K � �, it then follows that there is a z 2 Min

�

(:�) \M(:). And this
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means that � _  =2 K � �. Finally, note that for every x � y, x 2 M() and thus

x 2M(� _ ). Therefore � _  6v

RE

�, and then � <

RE

� _  (beause � v

RE

� _ ).

2

Our next result relates spei�ally to the w�s that are more entrenhed than a w� �

to be withdrawn, but that are nevertheless removed from K. It shows that, for the

�nitely generated propositional languages, the struture of an RE-ordering an be used

in a natural way to �nd these w�s. To do so, we need the notion of a losest upper

gate with respet to a preorder on w�s.

(Def ug

v

) � 2 ug

v

(�) i�

8

>

>

>

>

<

>

>

>

>

:

1. � < �,

2. 8 suh that � < ,  v � or � v , and

3. 8 suh that � <  < �,

9Æ suh that � < Æ < � and  k

v

Æ

De�nition 6.5.17 Let v be a preorder on L. The losest upper gate ug

v

(�) of a w�

�, with respet to v, is de�ned in terms of v using (Def ug

v

). 2

Roughly speaking, the losest upper gate of a w� � (with respet to a preorder v

on w�s) is the �rst equivalene lass (modulo v) of w�s enountered when moving

\upwards" from �, whih are not inomparable with respet to any of the w�s \above"

�. We shall also have oasion to use the upset of a w� bounded by its losest upper

gate.

(Def �

v

) �

v

(�) = f j � <  < � for some � 2 ug(�)g

De�nition 6.5.18 Let v be a preorder on L The upset �

v

(�) of a w� � bounded by

ug

v

(�) is de�ned in terms of v using (Def �

v

). 2

The next lemma ontains useful results about losest upper gates for RE-orderings. It

shows that every losest upper gate (exept for the empty set) is indeed an equivalene

lass modulo the RE-ordering, and that in the �nitely generated propositional ase,

every w�, exept for the logially valid ones, has a non-empty losest upper gate.

Lemma 6.5.19 Let v

RE

be an RE-ordering.

1. If � 2 ug

v

RE

(�) then ug

v

RE

(�) = [�℄

v

RE

.

15

15

See setion 1.3 for an explanation of the meaning of [�℄

v

RE

.
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2. If L is a �nitely generated propositional language, then ug

v

RE

(�) = ; i� � �.

Proof For the proof of (1), suppose that � 2 ug

v

RE

(�), pik a  2 ug

v

RE

(�), and

assume that  =2 [�℄

v

RE

. From (1) and (2) in (Def ug

v

), � v

RE

 or  v

RE

�, and

therefore � <

RE

 or  <

RE

�. We suppose that  <

RE

�. By (3) in (Def ug

v

) there

is thus a Æ suh that � <

RE

Æ and  k

v

RE

Æ. But sine  2 ug

v

RE

(�) this ontradits

(2) in (Def ug

v

). A similar argument holds if � <

RE

, and so ug

v

RE

(�) � [�℄

v

RE

.

Now pik any  2 [�℄

v

RE

. It then follows easily from (Def ug

v

) that  2 ug

v

RE

(�),

and so [�℄

v

RE

� ug

v

RE

(�).

For the proof of (2), note �rstly that if � � then � 6<

RE

 for every , and by (1)

in (Def ug

v

), ug

v

RE

(�) = ;. On the other hand, suppose that 2 � and assume that

ug

v

RE

(�) = ;. We show that for every � satisfying (1) and (2) in (Def ug

v

), there

is a  <

RE

� also satisfying (1) and (2) in (Def ug

v

), thus ontraditing the fat that

L is a �nitely generated language. To do so, note �rstly that every � that satis�es (1)

and (2) in (Def ug

v

) does not satisfy (3). That is, for every � that satis�es (1) and

(2) in (Def ug

v

), there is a  suh that � <

RE

 <

RE

� and for every Æ for whih

� <

RE

Æ <

RE

�, either  v

RE

Æ or Æ v

RE

. So, if we an show that  v

RE

' for

every ' suh that � <

RE

' but ' 6<

RE

�, we will have shown that  satis�es (1) and

(2) in (Def ug

v

). Pik any ' suh that � <

RE

' but ' 6<

RE

�. Then either � v

RE

'

or ' k

v

RE

�. But sine � <

RE

', and sine � satis�es (2) in (Def ug

v

), it annot be

the ase that ' k

v

RE

�. So � v

RE

', and sine  <

RE

�, it follows that  <

RE

',

whih means we are done. 2

Before we an prove our next result, we need the following tehnial lemma.

Lemma 6.5.20 Let L be a �nitely generated propositional language, � a faithful mod-

ular weak partial order and v

RE

the RE-ordering de�ned in terms of � using (Def

v

E

from �) by �. Now let � and � be suh that M(�) = fx j 8y 2 Min

�

(:�),

y � xg. For every  suh that � <

RE

 <

RE

�, there is a y 2 M(:� ^ � ^ ) and a

z 2M(:�^� ^:) suh that x 2M(�^� ^) for every x < y, and x 2M(�^� ^)

for every x < z.

Proof If � � the result holds vauously, and we thus suppose that 2 �. Pik a 

suh that � <

RE

 <

RE

�. Sine  6v

RE

� there is a y 2 Min

�

(:�) suh that

x 2 M() for every x � y. Combined with the de�nition of � it thus follows that

y 2M(:�^� ^) and x 2 M(�^� ^) for every x < y. Furthermore, sine � 6v

RE
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there is a z 2 Min

�

(:) suh that x 2 M(�) for every x � z. And sine � v

RE



there is a w 2M(:�) suh that w � z. But then w 2M(�) and so it follows from the

de�nition of � that w 2 Min

�

(:�). Therefore w = z and v 2 M(�) for every v < z.

So z 2 M(:� ^ � ^ :), and beause we have already seen that x 2 M() for every

x � y, it follows that x 2M(� ^ � ^ ) for every x < z. 2

The next result shows that for the �nitely generated propositional languages, the w�s

that are more entrenhed than a w� � to be withdrawn, but that are not in the resulting

belief set, are preisely those that lie between � and the losest upper gate of �.

Proposition 6.5.21 Let L be a �nitely generated propositional language and suppose

that the RE-ordering v

EE

and the systemati withdrawal � are semantially related.

If � <

RE

 then  =2 K � � i�  2 �

v

RE

(�).

Proof Let � be a faithful modular weak partial order in terms of whih v

RE

and �

an be de�ned using (Def v

E

from �) and (Def � from r

�

). If � � the result follows

vauously and so we suppose that 2 �. It suÆes to show that for some � 2 ug

v

RE

(�)

and every  suh that � <

RE

,  =2 K � � i�  <

RE

�. Now pik any � suh that

M(�) = fx j 8y 2 Min

�

(:�); y � xg. Sine L is a �nitely generated propositional

language, there is indeed suh a �. We start by showing that � 2 ug

v

RE

(�).

1. Pik any y 2M(:�). By the de�nition of �, z < y for every z 2Min

�

(:�), and

there is thus an x 2 M(:�) suh that x � y. Therefore � v

RE

�. On the other

hand, pik any y 2 Min

�

(:�). By the de�nition of � it follows that x 2 M(�)

for every x � y, and thus � 6v

RE

�.

2. Pik any  2 L suh that � <

RE

 and suppose that � 6v

RE

. So there is a

y 2 M(:) suh that x 2 M(�) for every x � y. Therefore y 2 M(� ^ :). By

the de�nition of �, u < v for every v 2 M(:�) and u 2 M(�), and so y < v

for every v 2 M(:�). That is, for every v 2 M(:�) there is a u 2 M(:) suh

that u � v, whih means that  v

RE

�. So for every  2 L suh that � <

RE

,

 v

RE

� or � v

RE

.

3. We show that � <

RE

� $  <

RE

� and  k

v

RE

� $  for every  suh that

� <

RE

 <

RE

�. Pik any y 2 M(:(� $ )). If y 2 M(:�) then learly

there is an x 2 M(:�) suh that x � y. Otherwise y 2 M(:) and sine

� v

RE

 there is an x 2 M(:�) suh that x � y. So � v

RE

� $ . On
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the other hand, by lemma 6.5.20 there is a z 2 M(:� ^ � ^ :) suh that

x 2 M(� ^ � ^ ) for every x < z. So z 2 M(:�) and for every x � z,

x 2 M(� $ ). That is, � $  6v

RE

�. And therefore � <

RE

� $ �. Pik

any w 2 M(:�). By lemma 6.5.20 there is a y 2 M(:� ^ � ^ ) suh that

x 2M(�^� ^) for every x < y. By the de�nition of � it follows that u < w for

every u 2 M(�). So y < w and beause y 2 M(:(� $ )) it follows that there

is an x 2 M(:(� $ )) suh that x � w. That is, � $  v

RE

�. On the other

hand, y 2M(:(�$ )) and for every x � y, x 2M(�). That is, � 6v

RE

�$ .

And therefore � $ � <

RE

�. It remains to be shown that  k

v

RE

� $ . By

lemma 6.5.20 there is a y 2 M(:� ^ � ^ ) suh that x 2 M(� ^ � ^ ) for

every x < y. So y 2 M(:(� $ )) and for every x � y, x 2 M(). That is,

 6v

RE

� $ . Furthermore, by lemma 6.5.20 there is a z 2 M(:� ^ � ^ :)

suh that x 2 M(� ^ � ^ ) for every x < z. So z 2 M(:) and for every

x � y, x 2 M(� $ ). That is, � $  6v

RE

. So, for every  2 L suh that

� <

RE

 <

RE

�, � <

RE

�$  <

RE

� and  k

v

RE

�$ .

We have thus shown that � 2 ug

v

RE

(�). Now we show that for every  suh that

� <

RE

,  =2 K � � i�  <

RE

�. Pik any  suh that � <

RE

. For the left-to-right

diretion, suppose that  =2 K � �. That is, there is a z 2 M(K � �) suh that

z 2 M(:). Sine M(K � �) � M(�), it follows that x 2 M(�) for every x � z, and

thus that � 6v

RE

. Now pik any y 2M(:�). By the de�nition of �, z < y. And sine

z 2M(:), there is an x 2M(:) suh that x � y. So  v

RE

�. For the right-to-left

diretion, suppose that  <

RE

�. Sine � 6v

RE

 there is a y 2 M(:) suh that

x 2 M(�) for every x � y. So y 2 M(�) and by the de�nition of �, v 2 M(�) for

every v < y. And sine � v

RE

, there is a w 2 M(:�) suh that w � y, from whih

it then follows that w = y and thus y 2 M(:�). So y 2 M(:� ^ � ^ :) and by the

de�nition of �, y 2Min

�

(:�). Therefore  =2 K � �. 2

We are now in a position to prove the main result of this setion.

Theorem 6.5.22 Let L be a �nitely generated propositional language and suppose that

the RE-ordering v

EE

and the systemati withdrawal � are semantially related. Then

� =2 K � � i�

(

� =2 K and either � =2 K or � �, or

there is a  2 �

v

RE

(�) [ f�g suh that � v

RE

.
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Proof Let � be a faithful modular weak partial order in terms of whih v

RE

and �

an be de�ned using (Def v

E

from �) and (Def � from r

�

). For the proof in the

left-to-right diretion, suppose that � =2 K � �, and assume that either � 2 K, or

� 2 K and 2 �. If � 2 K then K 6= K � � (beause � =2 K � �), and it thus follows

from (K�3) and (K�6) that � 2 K and 2 �. So in both ases, � 2 K and 2 �. Now, if

� v

RE

� then there is indeed a  2 �

v

RE

(�)[ f�g suh that � v

RE

. So we suppose

that � 6v

RE

�. This means that either � k

v

RE

� or � <

RE

�. In the latter ase it

follows from proposition 6.5.21 that � 2 �

v

RE

(�). In the former ase it follows from

proposition 6.5.16 that there is a  =2 K � � suh that � <

RE

 and � v

RE

. And by

proposition 6.5.21,  2 �

v

RE

(�).

For the proof in the right-to-left diretion, note �rstly that if � =2 K and � =2 K then

� =2 K �� by (K�3), and if � � and � =2 K then � =2 K �� by (K�6). So we suppose

that 2 �, � 2 K and that there is a  2 �

v

RE

(�)[f�g suh that � v

RE

. If  = �, it

follows from proposition 6.5.6 that � =2 K��. Otherwise � <

RE

 <

RE

ug

v

RE

(�). By

proposition 6.5.21,  =2 K �� and by proposition 6.5.15 we then have that � =2 K ��.

2

Theorem 6.5.22 provides us with the following desription of systemati withdrawal in

terms of re�ned entrenhment. Consider the non-trivial ase where � is in K, but is not

logially valid. To obtain the belief set resulting from an �-withdrawal, we partition L

into three sets; those that are at most as entrenhed �, those that are more entrenhed

than �, and those that are inomparable with �.

1. None of the w�s that are at most as entrenhed as � are in K � �.

2. The w�s that are more entrenhed than �, but that aren't in K�� are preisely

those that are between � and the losest upper gate of �. These w�s are lustered

right above �, and are stritly less entrenhed than the w�s above � that are in

K � �.

3. The only w�s that are inomparable with �, but that are not in K��, are those

that are less entrenhed than one of the w�s whih are removed from K even

though it is more entrenhed than �.

A partiularly attrative feature obtained from this analysis is that the w�s that aren't

in the resulting belief set when withdrawing � from K, are all lustered together in
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the re�ned entrenhment ordering. We onlude this setion with a brief desription

of how the results of theorem 6.5.22 an be used to de�ne a graph-based proedure for

omputing systemati withdrawal. The basi idea is to view every re�ned entrenhment

ordering v

RE

as a direted ayli graph (DAG), with the equivalene lasses of w�s

(modulo v

RE

) as the verties of the DAG, and with the ars between verties obtained

from v

RE

. Consider the non-trivial ase where � 2 K nCn(>). The w�s not in K��

are obtained from the DAG assoiated with v

RE

as follows: Start from the vertex

v ontaining � and follow all the paths leading out of v to the �rst vertex w where

these paths all meet. The vertex w ontains ug

v

RE

(�). Now onsider all the verties

that were visited before reahing w (inluding v but exluding w) and do a bakward

traversal of the paths leading into these verties. The w�s not in K � � are preisely

those ontained in the verties visited on these bakward traversals. This proess is

made onrete in the following example.

Example 6.5.23 Let L be the propositional language generated by the two atoms p

and q, let K = Cn(p ^ q), and let v

RE

be RE-ordering de�ned as follows:

� v

RE

� i�

(

� 2 L if � =2 K, and

� � � if � 2 K.

Figure 6.6 ontains a graphial representation of v

RE

. Let � be the systemati with-

drawal de�ned in terms of v

RE

using (Def � from v

RE

). It an be veri�ed that

K � (p $ q) = Cn(p _ q). This result an also be obtained by viewing �gure 6.6 as

a DAG. We start from the vertex v ontaining p $ q and follow all the paths leading

out of v until we reah the �rst vertex w where all these paths meet. The vertex w is

the one ontaining the w� >, and it also ontains all the w�s in ug

v

RE

(p $ q). The

verties visited before reahing w are the vertex v itself and the verties ontaining the

w�s p _ :q and :p _ q. Now we do a bakward traversal of all the paths leading into

these three verties. The verties visited on these bakward traversals are the boxed

ones. The only remaining verties are w (whih ontains the w� >) and the vertex

ontaining p _ q. So the w�s in K � � are preisely those that are logially equivalent

to p _ q and to >. 2
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p

f� j p ^ q 2 �g = L nK

p ^ q

p$ q

p _ q

6

6

q

k

>

p _ :q :p _ q

ug

v

RE

(p$ q)

w

>

>}

>

6

}

k

>

Figure 6.6: A graphial representation of the RE-ordering v

RE

with respet to the

belief set K = Cn(p^ q). This RE-ordering is used in example 6.5.23. For every �; � 2

L, � v

RE

� i� (�; �) is in the reexive transitive losure of the relation determined

by the arrows. Eah w� in this �gure is a anonial representative of the set of w�s

that are logially equivalent to it. This graphial representation an also be seen as

the direted ayli graph (DAG) obtained from v

RE

.

6.6 Summary

We lose this hapter with a graphial summary of the onnetions between various

forms of prinipled withdrawal and entrenhment orderings. It an be found in �gure

6.7. As in previous hapters, it is diÆult to esape the onlusion that they all have

a semanti basis, and more partiularly, are rooted in some subset of the faithful lay-

ered preorders. Finally, these semanti onstrutions bear testimony to two important

priniples, one of whih was already noted by Rott and Pagnuo [1999,p. 33℄. The
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underlying semanti strutures employed to de�ne a partiular form of withdrawal or

entrenhment are obviously important. But whether two di�erent strutures de�ne

the same onstrution depends, to some extent, on the way these strutures are used.

And onversely, the same struture might very well be used in a number of di�erent

ways, depending on the preedene given to di�erent priniples, resulting in distintly

di�erent onstrutions.
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(Def v

RE

from v
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)

Figure 6.7: The relationship between minimal-equivalent faithful layered preorders,

AGM ontration, the EE-orderings, the RE-orderings, systemati withdrawal and

severe withdrawal.
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Chapter 7

Iterated belief hange

After people have repeated a phrase a great number of times,

they begin to realize it has meaning and may even be true.

H.G. Wells (1866-1946)

AGM theory hange has proved to be very useful as an abstrat aount of e�eting

hange in the epistemi state of an agent. As suh, it provides a good platform from

whih to launh investigations into aspets of belief hange whih are not dealt with

in the AGM framework. Makinson [1997℄ states this viewpoint as follows:

\But it is through suh simple, idealized representations of belief sets that

we have begun to obtain the insights needed to takle more omplex ones

without getting lost in intriaies and overheads. Having aquired a fairly

good understanding of the former over the deade sine the AGM aount

appeared in 1985, we an now pro�tably give more attention to the latter."

In the light of this statement, it should ome as no surprise that investigations into

various extensions of AGM theory hange have beome more frequent in reent years.

Iterated belief hange, the problem of dealing with a sequene of hanges to the epis-

temi state of an agent, is an aspet of belief hange whih falls into this ategory, and

is the fous of this hapter. Sine most reent advanes in this area have foused on

�nitely generated propositional languages, we shall, for the rest of this hapter, assume

L to be suh a language with a valuation semantis (V;). We disuss the gener-

al frameworks for iterated revision provided by Williams [1994℄, Darwihe and Pearl

201
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[1994, 1997℄, and Lehmann [1995℄, and take a brief look at a framework for iterated

withdrawal. Furthermore, we onsider revision operations proposed by Boutilier [1993,

1996℄, Williams [1994℄ and Papini [1998, 1999℄.

One of the most important lessons to be learnt from the study of iterated belief

hange is that belief hange operations are performed on the level of epistemi states,

and not belief sets. Inspired by this insight, we disuss a generalised version of revision

in whih epistemi states are merged. We propose some basi properties for suh

merging operations, and onsider a few partiular merging operations. Amongst those

we onsider are Nayak's version of iterated revision [1994b, 1996℄ and the framework

for arbitration proposed by Liberatore and Shaerf [1998℄.

7.1 Transmutation

Reent advanes in iterated belief hange have bene�tted substantially from ideas ini-

tially proposed by Spohn [1988, 1991℄, and generalised by Williams [1994℄. It is thus

appropriate that we ommene with a disussion of these. Williams [1994℄ proposes a

framework for belief hange based on Spohn's ordinal onditional funtions (see setion

5.3). It is a generalisation of withdrawal and revision in two respets.

Firstly, the informational inputs are not w�s, but ordered pairs of the form (�; n),

where � 2 L n f� j � � ? or � � >g and n is a natural number. To be more

preise, Williams proposes to use pairs of the form (W;n), where ; � W � V and n

is an ordinal, but sine we assume L to be a �nitely generated propositional language,

every suh a W is axiomatisable by a single w� (whih is satis�able but not logially

valid). Furthermore, sine V is �nite, we restrit ourselves to those OCFs with ranges

onsisting of subsets of !, the set of natural numbers.

1

Seondly, transmutations are operations on ordinal onditional funtions (OCFs),

and not on belief sets. Reall from setion 5.3 that, for an OCF �, K

�

denotes the

the set Th(fv j �(v) = 0g), and that K

�

an therefore be regarded as the belief set

assoiated with �. Furthermore, reall that an OCF assigns the number 0 to at least

one valuation, from whih it follows that K

�

is satis�able. And moreover, reall that

1

Having made these simpli�ations, it is tempting to augment the domain of OCFs to inlude the

empty set as well, and set �(;) = ! for every OCF �. In suh a ase we would be dealing with

Spohn's [1991℄ natural onditional funtions . However, for the sake of simpliity we shall resist this

temptation.
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a w� in K

�

is said to be believed with a �rmness of n i� �(M(:�)) = n.

Williams de�nes a transmutation of the OCF � as any funtion

> : (L n (Cn(>) [ f� j � � ?g))� ! ! K,

where K is the set of all OCFs (with ranges onsisting of subsets of !) suh that:

1. (�> (�; n))(M(:�)) = n

2. K

�>(�;n)

=

(

Th(fv 2M(�) j �(v) = �(�)g) if n > 0,

Th(fv j �(v) = 0 or (v 2M(:�) and �(v) = �(:�)g) otherwise

So a transmutation of the urrent OCF � by (�; n) yields a new OCF �

0

in whih � is

believed with a �rmness of n. Furthermore, if n > 0, we an think of a transmutation

as a revision, while it an be regarded as a ontration if n = 0. This view is justi�ed by

noting that K

�

0

, the belief set assoiated with �

0

, is generated by the minimal models

of � (with regard to �) if n > 0, and by the minimal models of �, together with the

models of K

�

, if n = 0.

Williams onsiders the onstrution of two transmutations. The �rst one is Wolf-

gang Spohn's [1988℄ onditionalisation, whih has turned out to be a partiularly in-

uential ontribution to the enterprise of iterated belief hange. Indeed, as mentioned

above, transmutation was proposed as a generalisation of Spohn's onditionalisation,

and the latter has also served as inspiration for the general framework of Darwihe

and Pearl disussed in setion 7.3. The OCF � > (�; n), referred to as the (�; n)-

onditionalisation of �, is de�ned as follows:

(Def > from �) �> (�; n)(v) =

(

�(v)� �(M(�)) if v 2M(�),

�(v)� �(M(:�)) + n otherwise

In other words, the models of � are shifted \downwards" without a�eting the distanes

between them, so that the minimal models of � are assigned the number 0, while the

models of :� are shifted \upwards" without a�eting the distanes between them, so

that the minimal models of :� are assigned the number n. It is easily established that

for a �xed OCF � 2 K and a �xed n > 0, the revision � de�ned in terms of � using

(Def � from �) below is an AGM revision:

2

2

As Darwihe and Pearl [1997,p. 15℄ have noted though, viewing a revision � as a funtion from

Bel�L to Bel means that (Def � from �) may yield di�erent results for di�erent OCFs orresponding

to the same belief set, thus violating the funtionality of �.
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(Def � from �)

2

6

6

6

6

6

6

4

K

�

� � =

8

>

<

>

:

K

�

if � �,

K

�>(�;n)

if � 6� ? and 2 �,

Cn(?) otherwise

Cn(?) � � = K

�

� �

3

7

7

7

7

7

7

5

Similarly, for a �xed OCF � 2 K, the removal � de�ned in terms of � using (Def �

from �) below is an AGM ontration:

(Def � from �)

2

6

6

6

6

4

K

�

� � =

(

K

�

if � � or � � ?

K

�>(�;0)

otherwise

and

Cn(?) � � = K

�>(�;1)

3

7

7

7

7

5

The seond transmutation that Williams onsiders is known as adjustment . The basi

idea is that an (�; n)-adjustment should be the transmutation that leaves the urrent

OCF as undisturbed as possible; an appeal to the Priniple of Minimal Change. The

(�; n)-adjustment ? of the OCF � is de�ned as follows:

(Def ? from �) � ? (�; n)(v) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0 if n = 0, v 2M(:�), and �(v) = �(:�),

�(v) if n = 0 and (v 2M(�) or �(v) 6= �(:�)),

0 if 0 < n, v 2M(�), and �(v) = �(�),

�(v) if 0 < n, v 2M(�), and �(v) 6= �(�),

n if 0 < n < �(:�), v 2M(:�),

and �(v) = �(:�),

�(v) if 0 < n < �(:�), v 2M(:�),

and �(v) 6= �(:�),

n if 0 < n, n � �(:�), v 2M(:�),

and �(v) � n,

�(v) if 0 < n, n � �(:�), v 2M(:�),

and �(v) > n

This de�nition looks quite ompliated, but it an be broken down into three mutually

exlusive ases:

1. If n = 0, the only di�erene between � and � ? (�; n) is that the minimal models

of :� (with respet to �), are all assigned the number 0 in � ? (�; n).
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2. If n > 0 and the number that � assigns to the minimal models of :� (with respet

to �) is greater than n, then the only di�erene between � and � ? (�; n) is that

the minimal models of :� (with respet to �) are all assigned the number n in

� ? (�; n).

3. If n > 0 and the number that � assigns to the minimal models of :� (with respet

to �) is less than or equal to n, then the only di�erene between � and � ? (�; n)

is that the models of :� for whih � assigns numbers less than n are all assigned

the number n in � ? (�; n).

We shall see below that it only takes a small modi�ation to apply the intuitions

underlying onditionalisation and adjustment to iterated belief hange based on AGM

revision.

7.2 AGM and iterated belief hange

It is by now widely aepted that AGM theory hange is not able to deal with issues

of iterated belief hange in an adequate manner [Alhourr�on and Makinson, 1985,

G�ardenfors, 1988, Levi, 1988, Boutilier, 1993, 1996, Nayak, 1994b, Nayak et al., 1996℄.

This statement an be interpreted in at least two ways. In the stati view adopted

by Freund and Lehmann [1994℄, theory revision

3

is desribed as an operation with two

arguments; a belief set K, and a w� � with whih to revise K.

4

So the operation �

represents a proess of revision whih is �xed right from the start, so that an �-revision

of a belief set K will always yield the same result, regardless of how an agent arrived at

K. The stati view therefore dooms an agent to piking, for every belief set K, a single

epistemi state to assoiate with K, and to using only that epistemi state to guide its

reasoning whenever its set of beliefs orresponds to K. Thus, for example, if the two

belief sets K and (K � �) � � happen to be idential, it will always be the ase that

K �  = ((K ��) � �) � . It is, essentially, the postulate (K�5) whih requires of us to

treat iterated revision in suh a stati manner. In this view, a proper aount of iterated

revision is just the natural next step in the move from basi AGM theory revision to

AGM theory revision. While basi AGM revision �xes both arguments of the revision

3

Sine most researhers restrit themselves to treatments of revision when it omes to iterated

belief hange, we shall do the same, for the most part.

4

See also [Arees and Beher, 1998℄
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operation �, AGM revision (whih also satis�es the supplementary postulates) �xes

the �rst argument, the belief set, and allows the seond argument, the w� with whih

to revise, to vary. And iterated revision is then seen as the next step, where the �rst

argument is also allowed to vary. The stati view thus advoates the introdution of

additional postulates in the style of the AGM revision postulates in order to obtain an

appropriate aount of iterated revision.

There is a dynami view of iterated revision as well, in whih the revision proess

depends on more than just the belief set to be revised. In this view, the revision

proedure used to revise the belief set K � � may very well di�er from the one used

when revising K. As a result, for example, K �  and ((K � �) � �) �  need not be

idential when K and (K � �) � � are. Stritly speaking, this view is inompatible

with AGM revision, and more partiularly, with (K�5). But this is merely beause

the notation used in the AGM postulates does not reet the fat that revision is an

operation on epistemi sets, and not on belief sets (or stated di�erently, that belief

sets do not have enough struture to serve as appropriate representations of epistemi

states). And as we shall see, it only requires a slight reformulation of the AGM revision

postulates to do away with the inompatability brought on by (K�5).

Although the stati view of revision might serve as a �rst approximation, it seems

reasonable to onlude that a proper rational aount of iterated revision an only be

found by embraing the dynami view, and more partiularly, the move from revision

as an operation on belief sets, to revision as an operation on epistemi states. That

revision ought to be seen as an operation on epistemi states, beomes apparent when

observing that AGM theory hange is in lear violation of the priniple of Categorial

Mathing. It (AGM theory hange) delivers a belief set as a result of a hange operation,

but requires an epistemi state, onsisting of a belief set together with some kind of

seletion mehanism (suh as a faithful layered preorder) to perform these hange

operations. Furthermore, it is easy to onstrut examples demonstrating that two

agents with di�erent epistemi states ontaining the same belief set, will sometimes

follow di�erent revision strategies. Below we provide suh an example, whih is a

slight modi�ation of an example presented in [Darwihe and Pearl, 1997℄.

5

Example 7.2.1 Two jurors in a murder trial possess di�erent biases; both jurors

5

The example of Darwihe and Pearl assumes that the two jurors have the same belief set, even

though juror number one believes that C is de�nitely innoent and B might be guilty, while juror

number two believes that B is de�nitely innoent while C might be guilty.
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believe that A is the murderer, and both believe that only A, B or C ould have

ommitted the rime (a lassi ase of an alphabet murder mystery). But whereas

juror number one would more easily regard C as the murdering type than B, juror

number two would more easily onsider B to be guilty than C. Both jurors thus have

the same belief set. Some surprising evidene now omes to light; A has produed a

reliable alibi. Clearly juror number one would now believe C to be the murderer, while

juror number two would believe that B is the murderer. 2

Finally, it is worth observing that even when adopting the dynami view, AGM revision

is not ompletely nonommittal when it omes to iterated belief hange. Indeed, by way

of the two supplementary postulates (K�7) and (K�8), it does plae some onstraints

on the way iterated theory revision may be performed, although these onstraints are

fairly mild. Observe that (K�3) and (K�4) ensure that an �-expansion and an �-

revision are idential whenever :� is not in the belief set K. Consequently, as Freund

and Lehmann [1994℄ have shown, the following is a property derived from (K�3), (K�4),

(K�7) and (K�8).

(K�9) If :� =2 K � � then (K � �) � � = K � (� ^ �)

So AGM theory revision, in the form of (K�9), provides us with a suÆient ondition

for insisting that the belief set resulting from a simultaneous revision of two w�s � and

� (that is, an � ^ �-revision) be idential to the belief set obtained from an �-revision

followed by a �-revision.

7.3 Iterated DP-revision

In two inuential reent papers Darwihe and Pearl [1994, 1997℄ have made an impor-

tant ontribution to the study of iterated belief hange. Of partiular signi�ane is

the shift they make in [Darwihe and Pearl, 1997℄ from revision as an operation on

belief sets to an operation on epistemi states. Although they do not de�ne the notion

of an epistemi state expliitly, they work on the assumption that we an extrat from

every epistemi state a belief set K(�). Formally, they see a revision > as a funtion

from E � L to E , where E is the set of all epistemi states. To aommodate the move

to epistemi states, the AGM revision postulates are modi�ed appropriately.

6

6

Atually, Darwihe and Pearl modify the postulates of Katsuno and Mendelson (see setion 3.2.1),

but our aount here is the obvious translation to the AGM revision postulates.
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(E>1) K(�> �) = Cn(K(�> �))

(E>2) � 2 K(�> �)

(E>3) K(�> �) � K(�) + �

(E>4) If :� =2 K(�), then K(�) + � � K(�> �)

(E>5) If � = 	 and � � � then K(�> �) = K(	> �)

(E>6) K(�> �) = Cn(?) i� � :�

(E>7) K(�> � ^ �) � K(�> �) + �

(E>8) If :� =2 K(�> �), then K(�> �) + � � K(�> � ^ �)

With the exeption of (E>5), these postulates are just obvious translations of the

orresponding AGM revision postulates. (E>5) is an appopriate weakening of (K�5).

It requires a revision by two piees of logially equivalent evidene to yield idential

belief sets when the epistemi states to be revised are idential, and not merely when

the belief sets ontained in these epistemi states are idential. Note that (E>5) does

not require a revision by two logially equivalent w�s to yield the same epistemi

state; it only insists that the belief sets assoiated with these epistemi states be

idential. This is quite surprising, espeially sine, in the words of Darwihe and Pearl

[1997,p. 2℄, an epistemi state ontains, in addition to the belief set, \: : :the entire

information needed for oherent reasoning, inluding, in partiular, the very strategy

whih the agent wishes to employ at that given time". Moreover, sine (K�5) is a formal

expression of the priniple of the Irrelevane of Syntax, one would expet (E>5) to be

an expression of the same priniple in the more general ontext of revision on epistemi

states. It thus seems as if the following postulate would have been more appropriate:

(E>9) If � = 	 and � � � then �> � = 	> �

We shall not pursue this matter further, exept to note that replaing (E>5) with

(E>9) is ompatible with the results in the remainder of this setion.

Darwihe and Pearl provide a representation result that is analogous to theorem

3.2.6.
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Theorem 7.3.1 Suppose we assoiate with every epistemi state �, a K(�)-faithful

total preorder �

�

, and let > be any revision suh that K(� > �) an be de�ned in

terms of �

�

using (Def � from �), for every � 2 E. Then > satis�es (E>1) to (E>8).

Conversely, suppose that > is a revision whih satis�es (E>1) to (E>8). Then every

epistemi state � an be assoiated with a K(�)-faithful total preorder �

�

so that, for

every � 2 E, K(�> �) an be de�ned in terms of �

�

using (Def � from �).

Observe that if the anteedent in (E>5) had been the requirement that K(�) = K(	),

we would have been obliged to onsider only those sets of faithful preorders for whih

�

�

= �

	

whenever K(�) = K(	). As it stands, though, we are free to assoiate with

an epistemi state �, any K(�)-faithful total preorder.

Sine we are dealing with the �nitely generated propositional ase, it is easily ver-

i�ed that for a given revision > satisfying (E>1){(E>8), every epistemi state � is

assoiated with a unique K(�)-faithful total preorder.

Proposition 7.3.2 Let > be a revision that satis�es (E>1) to (E>8) and pik any

� 2 E. There is a unique K(�)-faithful total preorder �

�

in terms of whih K(�>�)

an be de�ned using (Def � from �).

Proof By theorem 7.3.1, �

�

exists. Assume there is a di�erent K(�)-faithful total

preorder �

�

in terms of whih K(� > �) an be de�ned using (Def � from �). That

is, for some u; v 2 V , either u �

�

v and u 


�

v, or u �

�

v and u Æ

�

v. Now pik an

� suh that M(�) = fu; vg. (Sine L is �nitely generated, there is suh an �.) Then

Min

�

�

(�) 6= Min

�

�

(�), ontraditing the assumption that K(� > �) an be de�ned

in terms of both �

�

and �

�

using (Def � from �). 2

Armed with proposition 7.3.2, we shall deviate slightly from the presentation of Dar-

wihe and Pearl by taking an epistemi state � to be an ordered pair of the form

(K(�);�

�

). This is a potentially dangerous move, sine it is at odds with the possi-

bility that di�erent epistemi states may be assoiated with the same belief set and

faithful total preorder; a possibility that Darwihe and Pearl make provision for. Nev-

ertheless, it will aid in the readability of the results disussed below.

Having made the move to revision operations on epistemi states, Darwihe and

Pearl argue that (E>1){(E>8) are too weak to provide a satisfatory aount of iterated

revision. Their argument is based on the appliation of the priniple of Minimal Change

whih provides the underlying rationale for AGM revision. Where iterated revision
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on epistemi states is onerned, it seems neessary to apply this priniple to more

than just the objet-level beliefs of an agent. Semantially speaking, the faithful total

preorder �

�

determines the models of K(� > �) uniquely, but does not plae any

restritions on the relative ordering of the ountermodels of K(� > �). Darwihe

and Pearl propose that the priniple of Minimal Change should be brought into play

to minimise any hange in the relative ordering of interpretations in the epistemi

state resulting from a revision. From an information-theoreti point of view, this an

be interpreted as an attempt to retain the relative redibility (or entrenhment) of

infatoms. Their proposal involves the addition of the following postulates (the DP-

postulates) to (E>1){(E>8):

(DP>1) If � � � then K((�> �)> �) = K(�> �)

(DP>2) If � � :� then K((�> �)> �) = K(�> �)

(DP>3) If � 2 K(�> �) then � 2 K((�> �)> �)

(DP>4) If :� =2 K(�> �) then :� =2 K((�> �)> �)

De�nition 7.3.3 A revision on epistemi states is a DP-revision i� it satis�es (E>1){

(E>8) and (DP>1){(DP>4). 2

(DP>1) states that if an agent obtains more spei� information after learning that �

is the ase, then � should be ignored. (DP>2) requires that any information ontra-

diting newly obtained information should be ignored. On a ontrapositive reading,

(DP>3) insists that if an agent obtains the information �, but loses it immediately

when aquiring the new information �, then � would never have formed part of the

beliefs of the agent if it had aquired � immediately. And if an agent hasn't ompletely

ruled out � after obtaining �, then (DP4) requires that �rst obtaining � and then �

would also mean that � is not ompletely ruled out. In other words, as Darwihe and

Pearl put it, information annot ontribute towards its own demise.

That the DP-postulates do indeed minimise hanges in the relative ordering of

interpretations an be seen from the following representation theorem, ourtesy of

Darwihe and Pearl. They prove that eah one of the postulates (DP>1) to (DP>4)

an be represented semantially as follows:

(DPR>1) If u  � and v  � then u �

�

v i� u �

�>�

v
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(DPR>2) If u  :� and v  :� then u �

�

v i� u �

�>�

v

(DPR>3) If u  � and v  :� then u �

�

v only if u �

�>�

v

(DPR>4) If u  � and v  :� then u �

�

v only if u �

�>�

v

Theorem 7.3.4 [Darwihe and Pearl, 1997℄ Let > be a revision that satis�es (E>1)

to (E>8). Then >

satis�es

8

>

>

>

>

<

>

>

>

>

:

(DP> 1)

(DP> 2)

(DP> 3)

(DP> 4)

9

>

>

>

>

=

>

>

>

>

;

i� it satis�es

8

>

>

>

>

<

>

>

>

>

:

(DPR> 1)

(DPR> 2)

(DPR> 3)

(DPR> 4)

9

>

>

>

>

=

>

>

>

>

;

.

(DPR>1) ensures that the relative ordering of the models of � is preserved after an

�-revision; an appliation of the priniple of Minimal Change to the models of �.

Similarly, (DPR>2) requires that the relative ordering of the ountermodels of � is

preserved after an �-revision, whih is a ase of applying the priniple of Minimal

Change to the ountermodels of �. (DPR>3) and (DPR>4) together ensure that any

hange in the relative ordering of a model u of � and a ountermodel v of � will involve

u moving lower down than v. As suh, they also involve, to some extent, an appliation

of the priniple of Minimal Change.

A DP-revision by a w� � thus involves a \downward shift" of the models of �,

while maintaining the relative orderings of the models of � and the ountermodels of

� respetively. DP-revision an therefore be seen as a qualitative version of Spohn's

onditionalisation. Indeed, Darwihe and Pearl mention that the inspiration for these

postulates ame from Spohn's onditionalisation.

7.3.1 Minimal hange

While (DPR>1){(DPR>4) together impose onsiderable restritions on the permissible

ways of performing iterated revision, it is not in absolute aordane with the priniple

of Minimal Change. This is evident from the observation that there is a remaining ase

whih is not overed by (DPR>1){(DPR>4); disallowing the upward shift of a model

of � relative to a ountermodel of �. A blanket restrition of this kind would, of ourse,

be inompatible with (E>1){(E>8), sine the minimal models of � will then not always
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be permitted to oupy the lowest level in the ordering resulting from an �-revision.

The losest we an ome to an absolute adherene to the priniple of Minimal Change

is to preserve the relative ordering of all interpretations, exept for those inMin

�

�

(�).

This idea is expressed by the following property:

(CBR>) If u =2Min

�

�

(�) and v =2Min

�

�

(�) then u �

�

v i� u �

�>�

v

Darwihe and Pearl show that this property is a semanti expression of the following

postulate:

(CB>) If :� 2 K(�> �) then K((�> �)> �) = K(�> �)

Theorem 7.3.5 [Darwihe and Pearl, 1997℄ Let > be a revision that satis�es (E>1)

to (E>8). Then > satis�es (CB>) i� it satis�es (CBR>).

It is easily seen that (CBR>) implies (DPR>1){(DPR>4) but that the onverse doesn't

hold. In fat, when added to (E>1){(E>8), (CB>) desribes a unique revision, having

the following semanti de�nition:

(Def >)

2

6

6

6

6

4

K(�> �) = Th(Min

�

�

(�)) and

u �

�>�

v i�

(

v 2 V if u 2Min

�

�

(�),

u �

�

v and v =2Min

�

�

(�) otherwise

3

7

7

7

7

5

The revision de�ned in terms of (Def>) was �rst proposed by Boutilier under the names

\natural revision" [Boutilier, 1993℄ and \minimal onditional revision" [Boutilier, 1996℄.

From theorem 7.3.1 it follows that minimal onditional revision satis�es (E>1){(E>8),

and from theorem 7.3.4 that it satis�es (DP>1){(DP>4). It an also be seen as a

qualitative version of adjustment, one of the transmutation methods of Williams whih

was disussed in setion 7.1.

7.3.2 Conditional beliefs

Darwihe and Pearl also justify the DP-postulates in terms of onditional beliefs. An

agent is said to hold a onditional belief � � � i� the belief � is in the set of beliefs

that the agent holds after an �-revision. Note that while � and � are taken as w�s

of the language L, the onditional belief � � � is not, and � should thus be seen

as a meta-onnetive. As Boutilier [1993, 1996℄ has shown, epistemi states an also
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be represented as (appropriately hosen) sets of onditional beliefs. It is simply a

matter of assoiating with an epistemi state �, the following set of onditional beliefs:

f�� � j � 2 K(�> �)g. We say that the onditional belief �� � is in the epistemi

state �, written as �� � 2 �, i� � 2 K(�> �). The DP-postulates an be rephrased

in terms of onditional beliefs as follows:

(CDP>1) If � � � then ��  2 (�> �) i� ��  2 �

(CDP>2) If � � :� then ��  2 (�> �) i� ��  2 �

(CDP>3) If �� � 2 � then �� � 2 (�> �)

(CDP>4) If �� :� =2 � then �� :� =2 (�> �)

In this reading, the DP-postulates an be justi�ed by an appliation of the priniple

of Minimal Change to onditional beliefs. (CDP>1) and (CDP>2) ensure that er-

tain sets of onditional beliefs will remain unhanged, (CDP>3) requires that ertain

onditional beliefs be retained, and (CDP>4) forbids the addition of ertain ondi-

tional beliefs. More preisely, (CDP>1) requires that the onditional beliefs in � with

anteedents that are logially stronger than a w� �, should be exatly those in the

epistemi state obtained from � by a �-revision. Similarly, (CDP>2) requires that the

onditional beliefs in � with anteedents that ontradit a w� �, should be exatly

those in the epistemi state obtained from � by a �-revision. And (CDP>3) requires

that a onditional belief should not be given up after a revision by its onsequent, while

(CDP>4) insists that a onditional not in the urrent epistemi state should not be

added after a revision by the negation of its onsequent.

As the name suggests, Boutilier's minimal onditional revision an also be justi-

�ed by referene to onditional beliefs. Observe �rstly that (CB>) an be given the

following reading in terms of onditional beliefs:

(CCB>) If :� 2 �> � then ��  2 � i� ��  2 �> �

In other words, (CCB>) states that if � is inompatible with �> � then � and �> �

should ontain exatly the same onditional beliefs with � as anteedent. Boutilier

[1996,pp. 277-278℄ has shown that minimal onditional revision is the revision satisfy-

ing (E>1){(E>8), whih auses the minimum disturbane with regard to onditional

beliefs. With suh a strit adherene to the priniple of Minimal Change, it is thus

well worth onsidering whether minimal onditional revision should be regarded as the

way to perform iterated revision. We disuss this issue in setion 7.3.3.
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7.3.3 Is iterated DP-revision rational?

Darwihe and Pearl provide a number of onvining examples in justi�ation of their

aount of iterated revision. Some of these serve as ounterexamples, indiating that

(E>1){(E>8) do not rule out all ounterintuitive forms of iterated revision, thus paving

the way for the introdution of additional postulates. Others are used as evidene in

orroboration of the more abstrat laims intended as justi�ation for adding the four

DP-postulates. While the latter examples form part of a powerful ase in favour of

regarding all DP-revisions as rational, they annot be used as part of an argument that

the only rational iterated revisions are DP-revisions. And indeed, there are indiations

that (DP>2), in partiular, will eliminate some perfetly plausible forms of iterated

revision.

7

Cantwell [1999℄ shows that the following variant of the ontroversial Reovery

postulate for AGM ontration (see hapter 6) is a derived property of any revision

satisfying (E>1){(E>8) and (DP>2):

(Revision Reovery) If K(�) 6= Cn(?) and � 2 K(�) then K((� > :�) > �) =

K(�)

As a result, the ounterexamples levelled against Reovery an also be used to argue

against the inlusion of (DP>2). Here, for instane, is a modi�ed version of example

6.1.2 to show that Revision Reovery is ounterintuitive.

Example 7.3.6 I read a book about Cleopatra, in whih the laim is made that she

had a son and a daughter. I subsequently disover that the book is �tional, whih leads

me to adopt the belief that Cleopatra did not have a hild. However, on onsulting a

history book I disover that Cleopatra indeed had a hild, and I thus revise my belief

set with this assertion.

Let L be a propositional language generated by the two atoms p and q. Let p

denote the assertion that Cleopatra had a son, and q the assertion that she had a

daughter. Then K(�) = Cn(p; q). The adoption of the belief that she did not have a

hild is formalised as � > :(p _ q). Sine p _ q 2 K(�), Revision Reovery requires

that K((�>:(p_ q))> (p_ q)) = K(�). So revising with the assertion that Cleopatra

did, after all, have a hild, will ensure that I again entertain the belief that she had a

son and the belief that she had a daughter; a onlusion whih seems unreasonable in

this ontext. 2

7

In setion 8.4.1, we show that reent developments onerning base hange also all the appropri-

ateness of (DP>1) into question.
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In fat, as Cantwell [1999℄ observes, Revision Reovery seems to be even more problem-

ati than Reovery, sine revision usually involves greater hanges in epistemi states

than ontration.

We now turn to a di�erent kind of question regarding the rationality of DP-revision.

We have seen that Boutilier's minimal onditional revision auses the minimum dis-

turbane in the urrent epistemi state, resulting in the strongest possible adherene

to the priniple of Minimal Change. This raises the question of whether minimal on-

ditional revision should, perhaps, be regarded as the only rational form of revision on

epistemi states. Darwihe and Pearl [1997℄ provide a onvining argument against

suh a view, indiating that the importane of the priniple of Minimal Change should

not be overestimated. It is based on the following example.

Example 7.3.7 We enounter a strange new animal and it appears to be a bird, so

we believe the animal is a bird. As it omes loser to our hiding plae, we see learly

that the animal is red, so we believe that it is a red bird. To remove any further

doubts, we all in a bird expert who takes it for examination and onludes that it is

not really a bird, but some sort of mammal. The question is now whether we should

still believe that the animal is red. Intuitively, it seems that we should, but minimal

onditional revision rules that we may not believe that the animal is red. This an

be veri�ed by using the propositional language generated by the two atoms b and r to

represent our knowledge. Let b represent the assertion that the animal is a bird, let r

represent the assertion that it is red, let (V;) be the valuation semantis for L with

V = f00; 01; 10; 11g, and let > be the minimal onditional funtion de�ned using (Def

>).

8

Let � = (K(�);�

�

) be the epistemi state representing the situation before we

see the bird. Then K(�) = Cn(>) and �

�

= V � V . Furthermore, it an be veri�ed

that K(((�> b)> r)> :b) = Cn(:b). 2

The problem an be approahed from various angles, but Darwihe and Pearl provide a

partiularly onvining analysis in terms of onditional beliefs. It is easily veri�ed that

the onditional belief :b � r is not, and should not be, in the epistemi state � > b.

Bearing in mind that minimal onditional revision e�ets the minimal permissible

hange on the onditional beliefs in an epistemi state, :b � r will not be in the

epistemi state (�> b)> r either. But this is ounterintuitive. Sine the olour of the

8

We assume that the �rst digit in the pairs of zeroes and ones denotes the truth value of b, and

the seond one the truth value of r.
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animal is independent of it being a bird or not, we should persist in believing that it

is red. In general then, the requirement of minimal onditional revision that the set of

onditional beliefs should remain as stable as possible, may impat on the persistene

of some objet-level beliefs, yielding ounterintuitive results.

Although minimal onditional revision is learly too restritive to be the only form of

rational revision on epistemi states, it is perhaps worth onsidering a speial ase under

whih it does seem reasonable to ensure that minimal hanges our in an epistemi

state �; when the w� with whih to revise is ompatible with �. This an be expressed

as a weakened form of the postulate (CB).

(WCB) If :� =2 K(�) and :� 2 K(�> �), then K((�> �)> �) = K(�> �)

And preditably, (WCB) an be expressed semantially as follows:

(WCBR) If :� =2 K(�), u =2Min

�

�

(�) and v =2Min

�

�

(�), then u �

�

v i� u �

�>�

v

Proposition 7.3.8 Let > be a revision satisfying (E>1){(E>8). Then > satis�es

(WCB) i� it satis�es (WCBR):

Proof Observe �rstly that by theorem 7.3.1, K(� > �) = Th(Min

�

�

(�)). Now sup-

pose that (WCB) holds, that :� =2 K(�), and pik any u; v 2 V suh that u =2

Min

�

�

(�) and v =2 Min

�

�

(�). Let � be suh that M(�) = fu; vg. (Sine L is �nitely

generated, there is suh an �.) Then :� 2 K(�>�), and K((�>�)>�) = K(�>�)

by (WCB). But then Min

�

�>�

(�) = Min

�

�

(�), from whih it follows that u �

�

v

i� u �

�>�

v. Conversely, suppose that (WCBR) holds, that :� =2 K(�), and that

:� 2 K(� > �). By (WCBR) it follows that u �

�

v i� u �

�>�

v for every u; v 2 V

suh that u =2 Min

�

�

(�) and v =2 Min

�

�

(�). And sine M(�) \M(K(� > �)) = ;,

we have that Min

�

�

(�) =Min

�

�>�

(�). Therefore K(�> �) = K((�> �)> �). 2

While the weakened form of minimal onditional revision, obtained by replaing (CB)

with (WCB), might seem appealing at �rst, it does not esape the problems assoiated

with full minimal onditional revision, as one might have hoped. Example 7.3.7 in

partiular, is also appliable to any revision satisfying (E>1){(E>8) and (WCB).

7.3.4 Iterated DP-withdrawal

Reall from page 7 that Levi's ommensurability thesis sees revision as a two-step pro-

ess involving a removal followed by an expansion. Taking this view seriously requires
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of us to provide an aount of iterated removal and iterated expansion on epistemi

states as well. Unlike the ase for revision, it seems reasonable to require of an ex-

pansion � on epistemi states to be in strit adherene to the priniple of Minimal

Change. The following semanti property is a rephrasing of (CBR) for expansion.

(ER�) If u =2M(K(�� �)) and v =2M(K(� � �)), then u �

�

v i� u �

���

v

Combined with the obvious requirement that K(���) = K(�)+�, we thus have the

following unique method for expanding epistemi states.

(Def �)

2

6

6

6

6

4

K(�� �) = K(�) + � and

u �

���

v i�

(

v 2 V if u 2M(K(�) + �),

u �

�

v and v =2M(K(�) + �) otherwise

3

7

7

7

7

5

Obtaining a suitable aount of removal on epistemi states is less straightforward. It

will, of ourse, depend on the partiular type of removal whih we regard as appropriate,

although results in hapter 6 indiate that it would have to be some form of reasonable

withdrawal (see de�nition 6.3.13). For now, we restrit ourselves to a generalisation of

AGM ontration and severe withdrawal to epistemi states.

9

An AGM ontration �

on epistemi states is required to satisfy the following postulates:

(E�1) K(� � �) = Cn(K(� � �))

(E�2) K(� � �) � K(�)

(E�3) If � =2 K(�) then K(� � �) = K

(E�4) If 2 � then � =2 K(� � �)

(E�5) If � = 	 and � � � then K(� � �) = K(	 � �)

(E�6) If � 2 K(�) then K(� � �) + � = K(�)

(E�7) K(� � �) \K(� � �) � K(� � (� ^ �))

9

Not too muh should be read into this restrition. It is based on a purely pratial onsideration;

the urrent representation of an epistemi state � as a belief set K(�) and a K(�)-faithful total

preorder. A representation using K(�)-faithful modular weak partial orders, for example, would have

resulted in a restrition to AGM ontration and systemati withdrawal.
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(E�8) If � =2 K(� � (� ^ �)) then K(� � (� ^ �)) � K(� � �)

De�nition 7.3.9 A removal on epistemi states is an AGM ontration i� it satis�es

(E�1){(E�8). 2

For the generalisation of severe withdrawal, we also need the following postulates.

(E

�

�6) If � � then K(�

�

��) = K(�)

(E

�

�8) If 2 � then K

�

�� � K

�

�(� ^ �)

De�nition 7.3.10 A removal on epistemi states is a severe withdrawal i� it satis�es

(E�1){(E�5), (E

�

�6), (E�7) and (E

�

�8). 2

The following results are then easily obtained.

Theorem 7.3.11 1. Let � be any removal suh that K(� � �) an be de�ned

in terms of �

�

using (Def � from �), for every � 2 E. Then � is an AGM

ontration. Conversely, suppose that � is an AGM ontration. For every

� 2 E, K(� � �) an be de�ned in terms of �

�

using (Def � from �).

2. Let

�

� be any removal suh that K(�

�

��) an be de�ned in terms of �

�

using

(Def r

�

from �), for every � 2 E. Then

�

� is a severe withdrawal. Conversely,

suppose that

�

� is a severe withdrawal. For every � 2 E, K(�

�

��) an be de�ned

in terms of �

�

using (Def r

�

from �).

Proof 1. Follows from theorem 3.2.6.

2. Follows from de�nition 6.3.1 and theorem 6.3.2.

2

It is also easy to verify that, on the level of belief sets, the roles of the Levi identity

(Def � from �) and the Harper identity (Def � from �) remain unhanged.

Corollary 7.3.12 Let � and

�

� be removals, and > a revision suh that, for every

� 2 E,

� K(� � �) an be de�ned in terms of �

�

using (Def � from �)

� K(�

�

��) an be de�ned in terms of �

�

using (Def � from r

�

)
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� K(�> �) an be de�ned in terms of �

�

using (Def � from �)

Then, for every � 2 L,

1. K(�> �) = (K(�) � :�) + � = (K(�)

�

�:�) + �, and

2. K(� � �) = K(�> :�) \K(�).

Proof Follows from proposition 3.2.8 and theorem 6.3.10. 2

An adherene to Levi's ommensurability thesis then seems to suggest the lifting of

the Levi identity to the level of epistemi states in the following manner.

(Def > from �) �> � = (� � :�)� �

The next two results show that, where AGM ontration and revision on epistemi

states are onerned, this seems to be right hoie.

Proposition 7.3.13 Let � and

�

� be removals suh that, for every � 2 E,

� K(� � �) an be de�ned in terms of �

�

using (Def � from �)

� K(�

�

��) an be de�ned in terms of �

�

using (Def � from r

�

).

Let > and

�

> be the revisions de�ned in terms of (Def > from �) using � and

�

�

respetively.

1. For every � 2 L, K(�> �) = K(�

�

>�) = (K(�) � :�) + � = (K(�)

�

�:�) + �.

2. Both > and

�

> satisfy (E>1){(E>8).

Proof 1. Follows easily from theorem 6.3.10 and the de�nition of �.

2. Follows easily from part (1) and proposition 3.2.8

2

Given the onnetion between withdrawal and revision on the level of belief sets, the

following postulates for withdrawal on epistemi states are obvious analogues of the

semanti DP-postulates for revision.

(DPR�1) If u  :� and v  :� then u �

�

v i� u �

���

v
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(DPR�2) If u  � and v  � then u �

�

v i� u �

���

v

(DPR�3) If u  :� and v  � then u �

�

v only if u �

���

v

(DPR�4) If u  :� and v  � then u �

�

v only if u �

���

v

For AGM ontration, (Def > from �) provides the expeted link between these pos-

tulates and the DP-postulates for revision.

Proposition 7.3.14 Let � be any AGM ontration and let > be the revision de�ned

in terms of � using (Def > from �).

1. If � satis�es (DPR�1) then > satis�es (DPR>1).

2. If � satis�es (DPR�2) then > satis�es (DPR>2).

3. If � satis�es (DPR�3) then > satis�es (DPR>3).

4. If � satis�es (DPR�4) then > satis�es (DPR>4).

Proof Follows from theorem 7.3.11, proposition 7.3.13, and proposition 3.2.8. 2

Interestingly enough, though, we do not get a similar result when de�ning revision in

terms of severe withdrawal. As the next example and the proposition following it show,

the revision obtained from a severe withdrawal on epistemi states satis�es (DP>1),

(DP>3) and (DP>4), but not (DP>2).

Example 7.3.15 Let L be the propositional language generated by the atoms p and

q, with the valuation semantis (V;), where V = f00; 01; 10; 11g. Let � be any

severe withdrawal satisfying (DPR�1){(DPR�4) suh that the following holds for the

epistemi states � and 	, where 	 = � � :(p ^ q):

K(�) = Cn(:p ^ :q) and u �

�

v i�

(

v 2 V if u = 00,

v 2 f01; 10; 11g if u 2 f01; 10; 11g,

K(	) = Cn(>) and �

	

= V � V , and

K(	� p ^ q) = Cn(p ^ q) and u �

	�(p^q)

v i�

(

v 2 V if u = 11,

v 2 f00; 01; 10g otherwise
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�

	

�

	�(p^q)

00

01 10

6

}
>

� -

11

- �

01 11

� -

00

- �

10

-�

�

�

11

01 10

6

}
>

� -

00

- �

Figure 7.1: Graphial representations of the faithful total preorders �

�

, �

	

, and

�

	�(p^q)

used in example 7.3.15. Two interpretations u and v are in a faithful to-

tal preorder i� (u; v) is in the reexive transitive losure of the relation determined by

the arrows.

Figure 7.1 ontains graphial representations of �

�

, �

	

, and �

	�(p^q)

. It is easily

veri�ed that suh a severe withdrawal � exists, but that the revision > de�ned in

terms of � using (Def > from �) does not satisfy (DPR>2). In partiular, it follows

that 00; 10 2 M(:(p ^ q)), but it is not the ase that 10 �

�

00 i� 10 �

�>(p^q)

00. 2

Proposition 7.3.16 Let

�

� be any severe withdrawal and let > be the revision de�ned

in terms of

�

� using (Def > from �).

1. If

�

� satis�es (DP�1) then > satis�es (DP>1).

2. If

�

� satis�es (DP�3) then > satis�es (DP>3).

3. If

�

� satis�es (DP�4) then > satis�es (DP>4).

Proof These results follow easily by observing that, for every � 2 L, the total pre-

orders �

��:�

and �

�>�

are idential when restrited to elements of V nM(K(� � :�)).

2
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The results on iterated withdrawal suggest another reason for dropping (DPR>2) as a

reasonable propery of iterated revision; its inompatibility with Levi's ommensurabili-

ty thesis when applied to severe withdrawal on epistemi states. Semantially speaking,

this inompatibility an be traed bak to the fat that, unlike AGM ontration, a

severe :�-withdrawal of an epistemi state � may result in the inlusion of models of

:� to the models of K(�). This results in the loss of information pertaining to the

relative ordering of suh elements of M(:�) in �

�

, rendering a subsequent expansion

unable to preserve the ordering of all models of :� in K(� > �). It an therefore be

shown that the appliation of (Def > from �) to any form of reasonable withdrawal

on epistemi states, exept for AGM ontration, will result in a revision whih does

not satisfy (DP>2).

7.4 Iterated L-revision

Lehmann [1995℄ onsiders iterated belief revision in the ontext of �nite sequenes of

revisions. He extends the notion of a revision > on epistemi states to a revision by

a �nite sequene of w�s. We use the Greek letter � to denote suh a �nite sequene.

�> � then refers to the iterated revision of � by the w�s in �, and if � is the empty

sequene, �>� is just the epistemi state �. Conatenation of sequenes is denoted by

�, and a w� � is identi�ed with a sequene of length one. So the sequene ��� onsists

of the w� � followed by the w�s in �, and � � � onsists of the w�s in � followed by

the w� �.

Considering only sequenes of satis�able w�s, Lehmann proposes the following pos-

tulates for iterated revision.

(L>1) K(�) = Cn(K(�))

(L>2) � 2 K(�> �)

(L>3) K(�> �) � K(�) + �

(L>4) If � 2 K(�) then K(�> �) = K(�> (� � �))

(L>5) If � � � then K(�> (� � � � �)) = K(�> (� � �))

(L>6) K(�) 6= Cn(?)
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(L>7) K(�> (:� � �)) � K(�) + �

(L>8) If :� =2 K(�> �) then K(�> (� � � � �)) = K(�> (� � � ^ � � �))

De�nition 7.4.1 A revision on epistemi states is an L-revision i� it satis�es (L>1)

to (L>8). 2

It follows easily from Lehmann's results that every L-revision also satis�es (E>1) to

(E>8), (DP>1), (DP>3) and (DP>4). In fat, (L>1), (L>2), (L>3) and (L>6)

orrespond exatly to (E>1), (E>2), (E>3) and (E>6) respetively.

10

(L>4) states

that superuous revisions are useless and should have no e�et on subsequent revisions.

While this may be a reasonable onstraint under ertain irumstanes, it is a very

strong restrition to impose on all rational iterated revisions. The main reason for this

is that (L>4) is at odds with the notion of orroborating evidene; the idea that one's

belief in an assertion is strenghtened by repeated observations on�rming that it holds.

Example 7.4.2 Suppose that an agent obtains evidene that � is the ase, followed

by evidene that � is the ase. If subsequent evidene obtained makes it lear that

exatly one of � or � holds, it seems diÆult to deide between � and �. If one is

inlined to trust more reent evidene, it is perhaps reasonable to entertain the option

that it is � that holds. On the other hand, suppose that the agent obtains evidene

that � is the ase, followed by evidene that � is the ase, whih, in turn is followed by

on�rmation that � is the ase. If subsequent evidene now makes it lear that exatly

one of � or � holds, it seems reasonable to believe that � is the ase, mainly beause

our initial belief in � was orroborated by on�rming evidene that � holds. But suh

a onlusion is prohibited by (L>4). 2

(L>5) is a strengthening of (DP>1). It requires of an agent, when obtaining more

spei� information following �, not just to disard the inuene of � in obtaining the

resulting belief set, but also in all subsequent revisions. (L>7) is a weakened version

of (DP>2). Given the rest of Lehmann's postulates, it is equivalent to the following

postulate:

(L>9) K((�> :�)> �) � K(�> �)

Proposition 7.4.3 Let > be a revision satisfying (L>1){(L>6) and (L>8). Then >

satis�es (L>7) i� it satis�es (L>9).

10

Sine we only revise with sequenes of satis�able w�s, (L>6) is indeed equivalent to (E>6).
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Proof Suppose that > satis�es (L>7). Then Lehmann's Lemma 3 [1995,p. 1537℄

shows that > satis�es (E>4). If :� 2 K(�) then K((� > :�) > �) = K(� > �) by

(L>4). And if :� =2 K(�) then

K((�> :�)> �)

� K(�) + � by (L> 7)

� K(�> �) by (E> 4).

The onverse follows immediately from (L>3). 2

In the presene of (L>5), (L>8) is a strengthening of (K�9), the postulate for AGM

revision on belief sets whih follows from (K�7) and (K�8).

11

This an be seen from

Lehmann's result that (L>8) is equivalent to the following postulate whenever (L>5)

holds.

(L>10) If :� =2 K(�> �) then K(�> (� � � � �)) = K(�> (� ^ � � �))

As mentioned above, any L-revision also satis�es (DP>3). In fat, Lehmann shows

that suh a revision satis�es the following strengthened version of (DP>3).

(L>11) If � 2 K(�> �) then K(�> (� � �)) = K(�> (� � � � �))

Sine every L-revision also satis�es (E>1){(E>8), it follows by theorem 7.3.1 and

proposition 7.3.2 that we an assoiate with every epistemi state �, a unique K(�)-

faithful total preorder �

�

suh that K(� > �) an be de�ned in terms of �

�

using

(Def � from �), for every � 2 L. Observe, though, that it is not possible to represent

every epistemi state � as an ordered pair of the form (K(�);�

�

). This beomes lear

one we realise that every epistemi state is assoiated with a unique �nite sequene of

w�s, sine there are only a �nite number of suh ordered pairs, but an in�nite number

of epistemi states.

We onlude this disussion with a brief note onerning a representation theorem

proved by Lehmann. He provides a method, involving the widening ranked models, of

onstruting preisely the L-revisions. It involves the use of an implausibility ranking

over sets of valuations. Lehmann warns that it is just a tehnial tool, though, and

that it should not be seen as a desription of the epistemi states of an agent.

11

Lehmann [1995,p. 1537℄ laims that (L>8) does not represent any strengthening of the postulates

(E>1){(E>8), but this is learly inorret. In setion 7.5.1 we show that Papinis's P

�

-revision satis�es

(E>1){(E>8), but does not satisfy (L>8), and in setion 8.4.2 we give another example of a revision

on epistemi states whih satis�es (E>1){(E>8), but does not satisfy (L>8).
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7.5 Observation-based revision

Papini [1998, 1999℄ has reently proposed that iterated revision be viewed in the ontext

of sequenes of observations made by an agent. The basi idea is that the history of the

agent's observations should be taken into aount in some or other way. She onsiders

the two partiular onstrutions whih lie on opposite sides of the spetrum when

assessing the reliability of observations. The remainder of this setion is devoted to a

desription of these revision operations.

7.5.1 P

�

-revision

The intuition assoiated with AGM revision on belief sets ontains the assumption

that the w� � with whih to revise a belief set K, takes preedene over the infor-

mation urrently ontained in K. A generalisation of revision to epistemi states an

aommodate this assumption in a wide variety of ways. From an information-theoreti

point of view, though, it is fair to say that any suh a generalisation needs to ree-

t the requirement that no ontent bit of :� may beome more entrenhed (or more

redible) relative to the ontent bits of �; a requirement that is aptured by (DP>3)

and (DP>4). The strongest expression of this requirement is the insistene that an

�-revision should result in an epistemi state where the ontent bits of � are all more

entrenhed than the ontent bits of :�. In model-theoreti terms, it means that an

�-revision of the epistemi state � should result in an epistemi state in whih the

total preorder �

�>�

plaes the models of � stritly below the ountermodels of :�. It

an be formulated as follows:

(PR>) If u 2M(�) and v 2M(:�), then u �

�>�

v

This is the idea underlying one of Papini's approahes to iterated revision. In suh an

approah, the more reent observations of the agent are to be taken more seriously. She

provides the following semanti de�nition of revision on the level of epistemi states:

12

(Def >

�

)

2

6

6

6

6

4

K(�>

�

�) = Th(Min

�

�

�

(�))

u �

�>

�

�

v i�

(

u �

�

v if u; v 2 M(�) or u; v 2M(:�),

u 2M(�), otherwise

3

7

7

7

7

5

12

Papini's onstrution uses polynomials on the naturals numbers, but it is easily seen that her

de�nition orresponds to the one we give here.
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De�nition 7.5.1 The revision on epistemi states de�ned in terms of (Def >

�

) is

referred to as P

�

-revision and denoted by >

�

. 2

Papini shows that >

�

is a DP-revision (i.e., it satis�es (E>1){(E>8) and (DP>1){

(DP>4)). It turns out that >

�

an be haraterised preisely by adding the following

postulate to (DP>1) and (DP>2):

(P>) If � 2 :� then K((�> �)> �) = K(�> (� ^ �))

Theorem 7.5.2 The P

�

-revision >

�

is the only revision satisfying (E>1){(E>8),

(DP>1), (DP>2), and (P>).

Proof From theorem 7.3.1 it follows easily that >

�

satis�es (E>1){(E>8), and from

theorem 7.3.4 it learly follows that >

�

satis�es (DP>1) and (DP>2). Furthermore, it

is easily veri�ed that>

�

is the only revision satisfying (E>1){(E>8), (DP>1), (DP>2),

and (PR>). It thus suÆes to show that for every revision satisfying (E>1){(E>8)

and (DP>1), the postulates (P>) and (PR>) are equivalent.

Pik any revision > satisfying (E>1){(E>8) and (DP>1), and suppose that >

does not satisfy (PR>). Then there is an � 2 L, a u 2 M(�) and a v =2 M(�)

suh that v �

�>�

u, for some epistemi state �. Now let � be suh that M(�) =

fu; vg. Then Min

�

�

(� ^ �) = M(� ^ �) = fug, and so K(� > � ^ �) = Cn(� ^ �).

On the other hand, either Min

�

�>�

(�) = fvg or Min

�

�>�

(�) = fu; vg. But then

K((� > �) > �) 6= K(� > (� ^ �)) by theorem 7.3.1, and so > does not satisfy

(P>). Conversely, suppose that > satis�es (PR>). Now pik any �; � 2 L suh that

� 2 :�. By (PR>) it follows that Min

�

�>�

(�) � M(�), and so Min

�

�>�

(�) =

Min

�

�>�

(� ^ �). Furthermore, theorem 7.3.4 guarantees that > satis�es (DPR>1),

and so Min

�

�

(� ^ �) = Min

�

�>�

(� ^ �) = Min

�

�>�

(�), from whih it follows by

theorem 7.3.1 that K((�> �)> �) = K(�> (� ^ �)). 2

Observe that (P>) requires of iterated revision and simultaneous revision to yield iden-

tial results whenever � and � are ompatible. In other words, an �-revision followed

by a �-revision should be the same as an �^�-revision. This an be seen as a strength-

ening of the postulate (K�9), whih was disussed in setion 7.2. Suh a property seems

too strong for a general aount of revision, although its reformulation in the ontext

of nonmonotoni reasoning (see setion 4.5) is one of the impliit assumptions made
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about most nonmonotoni onsequene relations in the literature. Future researh in

nonmonotoni reasoning will hopefully take this into aount.

A onsequene of (P>) whih is perhaps unexpeted, is the following property.

13

(Weak Symmetry) If � 2 :� then K((�> �)> �) = K((�> �)> �)

Weak Symmetry suggests that it does not matter whih of the observations � and

� are made �rst, as long as � and � are ompatible. At a �rst glane this seems

at odds with Papini's intuition that more reent observations are deemed as more

aurate, but loser inspetion reveals this not to be the ase. In fat, although the

most reent observation is seen as more aurate than the previous one, both these

observations are aorded higher prominene than any of the preeding observations.

And as long as they are ompatible, we should therefore expet the order in whih

these two observations were made, to be of no onsequene; at least on the level of

belief sets.

The intuition that Papini attahes to her onstrution seems to be in line with

Lehmann's L-revision, and one would therefore expet it to satisfy all of Lehmann's

postulates. However, as we shall see below, this turns out not to be the ase. Sine

Papini's onstrution is a perfetly reasonable way of performing iterated revision, it

would seem that some of Lehmann's postulates are a bit too restritive.

Sine (L>1){(L>3) orrespond exatly with (E>1){(E>3), the former are satis�ed

by P

�

-revision. P

�

-revision also satis�es (L>7), sine the latter is a weakened version

of (DP>2). These, however, are the only of Lehmann's eight postulates that P

�

-

revision satis�es. Papini allows unsatis�able belief sets, whih violates (L>6). For the

remaining three of Lehmann's postulates, the following examples show that P

�

-revision

does not satisfy them.

Example 7.5.3 Let L be generated by the atoms p and q, with V = f00; 01; 10; 11g.

Let � be an epistemi state suh that K(�) = Cn(p ^ q) and �

�

is de�ned as follows:

u �

�

v i�

8

>

<

>

:

v 2 V if u = 11,

v 2 f00; 01; 10g if u 2 f01; 10g,

v = 00 if u = 00.

13

That (P>) implies Weak Symmetry follows immediately by noting that � � :� and � � :� are

equivalent.
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11

10 01

00

}
>

�

I

-
�

Figure 7.2: A graphial representation of the K(�)-faithful total preorder �

�

used

in example 7.5.3. For two interpretations u and v, u �

�

i� (u; v) is in the reexive

transitive losure of the relation determined by the arrows.

Figure 7.2 ontains a graphial representation of�

�

. Now let>

�

be the revision de�ned

using (Def >

�

). It is readily veri�ed that K((�>

�

p)>

�

:(p$ q)) = Cn(p^:q), but

that K(� >

�

:(p $ q)) = Cn(:(p $ q)). And sine p 2 K(�), this is a violation of

(L>4). 2

Example 7.5.4 Let L be generated by the atoms p and q, with V = f00; 01; 10; 11g.

Let � be an epistemi state suh that K(�) = Cn(p) and �

�

is de�ned as follows:

u �

�

v i�

8

>

<

>

:

v 2 V if u 2 f10; 11g,

v 2 f00; 01g if u 2 f00g,

v = 01 if u = 01.

Figure 7.3 ontains a graphial representation of�

�

. Now let>

�

be the revision de�ned

using (Def >

�

). It is readily veri�ed that K(((�>

�

p_ q)>

�

p)>

�

:p) = Cn(:p^ q),

but that K((�>

�

p)>

�

:p) = Cn(:p ^ :q). And sine p � p _ q, it is a violation of

(L>5). 2

Example 7.5.5 Let L be generated by the atoms p and q, with V = f00; 01; 10; 11g,

let � be an epistemi state suh that K(�) = Cn(>) and �

�

= V � V , and let >

�

be
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11 10

00
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01

�

I

-
�

Figure 7.3: A graphial representation of the K(�)-faithful total preorder �

�

used

in example 7.5.4. For two interpretations u and v, u �

�

i� (u; v) is in the reexive

transitive losure of the relation determined by the arrows.

the revision de�ned in (Def >

�

). It is readily veri�ed that

K(((�>

�

p)>

�

q)>

�

:(p$ q)) = Cn(:p ^ q)

but that

K(((�>

�

p)>

�

p ^ q)>

�

:(p$ q)) = Cn(p ^ :q).

And sine :q =2 K(�>

�

p) = Cn(p), this is a violation of (L>8). 2

7.5.2 P

�

-revision

Papini also presents an operation that an be seen as dual to P

�

-revision. Instead

of letting the most reent observations arry the most weight, the situation is now

reversed, with the most reent observations onsidered to be the least reliable. This

revision operation is de�ned as follows:

(Def >

�

)

2

6

6

6

6

6

6

4

u �

�>

�

�

v i�

(

u �

�

v if u 2M(�) or v =2M(�),

u �

�

v, otherwise

K(�>

�

�) =

(

Th(Min

�

�>

�

�

(>)) if K(�) 6= Cn(?),

Cn(?) otherwise

3

7

7

7

7

7

7

5
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De�nition 7.5.6 The revision >

�

de�ned in terms of (Def >

�

) is referred to as P

�

-

revision. 2

Semantially speaking, a P

�

-revision of the epistemi state � by � has the following

e�et on �

�

. The relative ordering of valuations on di�erent levels of �

�

are main-

tained, but eah level is split into two by plaing the models of � stritly below the

models of :�. The resulting belief set is then obtained from the minimal models in

this new ordering, provided that the original belief set was satis�able.

The intuition assoiated with P

�

-revision di�ers markedly from that normally as-

soiated with AGM-style revision, and it is not surprising that P

�

-revision does not

satisfy all of (E>1){(E>8). Papini shows that it satis�es (E>4), (E>5), (E>7), and

the following weakened version of (E>3):

(WE>3) If :� =2 K(�) then K(�> �) � K(�) + �

Furthermore, although it does not satisfy (E>2), (E>6), or (E>8), she shows that

P

�

-revision satis�es the following dual versions of (E>2), (E>6) and the following

weakened version of (E>8):

(DE>2) K(�) � K(�> �)

(DE>6

0

) If K(�> �) = Cn(?) then K(�) = Cn(?)

(WE>8

0

) If :� =2 K(�>�) and � 2 K(�>�^�), then K(�>�)+� � K(�>�^�)

That P

�

-revision does not satisfy (E>2) is to be expeted, sine it regards the most

reent observation as the least reliable of all observations made thus far. The postulates

(DE>2

0

), (DE>6

0

) and (WE>8

0

) are all in line with this view. (DE>2

0

) requires all the

w�s in � to be retained after a revision of �, and (DE>6

0

) states that an �-revision of

� will result in the unsatis�able belief set only if � ontained the unsatis�able belief

set to begin with. (WE>6

0

) di�ers from (E>8) only in adding to the anteedent of

(E>8) the requirement that � 2 K(�> � ^ �).

We onlude this setion by showing that the results above an be sharpened some-

what. Firstly, it is easily shown that P

�

-revision satis�es both (E>1) and (E>3).

Moreover, we an improve on (DE>6

0

) and (WE>8

0

). We show that the onverse of

(DE>6

0

) also holds, and that the requirement added to the anteedent of (E>8) an

be replaed with one that is, in our view, more natural.
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(DE>6) K(�> �) = Cn(?) i� K(�) = Cn(?)

(WE>8) If :� =2 K(�> �) and :� =2 K(�), then K(�> �) + � � K(�> � ^ �)

Proposition 7.5.7 P

�

-revision satis�es (E>1), (E>3), (DE>6) and (WE>8).

Proof (E>1) follows immediately from the semanti de�nition of P

�

-revision. For

(E>3), we only need to onsider the ase where :� 2 K(�) beause Papini has

shown that P

�

-revision satis�es (WE>3), and the result then follows immediately. For

(DE>6), we only need to show the right-to-left diretion, and this follows immediately

from (Def>

�

). For (WE>8), suppose that :� =2 K(�>�) and :� =2 K(�). SoK(�) 6=

Cn(?). Sine :� =2 K(�) it follows from (Def >

�

) that K(� > �) = Th(Min

�

�

(�))

and thus that K(� > �) + � = Th(Min

�

�

(�) \M(�)). Furthermore, it follows from

:� =2 K(�> �) that Min

�

�

(�) \M(�) 6= ;. So :(� ^ �) =2 K(�) and it thus follows

from (Def >

�

) that K(� > � ^ �) = Th(Min

�

�

(� ^ �)) = Th(Min

�

�

(�) \M(�)).

Therefore K(�> �) + � = K(�> � ^ �). 2

7.6 Merging epistemi states

While both of Papini's onstrutions may formally be viewed as revision operations,

P

�

-revision does not quite onform to the intuition assoiated with revision. The rea-

son for this is twofold. Firstly, revision has thus far referred to operations in whih the

w� with whih to revise is fully aepted into the resulting belief set, and P

�

-revision

thus represents a signi�ant departure from this assumption. Seondly, the informal

desription of P

�

-revision, oupled with properties suh as (DE>2) and (DE>6), sug-

gests that it may also be seen as an operation in whih a w� is being \revised" by an

epistemi state, and not the other way around. The problem with the latter view, of

ourse, is the asymmetry built into a revision on epistemi states; its �rst argument

is an epistemi state, while its seond argument is an element of L. To obtain the re-

quired symmetry, it is neessary to generalise the notion of revision. Instead of revising

an epistemi state by a w�, we onsider the proess of revising an epistemi state by

another epistemi state. In fat, sine we wish to inlude ases where the seond epis-

temi state is not regarded as more reliable than the �rst, it is more appropriate to refer

to the merging of epistemi states, an area of researh whih has already reeived some
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attention by Borgida and Imielinski [1984℄, Baral et al. [1991, 1992℄, Subrahmanian

[1994℄, Liberatore and Shaerf [1998℄, Koniezny and Pino-P�erez [1998℄.

Formally then, a merge operation 
 is a funtion from E � E to E (where E is the

set of all epistemi states).

It is not our intention to provide a detailed disussion of merging here. At this

stage, we merely wish to argue that merging is an area of researh whih needs to

be investigated more thoroughly, and to put forward some basi properties with whih

every merge operation should omply. We also onsider some spei� merge operations,

one if whih bolsters the laim that revision on epistemi states is indeed a speial ase

of merging.

7.6.1 Basi properties of merge operations

Intuitively, the merging of epistemi states is intended to be a oherent fusion of the

information ontained in both. There is no assumption that one of the epistemi states

is deemed to be more reliable than the other. Instead, merging is intended to over

the whole spetrum; from the ase where the �rst epistemi state takes absolute pri-

ority over the seond one, to the ase where the seond epistemi state has omplete

preedene over the �rst one. Our point of departure in this investigation is the as-

sumption that every epistemi state � has assoiated with it a belief set K(�) and a

K(�)-faithful total preorder �

�

. The information ontained in two epistemi states �

and 	 to be merged, does not just refer to the beliefs ontained in K(�) and K(�),

but also to the information ontained in the orderings �

�

and �

	

. Observe that the

idea is still one of a minimal model semantis. Given the fat that �

�
	

has to be

a K(� 
 	)-faithful total preorder, this assumption is built into the de�nition of an

epistemi state.

With these guidelines in mind, we propose the following general properties for

merging:

(
1) K(�) \K(	) � K(�
	)

(
2) K(�
	) � Cn(K(�) [K(	))

(
3) If K(�) 6= Cn(?) and K(	) 6= Cn(?) then K(�
 	) 6= Cn(?)

(
4) If K(�) = K(
) and K(	) = K(�) then K(�
 	) = K(�
�)
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These four properties involve the belief set obtained from a merge operation. (
1)

provides a lower bound on the resulting belief set. It states that the new belief set

has to ontain those beliefs assoiated with both epistemi states to be merged. (
2)

on the other hand, provides an upper bound for the resulting belief set. It may not

ontain any belief whih does not our in at least one of the two epistemi states

to be merged. (
3) requires that the resulting belief set be unsatis�able only if at

least one of the belief sets assoiated with the two epistemi states to be merged are

unsatis�able. And (
4) is an expression of the priniple of the Irrelevane of Syntax,

applied to the belief sets assoiated with epistemi states.

The next two properties are onerned with the faithful total preorder resulting

from a merge operation.

(
5) If u �

�

v and u �

	

v then u �

�
	

v

(
6) If u �

�
	

v then u �

�

v or u �

	

v

Both (
5) and (
6) are motivated by the intuition that the merging of two epistemi

states � and 	 depends, in the �rst plae, on the information ontained in � and 	.

(
5) states that information ontained in both � and 	 should also our in � 
 	.

(
6) is almost the onverse of (
5). It asserts that information ontained in � 
 	

must have been obtained from either � or 	.

7.6.2 Construting merge operations

In this setion we take a brief look at the onstrution of some merge operations. The

�rst two we have in mind represent the two extremes on the spetrum of merging. They

involve the ases where one of the two epistemi states to be merged takes omplete

preedene over the other, and an be de�ned as follows:

(Def 


 

) �


 

	 = �

(Def 


!

) �


!

	 = 	

It is easily veri�ed that the merge operations de�ned using (Def 


!

) and (Def 


 

)

both satisfy (
1){(
6).

The next two merge operations to be presented an also be seen as opposites. In

this ase though, it involves a preferene for one epistemi state over the other whih
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is of a less extreme kind. For their de�nition, we need to broaden the de�nition of the

minimal models of a w� to apply to sets of interpretations.

De�nition 7.6.1 For a binary relation� on V , andW � V , we letMin

�

(W ) = fv j v

is �-minimal in Wg. 2

So Min

�

(W ) is the set of �-minimal elements in W . The two merge operations are

de�ned as follows:

(Def 


�

)

2

6

4

K(�


�

	) =Min

�

	

(M(K(�)))

u �

�


�

	

v i� u �

�

v or (u �

�

�

v and u �

	

v)

3

7

5

(Def 


�

)

2

6

4

K(�


�

	) =Min

�

�

(M(K(	)))

u �

�


�

	

v i� u �

	

v or (u �

�

	

v and u �

�

v)

3

7

5

These two merge operations an perhaps best be desribed as lexiographi orderings

of the faithful total preorders assoiated with the epistemi states; 


�

ensures that

	 orders �

�

lexiographially, while 


�

ensures that � orders �

	

lexiographially.

Again, both these merge operations satisfy (
1){(
6).

Proposition 7.6.2 The merge operations 


�

and 


�

de�ned using (Def 


�

) and

(Def 


�

) respetively, both satisfy (
1){(
6).

Proof For (
1) and (
2), observe thatM(K(�))\M(K(	)) �Min

�

	

(M(K(�))) �

M(K(�)) and that M(K(�)) \ M(K(	)) � Min

�

�

(M(K(	))) � M(K(	)). For

(
3), note that ifK(�


�

	) = Cn(?) thenM(K(�)) = ;, and ifK(�


�

	) = Cn(?)

then M(K(	)) = ;. (
4) is trivial. For (
5), suppose that u �

�

v and u �

	

v. If

u �

�

v then u �

�


�

	

v, and if u �

�

�

v then u �

�


�

	

v sine u �

	

v. The ase for




�

is similar. For (
6), suppose that u �

�


�

	

v. Then it has to be the ase that

u �

�

v and so (
6) holds for 


�

. The ase for 


�

is similar. 2

The merge operation 


�

de�ned using (Def 


�

) orresponds to a proposal of Nayak

[Nayak, 1994b, Nayak et al., 1996℄. His FPO (�xed point ordering) revision operation

is a generalisation of AGM revision based on modi�ed versions of the EE-orderings (see

2.3), but it is lear from his semanti desription [Nayak, 1994b℄ that it is, essentially,

the same onstrution as 


�

. Furthermore, Papini's P

�

-revision an be seen as a
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speial ase of 


�

, while her P

�

-revision an be seen as a speial ase of the merge

operation 


�

de�ned using (Def 


�

). It is simply a matter of assoiating with every

w� � the unique Cn(�)-faithful total preorder in whih the ountermodels of � are all

on the same level. That is, every w� � is assoiated with the epistemi state 	

�

where

K(	

�

) = Cn(�) and u �

	

�

v i� u 2M(�) or v 2M(:�). It then follows immediately

that �


�

	

�

= �>

�

� and �


�

	

�

= �>

�

� for every � 2 E and every � 2 L.

Finally, we propose a lass of merge operations whih regard the two epistemi

states to be merged as equally important; at least on the level of belief sets. Revesz

[1993℄ uses the term \arbitration" for merge operations onforming to this intuition.

Information-theoretially, our proposal draws a distintion between two ases. Firstly,

if the two epistemi states � and 	 to be merged are ompatible on the level of belief

sets, the belief set resulting from an arbitration of � and 	 are obtained by pooling

the ontent bits of K(�) and K(	). Seondly, if � and 	 are inompatible on the level

of belief sets, the belief set resulting from an arbitration of � and 	 is built up using

those infatoms that are ontent bits of K(�) as well as K(	).

(Def K(

b


)) K(�

b


	) =

(

K(�) \K(	) if K(�) [K(	) � ?,

Cn(K(�) [K(	)) otherwise

De�nition 7.6.3 A merge operation

b


 on epistemi states is an arbitration i� the

belief setK(�

b


	) assoiated with the arbitration of two epistemi states an be de�ned

using (Def K(

b


)). 2

Arbitration, as de�ned above, is only onerned with belief sets, and therefore it does

not satisfy (
5) or (
6). However, it does satisfy the remaining properties for merging.

Proposition 7.6.4 Every arbitration satis�es (
1) to (
4).

Proof Pik any arbitration

b


. (
1), (
2) and (
4) are trivial. For (
3), observe

that if K(�

b


	) = Cn(?) then K(�)[K(	) � ? and thus K(�

b


	) = K(�)\K(	).

And K(�) \K(	) = Cn(?) i� K(�) = K(	) = Cn(?). 2

Liberatore and Shaerf [1998℄ propose a lass of merge operations whih is similar in

spirit to de�nition 7.6.3. They provide the following eight postulates for arbitration

operations.

(LS

b


1) K(�

b


	) = K(	

b


�)
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(LS

b


2) K(�

b


	) � Cn(K(�) [K(	))

(LS

b


3) If K(�) [K(	) 2 ? then Cn(K(�) [K(	)) � K(�

b


	)

(LS

b


4) K(�

b


	) = Cn(?) i� K(�) = K(	) = Cn(?)

(LS

b


5) If K(�) = K(
) and K(	) = K(�) then K(�

b


	) = K(


b


�)

(LS

b


6) If K(	) = K(
) \K(�) then K(�

b


	) =

8

>

<

>

:

K(�

b



) or

K(�

b


�) or

K(�

b



) \K(�

b


�)

(LS

b


7) K(�) \K(	) � K(�

b


	)

(LS

b


8) If K(�) 6= Cn(?) then K(�) [K(�

b


	) 2 ?

We show that an arbitration, in the sense of de�nition 7.6.3, satis�es all eight of these

postulates.

Proposition 7.6.5 Every arbitration

b


 satis�es (LS

b


1) to (LS

b


8).

Proof (LS

b


1){(LS

b


5) and (LS

b


7) are trivial. Now pik any arbitration

b


. For

(LS

b


6), pik any 	;
;� 2 E suh that K(	) = K(
) \K(�). We need to onsider

four ases. First we onsider the ase where bothK(�)[K(
) 2 ? andK(�)[K(�) 2

?. Then K(�

b



) = Cn(K(�) [K(
)) and K(�

b


�) = Cn(K(�) [K(�)). So

K(�

b



) \K(�

b


�)

= Cn(K(�) [K(
)) \ Cn(K(�) [K(�))

= Cn(K(�) [ (K(
) \K(�)))

= Cn(K(�) [K(	))

= K(�

b


	) sine K(�) [K(	) 2 ?.

Next we onsider the ase where both K(�)[K(
) � ? and K(�)[K(�) � ?. Then

M(K(�)) \M(K(
)) =M(K(�)) \M(K(�)) = ;, and so

M(K(�)) \M(K(	))

= M(K(�)) \M(K(
) \K(�))

= M(K(�)) \ (M(K(
)) [M(K(�)))

= (M(K(�)) \M(K(
)))

[

(M(K(�)) \M(K(�)))

= ;
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Therefore K(�)[K(	) � ?. Furthermore, K(�

b



) = K(�)\K(
) and K(�

b


�) =

K(�) \K(�), and so

K(�

b



) \K(�

b


�)

= (K(�) \K(
)) \ (K(�) \K(�))

= K(�) \K(
) \K(�)

= K(�) \K(	)

= K(�

b


	) sine K(�) [K(	) � ?.

Finally, we onsider the ase where K(�) [ K(
) � ? and K(�) [ K(�) 2 ?. (The

remaining ase, where K(�) [ K(
) 2 ? and K(�) [ K(�) � ?, is similar.) Then

K(�) [K(	) 2 ? and so

K(�

b


	)

= Cn(K(�) [K(	))

= Cn (K(�) [ (K(
) \K(�)))

= Cn

�

(K(�) [K(
))

\

(K(�) [K(�))

�

= Cn(K(�) [K(�)) sine K(�) [K(
) � ?

= K(�

b


�) sine K(�) [K(�) 2 ?.

For (LS

b


8), suppose that K(�) 6= Cn(?). If K(�) [ K(	) 2 ? then K(�

b


	) =

Cn(K(�) [K(	)) 6= Cn(?) and so K(�

b


	) [K(�) 2 ?. And if K(�) [K(	) � ?

then K(�

b


	) = K(�) \K(	) and sine K(�) 6= Cn(?), it follows that K(�

b


	) [

K(�) 2 ?. 2

Finally, observe that there are some similarities between the properties for merge op-

erations that we have proposed, and the postulates of Liberatore and Shaerf. In

partiular, (
1) and (LS

b


7) are idential, (
2) and (LS

b


2) are idential, (
4) and

(LS

b


5) are idential, and (
3) orresponds to the one diretion of (LS

b


4). The re-

maining postulates of Liberatore and Shaerf seem to be spei�ally onerned with

arbitration, and are thus not suitable as properties for the more general notion of a

merge operation. On the other hand, (
5) and (
6) are onerned with the faith-

ful total orders assoiated with epistemi states, and have no ounterparts among the

postulates of Liberatore and Shaerf, whih are only onerned with the belief sets

assoiated with epistemi states.
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7.7 Conlusion

Questions onerning iterated belief hange an be traed bak to a violation of the

priniple of Categorial Mathing in the AGM approah to belief hange. The latter

requires an epistemi state to perform belief hange operations, but delivers just a

belief set. The AGM postulates an thus be seen as onstraints plaed on just one

part of the epistemi state of an agent. This realisation has prompted various authors

to extend the AGM postulates in order to plae onstraints on the other parts of an

epistemi state as well. While the work of Spohn [1988, 1991℄ has been instrumental

in this regard, the aount provided by Darwihe and Pearl [1994, 1997℄ is arguably

the most inuential. Although some of the postulates they provide seem too strong,

their deision to assoiate with every epistemi state a unique faithful total preorder

has proved to play a entral role in the understanding of their onstraints on epistemi

states pertaining to theory revision.

A semanti onsideration of epistemi states also promises to have a signi�ant

impat on the investigation of the merging operations of setion 7.6. Muh work

still needs to be done in this area, but the work of Nayak [1994b℄, Nayak et al. [1996℄,

Liberatore and Shaerf [1998℄ and Koniezny and Pino-P�erez [1998℄ have opened fruitful

areas of investigation.



Chapter 8

Infobase hange

It is undesirable to believe a proposition when

there is no ground whatsoever for believing it true.

Bertrand Russell

We have seen in setion 7.2 that frameworks for belief hange whih operate on the

level of belief sets are not rih enough in struture to provide a proper treatment of

hange operations. In partiular, from the work of Darwihe and Pearl [1994, 1997℄, it

has emerged that belief hange ought to be desribed on the level of epistemi states.

While the proposal of Darwihe and Pearl is an important ontribution to the enterprise

of belief hange on an abstrat level, it does not address the equally important question

of what it is that prompts an agent to adopt a partiular epistemi state in a given

situation. In this hapter we investigate an approah to �nd a solution to this problem

using strutures that we refer to as infobases.

The assumption underlying infobase hange is that an agent obtains information

(in the form of w�s of L) whih is to be stored in an infobase; a �nite sequene of

w�s onsisting of information obtained independently from di�erent soures. Infobases

thus have more struture than �nite sets of w�s.

1

From this desription it might seem

as if infobase hange is a slightly generalised instane of base hange, the proposal to

1

This hapter is an expanded version of the paper by Meyer et al. [1999a℄. In that paper we took

an infobase to be a �nite set of w�s, but aknowledged at the same time that suh a representation

is not entirely satisfatory.

239
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replae hange operations on belief sets with hange operations on arbitrary sets of

w�s (known as belief bases). While it is indeed possible to lassify infobase hange as

suh, the phrase \base hange" has beome so synonymous with the partiular kind of

base hange hampioned by Fuhrmann and Hansson in partiular, that it is perhaps

more appropriate to regard infobase hange as an altogether di�erent kind of belief

hange. Setion 8.1 ontains a brief disussion of base hange. It is not intended as

a omprehensive introdution to the �eld, but is inluded primarily for purposes of

omparison with infobase hange.

8.1 Base hange

The realisation that belief sets do not have a rih enough struture to serve as appro-

priate models for epistemi states (see setion 7.2) has led some researhers to regard

AGM theory hange as an elegant idealisation of a more general theory of belief hange

in whih belief sets are replaed by arbitrary sets of w�s (known as belief bases).

2

The

intuition is that some of our beliefs have no independent standing, but arise only as

beliefs derived from our more basi beliefs. And if our reason for believing suh a

derived belief disappears, then so should the belief. Martins and Shapiro [1988℄ refer

to this proess as disbelief propagation. It is also known as reason maintenane [Doyle,

1979℄, and is the priniple underlying Fuhrmann's [1991℄ �ltering ondition, whih we

enounter in setion 8.2.3.

A belief base B is taken to onsist of suh basi beliefs, with B being assoiated

with the belief set K (and K being the belief set assoiated with a belief base B) i�

Cn(B) = K. The lassi example in the base hange literature (perhaps analogous to

the Tweety example in nonmonotoni reasoning) is Hansson's hamburger example.

Example 8.1.1 [Hansson, 1989℄ \On a publi holiday you are standing in the street

in a town that has two hamburger restaurants. Let us onsider the subset of your belief

set that represents your beliefs about whether or not eah of these two restaurant is

open.

When you meet me, eating a hamburger, you draw the onlusion that at least

one of the restaurant is open (a _ b). Further, seeing from a distane that one of the

2

Although the original AGM postulates are not exlusively onerned with belief sets, the major

results in Alhourr�on et al. [1985℄ only hold for belief sets.
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two restaurants has its lights on, you believe that this partiular restaurant is open

(a). This situation an be represented by the set of beliefs fa; a _ bg. When you have

reahed the restaurant however, you �nd a sign saying that it is losed all day. The

lights are only turned on for the purposes of leaning. You now have to inlude the

negation of a, i.e. :a, into your belief set. The revision of fa; a _ bg to inlude :a

should still ontain a _ b, sine you still have reason to believe that one of the two

restaurants is open.

In ontrast, suppose you had not met me or anyone else eating a hamburger. Then

your only lue would have been the lights from the restaurant. The original belief

system in this ase an be represented by the set fag. After �nding out that the

restaurant is losed, the resulting set should not ontain a _ b, sine in this ase you

have no reason to believe that one of the restaurants is open." 2

The di�erene in the treatment of the belief bases fag and fa; a_ bg is attributable to

the fat that a _ b is an expliit belief with independent standing in fa; a _ bg, while

it is a mere derived belief of the belief base fag. The two belief bases should therefore

treat an a-ontration di�erently even though Cn(a) = Cn(a; a _ b).

One of the basi priniples of base hange is that it is sensitive to syntax. What

is usually not made expliit, though, is that suh an assertion an be interpreted in

many ways. In the ontext of belief hange, this sensitivity to syntax usually refers to

the following two properties:

1. Belief bases o�er a �ner-grained approah than belief sets in the sense that two

di�erent belief bases may both be assoiated with the same belief set.

2. Contration is interpreted on the symbol level and not on the knowledge level

(see page 3). In partiular, this means that a base ontration � is expeted to

satisfy the property of Inlusion, whih requires that B � � � B, and not merely

that Cn(B � �) � Cn(B).

Observe that there are other ways for base hange to be sensitive to syntax as well.

To name just two, a hange e�eted by two logially equivalent w�s may be treated

di�erently, or belief bases ontaining di�erent but logially equivalent w�s may be

treated di�erently.

Even though base hange is more sensitive to syntax than theory hange, it is not

intended to be totally oblivious to knowledge level matters. For example, a base hange
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operation � is expeted to satisfy the property that � =2 Cn(B � �) whenever 2 �,

whih involves the belief set assoiated with the base B � � as well.

Desriptions of base hange usually subsribe to some form of Levi's ommensu-

rability thesis (see page 7), and ontration is thus de�ned expliitly, while revision

is de�ned in terms of some analogue of the Levi Identity (the identity (Def � from

�)). Both Fuhrmann [1991℄ and Hansson [1989, 1992a, 1993b℄ de�ne versions of base

ontration whih an be viewed as generalisations of theory ontration in whih the

ontration of belief sets is a speial ase. Aordingly, their methods for onstrut-

ing these base ontration operations are appropriate generalisations of methods for

onstruting (basi AGM) theory ontrations. Fuhrmann generalises the entailment

sets used to onstrut safe ontrations (see setion 2.4), while Hansson generalises the

remainders used to onstrut partial meet ontrations (see setion 2.2).

Base ontrations are operations on belief bases, but it has been pointed out by

Nebel [1989℄ and Fuhrmann [1991℄, amongst others, that there is a theory ontration

� assoiated with every base ontration �, whih an be obtained as follows: Cn(B)�

� = Cn(B � �).

3

In this way it is possible to provide a knowledge level analysis of

base ontration, and to make (indiret) omparisons between base ontration and

theory ontration.

One of the �rst observations to be made in this regard onerns the ontroversial

Reovery postulate for theory ontration. Given the symbol level interpretation of

base ontration, a simple example suÆes to show that Reovery does not hold for

the assoiated theory ontrations.

Example 8.1.2 Let B = fpg and let � be a base ontration. Given the restritions

that B � � � B and that � =2 Cn(B � �) if 2 �, it has to be the ase that

B � p_ q = ;. Therefore Cn(B) 6= Cn(B � p_ q)+ p_ q even though p_ q 2 Cn(B);

a violation of Reovery. 2

With the emphasis on the syntati struture of a belief base, it has been remarked by

G�ardenfors and Rott [1995,p. 87℄ that a semanti haraterisation of base hange seems

to be out of the question. It is possible, though, to obtain an indiret semanti har-

aterisation of bases hange, by foussing on the theory hange operations assoiated

3

This onstrution only makes sense for a �xed belief base B, though, sine the same belief set

may be assoiated with di�erent belief bases, whih may violate the assumed funtionality of theory

ontration.
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with base hange operations. Hansson [1996℄ provides postulates and representation

results for the theory ontrations assoiated with some base ontration operations.

A di�erent (though not ompletely unrelated) view of base hange is that more

emphasis should be plaed on knowledge level matters, and that a belief base should

be thought of as providing more struture to its assoiated belief set. The idea is

that the added struture of a belief base an be used, in one way or another, to

pik an appropriate assoiated theory hange operation, from whih the base hange

operation an then be onstruted. This is the view enountered in Nebel's [1989,

1990, 1991, 1992℄ desription of base ontration. Nebel himself desribes his own

work as a knowledge level analysis of base hange. In onentrating on knowledge

level matters, his onstrution violates one of the ornerstones of base ontration; the

property of Inlusion, whih requires of a base ontration � to satisfy B � � � B.

This violation has resulted in these operations being labelled as pseudo-ontration by

Hansson [1993a, 1999℄.

In onlusion, observe that if one is interested in moving towards a realisti rep-

resentation of the epistemi states of agents, it seems reasonable to insist that suh a

representation be �nite. Suh a move is sometimes held up as a reason for preferring

base hange to theory hange. But to do so, is to disregard the distintion between an

arbitrary �nite representation of a partiular belief set, and a set of �nite w�s ourring

in a belief base beause of their independent standing. For example, reall from setion

3.2.1 that Katsuno and Mendelzon use single propositional w�s to represent belief sets.

But sine the partiular w� representing a belief set is unimportant, their work should

be lassi�ed as researh about theory hange, and not about base hange.

8.2 Construting infobase hange

Infobase hange is similar in spirit to the knowledge level approah to base hange

favoured by Nebel [1989℄. The basi idea is to use the assumption of independene of

the w�s in an infobase IB to onstrut the strutures neessary for performing theory

hange. Both the urrent infobase and the obtained theory hange operations are then

used in the proess of determining how to modify the existing infobase when onfronted

with new information, resulting in an operation whih produes a new infobase from

the urrent one.

An infobase will be represented as a list of w�s enlosed by square brakets. For
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example, the infobase IB ontaining the three w�s p, q and p, in that order, will be

denoted as [p; q; p℄. Although infobases are sensitive to the order in whih w�s our,

as well as to their syntatial form, we shall see that these super�ial qualities an be

done away with by employing the notion of element-equivalene.

De�nition 8.2.1 Two infobases IB and IC are element-equivalent, written as IB �

IC, i� for every � ourring in IB suh that 2 �, there is a unique logially equivalent

w�  ourring in IC, and for every  ourring in IC suh that 2 , there is a unique

logially equivalent w� � ourring in IB. 2

The intuition is that element-equivalent infobases ontain exatly the same information.

For any �nite sequene � of w�s, we let j�j denote the number of w�s ourring in

�, and we use the symbol � to denote onatenation by a single w�. Thus, if � = [p; q℄,

then j�j = 2, [p; q℄ � p denotes the sequene [p; q; p℄, and j� � pj = 3. The onverse of

onatenation (removing the last w� from a �nite sequene �) will be denoted by

 �

� .

In other words, if � = [p; q; r℄ then

 �

� = [p; q℄. Furthermore, in our disussion of the

onstrution of infobase hange operations it will frequently be neessary to refer to

the (�nite) set of w�s ourring in a �nite sequene of w�s �. We denote this set by

S(�). Thus, for any �nite sequene � of w�s, S(�) = f� j � ours in �g.

De�nition 8.2.2 An infobase IB is assoiated with a belief set K (andK is assoiated

with IB) i� Cn(S(IB)) = K. 2

For any two �nite sequenes � and � of w�s, � is a subsequene of � i� for every w� in

� there is a unique ourrene of the same w� in �. � is an ordered subsequene of �

i� � is a subsequene of � and the w�s in � our in the same order in both � and �.

In our desription of infobase hange, we subsribe to Levi's ommensurability

thesis, by viewing infobase ontration as more primitive than infobase revision, and

preferring to de�ne infobase revision in terms of infobase ontration by means of

an infobase hange analogue of the Levi Identity (see de�nition 2.1.1). Formally, we

onsider infobase hange operations (whih inlude ontration and revision operations)

as funtions from IB � L to IB, where IB is the set of all infobases. We shall also

frequently assume the existene of a �xed infobase IB, and onsider infobase IB-hange

operations as funtions from L to IB.
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8.2.1 Infobase ontration

To onstrut an infobase ontration, we �rst use the struture of the infobase IB to

obtain an S(IB)-faithful total preorder (see de�nition 3.2.5). The theory ontration

obtained from the S(IB)-faithful total preorder is taken to be the theory ontration

assoiated with the infobase ontration that we aim to onstrut.

De�nition 8.2.3 For every infobase IB, a theory ontration � is assoiated with an

infobase IB-ontration � i� Cn(IB)� � = Cn(IB � �) for every � 2 L. 2

Using the intuition assoiated with an infobase, we order the interpretations in U

aording to the number of w�s of IB they satisfy; the more they satisfy, the \better"

they are deemed to be, and the lower down in the ordering they will be.

De�nition 8.2.4 For u 2 U , we de�ne u

IB

, the IB-number of u, as the number of

w�s � in IB suh that 2 � and u 2M(�). 2

This ordering is used to obtain an appropriate S(IB)-faithful total preorder in terms

of IB as follows:

(Def � from IB) u � v i� v

IB

� u

IB

De�nition 8.2.5 We refer to the faithful total preorder �

IB

de�ned in terms of an

infobase IB using (Def � from IB) as the IB-indued faithful total preorder. 2

The onstrution of the IB-indued faithful total preorders is perhaps best justi�ed

from an information-theoreti point of view (see setion 3.1). Suppose that the infobase

IB represents the information that an agent has obtained from its soures. Sine the

w�s in IB are assumed to have been obtained independently, every ourrene of an

infatom i as a ontent bit of one of these w�s, orroborates the laim that i forms part

of the ontent bits of the belief set Cn(S(IB)) of the agent. From de�nition 3.1.3 on

34 it an be veri�ed that a w� � is satis�ed by an interpretation u i� the infatom i

u

assoiated with u is a ontent bit of :�. So, with �

IB

seen as an ordering on infatoms,

it follows that being higher up in �

IB

orresponds to more ourrenes of an infatom

as the ontent bit of some w�s in IB, whih is in line with the view of a faithful

total preorder as an ordering of entrenhment or redibility on infatoms (see 3.2, page

44). Note also that sine logially valid w�s have no ontent bits, their presene in

an infobase is superuous sine they do not ontribute towards the entrenhment or
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redibility of any of the infatoms. This explains why the de�nition of IB-numbers

disregards the logially valid w�s in infobases.

The IB-indued faithful total preorder is used to onstrut a theory ontration as

follows:

(Def �

IB

from IB) Cn(S(IB))�

IB

� = Th(M(S(IB)) [Min

�

IB

(:�))

De�nition 8.2.6 The theory ontration�

IB

de�ned in terms of an infobase IB using

(Def �

IB

from IB) is referred to as the IB-indued theory ontration. 2

It is easy to verify that the IB-indued faithful total preorder is indeed an S(IB)-

faithful total preorder and by theorem 3.2.6 it thus follows that the IB-indued theory

ontration is an AGM theory ontration. Assoiating the IB-indued theory on-

tration with the infobase IB-ontration allows us to determine whih w�s in IB

should be retained and whih annot be retained, after a ontration of IB.

De�nition 8.2.7 The set of �-disarded w�s (of an infobase IB) is de�ned as IB

��

=

f� 2 S(IB) j � =2 Cn(S(IB))�

IB

�g. We refer to S(IB)nIB

��

as the set of �-retained

w�s (of IB). 2

Clearly the �-retained w�s are preisely the w�s in IB that should be retained when

ontrating IB by �. Unlike the dominant approahes to base ontration disussed

in setion 8.1, however, we don't simply expunge the �-disarded w�s, but instead

opt to replae them with appropriately weakened w�s. (It is only when the weakened

version of suh a w� is logially valid that we an think of the w� as being ompletely

disarded.) The strategy is to retain as muh of the information ontained in a w� as

possible, even if not all the information in the w� an be retained. This is in line with

the intuition that infobases onsist of independently obtained w�s. Of ourse, these

weakened w�s annot be hosen in an arbitrary fashion. Sine the IB-indued theory

ontration �

IB

has already been identi�ed as the theory ontration to be assoiated

with the infobase IB-ontration, the weakened w�s, together with the �-retained w�s,

have to generate the belief set Cn(S(IB))�

IB

�.

In deiding on an appropriate method for the weakening of the �-disarded w�s,

it is neessary to strike the right balane between a oherentist approah, emphasising

knowledge level matters, and a foundationalist approah, emphasising the indepen-

dene of the w�s ourring in IB (see page 2). The following example serves to make

these matters onrete.
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Figure 8.1: A graphial representation of the IB-indued faithful total preorder �

IB

,

with IB = [p; q; r℄. For every u; v 2 U , u �

IB

v i� (u; v) is in the reexive transitive

losure of the relation determined by the arrows.

Example 8.2.8 Let L be the �nitely generated propositional language generated by

the three atoms p, q, and r, with a valuation semantis (V;), where

V = f000; 001; 010; 011; 100; 101; 110; 111g.

Consider the infobase IB = [p; q; r℄. Figure 8.1 gives a graphial representation of the

IB-indued faithful total preorder �

IB

. Beause p, q and r eah represents indepen-

dently obtained information, a (p ^ q)-ontration of IB should have no e�et on r.

That is, when ontrating IB by p^ q, the resulting infobase should ontain weakened

versions of the two (p^q)-disarded w�s p and q, and should ontain the (p^q)-retained

w� r itself. But what should the weakened versions of p and q look like?

An appliation of the oherentist approah on a loal level suggests that, in order to

minimise the loss of information, one should add only the minimal models of :(p^q) to

the models of both p and q, and let the orresponding w�s be the appropriate weakened

versions. Sine Min

�

IB

(:(p ^ q)) = f101; 011g, the weakened version of p would be

logially equivalent to p _ (q ^ r) and the weakened version of q would be logially

equivalent to q _ (p ^ r).

On the other hand, the foundationalist approah, whih stresses the independene

of the w�s in IB, suggests that the presene of r should have no e�et on the weakened
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versions of p and q. In this view, the w� p _ q (or any w� logially equivalent to it)

would be a suitable hoie for the weakened versions of both p and q. 2

There does not seem to be a de�nite answer to the question of whih one of these

two approahes to infobase hange is the \orret" one. They should rather be seen

as opposites on a whole spetrum of possibilities The oherentist approah an be

desribed as the ase where all the w�s in IB play a role in determining the weakened

versions of the �-disarded w�s, while the foundationalist approah ensures that only

the set of �-disarded w�s themselves is involved in the onstrution of their weakened

versions. Given these two opposites, it also seems perfetly reasonable to allow for any

set of w�s in between (i.e., ontaining the �-disarded w�s and inluded in S(IB)) to

be involved in the onstrution of the weakened versions of the �-disarded w�s.

De�nition 8.2.9 Given an infobase IB and a w� �, a set R is said to be (IB; �)-

relevant i� IB

��

� R � S(IB). 2

Our goal is to ensure that, in the proess of obtaining the weakened versions of the

�-disarded w�s, the e�et of the w�s not in the (IB; �)-relevant set R are neutralised.

To do so, we should not just add the �

IB

-minimal models of :�, but also any other

models of :� that behave exatly like the �

IB

-minimal models with respet to the

w�s in R, but that might di�er from the �

IB

-minimal models on the truth value of

the w�s in S(IB) nR.

De�nition 8.2.10 For X � L and u; v 2 U , u is X-equivalent to v, written u �

X

v,

i� for every � 2 X, u 2M(�) i� v 2M(�). 2

Observe that, for the (IB; p ^ q)-relevant set R = fp; qg in example 8.2.8, it follows

that 100 and 010 are R-equivalent to the minimal models 101 and 011 respetively,

and adding them to the models of p (and q) as well, results in weakened versions of p

and q that are logially equivalent to p _ q, whih is in line with the foundationalist

intuition desribed above.

In general, we obtain the weakened version of every �-disarded w� � as follows.

We need some appropriate set of interpretations that an be added to the models of

� to obtain the set of models of its weakened version. One we have deided on an

(IB; �)-relevant set R, we use the set of minimal models of :� as our starting point and

then try to expand it so that only elements in R have any inuene, thus neutralising
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the possible inuene of any of remaining w�s in IB. This is aomplished by inluding

all the models of :� that are R-equivalent to some minimal model of :�.

De�nition 8.2.11 Let R be any (IB; �)-relevant set. For every u 2Min

�

IB

(:�), we

let N

R

u

(:�) = fv 2M(:�) j v �

R

ug, and we let

N

R

IB

(:�) =

[

u2Min

�

IB

(:�)

N

R

u

(:�).

We refer to N

R

IB

(:�) as the (R; �)-neutralised models of IB. 2

We take the (R; �)-neutralised models as the set of interpretations to be added to the

models of eah �-disarded w�. We an think of the (R; �)-neutralised models as a set

of interpretations in whih the inuene of the w�s not in R has been removed, but in

whih the w�s in R have the same impat as on the minimal models of :�.

To summarise, we intend to obtain the infobase resulting from an �-ontration

of the infobase IB by weakening the �-disarded w�s in the manner desribed above,

and keeping the �-retained w�s as they are. It turns out that there is an elegant way

to provide a uniform desription of this proess. In doing so, we desribe infobase

ontration as a proess in whih all the w�s in the urrent infobase are replaed with

weaker versions, but where the \weaker" version of every �-retained w� turns out to

be logially equivalent to the w� itself.

De�nition 8.2.12 Let R be any (IB; �)-relevant set. For every � 2 S(IB), we let

N

R

�

(:�) =

[

u2Min

�

IB

(:�)nM(�)

N

R

u

(:�).

We refer to N

R

�

(:�) as the (R; �; �)-neutralised models of IB). 2

The next proposition shows that an �-retained w� � has no (R; �; �)-neutralised mod-

els, and that, for an �-disarded w� �, adding the (R; �; �)-neutralised models to the

models of � has the same e�et as adding the (R; �)-neutralised models.

Proposition 8.2.13 Let R be any (IB; �)-relevant set.

1. If � 2 S(IB) n IB

��

then N

R

�

(:�) = ;.

2. If � 2 IB

��

then M(�) [N

R

�

(:�) =M(�) [N

R

IB

(:�).
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Proof 1. Suppose that � 2 S(IB) n IB

��

. Then � 2 Cn(S(IB)) �

IB

� and thus

Min

�

IB

(:�) �M(�). And therefore

N

R

�

(:�) =

[

u2Min

�

IB

(:�)nM(�)

N

R

u

(:�) = ;.

2. Suppose that � 2 IB

��

. The left-to-right inlusion is immediate. For the right-

to-left inlusion we have to show that

[

u2Min

�

IB

(:�)\M(�)

N

R

u

(:�) � M(�).

So pik any u 2 Min

�

IB

(:�) \M(�) and v 2 N

R

u

(:�). Then v �

R

u and sine

� 2 R, it follows that v 2M(�).

2

Proposition 8.2.13 allows us to desribe an �-ontration of an infobase IB by adding

to the models of a w� � in IB, the set N

R

�

(:�), and replaing � with an axiomatisation

of this set of interpretations. Of ourse, suh a desription only makes sense if these

sets of interpretations an be axiomatised by single w�s. While this is immediate for

the �nitely generated propositional logis, the next result shows that it also holds in

the more general ase.

De�nition 8.2.14 Let R be any (IB; �)-relevant set, and for � 2 S(IB), let IB

�

�

be

the set ontaining every ordered subsequene C of IB suh that jCj = u

IB

for some

u 2 (Min

�

IB

(:�) \M(S(C))) nM(�) (where u

IB

is the IB-number of u). We de�ne

the �-weakened version of �, with respet to R, as

w

R

(IB;�)

(�) = � _

0

�

_

C2IB

�

�

��

^

(S(C) n (S(IB) nR))

�

^

�

^

: (R n S(C))

�

^ :�

�

1

A

2

Proposition 8.2.15 Let R be an (IB; �)-relevant set. For every � 2 L and every

� 2 S(IB), M(w

R

(IB;�)

(�)) =M(�) [N

R

�

(:�).

Proof De�ne IB

�

�

as in de�nition 8.2.14. If IB

�

�

= ; then it follows easily that

Min

�

IB

(:�) n M(�) = ;, whih means that Min

�

IB

(:�) � M(�) and therefore
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that N

R

�

(:�) = ;. So we only need to onsider the ase where IB

�

�

6= ;. Then

every u 2 Min

�

IB

(:�) n M(�) is a model of S(C) for some C 2 IB

�

�

. Pik any

C 2 IB

�

�

and any u 2 (Min

�

IB

(:�)\M(S(C))) nM(�). Observe that every model of

S(C) [ f:�g is a �

IB

-minimal element of M(:�), whih ensures that every element

of (R n S(C)) nCn(>) is false in all the models of S(C)[ f:�g. We reord this result

formally.

8 2 (R n S(C)) n Cn(>), 8v 2M(S(C) [ f:�g), v =2M() (8.1)

We show that M ((S(C) n (S(IB) nR)) [ :((R n S(C)) n Cn(>)) [ f:�g) = N

R

u

(:�).

From (8.1) it follows that u =2 M() for every  2 (R n S(C)) n Cn(>) and therefore

that

u 2 M ((S(C) n (S(IB) nR)) [ :((R n S(C)) n Cn(>)) [ f:�g) .

Now pik any v 2M ((S(C) n (S(IB) nR)) [ :((R n S(C)) n Cn(>)) [ f:�g) and any

� 2 R. We only onsider the ase where � 6� >. If � 2 S(C) then learly u 2 M(�)

i� v 2 M(�), so suppose � =2 S(C). Then by (8.1) again, u =2 M(�). Furthermore,

sine v 2 M(:((R n S(C)) n Cn(>))), it follows that v =2 M(�) and thus that u 2

M(�) i� v 2 M(�). Finally, it is lear that v 2 M(:�). We have thus shown that

v 2 N

R

u

(:�). Conversely, pik any v 2 N

R

u

(:�). Clearly v 2 M(:�), and sine

u 2M ((S(C) n (S(IB) nR)) [ :((R n S(C)) n Cn(>)) [ f:�g), so is v.

It is lear that M ((S(C) n (S(IB) nR)) [ :((R n S(C)) n Cn(>)) [ f:�g) is ax-

iomatised by the w�

(:�)

R

C

=

�

^

(S(C) n (S(IB) nR))

�

^

�

^

:((R n S(C)) n Cn(>))

�

^ :�

and it thus follows that M((:�)

R

C

) = N

R

u

(:�). So we have shown that if IB

�

�

6= ;,

then

8C 2 IB

�

�

, 9u 2 (Min

�

IB

(:�) \M(S(C))) nM(�) and (8.2)

8C 2 IB

�

�

, 8u 2 (Min

�

IB

(:�) \M(S(C))) nM(�),

M

�

(:�)

R

C

�

= N

R

u

(:�). (8.3)

We now show that N

R

�

(�) = M

�

W

C2IB

�

�

(:�)

R

C

�

, from whih the required result fol-

lows. Pik a v 2 N

R

�

(:�). There is a u 2 Min

�

IB

(:�) nM(�) suh that v 2 N

R

u

(:�),

and by (8.3) it follows that for some C 2 IB

�

�

, v 2 N

R

u

(:�) = M

�

(:�)

R

C

�

. So learly

v 2 M

�

W

C2IB

�

�

(:�)

R

C

�

. Conversely, pik any v 2 M

�

W

C2IB

�

�

(:�)

R

C

�

. Then v is a
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model of (:�)

R

C

for some C 2 IB

�

�

. By (8.2) there is a u 2 (Min

�

IB

(:�)\M(S(C)))n

M(�), and by (8.3), N

R

u

(:�) =M

�

(:�)

R

C

�

. So v 2 N

R

u

(:�) and thus v 2 N

R

�

(:�). 2

We are now almost in a position to de�ne basi infobase ontration.

De�nition 8.2.16 A funtion rs : IB � }L ! }}L is a relevane seletion funtion

i�

1. IB

��

� rs(IB; �) � IB,

2. if � � � then rs(IB; �) = rs(IB; �), and

3. if IB � IC (that is, IB and IC are element-equivalent) then rs(IB; �) =

rs(IC; �).

2

Intuitively, a relevane seletion funtion indiates whih of the w�s in IB should

play a role in determining the weakened versions during a ontration. Observe that

rs(IB; �) is (IB; �)-relevant.

De�nition 8.2.17 1. An infobase hange operation � is a basi infobase ontra-

tion i� there is a relevane seletion funtion rs suh that, for every IB 2 IB and

every � 2 L, IB�� is obtained by replaing every w� � in IB with w

rs(IB;�)

(IB;�)

(�),

the �-weakened version of � with respet to rs(IB; �).

2. For every IB 2 IB, an infobase IB-hange operation �

IB

is a basi infobase

IB-ontration i� it an be obtained from an infobase ontration � by �xing

the infobase IB. That is, i� IB �

IB

� = IB � � for every � 2 L.

2

We onlude this setion with an example illustrating the partial onstrution of some

basi infobase ontrations.

Example 8.2.18 Let IB = [p; q℄. Figure 8.2 ontains a graphial representation of

the IB-indued faithful total preorder �

IB

. Then

Cn(S(IB))�

IB

p = Cn(q), IB

�p

= fpg

IB

p

p

= f[q℄g , IB

p

q

= ;,

Cn(S(IB))�

IB

(p ^ q) = Cn(p _ q)

IB

�(p^q)

= fp; qg, IB

p^q

p

= f[q℄g , and IB

p^q

q

= f[p℄g .
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Now observe that w

IB

�p

(IB;p)

(p) = p _ (>^:p ^:p) � > and that w

IB

�p

(IB;p)

(q) = q _? � q.

Furthermore, sine S(IB) = B

�p^q

, note that

w

S(IB)

(IB;p^q)

(p) = w

IB

�p^q

(IB;p^q)

(p) = p _ (q ^ :p ^ :(p ^ q)) and

w

S(IB)

(IB;p^q)

(q) = w

IB

�p^q

(IB;p^q)

(q) = q _ (p ^ :q ^ :(p ^ q)) .

It an be veri�ed that both w

S(IB)

(IB;p^q)

(p) and w

S(IB)

(IB;p^q)

(q) are logially equivalent to p_q.

There is thus at least one basi infobase ontration � suh that

IB � p =

h

w

IB

�p

(IB;p)

(p); w

IB

�p

(IB;p)

(q)

i

� [>; q℄

and

IB � (p ^ q) =

h

w

IB

�p^q

(IB;p^q)

(p); w

IB

�p^q

(IB;p^q)

(q)

i

� [p _ q; p _ q℄ .

Furthermore, observe that w

S(IB)

(IB;p)

(p) = p_ (q ^:p ^ :p) � p_ q and that w

S(IB)

(IB;p)

(q) =

q _ ? � q. So there is least one infobase ontration �

0

suh that

IB �

0

p =

h

w

S(IB)

(IB;p)

(p); w

S(IB)

(IB;p)

(q)

i

� [p _ q; q℄

and

IB �

0

(p ^ q) =

h

w

S(IB)

(IB;p^q)

(p); w

S(IB)

(IB;p^q)

(q)

i

� [p _ q; p _ q℄ .

2

8.2.2 Properties of basi infobase ontration

In the disussion of infobase ontration thus far, it has been implied that the �-

weakened versions of the �-disarded w�s are appropriate hoies for weakened versions

of these w�s, and that the IB-indued theory ontration is the theory ontration

assoiated with every basi infobase IB-ontration. The �rst point has already been

dealt with in the previous setion. For the seond point, we �rst present a preliminary

result, indiating that for every (IB; �)-relevant set R, the models of the �-retained

w�s that are also (R; �)-neutralised models, are preisely the �

IB

-minimal models of

:�.

Lemma 8.2.19 If R is an (IB; �)-relevant set, then

N

R

IB

(:�) \M(S(IB) n IB

��

) =Min

�

IB

(:�).
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-

00
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01

	

11

�

�

10

I

Figure 8.2: A graphial representation of the IB-indued faithful total preorder �

IB

,

with IB = [p; q℄. For every u; v 2 U , u �

IB

v i� (u; v) is in the reexive transitive

losure of the relation determined by the arrows.

Proof By de�nition, S(IB) n IB

��

� Cn(S(IB))�

IB

� and thus

M(S(IB)) [Min

�

IB

(:�) �M(S(IB) n IB

��

).

Furthermore, Min

�

IB

(:�) � N

R

IB

(:�), and so Min

�

IB

(:�) � N

R

IB

(:�) \M(S(IB) n

IB

��

). Conversely, pik any v 2 N

R

IB

(:�) \M(S(IB) n IB

��

). That is, v satis�es

all the �-retained w�s, v is a model of :� and there is a �

IB

-minimal model u of

:� that satis�es exatly the same w�s in R as v does (whih inludes the �-disarded

w�s). Beause u 2 Min

�

IB

(:�), it follows from the de�nition of �

IB

and IB

��

that

u also satis�es all the w�s in S(IB) n IB

��

. So u and v satisfy exatly the same w�s

ourring in IB, whih means that v 2Min

�

IB

(:�). 2

The result above is used to prove that the IB-indued ontration �

IB

is the theory

ontration assoiated with every basi infobase IB-ontration.

Proposition 8.2.20 Let � be any basi infobase ontration. Then

Cn(S(IB))�

IB

� = Cn(S(IB � �)).

Proof Let rs be the relevane seletion funtion used to de�ne �. By propositions

8.2.13 and 8.2.15,

M(S(IB � �)) =

2

4

\

�2IB

��

�

M(�) [N

rs(IB;�)

IB

(:�)

�

3

5

\M(S(IB) n IB

��

)
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=

2

4

0

�

\

�2IB

��

M(�)

1

A

[N

rs(IB;�)

IB

(:�)

3

5

\M(S(IB) n IB

��

)

=

�

M(IB

��

) [N

rs(IB;�)

IB

(:�)

�

\M(S(IB) n IB

��

)

= M(S(IB)) [

�

N

rs(IB;�)

IB

(:�) \M(S(IB) n IB

��

)

�

= M(S(IB)) [Min

�

IB

(:�) by lemma 8.2.19,

and thus Cn(S(IB))�

IB

� = Cn(S(IB � �)). 2

Sine one of the basi tenets of infobase hange is that knowledge level issues matter,

one would not expet syntax to play too big a role in the onstrution of infobase

hange operations. We show that the syntati form of the w�s in an infobase, as well

as form of the w� with whih to ontrat, are irrelevant.

Proposition 8.2.21 Let � be a basi infobase ontration, and suppose that IB � IC

and � � . Then IB � � � IC � .

Proof Let rs be the relevane seletion funtion used to obtain 	. Sine IB and IC

are element-equivalent, u

IB

= u

IC

for every u 2 U , and so the IB-indued faithful total

preorder is exatly the same as the IC-indued faithful preorder. By the properties of

a relevane seletion funtion, it then follows that N

rs(IB;�)

IB

(:�) = N

rs(IC;)

IC

(:). So,

by propositions 8.2.13 and 8.2.15, w

IB

(IB;�)

(�

0

) � w

IC

(IC;)

(

0

) for every �

0

in IB and every



0

in IC suh that �

0

� 

0

, from whih the required result follows. 2

8.2.3 Infobase ontration and reason maintenane

In setion 8.1 it was pointed out that base hange ame about as an attempt to perform

reason maintenane, the proess in whih the removal of a basi belief fores the removal

of the onsequenes of the basi belief as well, unless the latter w�s an be derived from

other basi beliefs. In the ontext of infobase hange, the w�s in an infobase IB are

viewed as suh basi beliefs of the belief set assoiated with IB. Reason maintenane

would thus ensure that the ontration of IB by a w� � in IB results in the removal

of all the w�s that are dependent on � for being in Cn(S(IB)). Fuhrmann [1991℄

has given a preise meaning to the idea of a w� being dependent on � (for being in

Cn(S(IB))).

4

4

Fuhrmann works with belief bases and not infobases, and our de�nition of IB-dependene is thus

a slight generalisation of the notion he de�nes.
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De�nition 8.2.22 A w� � 2 L is IB-dependent on � i� � 2 S(IB) and � 2

Cn(S(IB)), but � =2 Cn(S(IB) n f�g). 2

The next result shows that basi infobase ontration inorporates reason maintenane.

Proposition 8.2.23 Let � be a basi infobase ontration. If � is IB-dependent on

� then � =2 Cn(S(IB � �)).

Proof Sine � 2 Cn(S(IB)), but � =2 Cn(S(IB) n f�g), there has to be a model u of

S(IB)nf�g in whih both � and � are false. So u 2M(:�) and u =2M(S(IB)). Now,

there is only one w� in IB, namely �, that is false in u (although IB may ontain

multiple instanes of �). So any interpretation v for whih v

IB

> u

IB

, has to be a

model of S(IB) and hene of �. Therefore u 2 Min

�

IB

(:�), and beause u =2 M(�),

it follows that � =2 Cn(S(IB))�

IB

�. So � =2 Cn(S(IB��)) by proposition 8.2.20. 2

Of ourse, the ontration of IB by a w� � in IB is not the only way to remove

� from the infobase IB. In the light of this, it seems reasonable to inquire whether

the w�s that are IB-dependent on � will also be disarded if � is disarded during

the ontration of IB by some w� other than � itself: That is, if � is in IB and

� =2 Cn(S(IB � )), will it be the ase that � =2 Cn(S(IB � )) for every � that is

IB-dependent on �? This property is known as Fuhrmann's [1991℄ �ltering ondition.

It is easy to see that basi infobase ontration an violate the �ltering ondition. For

example, it is readily veri�ed that for any basi infobase ontration, the ontration

of the infobase IB = [p ^ q℄ by p results in an infobase in whih p ^ q is replaed by

the w� w

S(IB)

(IB;p)

(p^ q) whih is logially equivalent to p! q. And sine w

S(IB)

(IB;p)

(p^ q) is

learly IB-dependent on p ^ q, the �ltering ondition is violated. But suh a violation

is to be expeted. Given the intuition assoiated with infobases, the �ltering ondition

is learly too strong a requirement to impose. For the �ltering ondition requires that

for any infobase ontration �, Cn(S(IB � )) = Cn(>) for any singleton infobase

IB, and any  2 Cn(S(IB)) (where 2 ), thus leaving no room for weakening the w�

in IB to anything but a logially valid w�.

8.2.4 Infobase revision

Basi infobase revision is de�ned by an appeal to the following infobase analogue of

the Levi Identity:
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(Def ~ from �) IB ~ � = (IB � :�) � �

De�nition 8.2.24 An infobase hange operation ~ is a basi infobase revision i� it

an be de�ned in terms of a basi infobase ontration � using (Def ~ from �). 2

Given this onnetion, it is to be expeted that basi infobase revision satis�es prop-

erties that are similar to those proved in setions 8.2.2 and 8.2.3. The next orollary

shows that this is indeed the ase.

De�nition 8.2.25 A theory revision � is assoiated with an infobase IB-revision ~

(for some infobase IB) i� Cn(IB) � � = Cn(IB ~ �) for every � 2 L. 2

(Def �

IB

from IB) Cn(S(B)) �

IB

� = Th(Min

�

IB

(�))

De�nition 8.2.26 The theory revision �

IB

de�ned in terms of an infobase IB using

(Def �

IB

from IB) is referred to as the IB-indued theory revision. 2

From theorem 3.2.6 it follows that the IB-indued theory revision is an AGM theory

revision.

Corollary 8.2.27 Let 	 be a basi infobase ontration, and let ~ be the infobase

revision de�ned in terms of � using (Def ~ from �).

1. If IB � IC and � � � then IB ~ � � IC ~ �.

2. Cn(S(IB ~ �)) = Cn(S(IB)) �

IB

�.

3. If � is IB-dependent on �, then � =2 Cn(S(B ~ :�)).

Proof 1. Follows from proposition 8.2.21.

2. Follows from proposition 8.2.20, by noting thatMin

�

IB

(�) �M(S(IB)) if :� =2

Cn(S(IB)), and by realling that Cn(S(IB)) �

IB

� = Th(Min

�

IB

(�)).

3. Follows from part (2) of this orollary, and by an argument similar to the proof

of proposition 8.2.23.

2
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Part (1) of orollary 8.2.27 shows that basi infobase revision is insensitive to the

syntati form of the w�s in an infobase, as well as to the syntati form of the w�

with whih to revise, part (2) shows that the theory revision assoiated with a basi

infobase revision is the IB-indued revision funtion, and part (3) shows that basi

infobase revision an be said to perform reason maintenane.

It is also possible to provide a result for infobase hange whih is reminisent of the

Harper Identity (the identity (Def � from �)).

Proposition 8.2.28 Let ~ be a basi infobase revision, and let � be an infobase

hange operation suh that IB�� �

 ������

IB ~ :�. Then � is a basi infobase ontration.

Proof Follows from the fat that there is a basi infobase ontration �

0

suh that

IB ~ :� = (IB �

0

::�) � :� and that � � ::�. 2

To onlude this setion, we provide an example to show that infobase hange is able to

aommodate Hansson's hamburger example (example 8.1.1) in an appropriate fashion.

Example 8.2.29 Let L be the propositional language generated by the two atoms p

and q with a valuation semantis (V;), where V = f00; 01; 10; 11g. We let p denote

the assertion that the restaurant whose lights are on is open, and we let q denote

the assertion that the seond restaurant is open. Now, let IB = [p; p _ q℄ and let

IC = [p℄. Sine IB

�::p

= fpg, it follows from propositions 8.2.13 and 8.2.15 that

for avery basi infobase revision ~, there is a � in IB ~ :p suh that � � p _ q.

Furthermore, sine IC

�::p

= IC, it follows that for every basi infobase revision

~, IC ~ :p � [>;:p℄ � [:p℄. As our intuition suggests, revising IB by :p yields

an infobase ontaining p _ q (or something loially equivalent to it). In ontrat, a

revision of IC by :p does not ontain suh a w�. Nor, for that matter, does p _ q

follow logially from the infobase resulting from a :p-revision of IC. 2

8.3 Related approahes

Infobase hange relies heavily on the IB-indued faithful total preorders, whih are

obtained by ounting the number of w�s in an infobase IB. As suh, its roots an be

found in the work of Dalal [1988℄, Borgida [1985℄, Satoh [1988℄, Weber [1986℄, Winslett

[1988℄, all of whom use the idea of distinguishing between interpretations based on

the number of propositional atoms that they satisfy (at least in the propositional
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ase). However, these approahes do not distinguish between di�erent infobases (or

belief bases) generating the same belief set, and are thus more properly lassi�ed as

instanes of theory hange for the same reasons that Katsuno and Mendelzon's work

is seen as researh on theory hange, rather than researh on base hange (see setion

8.1 page 243).

As disussed in setion 8.1, base ontration is usually assoiated with the require-

ment that the belief base resulting from a base ontration ought to be a subset of the

original belief base. Two notable exeptions to this are the base ontration operations

of Nebel [1989, 1990, 1991, 1992℄ and Nayak [1994a℄, whih allow w�s into the resulting

belief base that were not in the original belief base. In this setion we ompare these

two approahes with infobase hange.

8.3.1 Nebel's approah

Nebel's base hange operations in [Nebel, 1990, 1991, 1992℄ make use of an epistemi

relevane ordering on the w�s in the belief set generated by the base, whih is taken

to denote relative epistemi importane. This is a generalisation of the ase onsidered

in [Nebel, 1989℄, whih an be seen as the speial ase where all w�s in the base have

equal epistemi weight. Sine the latter is loser to infobase hange, we shall mainly

onern ourselves with the work in [Nebel, 1989℄.

Nebel's onstrution of base ontration funtions uses the maximal subsets of a

set X that do not entail �. It an thus be seen as a generalisation of the onstrution

of the partial meet funtions (see setion 2.2). For every X � L, let X # �, the set of

remainders of X after removing �, be de�ned as

X # � = fY � X j Y 2 � and for every Z � L suh that Y � Z � X, Z j= �g.

Nebel de�nes the base ontration �̂, in a somewhat opaque fashion, as

B�̂� =

8

<

:

W

C2(B#�)

C ^ (B _ f:�g) if 2 �,

B, otherwise.

This onstrution is justi�ed by a loser look at the theory ontration assoiated with

�̂. He de�nes a B-faithful weak partial order � as: x � y i� (Th(x)\B) � (Th(y)\B),
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and then obtains a Cn(B)-ontration

^

� from � as follows:

5

Cn(B)

^

�� = Th(M(B) [Min

�

(:�)).

He then proeeds to show that

^

� is the Cn(B)-ontration assoiated with �̂ (i.e.

Cn(B)

^

�� = Cn(B�̂�)), and that

^

� satis�es (K�1) to (K�7), but does not, in general,

satisfy (K�8).

A omparison of Nebel's Cn(B)-ontration

^

� (whih is obtained from �) with the

IB-indued ontration (where B is a belief base and IB an infobase) shows that the

intuitions employed in both ases are very similar. But whereas � is de�ned in terms of

the satisfation of maximal subsets of B, the IB-indued faithful total preorder relies

on the satisfation of the maximum number of w�s in IB. While this di�erene allows

for Nebel's

^

� to be de�ned for in�nite bases as well, it ensures that

^

� does not always

satisfy (K�8), while the IB-indued ontration does. Below we provide an example

in whih it seems desirable for a base ontration operation to satisfy (K�8), at least

under the assumption of the independene of the w�s in a belief base B.

Example 8.3.1 Let B = fp _ q;:p _ q; pg and let � be a base ontration in whih

the w�s in B are regarded as being independently obtained. A ontration with p ^ q

would fore us to remove at least one of p and q from Cn(B), and sine p 2 B but

q =2 B, it seems reasonable to require that if one of the two is retained, it should be p

and not q. So, regardless of whether p is being retained, q should not be an element of

Cn(B � (p^ q)). Furthermore, sine p_ q is expliitly ontained in B, a ontration of

B by p^ q should not remove p_ q, and we should thus have p_ q 2 Cn(B � (p^ q)).

Finally, although the presene of both p _ q and :p _ q in B suggests that p and q are

independent (sine p _ q is logially equivalent to :p ! q, and :p _ q to p ! q), this

is, to some extent, o�set by the presene in B of both p and :p _ q. The inonlusive

evidene regarding the independene of p and q, oupled with the fat that p itself is

in B, then suggests that p should be an element of Cn(B � q). It is easy to see that

the failure of the intuition expressed above would amount to a violation of (K � 8).

By taking � as p and � as q, it is easily seen that Nebel's Cn(B)-ontration funtion

^

� violates (K-8) (p _ q 2 Cn(B)

^

�(p ^ q), but p _ q =2 Cn(B)

^

�q). 2

Nebel also onsiders a modi�ation of

^

� that satis�es (K�8) (whih allows him to set

B�̂� equal to some element of B # �) but it presupposes a linear order on the w�s

5

Nebel's onstrution of the theory ontration funtion

^

� is phrased in terms of partial meet

funtions, but it is easily seen that it an also be phrased semantially, as we have done.
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in B, whih is a very strong restrition indeed. The restrition is relaxed to a total

preorder in [Nebel, 1990, 1991, 1992℄, but then (K�8) does not hold in the general

ase.

We have thus far onsidered the Cn(B)-ontration

^

� in detail, but have said very

little about �̂ itself. From some omments made in his onlusion, it seems that

Nebel regards the set of w�s B�̂� merely as a onvenient �nite representation from

whih the belief set B

^

�� an be generated, and nothing more. He writes: \: : :iterated

ontrations were ignored beause they present serious problems.", and \Choosing the

`right' form of the premises seems to be one of the entral tasks before any kind of belief

revision an be applied". The latter statement seems to suggest that B�̂� annot be

seen as a base with the w�s ontained in it being epistemologially more important

than the w�s in Cn(B�̂�), a view that is also supported by his proposal for a base

revision

^

�. He de�nes B

^

�� as (B�̂:�) ^ f�g, whih means that the newly obtained

basi belief � ours in B

^

�� as a onjunt of every w� in (B�̂:�). And there ertainly

is no intuition of a weakening of the w�s ontained in B, as with infobase hange. For

example, if B = fp; q; rg, it an be veri�ed that B�̂(p ^ q ^ r) ontains 24 elements

and is element-equivalent to the infobase [p _ q; p _ r; q _ r; p _ q _ r℄. In ontrast,

onsider the infobase ontration � obtained from the relevane seletion funtion sr

where sr(IB; �) = IB

��

for every IB 2 IB, and every � 2 L. It an be veri�ed that,

for the infobase IB = [p; q; r℄, IB � (p ^ q ^ r) ontains three logially non-equivalent

w�s (weakened versions of eah of the w�s in IB) and is element-equivalent to the

infobase [p _ (q ^ r); q _ (p ^ r); r _ (p ^ q)℄.

8.3.2 Nayak's approah

In some ways, Nayak's [1994a℄ approah to base hange is more general than infobase

hange sine it aommodates in�nite bases. (On the other hand, of ourse, infobases

have a riher struture than �nite sets of w�s.) He takes Fuhrmann's [1991℄ generalised

safe ontration as a starting point. When ontrating a base B by � (a base ontration

whih we denote by ��) he �rst �nds the set E(�) of minimal subsets of B that entail

�. The idea is to onstrut a rejet set R(�) (w�s of B that will be disarded),

onsisting of w�s from every element of E(�). To ensure that the Cn(B)-ontration

assoiated with �� satis�es (K�1) to (K�5), he assumes a hoie funtion C from

}B to }B that piks the \most rejetable" elements of any subset of B. Up to this
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point the onstrution orresponds roughly to Fuhrmann's base ontration. However,

Fuhrmann's version of the hoie funtion does not have to onform to the stringent

restritions that Nayak plaes on C. Furthermore, Nayak does not take the set R

0

(�),

whih onsists of the most rejetable elements of all members of E(�), to be the rejet

set, as Fuhrmann does. Instead, he uses C to hoose a partiular subset of R

0

(�), whih

also happens to be an element of B # �, as the rejet set R(�). B ��� is then de�ned

as the w�s in B that are not rejeted, together with weakened versions of the rejeted

w�s. To be preise, B ��� = B n R(�) [ f� ! � j � 2 R(�)g. Nayak proves that the

Cn(B)-ontration funtion

�

� assoiated with �� satis�es all eight AGM ontration

postulates. The addition of the weakened versions of w�s in the rejet set ensures that

�

� satis�es (K�6), but it is urrently unlear whether it plays a role in the satisfation

of (K�7) and (K�8) as well.

The strit onditions imposed on C, together with the insistene that the rejet

set R(�) be an element of B # �, are akin to plaing a linear order on B. This

means that Nayak's base ontration funtion �� is losely related to Nebel's modi�ed

version of the base ontration funtion �̂, for whih B�̂� is an element of B # �.

It is thus diÆult to draw a diret omparison between �� and infobase ontration,

mainly beause the onstrution of �� needs so muh more extra-logial information. A

feature that Nayak's base ontration does have in ommon with infobase ontration

onerns the w�s ontained in the resulting base (or infobase) after a ontration has

taken plae. Both retain a number of w�s and replae the w�s that are removed with

weakened versions. Currently, the losest we an ome to a omparison is to give an

example showing that any reasonable modi�ation to �� whih aters for situations

in whih less extra-logial information is available will probably not always give the

desired results, at least not when the w�s in a base are assumed to be independent.

This does not, of ourse, suggest that infobase ontration will always be preferable to

suh modi�ed versions of Nayak's approah. It merely serves to indiate that, given the

assumption of the independene of w�s, there are ases in whih infobase ontration

is preferable to any modi�ation that retains the spirit of Nayak's original approah.

Example 8.3.2 Let B = fp; qg. The requirement that the rejet set be a subset of B

seems to form an integral part of Nayak's approah, whih means that the rejet set

R(p ^ q) has to be one of ;, fpg or fqg, irrespetive of any restritions on the hoie

funtion C. The only andidates for B ��(p ^ q) are thus f(p ^ q) ! p; (p ^ q) ! qg,

fp; (p ^ q) ! qg and fq; (p ^ q) ! pg. Now, if p and q have equal weight then the
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desired result when ontrating B with p^q is fp_qg (or some set ontaining elements

that are logially equivalent to p_ q), a set of w�s whih Nayak's approah is not able

to produe. In ontrast, it was shown in example 8.2.18 that there is a basi infobase

ontration � for whih [p; q℄ � (p ^ q) � [p _ q; p _ q℄. In fat, it an be shown that

every basi infobase ontration yields the same result. 2

8.4 Iterated infobase hange

Although an infobase IB indues the unique theory ontration �

IB

, infobases do not

ontain enough information to determine a basi infobase ontration or revision. To

do that, we also need a relevane seletion funtion rs. One rs is �xed, though, we

are dealing with a spei� basi infobase ontration and revision, whih allows for the

possibility of iterated infobase hange. In this setion we investigate whether iterated

infobase hange measures up to the postulates supplied by Darwihe and Pearl (see

setion 7.3) and Lehmann (see setion 7.4). To do so, we have to work on the level of

epistemi states. Reall from setion 7.3 that every epistemi state � is assumed to have

assoiated with it a belief set K(�) and a K(�)-faithful total preorder �

�

. To bring

infobase hange into this framework, we assume that it is possible to extrat a unique

infobase IB

�

from every epistemi state �. This implies that K(�) = Cn(S(IB

�

))

and that �

�

is idential to the IB

�

-indued faithful total preorder �

IB

�

. Further-

more, sine Darwihe and Pearl operate under the assumption of a �nitely generated

propositional language L with a valuation semantis (V;), we shall do the same for

the rest of this setion.

Reall from our disussion of DP-revision in setion 7.3 that in order to simplify

matters, we deided to equate every epistemi state � with the ordered pair (K(�);�

�

).

With the inorporation of infobases into epistemi states, it is no longer possible to

adhere to this simpli�ation. The reason is that infobases ontain more information

than suh ordered pairs. That is, while every infobase IB is uniquely assoiated with

the ordered pair (Cn(S(IB));�

IB

), this ordered pair may be assoiated with di�erent

infobases. For example, letting IB = [p; q℄ and IC = [p ^ q; p _ q℄, it is easy to hek

that Cn(S(IB)) = Cn(S(IC)), and that �

IB

and �

IC

are idential. Furthermore, the

fat that we only deal with �nitely generated propositional logis makes it easy to see

that every ordered pair of this kind an be obtained from some infobase.

Lemma 8.4.1 For every ordered pair of the form (K;�) where K is a belief set and
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� is a K-faithful total preorder, there is an infobase IB suh � and �

IB

are idential,

and K = Cn(S(IB)).

Proof Pik any ordered pair of the form (K;�) where K is a belief set and � is a

K-faithful total preorder. Sine L is a �nitely generated propositional language, V

ontains a �nite number of interpretations. The total preorder � thus partitions V

into a �nite number of subsets (bloks). Let us assume that there are n suh bloks.

We assign eah of them a unique index from 1 to n aording to their relative positions

in �, leaving us with the n indexed bloks P

1

; : : : ; P

n

. That is, for 1 � i; j � n, i < j i�

for every u 2 P

i

and every v 2 P

j

, u � v. Now, for any W � V , let �

W

be some some

w� that axiomatises W . (Sine L is �nitely generated, suh a w� always exists.) For

1 � i � n, let �

i

� �

W

where W =

S

1�j�i

P

j

. We de�ne an infobase IB as follows: if

? 2 K, then IB ontains exatly one instane of eah of the w�s in f?g[

S

1�i�n

f�

i

g,

otherwise IB ontains exatly one instane of eah of the w�s in

S

1�i�n

f�

i

g. It is

easily veri�ed that � and �

IB

are idential, and that Cn(S(IB)) = K. 2

More importantly, perhaps, is the fat that the extra information ontained in infobases

plays an important role in the proess of infobase hange, as the next example shows.

Example 8.4.2 Let � be the basi infobase ontration obtained from the relevane s-

eletion funtion rs, where rs(IB; �) = IB

��

, for every IB 2 IB and every � 2 L, and

let ~ be the basi infobase revision de�ned in terms of � using (Def ~ from �). Now,

let IB = [p; q℄ and let IC = [p ^ q; p; q; p _ q; p! q; q ! p℄. Clearly Cn(S(IB)) =

Cn(S(IC)) and it is also easy to see that �

IB

and �

IC

are idential, and are repre-

sented graphially in �gure 8.2. Yet, it an be veri�ed that IB~(p^:q) � [p;>; p ^ :q℄

and that IC ~ (p ^ :q) � [p; p; p _ q; p _ q;>; q ! p; p ^ :q℄. So IB ~ (p ^ :q) and

IC ~ (p ^ :q) indue di�erent faithful total preorders, as an be seen in �gure 8.3. 2

Having established that epistemi states need to have a riher struture than ordered

pairs of the form (K(�);�

�

), we now turn to the de�nition of revision on epistemi

state in terms of basi infobase revision.

(Def > from ~)

2

6

4

K(�> �) = Cn(IB

�

~ �)

�

�>�

= �

(IB

�

~�)

3

7

5
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Figure 8.3: A graphial representation of the total preorders used in example 8.4.2.

On the left is the (IB ~ (p ^ :q))-indued faithful total preorder and on the right the

(IC ~ (p ^ :q))-indued faithful total preorder. As usual, the appliable preorder is

the reexive transitive losure of the relation determined by the arrows.

De�nition 8.4.3 We refer to the revision on epistemi states de�ned in terms of a

basi infobase revision~ using (Def> from~) as the~-assoiated revision on epistemi

states. 2

It is easily veri�ed that the revisions on epistemi states assoiated with basi infobase

revisions all satisfy (E>1) to (E>8).

Proposition 8.4.4 Let ~ be a basi infobase revision, and let > be the ~-assoiated

revision on epistemi states. Then > satis�es (E>1) to (E>8).

Proof Follows from theorem 7.3.1 and part (2) of orollary 8.2.27. 2

8.4.1 DP-revision

When plaed in the framework for iterated belief hange proposed by Darwihe and

Pearl, basi infobase revision yields favourable results. The revisions on epistemi

states assoiated with basi infobase revisions satisfy all but the �rst one of the four

DP-postulates. The satisfation of these three DP-postulates rely on the following two

simple results.
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Lemma 8.4.5 Let ~ be a basi infobase revision and let rs be the relevane seletion

funtion from whih ~ is obtained.

1. If v 2M(:�) then, for every � in IB, v 2M(�) i� v 2M

�

w

rs(IB;:�)

(IB;:�)

(�)

�

.

2. For every � in IB, if v 2M(�) then v 2M

�

w

rs(IB;:�)

(IB;:�)

(�)

�

.

Proof By proposition 8.2.15, M

�

w

rs(IB;:�)

(IB;:�)

(�)

�

= M(�) [N

rs(IB;:�)

�

(::�) for every

� in IB.

1. Follows from the fat that N

rs(IB;:�)

�

(::�) �M(�) for every � in IB.

2. Follows from the fat that M(�) � M

�

w

rs(IB;:�)

(IB;:�)

(�)

�

.

2

Proposition 8.4.6 Let ~ be a basi infobase revision, and let > be the ~-assoiated

revision on epistemi states. Then > satis�es (DP2){(DP4), but does not neessarily

satisfy (DP1).

Proof To show that > does not neessarily satisfy (DP1), let L be generated by the

atoms p and q, with a valuation semantis (V;) where V = f00; 01; 10; 11g. Let

IB

�

= [p$ q; p _ :q;:p _ :q;:q℄ and let ~ be the basi infobase revision obtained

from the relevane seletion funtion rs for whih rs(IB; �) = IB

��

for every IB 2 IB

and every � 2 L. It an be veri�ed that

IB

�

~ (p _ q) � [p _ :q;:p _ :q;:q; p _ q℄ ,

K((�> (p _ q))> q) = Cn(S((IB

�

~ (p _ q))~ q)) = Cn(q), and

K(�> q) = Cn(S(IB

�

~ q)) = Cn(p ^ q).

So q � p _ q, but K((�> (p _ q))> q) 6= K(�> q), whih is a violation of (DP1).

For (DP2){(DP4), it suÆes, by theorem 7.3.4, to show that > satis�es (DPR2){

(DPR4). Let rs be the relevane seletion funtion from whih ~ is obtained and pik

any epistemi state �.

For (DPR2), observe that sine IB

�

~� is obtained by replaing every w� � in IB

�

with w

rs(IB

�

;:�)

(IB

�

;:�)

(�) and then adding �, it follows from part (1) of lemma 8.4.5 that
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u

IB

�

= u

IB

�

~�

(where u

IB

�

and u

IB

�

~�

are the IB

�

-number and the (IB

�

~�)-number

of u), for every u 2 M(:�). And sine �

�

is the IB

�

-indued faithful total preorder,

and �

�>�

is the (IB

�

~ �)-indued faithful total preorder, it then follows that u �

�

v

i� u �

�>�

v for every u; v 2M(:�). So (DPR2) is satis�ed.

For (DPR3) and (DPR4), note that part (2) of lemma 8.4.5 ensures that u

IB

�

�

u

IB

�

~�

. Combined with part (1) of lemma 8.4.5, it then follows for every u 2M(�) and

every v 2 M(:�), that if u

IB

�

> v

IB

�

then u

IB

�

~�

> v

IB

�

~�

. So, for every u 2 M(�)

and every v 2 M(:�), if u �

�

v then u �

�>�

v, whih means that (DPR3) holds.

Similarly, from parts (1) and (2) of lemma 8.4.5 it follows for every u 2 M(�) and

every v 2 M(:�), that if u

IB

�

� v

IB

�

then u

IB

�

~�

� v

IB

�

~�

. So, for every u 2 M(�)

and every v 2M(:�), if u �

�

v then u �

�>�

v; that is, (DPR4) holds. 2

It is our ontention that the violation of (DP1) by basi infobase revision is an indiation

that this postulate is perhaps too restritive to aommodate a wide range of rational

forms of revision. Below we give a realisti example in support of this laim.

6

Example 8.4.7 I have a iruit ontaining two omponents; an adder and a multiplier.

I have made three independent observations about these omponents.

1. The adder is working.

2. The multiplier is working.

3. If the adder doesn't work then the multiplier also doesn't work.

Another observation now indiates that at least one of the two omponents is not

working. In trying to inorporate this new information, we have to disard (or weaken)

at least one of the �rst two observations. Moreover, we annot retain both observations

(2) and (3), for they imply observation (1). So it seems reasonable to retain the belief

that the adder is working and the belief that a broken adder implies a broken multiplier.

Together with the new information that at least one of the omponents is broken, it

then follows that it is the multiplier that is broken.

This line of reasoning an be formalised by using a propositional language generated

by the two atoms a (indiating that the adder is working) and m (indiating that the

multiplier is working) with a valuation semantis (V;), where V = f00; 01; 10; 11g.

7

6

This example was inspired by a similar one proposed by Darwihe and Pearl [1997,p. 12℄.

7

We adopt the onvention of letting the �rst digit denote the truth value of a and the seond digit

the truth value of m.
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My initial infobase then looks like this: IB = [a;m;:a! :m℄. Figure 8.4 ontains

a graphial representation of the IB-indued faithful total preorder �

IB

. It is easily

veri�ed that for any basi infobase revision ~, Cn(S(IB ~ :(a ^m))) = Cn(a ^ :m),

whih means that m should be disarded and that a and :a! :m should be retained.

But what should the weakened version of the disarded w� m look like?

One reasonable option is to disard it ompletely, or, what amounts to the same

thing, to weaken it so that it beomes logially valid. Formally, this an be aom-

plished as follows. Let rs be a relevane seletion funtion suh that rs(IB; a ^m) =

IB

�(a^m)

= fmg. Sine IB

�(a^m)

is (IB; � ^ m)-relevant, there is suh an rs. Now

onsider the basi infobase ontration � whih is obtained using rs. It an be

veri�ed that IB � ::(a ^ m) � IB � (a ^ m) � [a;>;:a! :m℄ and therefore

IB ~ :(a ^ m) � [a;>;:a! :m;:(a ^m)℄, where ~ is the basi infobase revision

de�ned in terms of � using (Def ~ from �). Figure 8.4 ontains a graphial represen-

tation of the (IB ~ :(a ^m))-indued faithful total preorder.

To see that the revision > de�ned in terms of ~ using (Def > from ~) violates

(DP1), note that an inspetion of �gure 8.4 shows that Cn(S(IB ~ :a)) = Cn(:a),

but that Cn(S((IB~:(a^m))~:a)) = Cn(:a^:m). So K((�>:(a^m))>:a) 6=

K(� > :a) even though :a � :(a ^ m) where � is an epistemi state suh that

IB

�

= IB. And this onstitutes a violation of (DP1). 2

There is a partiular form of basi infobase revision whih does satisfy (DP1), though.

It orresponds to what we have referred to as the oherentist approah to infobase

hange on page 246 in setion 8.2.1.

De�nition 8.4.8 A oherentist basi infobase revision ~ is a basi infobase revision

suh that rs(IB; �) = IB for every � 2 L, for the relevane seletion funtion rs from

whih ~ is obtained. 2

To show that a oherentist basi infobase revision satis�es (DP1) we need the following

two lemmas.

Lemma 8.4.9 For every u 2Min

�

IB

(�), N

IB

u

(�) � Min

�

IB

(�).

Proof Pik any u 2 Min

�

IB

(�) and any v 2 N

IB

u

(�). By de�nition, v 2 M(�), and

u and v satisfy exatly the same w�s in IB. So the IB-numbers of u and v are the

same, and therefore v 2Min

�

IB

(�). 2



8.4. ITERATED INFOBASE CHANGE 269

-

11

k

00

3

10

�

6

01

-

01

R

11

	

10

�

�

00

I

Figure 8.4: A graphial representation of the total preorders used in example 8.4.7.

On the left is the IB-indued faithful total preorder and on the right the (IB ~ :(a ^

m))-indued faithful total preorder. As usual, the appliable preorder is the reexive

transitive losure of the relation determined by the arrows.

Lemma 8.4.10 If v 2 M(�) n Min

�

IB

(�) then, for every � in IB, v 2 M(�) i�

v 2M

�

w

IB

(IB;:�)

(�)

�

.

Proof Pik any v 2 M(�) n Min

�

IB

(�) and any � in IB. By proposition 8.2.15,

M(�) �M

�

w

IB

(IB;:�)

(�)

�

, and so v 2M(�) implies v 2M

�

w

IB

(IB;:�)

(�)

�

. Conversely,

suppose that v 2 M

�

w

IB

(IB;:�)

(�)

�

. By lemma 8.4.9, v =2 N

IB

�

(�), and it therefore

follows from proposition 8.2.15 that v 2M(�). 2

Proposition 8.4.11 Let ~ be the oherentist basi infobase revision and let > be the

revision on epistemi states de�ned in terms of ~ using (Def > from ~). Then >

satis�es (DP1).

Proof By theorem 7.3.4, it suÆes to show that > satis�es (DPR1). Let � be any

epistemi state. So �

�

is the IB

�

-indued faithful total preorder. We have to show

that u �

�

v i� u �

�>�

v for every u; v 2M(�).

Reall from de�nitions 8.2.14 and 8.2.24 that IB

�

~ � is obtained by replaing

every w� � in IB

�

with w

IB

�

(IB

�

;:�)

(�) and then adding �. From lemma 8.4.10 it follows

that the (IB

�

~ �)-number of u is one more than the IB

�

-number of u, for every

u 2M(�) nMin

�

�

(�). So u �

�

v i� u �

�>�

v for every u; v 2M(�) nMin

�

�

(�).
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Next, observe that the IB

�

-number of every u 2 Min

�

�

(�) is greater than the

IB

�

-number of every v 2M(�) nMin

�

�

(�). Moreover, by part (2) of orollary 8.2.27

it follows that M(S(IB

�

~ �)) = Min

�

�

(�). So the (IB

�

~ �)-number of every

u 2 Min

�

�

(�) is greater than the (IB

�

~ �)-number of every v 2 M(�) nMin

�

�

(�).

Therefore u �

�

v i� u �

�>�

v for every u 2Min

�

�

(�) and every v 2M(�)nMin

�

�

(�),

and u �

�

v i� u �

�>�

v for every v 2Min

�

�

(�) and every u 2M(�) nMin

�

�

(�).

Finally, observe that elements of Min

�

�

(�) all have the same IB

�

-number, and

sineM(S(IB

�

~�)) =Min

�

(�), the elements ofMin

�

�

(�) all have the same (IB

�

~

�)-number as well. So u �

�

v i� u �

�>�

v for every u; v 2 Min

�

�

(�), whih means

we are done. 2

8.4.2 L-revision

We turn now to Lehmann's framework for iterated revision whih was disussed in

setion 7.4.

8

Sine his postulates (L>1), (L>2), (L>3) and (L>6) orrespond exatly

to (E>1), (E>2), (E>3) and (E>6) respetively, it follows from proposition 8.4.4 that

the revision > on epistemi states obtained in terms of a basi infobase revision using

(Def > from ~) satisfy these four postulates of Lehmann. Furthermore, sine (L>7)

is a weakened version of (DP2) (see setion 7.4, page 223), it follows from proposition

8.4.6 that > also satis�es (L >7). It does not neessarily satisfy (L>4), (L>5) and

(L>8), though, as the following example shows.

Example 8.4.12 Let ~ be the basi infobase revision obtained from the relevane

seletion funtion rs for whih rs(IB; �) = IB

��

for every IB 2 IB and every � 2 L.

1. Let IB = [p ^ :q; p _ q℄. Clearly IB ~ p � [p ^ :q; p _ q; p℄. It an be veri�ed

that Cn(S((IB~p)~ q)) = Cn(p^ q), but that Cn(S(IB~ q)) = Cn(q). Taking

p as � and q as the sequene of w�s �, this is a violation of (L>4).

2. Let IB = [p$ q; p _ :q;:p _ :q;:q℄. It an be veri�ed that

IB ~ q � [p$ q; p _ :q; p _ :q; q℄ ,

IB ~ p _ q � [p _ :q;:p _ :q;:q; p _ q℄ ,

(IB ~ p _ q)~ q � [p _ q; q℄ ,

Cn(S(((IB ~ p _ q)~ q)~ :q)) = Cn(p ^ :q), and

Cn(S((IB ~ q)~ :q)) = Cn(:p ^ :q).

8

Reall that Lehmann onerns himself only with revisions by satis�able w�s.
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Taking p _ q as �, q as �, and :q as the sequene of w�s �, this onstitutes a

violation of (L>5).

3. Let IB = [p _ q; p _ :q℄. Clearly

IB ~ p � [p _ q; p _ :q; p℄ ,

(IB ~ p)~ q = [p _ q; p _ :q; p; q℄ , and

(IB ~ p)~ p ^ q = [p _ q; p _ :q; p; p ^ q℄ .

It an be veri�ed that

Cn(S(((IB ~ p)~ q)~ :p)) = Cn(:p ^ q), and

Cn(S(((IB ~ p)~ p ^ q)~ :p)) = Cn(:p).

With p as �, q as �, and :p as the sequene of w�s �, it follows that (L>8) is

violated.

2

An examination of this example suggests that, unlike the DP-postulates, (L>4), (L>5)

and (L>8) are fundamentally inompatible with basi infobase revision.

8.5 Future researh

This hapter has laid the foundation for a theory of infobase hange, but it is lear that

muh still needs to be done. Infobase hange, as we have urrently de�ned it, assumes

that the w�s ontained in the infobase IB have equal epistemi weight. But there may

be good reasons for regarding some w�s in IB as epistemologially more important

than others, as the following example, whih is part of an example by Hansson [1992b℄,

attests to.

Example 8.5.1 \A geography student sees one of his fellow students pik up a book

in the library. The title of the book is The University at Niamey. He asks, `Where is

Niamey?', and reeives the answer, `It is a Nigerian ity'.

Next day, in an oral examination, the professor asks our student, `What do you know

about Niamey?'|`It is a university town in Nigeria'|`It most ertainly isn't': : :the

student believes what the professor says, and adjust his beliefs aordingly." 2
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We use the propositional language generated by the atoms p and q to represent the

situation above, where p denotes the assertion that there is university in Niamey, and

q denotes the assertion that Niamey is a town in Nigeria. So the infobase IB is [p; q℄

and the student performs a p ^ q-ontration of IB. It is easy to verify that every

basi infobase ontration of IB by p ^ q yields an infobase that is element-equivalent

to [p _ q; p _ q℄ (see example 8.2.18). But, as Hansson [1992b℄ argues, it is reasonable

to assume that the result of the above ontration should be element-equivalent to [p℄.

This is beause of the extra-logial assumption that information obtained in library

books is more reliable than information obtained from fellow students, whih allows us

to retain p rather than q.

One way in whih to represent suh extra-logial information is in terms of orderings

of epistemi relevane on IB. Nebel [1990, 1991, 1992℄ requires of epistemi relevane

orderings to be total preorders on a base B. When applied to infobase hange, the aim

would be to use an epistemi relevane ordering on an infobase IB to obtain a suitable

S(IB)-faithful total preorder. An appropriate infobase hange operation would then

be onstruted in a manner analogous to the way it is urrently being onstruted.

One of the main di�erenes between infobase hange and many approahes to base

hange is illustrated by example 8.2.18, where a w� that is not ontained in the infobase

IB = [p; q℄ �nds its way into the resulting infobase IB � p ^ q. And while this

seems to be the orret solution in many respets, it is not quite in tune with the

intuition that the w�s in an infobase represent independently obtained beliefs. For it

seems ounterintuitive to regard a w� that is merely entailed by the w�s in IB as an

independently obtained belief ontained in IB � p ^ q. It is with this kind of example

in mind that Rott [1992a℄ writes as follows (In the quotation H represents the base

fp; qg):

\: : :Even after oneding that one of p and q may be false, we should

still ling to the belief that the other one is true. But H

0

= fp _ qg is

no base whih an be onstruted naturally from H|it ertainly does not

reord any expliit belief. We are faed with a deep-seated dilemma: : :"

Rott ultimately deides against the inlusion of suh w�s, arguing that bases should

only ontain expliit beliefs.

9

We onlude this setion by arguing that a priority or-

9

Hansson [1996℄ mentions the use of disjuntively losed bases (in whih the disjuntion � _ � of

every �; � 2 B is also in B) as a possible solution to problems of this kind. Unfortunately this ensures
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dering, similar in spirit to the epistemi relevane orderings, may provide an aeptable

solution. The idea is to split the infobase obtained from an infobase ontration into

two partitions; one ontaining the expliit beliefs and the other ontaining the intro-

spetive beliefs. After an infobase ontration of the infobase IB by the w� �, the

expliit beliefs onsists of the �-retained w�s of IB, while the introspetive beliefs are

appropriately weakened versions of the �-disarded w� � of IB. W�s that were, at

some stage, obtained diretly from independent soures thus onstitute the expliit

beliefs, while w�s suh as the ones logially equivalent to p _ q in example 8.2.18 are

regarded as beliefs obtained by introspetion during the ontration proess, and are

thus to be seen as arrying less epistemi weight than the expliit beliefs.

that bases an't be �nite. And in any ase, Hansson does not regard it as an aeptable solution,

warning that it should be seen as an interesting speial ase, rather than a required property of bases.
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Chapter 9

Conlusion

It an go on and on, or someone must write \The End" to it.

Gerald R. Ford, 38th US President

One of the most important issues in the area of knowledge representation is to �nd

appropriate representations of the epistemi states of agents equipped with the ability

to reason intelligently. In this dissertation we have onentrated on semanti represen-

tations of the part of an epistemi state pertaining to belief hange. We hose the AGM

approah to theory hange as our starting point, primarily beause of its importane in

the study of belief hange. Historially, AGM theory hange has beome synonymous

with a presentation in terms of postulates, as outlined in setion 2.1, plus the following

four basi onstrution methods:

1. The method of partial meet ontration, whih uses remainders [Alhourr�on et al.,

1985℄.

2. The method of safe ontration, whih makes use of entailment sets [Alhourr�on

and Makinson, 1985, Rott, 1992b℄.

3. A onstrution method involving the EE-orderings of G�ardenfors and Makinson

[1988℄ and G�ardenfors [1988℄.

4. A semanti method of onstrution, in terms of systems of spheres [Grove, 1988℄.

275
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The semanti method we have hosen to fous on is a slight variation on Grove's systems

of spheres. It involves a set of total preorders on the set of interpretations of the logi

language under onsideration, whih we have hosen to refer to as the faithful total

preorders [see Katsuno and Mendelzon, 1991, Peppas and Williams, 1995℄.

1

While the

representation theorems involving these onstrution methods allow us to move from

any one onstrution method to any one of the others (at least in priniple), it is, in our

view, diÆult to esape the onlusion that the semanti methods are, in an important

sense, more fundamental than the others.

The use of faithful total preorders is model-theoreti in nature, and has been used

as suh in our tehnial results. But it an also be given an information-theoreti

avour in terms of the infatoms introdued in setion 3.1. The basi idea is that the

bits of information making up the belief set of an agent are ordered aording to their

entrenhment or redibility, and that any hanges in beliefs are ultimately made with

this ordering in mind. It is our ontention that suh an information-theoreti view of

belief hange provides an appropriate setting for further studies in belief hange.

Not long after the ineption of the researh area known as nonmonotoni reasoning,

researhers started to point out onnetions between this �eld and the enterprise of

belief hange. The link is provided by theory revision operations on the one hand,

and nonmonotoni onsequene relations on the other. The basi idea is that results

obtained from an �-revision an be seen as the plausible (but nonmonotoni) onse-

quenes resulting from the adoption of the evidene �, and vie versa. What is most

interesting from our point of view, is that a slight variation on expetation based non-

monotoni reasoning [G�ardenfors and Makinson, 1994℄ an be onstruted from the

faithful total preorders, thus leading to the laim that the proesses involved in the-

ory revision and nonmononi reasoning are idential. While suh results indiate a

formal onnetion between theory revision and nonmonotoni reasoning, it has been

argued that one should not attempt to extend this link to the epistemologial level

as well [G�ardenfors and Makinson, 1994℄. It is our view that both these areas an be

inorporated into a more general formal theory of autious and bold reasoning, with

nonmonotoni reasoning being viewed as a form of reasoning whih is bolder than the

type of reasoning enountered in theory revision.

1

For some reason it seems that the use of systems of spheres is more popular in philosophial

irles, while arti�ial intelligene researhers prefer to use faithful total preorders.
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It is a urious feature of many a nonmonotoni reasoning system that, while the

examples used in justifying the formal onstrution have a dynami quality to them,

the onstrution itself is viewed as the desription of a stati proess. This behaviour

an only be explained by the (impliit) assumption that the adoption of two piees

of evidene in sequene, yields results that are idential to that obtained from the

simultaneous adoption of the same bits of evidene. Using the onnetion between

nonmonotoni reasoning and theory revision, we have argued that this is too strong a

restrition to plae on all forms of nonmonotoni reasoning. It is hoped that future

researh on nonmonotoni reasoning systems will take this result into aount.

Orderings of entrenhment on w�s are frequently advaned as appropriate repre-

sentations of the epistemi states of agents; at least with regard to belief hange. We

have surveyed the forms of entrenhment found in the literature, and presented a novel

version of entrenhment | re�ned entrenhment | whih is intended as an alternative

to the EE-orderings of G�ardenfors and Makinson [1988℄ and G�ardenfors [1988℄. The

onstrution of re�ned entrenhment orderings involves the use of the faithful modular

weak partial orders, instead of the faithful total preorders, thereby ensuring the elimi-

nation of some of the undesirable properties of the EE-orderings. The use of the faithful

modular weak partial orders paves the way for the introdution of a more general set

of faithful orderings, the faithful layered preorders, from whih both the EE-orderings

and the re�ned entrenhment orderings an be onstruted. Using these results, we

have argued that suh orderings on interpretations (and on their information-theoreti

ounterparts) ought to be seen as more fundamental than the entrenhment orderings

on w�s generated from them.

One of the most ontroversial aspets of AGM theory hange is the insistene on

the inlusion of the Reovery postulate (K�6). Those theory removal operations that

satisfy the �rst �ve basi AGM postulates have ome to be known as withdrawal oper-

ations. In reent years, there have been a number of proposals aimed at onstruting

rational forms of theory withdrawal that do not, in general, satisfy Reovery. Following

a survey of withdrawal operations, we have introdued a new member of this family,

dubbed systemati withdrawal. The method for onstruting systemati withdrawal is

semanti in nature. It involves the faithful modular weak partial orders; the preorders

used in the onstrution of re�ned entrenhment. We have argued that systemati

withdrawal seems to retain the advantages of other forms of withdrawal, but does not

su�er from their undesirable properties. By applying the method used in the onstru-
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tion of systemati withdrawal to the faithful layered preorders, we have obtained a set

of prinipled withdrawal operations whih inludes systemati withdrawal as well as

the severe withdrawal operations of Rott and Pagnuo [1999℄. From our investigation

into withdrawal it seems reasonable to advane the thesis that any prinipled form

of withdrawal will be amenable to semantial onstrution, in terms of some kind of

ordering on interpretations (or infatoms).

Due to its violation of the priniple of Categorial Mathing, AGM theory hange

has been shown not be suitable for a satisfatory desription of iterated belief hange.

In one of the most important reent advanes in the �eld of belief hange, Darwihe

and Pearl [1994, 1997℄ have shown that investigations of iterated belief hange ought to

be onduted on the level of epistemi states. The main results about their proposed

framework rely on a semanti view of epistemi states, whih states that it is possible to

extrat from every epistemi state a unique faithful total preorder and a unique belief

set. Our investigation into iterated belief hange onsist of a survey of the proposed

frameworks of Darwihe and Pearl [1994, 1997℄ and Lehmann [1995℄, a disussion of

transmutation, whih an be viewed as a generalised version of iterated belief hange,

and a disussion about two revision operations reently proposed by Papini [1998,

1999℄. Papini's revision operations and work done by Nayak [1994b℄, Nayak et al.

[1996℄ and Liberatore and Shaerf [1998℄, oupled with the move to view revision as

an operation on epistemi states, have also served as inspiration for the proposal to

investigate operations involving the merging of two epistemi states. It seems diÆult

to ondut an investigation into merging without inorporating the semanti view.

Most of the work in this dissertation is of a delarative nature. It addresses the ques-

tion of how an agent may employ the semanti strutures extrated from an epistemi

state to perform belief hange, but ignores, for the most part, the equally important

question of how an agent may arrive at a partiular epistemi state. We have shown

how data strutures alled infobases an be used to ahieve the latter objetive. An

infobase is a �nite ordered list of w�s. It is assoiated with a belief set | the set of

w�s entailed by the w�s in the infobase, and the struture of an infobase is exploited

to indue a faithful total preorder. Every infobase is thus assoiated with a unique

belief set and a unique faithful total preorder; the two omponents of an epistemi s-

tate needed to perform theory hange. While the basi idea of assoiating extra-logial

information with the struture of a set of w�s is nothing new, the partiular method

we have employed ensures that faithful total preorders are obtained, and is a novel
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ontribution. Although infobase hange views knowledge level matters as important,

it is also onerned with appropriate issues on the symbol level. Unlike the proess

that has beome known as base hange, infobase hange involves the weakening of w�s

in an infobase, rather than the removal of some w�s.

In onlusion, we restate the three main questions with whih this dissertation is

onerned and indiate to what extent answers have been provided for them.

1. How should an epistemi state (or at least the part pertaining to belief hange)

be represented?

The work in this dissertation suggests that the answer to this question onsists of

a single word; \semantially". Muh of the work done here indiates that an ordered

pair, onsisting of a belief set and a layered preorder on a set of infatoms of the logi

language under onsideration, is an appropriate representation of an epistemi state, at

least for belief hange operations suh as theory revision and theory withdrawal. And

while some of the later hapters, in partiular hapter 8, suggest that riher strutures

are needed for more realisti belief hange operations, there is a lear indiation that

suh riher strutures also need to be semanti in nature.

2. How does an agent use an epistemi state to perform belief hange?

The most imporant issue that has been resolved in onnetion with this question is

that any belief hange operation ought to produe, not just a belief set, but rather a

omplete new epistemi state. Furthermore, it has beome lear that, while the proess

of identifying the belief sets assoiated with those epistemi states resulting from belief

hange operations is well laid out (notwithstanding some variations in the methods for

doing so), muh work still has to be done to determine the permissible ways of arriving

at omplete epistemi states resulting from belief hange operations.

3. How does an agent arrive at a partiular epistemi state?

Our main ontribution in providing an answer to this question is the use of infobases.

We assume that w�s in an infobase are independently obtained and then exploit the

struture of the infobase to aid in the onstrution of an appropriate epistemi state.
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The use of infobases in this fashion is just a �rst approximation, although it seems to

have the potential for developing into a full-edged theory.

9.1 Future researh

This dissertation provides guidelines for some promising areas of future researh, some

of whih have already been touhed on in the relevant hapters. We briey outline the

most interesting of these.

It seems worthwhile to explore the onnetions between the information-theoreti

semantis desribed in hapter 3 and other logi-oriented approahes suh as that

of Barwise and Seligman [1997℄. It is also possible that there might be a link with

algorithmi information theory in the sense of Shannon [1964, 1993℄ and Chaitin [1987℄.

Having aepted the importane of semanti strutures for the onstrution of belief

hange operations, it is tempting to re-evaluate some of the generalisations of AGM

theory hange whih do not admit semanti desriptions. This has, to some extent,

already been aomplished with base hange, resulting in the de�nition of infobase

hange. Another suh area is that of multiple hange; theory hange operations involv-

ing sets of w�s instead of single w�s.

2

Some proposals for multiple ontration have

been made by Fuhrmann and Hansson [1994℄. One of their proposals, pakage on-

tration, is onstruted from generalised versions of the partial meet ontrations (see

setion 2.2). A loser look at this onstrution from a semanti point of view seems to

point to some inonsistenies in the hoie of admissable belief sets when ontrating

by ertain sets of w�s, and also suggests a possible solution to this problem.

In reent years, onsiderable progress has been made in the area of iterated belief

hange. The framework provided by Darwihe and Pearl [1994, 1997℄, in partiular,

has provided an exellent starting point. However, muh work still needs to be done

in this regard. Some reent results suggest that the �rst two DP-postulates may be

too restritive. The hallenge is thus to weaken these two postulates in an appropriate

fashion. One possibility is suggested by onentrating on the semanti versions of the

four DP-postulates. It involves the kind of restrition plaed on the relative ordering

of interpretations whih is found in (DPR4). The idea is that an �-revision need not

leave the relative order of the models of � unhanged, as (DPR1) requires. Instead, it

2

Peppas and Sprakis [1999℄ have reently provided a semanti desription of Lindstr�oms's [1991℄

proposed version of multiple revision.
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only requires of model v of � that is stritly higher up in the ordering than a model u

of �, to be at least as high up as u after an �-revision. From an information-theoreti

point of view, this means that an �-revision may ause a ontent bit i of :� to beome

less entrenhed, but i may not beome stritly less entrenhed than any of the ontent

bits of :� whih are urrently at most as entrenhed as i. A similar weakening of

(DPR2) would require of a model u of :� that is stritly lower down in the ordering

than a model v of :�, to be at most as high up as v after an �-revision. Information-

theoretially, this means that an �-revision permits a ontent bit i of � to beome more

entrenhed, but i may not beome stritly more entrenhed than any of the ontent bits

of � whih are urrently at least as entrenhed as i. It remains to be seen whether these

suggested properties will turn out to be appropriate postulates for iterated revision.

Further investigations into iterated belief hange are also bound to have an impat

on researh onerning multi-agent belief hange [K�r-Dahav and Tennenholtz, 1996℄,

and in partiular, the merging of epistemi states [Borgida and Imielinski, 1984, Baral

et al., 1991, 1992, Subrahmanian, 1994, Liberatore and Shaerf, 1998, Koniezny and

Pino-P�erez, 1998℄. Currently the major results in these areas seem to be foused on

the level of the belief sets assoiated with epistemi states. An area that needs to be

looked at is the establishment of a framework involving restritions on the faithful total

preorders assoiated with epistemi states.

The faithful total preorders have played a major role in many of the belief hange

operations desribed in this dissertation. As suh it may be seen as a suitable point

of departure for the desription of appropriate semanti strutures to be used in belief

hange. Two obvious generalisations of these orderings seem to be worthy of inves-

tigation: Firstly, the role of the faithful modular weak partial orders, both in the

onstrution of re�ned entrenhment and systemati withdrawal, is an indiation that

one needs to move to a set of faithful preorders whih inludes both the faithful total

preorders and the faithful modular weak partial orders. A andidate whih seems to

be appropriate is the set of faithful layered preorders. Enompassing both the faithful

total preorders and the faithful modular weak partial orders, it retains an important

harateristi shared by these two sets of preorders; the idea of layers of elements, with

elements on di�erent levels being omparable. It is, essentially, this property whih en-

sures the satisfation of the postulates (K�8) and (K�8) in the ontext of AGM theory

hange and the postulate known as Rational Monotoniity in the ontext of nonmono-

toni reasoning. Seondly, while the faithful layered preorders may be suÆient for the
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de�nition of some belief hange operations suh as revision and withdrawal, it has been

pointed out by Rott [1991,p. 172℄, amongst others, that riher strutures are needed

for others. A proposal that immediately springs to mind is to use strutures along the

lines of Spohn's [1988, 1991℄ ordinal onditional funtions. (Observe that we may view

the faithful total preorders indued by infobases in this light, sine these orderings are

obtained from the IB-numbers of the interpretations.) Considerable progress has been

made in this regard by Goldszmidt and Pearl [1996℄. Amongst many other desirable

properties, their formalism is able to deal with observations with a varying degree of

�rmness. They also provide a link with qualitative probabilities. It remains to be seen

whether their approah an be ombined with the use of faithful layered preorders,

where elements on the same level (with the same ordinal assigned to them) need not

be seen as omparable.

With the exeption of the IB-indued faithful total preorders, the use of semanti

strutures for de�ning belief hange has been of a delarative nature in this dissertation,

with not muh attention being paid to the equally important question of how to extrat

suitable semanti strutures from the data strutures at one's disposable in order to

perform belief hange. This question has reeived some attention in the nonmonotoni

literature [Ge�ner and Pearl, 1992, Ge�ner, 1992, Delgrande and Shaub, 1997℄, and

has also been addressed by Goldszmidt and Pearl [1996℄ in the ontext of belief hange,

but muh work still needs to be done.

Finally, we ome to an extremely important general aspet whih has reeived no at-

tention in this dissertation, and indeed, very little, in the researh �eld of belief hange;

implementational onsiderations and the omputational omplexity of proposed belief

hange operations. While some researhers [Lehmann and Magidor, 1992, G�ardenfors

and Rott, 1995, Goldszmidt and Pearl, 1996, Greiner, 1999℄ have presented relevant

results, a more general piture has yet to emerge.
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Proofs of some results in hapter 3

A.1 Theorems 3.2.3 and 3.3.1

Theorem 3.2.3

1. A removal de�ned in terms of a semanti seletion funtion using (Def � from

sm

K

) is a basi AGM ontration. Conversely, every basi AGM ontration an

be de�ned in terms of a semanti seletion funtion using (Def � from sm

K

).

2. A revision de�ned in terms of a semanti seletion funtion using (Def � from

sm

K

) is a basi AGM revision. Conversely, every basi AGM revision an be

de�ned in terms of a semanti seletion funtion using (Def � from sm

K

).

Proof 1. Let sm

K

be a semanti seletion funtion and let � be de�ned in terms

of sm

K

using (Def � from sm

K

). We onstrut a seletion funtion s

K

suh

that � is de�ned in terms of s

K

using (Def � from s

K

). By theorem 2.2.4

it then follows that � is a basi AGM ontration. Pik any � 2 L. If � =2

K or if � � then s

K

(K?�) = fKg and by de�nition sm

K

(�) = ;, and thus

\s

K

(K?�) = Th(M(K) [ sm

K

(�)). So we suppose that 2 � and � 2 K.

Then ; � sm

K

(�) � M(:�). By proposition 3.2.1 it follows that for every

u 2 sm

K

(�), there is an A

u

2 K? � suh that Th(M(K) [ fug) = A

u

. We let

s

K

(K?�) be the set onsisting of all these A

u

's. That is,

s

K

(K?�) = fA 2 K?� j 9u 2 sm

K

(�) suh that Th(M(K) [ fug) = Ag.

Sine sm

K

(�) 6= ; it learly follows that s

K

(K?�) 6= ;. Furthermore, it is lear

that s

K

(K?�) � K? �. We still need to show that \s

K

(K?�) = Th(M(K) [

283
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sm

K

(�)). By proposition 3.2.1 we have that, for every u 2 sm

K

(�), there is an

A 2 s

K

(K?�) suh that Th(M(K) [ fug) = A, and for every A 2 s

K

(K?�),

there is a u 2 sm

K

(�) suh that A = Th(M(K) [ fug), and therefore

\

u2sm

K

(�)

Th(M(K) [ fug) = \s

K

(K?�):

So it suÆes to show that

\

u2sm

K

(�)

Th(M(K) [ fug) = Th(M(K) [ sm

K

(�)):

Pik any � 2

T

u2sm

K

(�)

Th(M(K)[fug). Then u 2M(�) for every u 2 sm

K

(�)

and v 2M(�) for every v 2M(K). ThereforeM(K)[sm

K

(�) �M(�) and thus

� 2 Th(M(K) [ sm

K

(�)). Conversely, suppose that � 2 Th(M(K) [ sm

K

(�)).

Then M(K) [ sm

K

(�) � M(�) and therefore M(K) [ fug � M(�) for every

u 2 sm

K

(�). So � 2 Th(M(K) [ fug) for every u 2 sm

K

(�), whih means that

� 2 Th(M(K) [ fug).

Conversely, pik any basi AGM ontration �. By theorem 2.2.4, there is a

seletion funtion s

K

in terms of whih � is de�ned using (Def � from s

K

). We

onstrut a semanti seletion funtion sm

K

suh that for every �, \s

K

(K?�) =

Th(M(K) [ sm

K

(�)). Pik any � 2 L. The ases in whih � =2 K or � � have

already been dealt with above, so suppose that 2 � and � 2 K. Then ; �

s

K

(K?�) � K?�. By proposition 3.2.1 it follows that for every A 2 s

K

(K?�),

there is a u

A

2M(:�) suh that Th(M(K)[fu

A

g) = A. We let sm

K

(�) be the

set onsisting of all these u

A

's. That is,

sm

K

(�) = fu 2M(:�) j 9A 2 s

K

(K?�) suh that Th(M(K) [ fug) = Ag:

Clearly ; � sm

K

(�) � M(:�) and if � � � then sm

K

(�) = sm

K

(�). To show

that \s

K

(K?�) = Th(M(K) [ sm

K

(�)) we proeed exatly as above, whih

means we are done.

2. By theorem 2.1.6 and part (1) above, it suÆes to show that the revision �,

de�ned in terms of a semanti seletion funtion sm

K

using (Def � from sm

K

),

an also be de�ned in terms of � using (Def � from �), where � is the removal

de�ned in terms of sm

K

using (Def � from sm

K

). So, ignoring the trivial ases,
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observe that if :� 2 K and 2 :�, then

(K � :�) + �

= Th(M(K) [ sm

K

(:�)) + �

= Th(sm

K

(:�)) by lemma 1.3.4.

2

Theorem 3.3.1

1. Every faithful total preorder de�nes a GE-ordering using (Def v

G

from �). Con-

versely, every GE-ordering an be de�ned in terms of a faithful total preorder

using (Def v

G

from �).

1

2. Every faithful total preorder de�nes an EE-ordering using (Def v

E

from �).

Conversely, every EE-ordering an be de�ned in terms of a faithful total preorder

using (Def v

E

from �).

Proof 1. Let � be any faithful total preorder. We show that the relation v

GE

on

L, de�ned in terms of � using (Def v

G

from �) is a GE-ordering. For (GE1),

pik any �; � 2 L and suppose that � 6v

GE

�. That is, there is a y 2 M(�)

suh that x Æ y (and thus y � x) for every x 2 M(�), and so � v

GE

�. For

(GE2), suppose that � v

GE

� and � v

GE

, and pik any y 2M(). There is an

x 2M(�) suh that x � y, and a z 2M(�) suh that z � x. By the transitivity

of �, z � y. For (GE3), suppose that � � � _  and assume that � 6v

GE

� and

 6v

GE

�. So there is a y 2 M(�) suh that y � x for every x 2 M(�), and

there is a v 2 M(�) suh that v � u for every u 2M(). Clearly y =2M(�) and

v =2 M(). If y � v then y =2 M(), whih ontradits the fat that � � � _ .

Similarly, if v � y then v =2 M(�), ontraditing the fat that � � � _ . For

(GE4), suppose that K 6= Cn(?) and pik an � 2 L suh that :� =2 K. Then

M(K) \M(�) 6= ;, and it thus follows that x � y for every � 2 L and every

y 2 M(�); i.e. � v

GE

� for every � 2 L. Conversely, suppose that � v

GE

�

for every � 2 L. In partiular then, � v

GE

>; i.e. for every y 2 U there is an

x 2M(�) suh that x � y. Beause K 6= L, this means that M(K)\M(�) 6= ;,

1

This result �xes up some small inauraies of Grove [1988℄ and Boutilier [1992℄, and it sharpens

a result of Boutilier [1994℄.
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from whih it follows that :� =2 K. For (GE5), suppose that � :�. SoM(�) = ;,

and it thus follows vauously that � v

GE

 for every � 2 L. On the other hand,

suppose that � v

GE

� for every � 2 L. Then, in partiular, ? v

GE

�, whih has

to mean that M(�) = ;, and thus that � :�.

For the onverse, letv

GE

be a GE-ordering. We onstrut a faithful total preorder

� in terms of whih v

GE

an be de�ned using (Def v

G

from �). For any � 2 L,

let 4� = f� 2 L j � v

GE

�g. Grove [1988℄ refers to these sets as uts. It is easy

to see that the set of uts is totally ordered under set inlusion. Pik any two

w�s � and �, and suppose that 4� * 4�. Then 4� n4� = f j � v

GE

 <

GE

�g 6= ;, and so it follows that 4� � 4�. Now, for every x 2 U , let

t x =

[

f4� j � 2 L and x 2M(:(4�))g.

So t x is the largest ut that ontains none of the w�s satis�ed by x. We de�ne

� as follows:

For every x; y 2 U; x � y i� t x � t y.

First we show that � is a faithful total preorder. Cuts are totally ordered by

set inlusion, so it learly follows that � is a total preorder. Now pik any

x; y 2M(K). By (GE4), t x = t y = f� j :� 2 Kg and so x � y. Furthermore,

if we pik a z =2 M(K), then there is at least one :� 2 K suh that z  �. So

t x � t z, whih means that x � z. To prove that � is smooth, it suÆes to

show that for every � 2 L suh that 2 :�, Min

�

(�) 6= ;. The following result

shows that there is an interesting onnetion between a ut C and the setM(:C)

of all interpretations that satisfy none of the w�s in C.

For every ut C and every � 2 L, � 2 C i� M(:C) � M(:�). (A.1)

For the proof of (A.1), pik any ut C and any � 2 L and suppose that � 2 C.

Then, by de�nition, M(:C) �M(:�). Conversely, suppose � =2 C. If :C 2 :�,

then there is a model of :C that satis�es �, and thus M(:C) * M(:�). So

suppose that :C � :�. By ompatness, there is a �nite subset C

Fin

of C suh

that :C

Fin

� :�, and so � �

W

C

Fin

. By repeated appliations of (GE3), it then

follows that for some � 2 C

Fin

, � v

GE

�, and thus � 2 C, ontraditing the

supposition.

Now, pik any � 2 L suh that 2 :�, and let C

�

=

S

f4� j � =2 4�g. So C

�

is the largest ut not ontaining �. From (A.1) it follows that M(:C

�

) ontains
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an interpretation y that satis�es �. We show that C

�

= t y. If C

�

* t y,

then t y � C

�

, whih means there has to be a � 2 C

�

that is satis�ed by y,

ontraditing (A.1). So C

�

� t y. Conversely, sine C

�

is the largest ut not

ontaining �, and sine � =2 t y, it follows that t y � C

�

. Now assume there

is an x 2 M(�), and thus � =2 t x, suh that x � y. Then t x � t y = C

�

,

ontraditing the fat that C

�

is the largest ut not ontaining �. Therefore

y 2Min

�

(�).

Finally, let v be the GE-ordering de�ned in terms of � using (Def v

G

from �).

We show that v = v

GE

. Pik any �; � 2 L. If � :� then by the de�nition of

v, � v � and, by (GE5), � v

GE

�. Furthermore, if � :� and � v

GE

�, then

by (GE5), � :�, and if � :� and � v �, it follows from the de�nition of v

that � :�. Hene, if � :� or � :�, then � v

GE

� i� � v �. So we suppose

that 2 : and 2 :Æ. By (A.1), there is a y 2 M(:

C

�

) that satis�es �, and

an x 2 M(:

C

�

) that satis�es �. As above, it then also follows that C

�

= t y,

C

�

= t x, y 2 Min

�

(�) and that x 2 Min

�

(�). If � v

GE

�, then C

�

� C

�

,

and thus t y � t x. So, by the de�nition of �, x � y, and therefore � v �. On

the other hand, if � v �, it means that u � v for every u 2Min

�

(�), and every

v 2 Min

�

(�). So in partiular, x � y, whih means that C

�

= t y � t x = C

�

,

and thus that � v

GE

�.

2. Follows from part (1) and theorem 2.3.5.

2

A.2 Results used in the proof of theorem 3.2.6

This setion ontains the results used to prove that AGM ontration and AGM revision

an be haraterised in terms of faithful total preorders. First we provide a \soundness"

result for AGM ontration.

Proposition A.2.1 Every removal de�ned in terms of a faithful total preorder � using

(Def � from �) is an AGM ontration.

Proof For (K�1) to (K�6), it suÆes, by theorem 3.2.3, to show that the fun-

tion sm

K

: L ! }U obtained by setting sm

K

(�) = Min

�

(:�) nM(K) is a seman-

ti seletion funtion. If � � � then Min

�

(:�) = Min

�

(:�) and so sm

K

(�) =
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sm

K

(�). Furthermore, if � =2 K then there is an x 2 M(K) suh that x =2 M(�).

So Min

�

(:�) � M(K) and thus sm

K

(�) = ;. On the other hand, if � � then

Min

�

(:�) = ; and thus sm

K

(�) = ;. So suppose that � 2 K and 2 �. Then

M(K)\Min

�

(:�) = ;, but by smoothness, Min

�

(:�) 6= ;. So ; � sm

K

(�). Finally,

sm

K

(�) � M(:�) sine Min

�

(:�) �M(:�).

For (K�7), suppose that  2 K � � and  2 K � �. That is,

M(Th(M(K) [Min

�

(:�))) �M() and

M(Th(M(K) [Min

�

(:�))) �M().

If we an show that M(K) [Min

�

(:(� ^ �)) �M(), it follows that  2 K � � ^ �,

whih means we are done. We already have that M(K) � M(), so it remains to

be shown that Min

�

(:(� ^ �)) � M(). Pik a u 2 Min

�

(:(� ^ �)). It follows

that either u 2 M(:�) or u 2 M(:�). In the latter ase, u 2 Min

�

(:�) and thus

x 2M() sine Min

�

(:�) �M(). A similar argument holds in the former ase.

For (K�8), suppose that � =2 K � (� ^ �). If � ^ � =2 K, then K � (� ^ �) = K

by (K�3), and thus also K = K � � (beause � =2 K � (� ^ �) = K), from whih

the result follows. So we suppose that � ^ � 2 K. Beause � =2 K � (� ^ �),

there is a u 2 M(K) [Min

�

(:(� ^ �)) suh that u 1 �. But � ^ � 2 K, and so

u =2M(K), whih means that u 2 Min

�

(:(� ^ �)). Now, pik a  2 K � (� ^ �), i.e.

M(K)[Min

�

(:(�^�)) �M(). We have to show that M(K)[Min

�

(:�) �M().

We already have that M(K) � M(�). To show that Min

�

(:�) � M(), pik a

v 2 Min

�

(:�) and assume that v =2 M(). Beause Min

�

(:(� ^ �)) � M(), it

follows that v =2 Min

�

(:(� ^ �)). But then u � v sine u 2 Min

�

(:(� ^ �)),

ontraditing the minimality of v in M(:�). 2

To prove the \ompleteness" result for AGM ontration, we onstrut an appropriate

faithful total preorder.

De�nition A.2.2 Let � be an removal, and let

Min

K

= fu =2 M(K) j u 2M(K � �) for some �g.

The anonial relation for � is the binary relation � on U ontaining just the ordered

pairs santioned by onditions 1 to 5 below.

1. For every u; v 2M(K), u � v.
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2. For every u; v 2 U n (M(K) [Min

K

), u � v.

3. For every u 2M(K) and v =2 M(K), u � v.

4. For every u 2Min

K

and v 2 U n (M(K) [Min

K

), u � v.

5. For every u; v 2Min

K

, u � v i� for every � 2 K, v 2 M(K��) and u 2M(:�)

implies u 2M(K � �).

2

As we shall see below, the anonial relation for an AGM ontration � is a total

preorder on U with

� the models of K as the minimal elements,

� the elements that are neither models of K nor of some belief set obtained from

K via �, as the maximal elements, and

� the rest of the elements of U in between.

We also need the following tehnial lemmas.

Lemma A.2.3 [Alhourr�on et al., 1985℄ If � is a basi AGM ontration then the

following is equivalent to (K�7): (K � �) \ Cn(�) � K � (� ^ �).

Lemma A.2.4 If � is a removal satisfying (K�1), (K�4), (K�6) and (K�8), then

either K � (� ^ �) � K � � or K � (� ^ �) � K � � for every �; � 2 L.

Proof If � � ^ � then � � and � �, and by (K�6), K � � = K � � = K �

(� ^ �) = K, from whih the result follows. So suppose that 2 � ^ �. By (K�4),

� ^ � =2 K � (� ^ �), and so by (K�1), either � =2 K � (� ^ �) or � =2 K � (� ^ �).

The result then follows diretly from (K�8). 2

Lemma A.2.5 Let � be a basi AGM ontration. If � 2 K, u =2 M(K) and u 2

M(K � �) then u 2M(:�).

Proof Suppose � 2 K, u =2 M(K) and u 2 M(K � �). By (K�6), M((K � �) +

�) = M(K), and beause M(K � �) \ M(�) � M((K � �) + �), we have that

u =2M(K � �) \M(�) and therefore u 2M(:�). 2
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Lemma A.2.6 Let � be an AGM ontration, and let � be the anonial relation for

�. If � 2 K n Cn(>) and u 2M(K � �), then u � v for every v 2M(:�).

Proof If u 2 M(K) then u � v for every v 2 U , so suppose that u =2M(K). Beause

u 2 M(K � �), u 2 Min

K

. Pik any v 2 M(:�). Beause � 2 K, v 2 Min

K

or

v 2 U n (M(K) [Min

K

). In the latter ase the result follows from the de�nition of

�. For the former ase, pik any � 2 K suh that u 2 M(:�) and suppose that

v 2 M(K � �). By lemma A.2.5, v 2 M(:�). We need to show that u 2 M(K � �).

By lemma A.2.4, eitherM(K��) � M(K� (�^�)) orM(K��) �M(K� (�^�)).

In the former ase, � =2 K�(�^�) by (K�4) and in the latter ase v 2M(K�(�^�)),

and beause v 2 M(:�), � =2 K � (� ^ �). So in either ase � =2 K � (� ^ �) and

thus, by (K�8), K � (� ^ �) � K � �. Now assume that u =2M(K � �). Then there

is a  2 K � �, and thus � _  2 K � �, suh that u =2M(), whih means, by lemma

A.2.3, that (� _ ) 2 K� (�^ �) � K ��. And beause u 2M(K ��), we have that

u  � _ , ontraditing the fat that u 2M(:�) and u =2M(). 2

Lemma A.2.7 The anonial relation � for an AGM ontation � is a total preorder.

Proof It suÆes to onsider only interpretations in Min

K

. For reexivity, note that

for every � 2 K, if x 2M(K��) and x 2 M(:�) then x 2M(K��). For transitivity,

pik any x; y; z 2 Min

K

and suppose that x � y and y � z. We need to show that

x � z. Pik a � 2 K and suppose that z 2M(K��) and x 2M(:�). By lemmaA.2.5,

z 2M(:�). We show that x 2M(K � �). Beause y 2Min

K

, there is a  2 K suh

that y 2M(K � ) and therefore, by lemma A.2.5, y 2M(:). Furthermore, beause

 2 K and � 2 K we have  ^ � 2 K. And beause M(:( ^ �)) =M(:) [M(:�)

it follows that x; y; z 2M(:( ^ �)). By lemma A.2.4, M(K � �) �M(K �  ^ �) or

M(K�) � M(K�^�). In the former ase, z 2M(K�^�) beause z 2M(K��).

So beause y 2 M(:( ^ �)),  ^ � 2 K and y � z, we have y 2 M(K �  ^ �). In

similar fashion, beause x 2 M(:( ^ �)) and x � y, x 2 M(K �  ^ �). In the

latter ase, beause y 2 M(K � ), we have y 2 M(K �  ^ �) and then as before,

x 2 M(K �  ^ �). So either way x 2 M(K �  ^ �). To show that x 2 M(K � �),

pik any � 2 K � �. We show that x 2M(�). Beause � 2 K � �, we also have that

� _ � 2 K � �, so by lemma A.2.3, � _ � 2 K �  ^ �. So x  � _ �. But beause

x 2M(:�), we have that x 2M(�).

To show that � is a total preorder we still need to show that for every x; y 2Min

K

,

x � y or y � x. Pik any x; y 2 Min

K

, and suppose that x Æ y. Then there is an
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� 2 K suh that y 2M(K ��) and x 2M(:�), but x =2M(K ��). By lemma A.2.6

it then follows that y � x. 2

We are now ready to prove the \ompleteness result" for AGM ontration.

Proposition A.2.8 Every AGM ontration � an be de�ned in terms of a faithful

total preorder using (Def � from �).

Proof We show that the anonial relation � for � is suh a faithful total preorder.

By lemma A.2.7, � is a total preorder. To show that � is faithful, we need only

show that � is smooth; the other onditions for faithfulness follow diretly from the

de�nition of �. So pik any �. If :� =2 K, the M(�)-smoothness of � follows diretly

from the de�nition of �, and if � :� then M(�) = ;, and thus � is M(�)-smooth.

So suppose that :� 2 K, 2 :� and pik any y 2 M(�). We need to show that there

is an x that is �-minimal in M(�) suh that x � y. Beause 2 :� it follows from

(K�2) and (K�4) that M(K) � M(K � :�). So there is an x 2 M(K � :�) suh

that x =2 M(K). By lemma A.2.5, x 2 M(�) and by lemma A.2.6, x � y for every

y 2 M(�).

To show that� an be de�ned in terms of� using (Def� from�), it suÆes to show

that M(K � �) =M(K) [Min

�

(:�) for every � 2 L. Clearly, if � � or � =2 K, then

M(K)[Min

�

(:�) =M(K), so we need only onsider the ase where � 2 K nCn(>).

For the left-to-right inlusion, pik any x 2 M(K � �). If x 2 M(K) then learly

x 2 M(K) [Min

�

(:�), so suppose that x =2 M(K). By lemma A.2.5, x 2 M(:�).

By lemma A.2.6 it follows that for every y 2 M(:�), x � y. So x 2 Min

�

(:�) and

thus x 2M(K) [Min

�

(:�).

For the right-to-left inlusion, note �rstly that by (K�2), M(K) � M(K � �).

Now pik any x 2 Min

�

(:�). We need to show that x 2 M(K � �). Beause 2 �, it

follows from (K�4) thatM(K��)\M(:�) 6= ;. So pik any y 2M(K��)\M(:�).

By lemma A.2.6, y � x, and then x � y beause x 2 Min

�

(:�). Now, x =2 M(K)

beause � 2 K and x 2 M(:�), and so x =2 U n (M(K) [Min

K

) beause y 2 Min

K

and x � y. So x 2 Min

K

and therefore, from part (5) of de�nition A.2.2, it follows

that x 2M(K � �). 2

We thus obtain the following representation theorem.
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Theorem 3.2.6

1. Every faithful total preorder de�nes an AGM ontration using (Def � from �).

Conversely, every AGM ontration an be de�ned in terms of a faithful total

preorder using (Def � from �).

2. Every faithful total preorder de�nes an AGM revision using (Def � from �).

Conversely, every AGM revision an be de�ned in terms of a faithful total preorder

using (Def � from �).

Proof 1. The proof follows diretly from propositions A.2.1 and A.2.8.

2. Follows from theorem 2.1.6, part (1) above, and proposition 3.2.8.

2



Appendix B

Proofs of some results in hapter 6

B.1 Results used in the proof of theorem 6.3.4

Proposition B.1.1 Let � be a faithful modular weak partial order. The funtion

ss

K

: L! }U , de�ned as: ss

K

(�) = r

�

(:�), is a saturatable seletion funtion.

Proof It follows trivially that � � � implies ss

K

(�) = ss

K

(�), and that � � implies

ss

K

(�) = ;. Now suppose that � =2 K. Then 2 �, and it follows easily that ss

K

(�) =

r

�

(:�) � Min

�

(:�) � M(K). Finally, suppose that � 2 K and 2 �. By smoothness,

; �Min

�

(�) � r

�

(:�), and so ss

K

(�) \M(:�) 6= ;. 2

Proposition B.1.2 Every systemati withdrawal satis�es (K�1) to (K�10).

Proof Let � be a systemati withdrawal, and let � be a faithful modular weak partial

order from whih � is obtained using (Def � from r

�

). By proposition B.1.1 and

de�nition 6.2.5, � is a saturatable withdrawal and by theorem 6.2.6, it thus satis�es

(K�1) to (K�6). For (K�7), suppose that  2 K� (�^). We only onsider the ase

where 2 � and �^ 2 K. Then  2 K by (K�2),Min

�

(:(�^)) �M(:�)\M() and

r

�

(:�) � M(). Now pik any x 2 Min

�

(:(�^�^)) and any y 2Min

�

(:(�^)).

(By smoothness, neither Min

�

(:(� ^ � ^ )) nor Min

�

(:(� ^ )) is empty.) It is

lear that y � x. So r

�

(:(� ^ � ^ )) nMin

�

(:(� ^ � ^ )) � M(). To show that

 2 K � (�^� ^), it thus remains to show thatMin

�

(:(�^� ^)) � M(). And if

this were not the ase, there would be a z 2Min

�

(:(�^�^)) suh that z 2M(:).

But then z 2Min

�

(:(� ^ )), thus ontraditing Min

�

(:(� ^ )) �M(:�) \M().

293
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For (K�8), suppose that � =2 K�(�^�). We have to show thatK�(�^�) � K��.

If �^� =2 K, then by (K�3), K� (�^�) = K, and thus also K = K�� (beause � =2

K� (�^�) = K), from whih the result follows. So we suppose that �^� 2 K. Now,

pik an � 2 K � (�^ �). Then M(K)[r

�

(:(�^ �)) � M(�) and so M(K) � M(�)

and r

�

(:(� ^ �)) � M(�). We have to show that M(K) [ r

�

(:�) � M(�). We

already have that M(K) � M(�). To show that r(

�

:�) � M(�), it suÆes to show

that r

�

(:�) � r

�

(:(� ^ �)). If we an show that Min

�

(:�) � Min

�

(:(� ^ �)),

it immediately follows from (Def r

�

) that r

�

(:�) � r

�

(:(� ^ �)). So pik any

y 2 Min

�

(:�) and assume that y =2 Min

�

(:(� ^ �)). Sine y 2 M(:(� ^ �)),

it follows by the smoothness of � that there is an x 2 Min

�

(:(� ^ �)) suh that

x < y. Beause y 2 Min

�

(:�), it must be the ase that x 2 M(:� ^ �), and sine

� is a modular weak partial order it then also follows that Min

�

(:(� ^ �)) � M(�).

Moreover, sine y 2 Min

�

(:�) and sine x < y it has to be the ase that for every

v 2 Min

�

(:(� ^ �)) and every u � v, u 2 M(�). But then r

�

(:(� ^ �)) 2 M(�),

ontraditing the supposition that � =2 K � (� ^ �). For (K�9), suppose that � 2 K,

� _ � 2 K � � and � =2 K � �. We only onsider the ase where 2 �. Then

Min

�

(:�) �M(�), r

�

(:�)nMin

�

(:�) � M(�), and r

�

(:�)nMin

�

(:�) * M(�).

So Min

�

(:(�^ �)) < Min

�

(:�), and therefore r

�

(:(�^ �)) �M(�), from whih it

follows that � 2 K � (� ^ �).

1

For (K�10), suppose that 2 � and � 2 K � �. Then

r

�

(:�) �M(�). Therefore Min

�

(:�) � Min

�

(:(�^ �)) and thus � =2 K � (�^ �).

2

Lemma B.1.3 If 2 � and � is a removal that satis�es (K�1), (K�4), (K�5), (K�7)

and (K�8), then f� j � 2 K � (� ^ �)g =

T

fK � (� ^ �) j � 2 Lg.

Proof Suppose � 2 K � (� ^ �). Now pik any . By (K�7), � 2 K � (� ^  ^ �),

and by (K�4), � ^  ^ � =2 K � (� ^  ^ �). Therefore � ^  =2 K � (� ^  ^ �)

by (K�1), and so K � (� ^  ^ �) � K � (� ^ ) by (K�5) and (K�8), from whih

it follows that � 2 K � (� ^ ). So we have shown that f� j � 2 K � (� ^ �)g �

T

fK � (� ^ �) j � 2 Lg. The onverse is trivial. 2

Lemma B.1.4 If � satis�es (K�1) to (K�10), the withdrawal

�

� de�ned in terms of

� using (Def

�

� from �) is a severe withdrawal.

1

See setion 1.3 for an explanation of the onvention of applying < to sets of interpretations.
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Proof (K

�

�1) to (K

�

�6) follow easily from lemma B.1.3, and (K

�

�7) follows easily from

(K�7). For (K

�

�8), suppose that � =2 K

�

�(�^�). If 2 �^� then � =2 K � (�^�^�) =

K � (� ^ �). And if � � ^ � then � =2 K, and thus � =2 K � (� ^ �) by (K�2). So in

either ase, K � (�^�) � K � � by (K�8). We need to show thatK

�

�(�^�) � K

�

��.

The ase where � � ^ � is trivial, and so we suppose that 2 � ^ �. We only onsider

the ase where 2 �. We need to show that f j  2 K � (� ^ � ^ )g � f j K �

(� ^ )g. Suppose that  2 K � (� ^ � ^ ). If � ^  =2 K � (� ^ � ^ ), then

K � (�^� ^) � K � (� ^) by (K�8), and so  2 K � (� ^). So we onsider the

ase where � ^  2 K � (�^ � ^ ). Sine  2 K � (�^ � ^ ), it follows from (K�4)

that �^� =2 K � (�^� ^), and then by (K�8) that K � (�^� ^) � K � (�^�).

Beause K � (� ^ �) � K � � we then have that � ^  2 K � �, and therefore

� 2 K � �, ontraditing 2 � and (K�4). 2

Lemma B.1.5 Let � be a withdrawal satisfying (K�1) to (K�10). Now de�ne the

removal

�

� in terms of � using (Def

�

� from �), and de�ne the removal � in terms of

�

� using (Def � from

�

�). Then � and � are idential.

Proof By ombining (Def

�

� from �) and (Def � from

�

�) it suÆes to show that

� 2 K � � i�

8

>

<

>

:

� _ � 2 K � (� ^ (� _ �)) and � =2 K � (� ^ �)

if 2 �, 2 �, � 2 K,

� 2 K otherwise.

We only onsider the ase where 2 �, 2 � and � 2 K. If � 2 K � � then � _ � 2

K � � = K � (� ^ (� _ �)) by (K�5), and � =2 K � (� ^ �) follows from (K�10).

Conversely, if � _ � 2 K � (� ^ (� _ �)) = K � �, and � =2 K � (� ^ �), then

� 2 K � � by (K�9). 2

B.2 Theorems 6.5.12 and 6.5.14

Theorem 6.5.12 Suppose that the RE-ordering v

EE

and the systemati withdrawal

� are semantially related. Then

� =2 K � � i�

8

>

>

>

>

<

>

>

>

>

:

� =2 K and � �, or

� =2 K and � =2 K, or

� v

RE

� and 2 �, or

� 6v

RE

� and 9 6v

RE

� suh that f�; g � �,

(6:1)
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or equivalently,

� 2 K � � i�

8

>

<

>

:

� 2 K and � �, or

� 2 K and � =2 K, or

� 6v

RE

� and for every  6v

RE

�, f�; g 2 �.

(6:2)

Proof For the left-to-right diretion of the proof of (6.1), suppose that � =2 K�� and

that none of the �rst three of the four required possible ases hold. That is, suppose

that (� 2 K or 2 �) and (� 2 K or � 2 K) and (� 6v

RE

� or � �). This means

that (� 2 K or (2 � and � 2 K)) and (� 6v

RE

� or � �), whih, in turn, means that

(� 2 K and � 6v

RE

�) or (� 2 K and � �) or ((2 � and � 2 K) and � 6v

RE

�) or ((2 �

and � 2 K) and � �). Of these four ases, the fourth one is a logial ontradition,

while the seond one ontradits the supposition that � =2 K � � (sine K � � = K

if � � by (K�6)). So it has to be the ase that (� 2 K and � 6v

RE

�) or ((2 � and

� 2 K) and � 6v

RE

�). If � 2 K and � 6v

RE

� then, sine � =2 K � �, we have that

K 6= K � �, from whih it follows by (K�3) that � 2 K. And thus, by part (1) of

proposition 6.5.11, it follows that there is a  6v

RE

� suh that f�; g � �. Similarly,

if (2 � and � 2 K) and � 6v

RE

� then, together with the supposition that � =2 K � �,

it follows that there is a  6v

RE

� suh that f�; g � �. For the right-to-left diretion,

note that if � =2 K then it follows from (K�2) that � =2 K � �. If � v

RE

� and 2 �

then by proposition 6.5.6, � =2 K � �. Finally, if � 6v

RE

� and there is a  6v

RE

� suh

that f�; g � �, then by part (2) of proposition 6.5.11, � =2 K � �.

For the left-to-right diretion of the proof of (6.2), suppose that � 2 K � � and

that neither of the �rst two of the required three possible ases hold. That is, suppose

that (� =2 K or �) and (� =2 K or � 2 K). This means that � =2 K or (2 � and

� 2 K). If � =2 K then, sine � 2 K � �, it follows that K 6= K � �, and thus, by

(K�3) and (K�6), that � 2 K and 2 �. So, regardless of whih of the two possibilities

hold, it will be the ase that � 2 K and 2 �. Sine � 2 K � � and 2 �, it follows

from proposition 6.5.6 that � 6v

RE

�. Now assume that there is a  6v

RE

� suh

that f�; g � �. Then, by part (2) of proposition 6.5.11, � =2 K � �, ontraditing

the supposition that � 2 K � �. So it has to be the ase that for every  v

RE

�,

f�; g 2 �. For the right-to-left diretion, note that if � 2 K and � �, or � 2 K and

� =2 K, respetively, then by (K�6) or (K�3) respetively, � 2 K � �. So we need

only onsider the ase in whih these two possibilities do not hold. We have already

seen above that if neither of these two possibilities hold, then � 2 K. Now suppose
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that � 6v

RE

�, and that f�; g 2 � for every  6v

RE

�. It then follows from part (1) of

proposition 6.5.11 that � 2 K � �. 2

Theorem 6.5.14 Suppose that the RE-ordering v

EE

and the systemati withdrawal

� are semantially related. Then

� =2 K � � i�

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

� =2 K and � �, or

� =2 K and � =2 K, or

� v

RE

� and 2 �, or

� <

RE

� and 9 2 L suh that

� <

RE

, � k

v

RE

 and f�; g � �, or

� k

v

RE

� and 9 2 L suh that

� k

v

RE

, � k

v

RE

 and f�; g � �,

(6:3)

or equivalently,

� 2 K � � i�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

� 2 K and � �, or

� 2 K and � =2 K, or

� <

RE

� and 8 2 L suh that

� <

RE

 and � k

v

RE

, f�; g 2 �, or

� k

v

RE

� and 8 2 L suh that

� k

v

RE

 and � k

v

RE

, f�; g 2 �.

(6:4)

Proof To prove the left-to-right diretion of (6.3), suppose that � =2 K � � and that

none of the �rst three of the �ve required possible ases hold. That is, suppose that

(� 2 K or 2 �) and (� 2 K or � 2 K) and (� 6v

RE

� or � �). This means that (� 2 K

or (2 � and � 2 K)) and (� 6v

RE

� or � �), whih, in turn, means that (� 2 K and

� 6v

RE

�) or (� 2 K and � �) or ((2 � and � 2 K) and � 6v

RE

�) or (((2 � and

� 2 K) and � �). The fourth possibility above is a logial ontradition, while the

seond possibility ontradits the supposition that � =2 K�� (sine K = K�� if � �,

by (K�6)). So it must be the ase that (� 2 K and � 6v

RE

�) or ((2 � and � 2 K)

and � 6v

RE

�). If � 2 K, then K 6= K � �, and by (K�3), � 2 K. So in both ases,

� 2 K and � 6v

RE

�. Now we an distinguish between two ases: Either � v

RE

� or

� 6v

RE

�. In the former ase it follows that � <

RE

�, and from part (1) of proposition

6.5.13 it then follows � <

RE

, � k

v

RE

 and f�; g � � for some  2 L. In the latter

ase we have that � k

v

RE

� and it then follows from part (2) of proposition 6.5.13 in

that � k

v

RE

, � k

v

RE

 and f�; g � � for some  2 L. For the proof in the onverse
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diretion note that if � =2 K then it follows from (K�2) that � =2 K � �. If � v

RE

�

and 2 �, it follows from proposition 6.5.6 that � =2 K � �. If � <

RE

� and there is a

 suh that � <

RE

, � k

v

RE

 and f�; g � �, it follows from part (2) of proposition

6.5.11 that � =2 K � �. Similarly, if � k

v

RE

� and there is a  suh that � k

v

RE

,

� k

v

RE

 and f�; g � �, it follows from part (2) of proposition 6.5.11 that � =2 K��.

To prove the left-to-right diretion of (6.4), suppose that � 2 K � �, and that

neither of the �rst two of the four required possible ases hold. That is, suppose that

(� =2 K or 2 �) and (� =2 K or � 2 K), whih means that � =2 K or (2 � and � 2 K).

If � =2 K then, beause � 2 K � �, it follows that K 6= K � �, and thus, by (K�6)

and (K�3), that 2 � and � 2 K. So in both ases, 2 � and � 2 K. Sine � 2 K � �

and 2 �, it follows from proposition 6.5.6 in that � v

RE

�. We distinguish between

two ases. Either � v

RE

�, or � 6v

RE

�. In the former ase we get that � <

RE

�.

Now assume there is a  suh that � <

RE

, � k

v

RE

 and f�; g � �. Then, by

part (2) of proposition 6.5.11, it follows that � =2 K � �, ontraditing the supposition

that � 2 K � �. So it has to be the ase that f�; g 2 � for every  suh � <

RE



and � k

v

RE

. In the latter ase, when � v

RE

�, � k

v

RE

�. Now assume there is

a  suh that � k

v

RE

, � k

v

RE

 and f�; g � �. Then, by part (2) of proposition

6.5.11, it follows that � =2 K � �, ontraditing the supposition that � 2 K � �. So

it has to be the ase that f�; g 2 � for every  suh that � k

v

RE

 and � k

v

RE

.

For the onverse diretion, note that if � 2 K and � � (or � 2 K and � =2 K), then

it follows from (K�6) (or (K�3)) that � 2 K � �. So we need only onsider the ase

in whih these two possibilities don't hold. We've already seen above that if neither

of these two possibilities hold, then � 2 K. Now, suppose that � <

RE

� and that

f�; g 2 � for every  suh that � <

RE

 and � k

v

RE

. Then it follows from part (1)

of proposition 6.5.13 that � 2 K � �. Similarly, if � k

v

RE

� and f�; g 2 � for every

 suh that � k

v

RE

 and � k

v

RE

, then it follows from part (2) of proposition 6.5.13

that � 2 K � �. 2
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List of identities

(Def � from �) page 21

(Def � from �) page 21

(Def � from s

K

) page 22

(Def � from M) page 22

(Def s

K

from b) page 23

(Def � from v

EE

) page 25

(Def v

EE

from �) page 25

(Def � from v

GE

) page 26

(Def v

E

from v

G

) page 27

(Def v

G

from v

E

) page 27

(Def K=� from <

H

) page 28

(Def � from <

H

) page 28

(Def � from sm

K

) page 40

(Def � from sm

K

) page 40

(Def � from S) page 42

(Def � from �) page 43

(Def � from �) page 43

(Def � from B) page 47

(Def v

E

from �) page 48

(Def v

G

from �) page 48

(Def v

GE

from �) page 49

(Def � from b) page 51

(Def � from �) page 51
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(Def b from �) page 52

(Def <

EE

from <

H

) page 53

(Def j�

P

from P ) page 65

(Def j� from �) page 72

(Def E from j�) page 72

(Def j� from s

K

) page 73

(Def j� from �) page 75

(Def � from j�) page 75

(Def s

v

) page 90

(Def r

�

) page 90

(Def � from �) page 96

(Def v

�

from �) page 97

(Def <

P

from �) page 98

(Def v

R

from �) page 99

(Def � from �) page 106

(Def � from �) page 106

(Def v

RE

from v

EE

) page 112

(Def v

EE

from v

RE

) page 112

(Def v

RE

from �) page 117

(Def � from v

RE

) page 117

(Def � from v

RG

) page 126

(Def v

GE

from v

RG

) page 127

(Def v

RG

from v

GE

) page 127

(Def j� from v) page 127

(Def v

C

from v

EE

and v

GE

) page 129

(Def � from � and s) page 148

(Def � from r

�

) page 152

(Def

:::

� from

�

�) page 156

(Def

:::

� from �) page 157

(Def � from �) page 160

(Def

�

� from �) page 160

(Def

�

� from � (v2)) page 160

(Def � from �) page 162

(Def � from

�

�) page 162
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(Def

_

�) page 169

(Def � from V) page 172

(Def V

D

from V) page 173

(Def

�

� from v

EE

) page 174

(Def v

EE

from

�

�) page 175

(Def

�

� from v

RE

) page 176

(Def � from v

EE

) page 177

(Def � from v

RE

) page 178

(Def ug

v

) page 191

(Def �

v

) page 191

(Def > from �) page 203

(Def � from �) page 204

(Def � from �) page 204

(Def ? from �) page 204

(Def >) page 212

(Def �) page 217

(Def > from �) page 219

(Def >

�

) page 225

(Def >

�

) page 229

(Def 


 

) page 233

(Def 


!

) page 233

(Def 


�

) page 234

(Def 


�

) page 234

(Def K(

b


)) page 235

(Def � from IB) page 245

(Def �

IB

from IB) page 246

(Def ~ from �) page 257

(Def �

IB

from IB) page 257

(Def > from ~) page 264
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